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Abstract

This article discuses the identification of Generalised Rational Expectations Models. It is
shown that the necessary and sufficient conditions for local identification of the Quasi-Structural
Form (Q-SF) derive from the first derivatives of the Non-Linear Instrumental Variables (NLIV)
criterion. The necessary and sufficient conditions for local identification consist of an appropri-
ately defined and informative instrument set and a Jacobian matrix with appropriate rank.

However, these conditions do not identify the full structural form (SF) linked to either the
true expectations or the full solution. For the identification of SF, the parameters need to be
associated with a model that satisfies the transversality condition. It is shown that the testing
of this condition is impossible when relying exclusively on the existing instruments.
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1 Introduction
This article considers the identification of multivariate, multi-period rational expectations
(RE) models as discussed by, Broze and Szafarz (1991), Broze, Gourieroux and Szafarz
(1995) and Binder and Pesaran (1995(BP95)). Firstly, an extension to proposition 1
in BP97 is developed via the Generalized Bézout Theorem to show, that under more
general conditions, a regular solution to the RE problem exists. Secondly, necessary and
sufficient conditions for local identification of the Quasi-Structural Form (Q-SF) require
the existence of the appropriate rank of the product of the moment matrix of the data
and the Jacobian matrix of the parameters. That is to identify the Q-SF, what is required
is a set of valid instruments combined with a Jacobian that reflects conditions associated
with the solution. These requirements for local identification stem from the application of
the criterion developed by Sargan (1983a) for the identification of simultaneous equation
systems with time dependent errors.
Conventionally, linearized RE models are estimated by Instrumental Variables (IV)/

Generalized Method of Moments estimators, as Phillips (2003) mentions, identification
is often accepted purely on the basis of a test of over-identifying restrictions (Arellano
et al (2000) and Sargan (1964)). Usually, the existence of sufficient exogenous and pre-
determined variables appears to be satisfactory for identification. However, there is some
doubt as to whether tests for the validity of over-identifying restrictions, even corrected
(Kleibergen (2003)), are able to provide reliable inference and as a result identify model
parameters in either Q-SF and SF. Furthermore, Sargan (1983) suggests that failure of
identification, for whatever reason, will affect the underlying limit distributions of the
estimator. As Stock, Wright and Yogo (2002) show in the presence of weak instruments
additional over-identifying restrictions associated with further moment conditions do not
solve the problem.
Flôres and Szafarz (1994) and Hunter (1992) remark that identification of the Q-

SF follows from the non-linear structure of the RE problem. Flôres and Szafarz (1994)
develop a condition that they obtain from the Jacobian of the transformation from the
deep or structural parameters to Quasi-Structural parameters. This condition does not
rely on instrument selection or the moment matrix of the data, and as a result data
dependencies, such as those due to cointegration, have no direct effect on this condition
for identification.1

The local conditions presented here are influenced both by dependencies across the
Jacobian matrix, which reflect the parametric structure of the RE problem, and the mo-
ment matrix of the data. However, the local conditions are necessary and sufficient for
identification of the Q-SF only, because such parameters do not embed information asso-
ciated with satisfaction of the transversality condition. The transversality condition must
be satisfied for identification of the structural form. Should, one attempt to test the full
set of over-identifying restrictions using a limited information estimator (IV/GMM), the
restriction associated with the regular solution of the RE model, that consequently satis-
fies the transversality condition, is not testable without additional information regarding
measures of forward expectations that are independent to the set of instruments included
in the model. Testing requires separate measures of expectations based either on models
that solve out the RE problem or survey data.
This article is structured as follows: in section 2 the canonical representation of the

multivariate RE model is presented; identification is viewed in terms of instrument validity
in section 3. Both instruments and parametric restriction on the Q-SF are derived in

1One form of non-linearity not considered here, relates to the impact of the discount rate on identi-
fication (Gregory et al (1993), Sargan (1982)), excepting the single equation case, the introduction of a
fixed discount rate normally aids identification (Hunter (1992) and Hunter and Ioannidis (2000)).
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section 4; Section 5 discusses the impact of the transversality condition on identification
and then conclusions are drawn in the final section 6.

2 Generalized Multivariate Expectations Models
Binder and Pesaran (1995(BP95)) show that the generalized multivariate rational expec-
tations model first considered by Broze and Szafarz (1991) can be expressed in canonical
form:

xt = Axt−1 +BE(xt+1|It) + wt (1)

following the notation in Binder and Pesaran (1997(BP97)) xt = (x
0
t, x

0
t−1, ...x

0
t−K+1),

x
0
t = (y

0
t, E(y

0
t+1|It), ...E(y

0
t+H |It)), yt is a G vector of decision variables. The remaining

elements in (1) are defined as A = −D−10 D1, B = −D−10 D−1, wt = −D−10 ϑ̄t, ϑ̄t =

(ϑ
0
t, 0

0
n, ...0

0
n)

0
, ϑt = (u

0
t, 0

0
G, ...0

0
G)

0
; with n = (H + 1)G. Where ϑ̄t and xt are both

K(H + 1)G × 1 matrices , ut is a G vector of forcing variables, 0
0
n is an n × 1 vector of

zeros, ϑt is of dimension n× 1 and the matrices Di for i = −1, 0, 1 are defined as:

D−1 =


Γ−1 0n · · · 0n
0n 0n · · · 0n

. . .
0n 0n · · · 0n

 ,D0 =


Γ0 Γ1 · · · ΓK−1
0n In · · · 0n

. . .
0n 0n · · · In

 ,

D1 =


0n 0n · · · 0n ΓK
In 0n · · · 0n 0n

. . .
0n 0n · · · In 0n

 with Γk, k = −1, 0, 1, ...K,

Γ−1 =


0G 0G · · · 0G 0G
−IG 0G · · · 0G 0G

. . .
0G 0G · · · −IG 0G

 ,Γ0 =


IG −A01 · · · −A0H
0G IG · · · 0G

. . .
0G 0G · · · IG



and Γi =


−Ai0 −Ai1 · · · −AiH

0G 0G · · · 0G
. . .

0G 0G · · · 0G

 for i = 1, ...K.

It follows from proposition 1 in BP97 that when λi defines a solution to the scalar problem:

φ(λi) = det(Bλ
2
i − λiI +A) = 0

there are finitely many Jordan matrices Ji for i = 1, 2, ...l that solve φ(C) = 0, where
C=SJiS−1 for some non-singular matrix S. Any matrix Ji that solves φ(C) = 0 also
satisfies:

BS2i − SJi +AS = 0. (2)

Vectorizing (2):
((J2i )

0 ⊗B − J
0
i ⊗ Im + Im ⊗A)vecS = 0.

When rank{(J2i )
0 ⊗ B − J

0
i ⊗ Im + Im ⊗ A} = m − 1, then S is a non-singular matrix,

and Ji = Λ is a solution to φ(C) = 0, which also solves:

P (C) = BC2 − C +A = 0;
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where C = SΛS−1. If P (C) = 0 then it follows from the Generalized Bézout Theorem
(Gantmacher (1960)) that the polynomial in z-transfom, P (z) =(Bz2− zI+A) has a left
hand divisor of the form (zI −C). Mapping P (z) = F (z)(zI −C) onto the time domain:

P (L−1) = F (L−1)(L−1I − C)

where F (L−1) = (I − BC)(FL−1 − I). P (C) = 0, when (I − BC) is non-singular and
rank{(J2j )

0⊗B−J 0
j⊗Im+Im⊗A} = m−1. P (L−1) = (BL−1xt−xt+ALxt) decomposes

into backward and forward components:

−P (L−1)Lxt = −(I −BC)(FL−1 − I)(L−1I − C)Lxt = (3)

= (I −BC)(I − FL−1)(I − CL)xt = wt (4)

and (I −FL−1) inverts to produce the regular solution in BP97 without the requirement
that AB = BA :2

xt − Cxt−1 =
∞X
s=0

F s(In −BC)−1D−10 E(ϑ̄t+s|It) (5)

If ut = ψzt + εt (BP95), with ψ dimensioned G × Gz, Gz the number of exogenous
variables, then solving for expectations gives rise to the Reduced Form (RF):

xt − Cxt−1 = Υ(L)zt + εt (6)

where Υ(L) = (Υ0+Υ1L+ ...Υs−1Ls−1), z0t = [z∗0t , 0
0
n∗ , ...0

0
n∗ ] is a state vector containing

exogenous processes, with z∗0t = [z0t, 0
0
Gz

, ...0
0
Gz
] and n∗ = (1 + H)Gz, and where ε0t =

[ε∗0t , 0
0
n, ...0

0
n] is a state vector containing white noise residuals with ε∗0t = [ε0t, 0

0
G, ...0

0
G].

Now xt−1 contains perception variables (E(y
0
t−i|It−j) when j > i.3 . Given measures

for all elements in xt−1a solved form of the first order condition is derived in Appendix
A; the Quasi-Structural Form (Q-SF):

(I+FC)xt−FE(xt+1|It+1)−Cxt−1−(I−BC)−1D−10 (Ψzt+εt) = F (ΨRζ̄t+1+ε
0
t+1) (7)

where ϑ̄t = Ψzt + εt, I is a Kn dimensional identity matrix and the block diagonal
matrix, Ψ(Kn×Kn∗) = diag[ψ, 0Gz×G, ... 0Gz×G] and R =

P∞
s=0 F

s(BC − I)−1D−10 Rs.
The Kn∗ vector ζ̄t+1 contains innovations in the exogenous variable processes. The
following linearization of (7) can be estimated consistently by Instrumental Variables
(IV) when an optimal instrument set exists (Sargan (1983)):

Qoxt −Q1xt+1 −Q2xt−1 −Πzt = ςt+1 (8)

2The result presented replaces Proposition 2 in BP(97). It follows from the application of Frobenius
Theorem or the appropriate matrices having Property P (Motzkin and Taussky (1954)), that P (C) =
BC2−C+A = 0 has the following roots φ = λbλ

2−λ+λa = 0 when AB = BA. In (1), AB = BA only
occurs when the problem is first order and B = βA.
Alternatively, it is either required that λ − λbλ

2 = λa and property P is satisfied or P (C) = 0 and
C−BC2 = A. It follows from the similarity of C−BC2 and A that the roots (µ) of C−BC2 equal λa.
Any matrix pair (C,B) with roots (λ, λb) is said to satisfy property P (see Motzkin and Taussky (1954))

when F (C,B) has as its roots f(λ, λb). More generally, Schneider (1955) shows that property P follows
for every pair of matrices (Ai, Aj) in an ordered matrix polynomial when (AiAj −AjAi)Ri = 0.Hence,
C − BC2 has roots λ− λbλ

2 when (BC − CB)Ri = 0 for some matrix polynomial Ri. Property P will
be satisfied when BC = CB and AB = BA Otherwise, when µ = λa and a Jordon form C = SJiS−1
satisfies P (C) = 0, then µ = λ− λbλ

2. Conditions (ii)-(iv) in BP(97) follow from these results without
the requirement that A and B commute.

3Such variables are either directly measurable at time t, can be computed from the RF or using the
Quadratic Determinantal Equation Method developed by BP95.
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where ςt+1= (In − BC)−1D−10 εt − Fε0t+1 − FΨRζ̄t+1, is an MA(1) error in state space
form, Qo = (I − BC)−1, Q1 = (I − BC)−1B, Q2 = C and Π = (BC − I)−1D−10 Ψ.
Multiplying through by (I −BC) yields the Q-RF

xt − P1xt+1 − P2xt−1 − P3zt = ς∗t+1 (9)

Where ς∗t+1 = ε+t −FD0ε
+
t+1−FΨRζ̄t+1, ε+t = D−10 εt, P1 = B = D−10 D−1, P2 = C−BC2

and P3 = D−10 Ψ. Having derived the Q-RF, the identification of the linearized version of
(8) is considered in the following section.

3 Identification and Instrument Validity
The conditions presented in Pesaran (1987) can be extended to identify the linear Q-
SF parameters b = [Q0, Q1,Π, C] of (8).Identification of SF parameters follows from
the existence of a well defined RF and identification of (6) stems from the existence of
sufficient lagged information.4

To identify b, when Qo is non-singular, xt = Cxt−1+Υ(L)zt+εt and E(xt|It) depends
on xt−1 and zt−i, for i = 0, 1, 2..s− 1, .it is required that the matrix UQ below has rank
Kn+Kn∗ + rank(UQ∗):

UQ =


bΦ O O ... O
O IKn O ... O
O O IKn∗ ... O
O C2 Ξ0 ... ΞS−1

 ,

U =


Q0 −Q1 −Π −Q2
O IKn O O
O O IKn∗ O
O O O IKn

 and Q =


Φi C Υ0 ... ΥS−1
O IKn O ... O
O O IKn∗ ... O
O C2 Ξ0 ... ΞS−1

 .
Where Q0C−Q1−Q2C2 = 0, Q0Υ0−Π−Q2Ξ0 = 0, Q0Υi−Q2Ξi = 0 for i = 2, 3, ...s−1,
Ξi = CΥi, Φ = [Φi : O] and following Pesaran (1987):

UQ∗ =
·
ΦB O ... O
O Ξ1 ... ΞS−1

¸
.

If UQ is dimensioned 2Kn× (r +Kn∗(s− 1)) with r conventional identification restric-
tions on B(Sargan (1988)) and rank(Ξi = CΥi) ≤ min(Kn,Kn∗), then a unique solution
to b, implies rank(UQ∗) = 2Kn − 1. It follows from the dimension of UQ, that the
order condition is 2K(1 + H)G − 1 < r + K(1 + H)Gz(s − 1). Exact identification re-
quires, in addition to r restrictions, enough pre-determined information via lags on the
RF (s) and/or number of exogenous variables (Gz).5 Given sufficient a priori restrictions,
rank(

£
Ξ1 ... ΞS−1

¤
) = Kn is required for identification. It may be possible that even

when rank(
£
Ξ1 ... ΞS−1

¤
) = Kn, when a long enough dynamic process is estimated,

identification though technically feasible may be undetectable due to weak instruments.
The generalisation of the rank condition derived from Pesaran (1987) is also necessary to
identify (9) when Q0 = I.
The Pesaran condition is appropriate to identify linear models, but when identification

of the structural parameters embedded in (7) is considered then the impact of the non-
linear restrictions needs to be taken into account. In the next section conditions based
on the impact of these restrictions and the moments of the data are derived.

4Such conditions derive from Rothenberg(1971) and relate to the instrument matrix having sufficient
rank.

5If s = 2 and G = Gz the order condition has a more usual form r > K(1 +H)G− 1.
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4 Non-linear Identification of the Quasi-Structural Form
In this section necessary and sufficient conditions for local identification are derived fol-
lowing the approach developed by Sargan (1983a).6 When compared with Flôres and
Szafarz (1994), the results presented here combines the Jacobian condition with the mo-
ment matrix of the data and the models incorporate perceptions (K > 1).
Stacking (8) the system is written as:

V (θ)X∗0 = E0 (10)

where V (θ) = [D0 :-Ψ : D−1 : −D0C +D−1C2 ]7 , X∗ = [X Z X+1 X−1 ] where X is an
N ×Kn matrix of observations on x̄t, Z is an N ×Kn∗ stacked matrix of observations on
zt, E0is an N ×Kn stacked matrix of observations on ς∗t+1 and N is the number of time
observations. The data matrices subscripted by +1 relate to observations for the period
t+ 1 and −1 to period t− 1.
Flôres and Szafarz (1994) derive conditions which depend on the rank of the Jacobian

matrix, considered without expectations by Rothenberg (1971). The Jacobian of the
transformation from the Q-SF to SF parameters (θ = [vec(D0)

0 : vec(Ψ)0 : vec(C)0])8 is:

dvec(V (θ))

dθ
=


I 0 0
0 −I 0
0 0 0

−(C0 ⊗ I) 0 −(I ⊗D0) + ((I ⊗D0C) + (C
0 ⊗D0)

 , . (11)

while rank(dvec(V (θ))dθ ) < 2Kn+Kn∗ is the condition required.9 However, Sargan (1983a)
shows for a class of dynamic model that the condition on the rank of the Jacobian is only
sufficient for identification.
Defining Z∗as

h
X̂ Z X̂+1 X−1

i
where X̂ and X̂+1 are matrices of predictions or

forecasts of X and X+1, .and post multiplying (10) by Z∗ gives rise to:

V (θ)X∗0Z∗ = E0Z∗ (12)

Consistent estimation of θ = [vec(D0)
0 : vec(Ψ)0 : vec(C)0] requires that:

V (θ)
plim(X∗0Z∗)

N
= 0 (13)

(Sargan (1983a)). The criterion is made operational by replacing X̂ and X̂+1by their
instruments Z+ =[X−1, Z, Z−1, Z−2, ...Z−s] so the moment matrix of the data can be
written:

p lim(
Z+0X∗

N
) = M = plim

·
Z+0X
N

:
Z+0Z
N

:
Z+0X+1

N
:
Z+0X−1

N

¸
= [M0 :M1 :M2 :M3].

6Broze and Szafarz (1991) consider identification of the structural form, D0E(x̄t|It−1) + D1x̄t−1 +
D−1E(x̄t+1|It−1) = ΨE(z̄t|It−1) + εt., when K = 1 and H = 1. From property 5.96 in Broze and
Szafarz(1991), identification of the structural form requires that the expectations are uniquely recovered
by the estimator. However, as is shown in section 5 of this article, identifying the parameters from a
limited information estimator is not feasible without further knowledge of the expectations. Thus the
conclusions offered in Broze and Szafarz (1991) may be overly optimisitic vis-a-vis the extent to which a
model can be identified without knowledge of the solution.

7For ease of exposition, all the terms in b = [Q0,Q1,Π, C] are pre-multiplied by D0(I −BC).
8Given, the definition of the model in section 2, D1 is a fixed matrix and is identified a priori.
9The results presented here do not consider conditions on the variance-covariance matrix, but what

distinguishes this article from that of Flôres and Safarz is the interaction between the moment conditions
and the Jacobian. The conditions on the variance-covariance matrix induce further non-linearities, which
only makes identification more complicated.
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Vectorizing (V (θ)M):

vec(V (θ)M 0) = (M ⊗ IKn)vec(V (θ)) = 0. (14)

Following Sargan(1983a) the necessary and sufficient conditions for the local identification
of dynamic autoregressive models estimated by IV is derived from the first derivative of
(12) with respect to θ:

dvec(V (θ)M 0)
dθ

= (M ⊗ IKn)
dvec(V (θ))

dθ
. (15)

Expanding (15):

(M ⊗ IKn)
dvec(V (θ))

dθ
= [(M0 ⊗ IKn)− (M3 ⊗ IKn)(C

0 ⊗ IKn) :

−(M1 ⊗ IKn) : (M3 ⊗ IKn)(−(I ⊗D0) + ((I ⊗D0C) + (C
0 ⊗D0))]

= [(M0 ⊗ IKn)− (M3C
0 ⊗ IKn) : −(M1 ⊗ IKn) :

(M3 ⊗ IKn)((C
0 − I)⊗D0 + (I ⊗D0C))]

= [((M0 −M3C
0)⊗ I) : −(M1 ⊗ IKn) : (M3(C

0 − I)⊗D0)

+(M3 ⊗D0C))] (16)

gives rise to the rank condition:

rank{(M ⊗ IKn)
dvec(V (θ))

dθ
} < m = 2Kn+Kn∗, (17)

which is both necessary and sufficient for the local identification of the Q-SF parameters.
The vector θ is not identified when the above rank condition fails or:

rank(M0 −M3C
0) < Kn (I)

rank(M1) < Kn∗ (II)

rank(M3(C
0 − I)⊗D0) + (M3 ⊗D0C)) < Kn (III)

It follows that D0 is not-identified when M0 =M3C
0 or certain rows and columns in M0

and M3C
0 are subject to some cancellation. A special case of this occurs when there are

unit roots in the process driving the exogenous variables. Failure of (II) occurs when M1

is rank deficient and as a result Ψ is not identified. This failure occurs when there are
insufficient instruments or z is cointegrating exogenous for a subset of the SF parameters
(Hunter (1989)). Cointegrating exogeneity occurs when the long-run processes forcing y
do not apply to z. Failure of (III) occurs when either D0 or M3 are rank deficient. The
matrix C is not fully identified when there are dependencies between M3(C

0 − I)⊗D0)
and (M3⊗D0C) and more specifically C = 0 when M3(C

0− I)⊗D0) = −(M3⊗D0C).10

In the existing literature, failure of identification is associated with rank(dvec(V (θ))dθ ) <
m (Flôres and Szafarz(1994)) and rank((M⊗IKn)) < m (Pesaran(1987)). The conditions
presented in this article when compared with Flôres and Szafarz(1994) are affected by
the existence of unit roots, cointegration and annihilations that may occur between the
moment and the Jacobian matrix. When looking at the moment matrix of the data
alone, then it is common practice to accept identification based simply on the imposition
of enough over-identifying restrictions and these are rarely tested (Phillips (2003)).

10There may also be rank dependencies across the columns of (16) associated with cointegration between
the x variables alone This will lead to further restrictions which imply that not all the parameters in C
are identified
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Sargan (1983) showed that for NLIV, loss of identification is often associated with
the failure of conventional asymptotic theory, implying that conventional test statistics
at best converge slowly to their limit distributions. This point is further elaborated by
Stock, Wright and Yogo (2002) who point out that both the IV and GMM estimators
may have non—normal limit distributions and that inference based on sample evidence is
unreliable11.
Were one to undertake such tests, then there are serious questions over their applica-

tion (Dufour (1997)) and their performance (Stock and Wright (2000)). Dufour is critical
of the power of the underlying tests based on what are limited information estimators,
while Stock and Wright consider the question of weak instruments. Empirically, the loss
of identification associated with conditions (I)-(III) is likely to occur in the presence of
weak instruments and/or the incapacity to detect the supposed RE structure.
The latter observation leads to the final proposition of this article, that identification,

thus far described, relates to the parametric identification of the Q-RF and Q-SF para-
meters alone and not to the forward looking representation of the model. Furthermore,
estimates of parameters based on (1) (5) and (6) need to be observationally equivalent to
those derived from (7), (8) and (9) for full identification of the structure. As the (Q-RF)
and (Q-SF) do not impose the solution, then equivalence with (1) only occurs when the
instruments accurately approximate the true expectations.

5 Identification and the Transversality condition
The local conditions developed in the previous section are necessary and sufficient to iden-
tify the parameters of both (8) and (9), but they are only necessary for the identification
of the parameters of (1) that contains the true expectations.12 In models that contain
future variables or their expectations, full identification of the structure implies that (1)
and (9) are isomorphic. These equations are said to be isomorphic when the two sets of
parameters are observationally equivalent. However, in the case of RE, (9) is a model
with a Moving Average (MA) error structure that does not use estimates of expectations
that bind the parameters to the solution, while (1) contains the true expectations.
Comparing (1) and (9):

Axt−1 +B(E(xt+1|It) + wt − P1xt+1 − P2xt−1 + P3zt − ς∗t+1 = 0

with some re-arrangement:

Axt−1 − P2xt−1 +B(E(xt+1|It)− P1xt+1 ++P3zt + wt − ς∗t+1 = 0

Therefore:

Axt−1 − P2xt−1 +B(E(xt+1|It)− P1xt+1 + P3zt + wt = ς∗t+1
(A− P2)xt−1 +B(E(xt+1|It)− xt+1) + (P1 −B)xt+1 + P3zt + wt = ς∗t+1

where wt = −D−10 Ψzt −D−10 εt, then it follows:

(A− P2)xt−1 +B(E(xt+1|It)− xt+1) + (P1 −B)xt+1 + (P3 −D−10 Ψ)zt −D−10 ε̄t = ς∗t+1.

11Despite the small sample corrections introduced by Kleibergen(2003), the reliability of the test sta-
tistics will be questionable because when there is failure of identification, the rate of convergence to their
limiting distribution is non-standard
12Comparison can equally well be made between (1) and (6) or between D0xt = −D1xt−1 −

D−1E(xt+1|It) + ϑ̄t (SF) and (5).
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From the definition of the parameters of (9) P2 = C −BC2 and it follows that:

(A−C−BC2)xt−1+B(E(xt+1|It)−xt+1)+(P1−B)xt+1+(P3−D−10 Ψ)zt−D−10 ε̄t = ς∗t+1.

Equations (1) and (9) are isomorphic when the following parametric restrictions hold:
P1−B = 0, P3−D−10 Ψ = 0 and P (C) = BC2 −C +A = 0. Irrespective of the nature of
expectations, when imposing the above restrictions:

ς∗t+1 = B(E(xt+1|It)− xt+1)−D−10 ε̄t.

When the RE problem is solved then P (C) = 0 and the parameters of (1) and (9) are
equivalent by definition as A = C−BC2. It follows from the solution to the RE problem:

ς∗t+1 = ε+t − FD0ε
+
t+1 − FΨRζ̄t+1

is an MA(1) error process with a future innovation in the exogenous variables.
The joint hypothesis:

H0 : P1 −B = 0, P3 −D−10 Ψ = 0, BC
2 − C +A = 0

can apparently be tested from regression estimates of:

ς̂∗t+1 = Π1xt−1 +Π2xt+1 +Π3zt +B(E(xt+1|It)− xt+1) + ε̄∗t

under the null hypothesis ε̄∗t = −D−10 ε̄t, Π1 = −BC2+C−A = 0, Π2 = P1−B,and Π3 =
P3−D−10 Ψ = 0. However, testing requires estimates of the innovation ( dE(xt+1|It)− xt+1).
If the innovations are estimated from the residuals of the unrestricted RF (6)13 , they will
be linear combinations of x̄t−i for i = 1, ..., s − 1 and zt. The test is not operational,
because the same instruments were used to generate ς̂∗t+1. It is also not feasible to use
estimates of

ς̂∗t+1 = Π1xt−1 +Π2xt+1 +Π3zt + ς∗t+1

by Ordinary Least Squares14 since ς̂∗t+1 and x̄t−1 dxt+1, zt are orthogonal by definition
when (9) is estimated by IV or GMM. Hence, this proposition will not be testable from
the residuals of the Q-RF or Q-SF.

6 Conclusions
This article presents conditions for the identification of a broad class of models that
include forward expectations and past perceptions. The literature thus far has broadly
considered the identification of Q-RF and Q-SF parameters (Pesaran (1987), Flôres and
Szafarz (1994))..Here a distinction is made between weak identification of Q-SF and Q-RF
models that include estimates of expectations as compared with identification of models
that include either independent measures of expectations or solve the forward looking
problem.
The local identification conditions presented in section 4 distinguish between a fail-

ure of identification induced by weak instruments, the case considered by Pesaran (1987)
and those associated with the existence of inappropriate restrictions, the case considered
by Flôres and Szafarz (1994). Poor or weak instruments will affect identification (Stock

13Were such estimates used to explain the forward error in (6), then this would define the first step of
the Vector MA(1) estimator defined by (Spliid (1983)).
14It is also of interest to note that any model normalised on xt+1 does not alleviate this problem,

because the expected error in either case is zero
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and Wright (2000)), because conventional tests of over-identifying restrictions or moment
conditions, have been shown to be unreliable (Stock, Wright and Yogo (2002)). Although
tests of over-identifying restrictions may form the basis of an identification strategy, they
should not be the sole criterion upon which it is decided that a model with expecta-
tions has been identified. Further moment conditions do not solve this problem as test
performance may further deteriorate when GMM is applied (Stock, Wright and Yogo
(2002))
In section 2 it is shown that the condition P (C) = 0 is required for the existence of a

regular solution to the RE problem and is the basis for a form of the Q-SF that employs
the RE restrictions. As a result, identification depends on both the rank of the moment
matrices of the data and a set of non-linear restrictions that relate the linear form of the
model which contains true expectations, into a model where the expectations have been
replaced by instruments. On there own, satisfaction of the moment conditions and the
Jacobian conditions are necessary, but not sufficient for identification of the Q-SF and
Q-RF. The existence of different types of data dependency associated with cointegration
results in the insufficiency of the Jacobian condition. The presence of weak instruments
reduces the reliability of data moments. The imposition of non-linear cross equation
restrictions by reducing the dimension of the parameter space ameliorates the situation.
Identification of the Q-SF of an RE model requires that: (a) the problem is appro-

priately dimensioned, in terms of there being enough instruments and cross equation
restriction; (b) the instrument set is valid based on a test of over-identifying restrictions;
and (c) the non-linear restrictions are valid based either on the Jacobian matrix or the
information matrix having appropriate rank. More appropriately, the rank conditions
(I-III) presented in section 4 ought to be tested. In addition, full identification of the
parameters associated with RE models requires that P (C) = 0 or that the transversality
condition holds. As it is demonstrated in section 5, the hypotheses associated with the
proposition that P (C) = 0 cannot be tested from the residuals of either a Q-SF or Q-
RF, unless estimates of the expectations are available, which include information distinct
from the instrument set suggested by the RF. For example, the test can be applied to
the residuals of a model estimated by GMM or IV when separate survey data on the
expectations is available. It is of interest to note that the conditions derived above for
the identification of the Q-SF can be used to identify the structural parameters where
the model estimated is based on the full solution to the RE problem, as in (5).

7 Appendix A
Applying the forward Koych transformation (I −FL−1) to (5) assuming that there exist
measures for all lagged expectations in xt−1 :

(I − FL−1)(xt − Cxt−1) =
∞X
s=0

F s(In −BC)−1D−10 E(ϑ̄t+s|It)−

F
∞X
s=0

F s(In −BC)−1D−10 E(ϑ̄t+s+1|It+1) (18)

where L−iE(xt+s|It) = E(xt+s+1|It+1). Re-ordering the indices on the summation signs
and re-ordering terms gives rise to:

(I − FL−1)(xt − Cxt−1) = (In −BC)−1D−10 ϑ̄t+

F
∞X
s=0

F s(In −BC)−1D−10 (E(ϑ̄t+s|It)−E(ϑ̄t+s+1|It+1))
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When the exogenous processes have a Wold representation, zt =
∞P
r=1

θiL
ivt, where θi is a

Gz × Gz matrix of fixed parameters, vt is a Gz vector of white noise residuals and L is
the lag operator then:

(E(ϑ̄t+s|It)−E(ϑ̄t+s|It+1)) = (E(Ψzt+s + εt+s|It)−E(Ψzt+s + εt+s|It+1))
= (ΨE(zt+s|It) +E(εt+s|It)−ΨE(zt+s|It+1)−E(εt+s|It+1))
= (ΨE(zt+s|It)−ΨE(zt+s|It+1)) + (E(εt+s|It)−E(εt+s|It+1))
= −ΨRsζ̄t+1 − εt+1

where, E(ε0t+s|It+i) = 0 for s > i, ζ̄t = (ζ
0
t, 0

0
n×1, ...0

0
n×1)

0
, ζt = (v

0
t, 0

0
G×1, ...0

0
G×1)

0
; ζ̄t is

an Kn∗ × 1 matrix 00n∗×1 is an n∗ × 1 vector of zeros and ζt is of dimension n∗ × 1, and
Rs is a square matrix defined as

Rs =


Θs 0n · · · 0n
0n 0n · · · 0n

. . .
0n 0n · · · 0n

 and Θs =


θs 0G · · · 0G
0G 0G · · · 0G

. . .
0G 0G · · · 0G

 for i = 1, ...∞

A forward solution follows by substituting out for updated expectations:

(I − FL−1)(xt − Cxt−1) = (In −BC)−1D−10 ϑ̄t−

F
∞X
s=0

F s(In −BC)−1D−10 (ΨRsζ̄t+1 + ε0t+1)

Multiplying through by the forward term on the Koych lead and replacing ϑ̄t by Ψzt +
εt,reveals a Quasi-Structural Form (Q-SF):

(I + FC)xt − FE(xt+1|It+1)− Cxt−1 − (In −BC)−1D−10 (Ψzt + εt) =

F (ΨRζ̄t+1 + ε0t+1)

where F = (In −BC)−1B and R =
P∞

s=0 F
s(In −BC)−1D−10 Rs.
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