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INTRODUCTION

One process that involves the mixing of small particles is the prep-

aration of animal feeds. Drugs , vitamins and minerals are often mixed in

very small quantities with large quantities of feed. It is necessary that

something be known about the dispersion of these items throughout the ration

in order to make statements concerning the percentages of the daily require-

ments of the additives that are being met. This thesis describes some of

the problems encountered when working with mixtures of small spherical

particles

.

The two main problems studied were the methods of obtaining a distri-

bution of the weight of an additive per portion of the feed when (a) the

particle diameters vary from batch to batch but have equal diameters within

a given batch and (b) the particle diameters have a distribution. More

directly this thesis was concerned with studying the affect of (a) the inter-

batch variation of the diameters and (b) the intra-batch variation of the

diameters on the weight of an additive per portion of the feed.

It is necessary that certain assumptions be made before attempting to

solve the problems. As assumed above, all results presented in this paper

are based on particles that are spherical in shape. The theory assumes that

mixing is perfect, that is, the mixing process results in a random mixture

so that the particle counts of an additive follow the Poisson distribution

in portions of the feed. The number of particles in the total amount of

additive used is assumed to be sufficient to allow using the normal approxi-

mation to the Poisson distribution. This allows, as will be shown later,

for the distribution of weight per portion to be considered as a normal

distribution

.
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In the first case the methods used in obtaining a vreight per portion

distribution were analytical. The marginal distributions of weight per

portion were obtained by integration of a joint distribution and a simulation

method where Pearson curves were fitted to an empirical distribution. The

Pearson curves were selected and their equations were obtained.

The second problem led to tables which show the comparison of areas

under distributions of weight per portion when all diameters are equal with

the area under distributions when the diameters have a specific distribution.

The results give some indication of the error committed by assuming all

particles are the same size . Using the cube of the mean diameter in computing

the weight distribution is equivalent to assuming all particles have equal

diameters. Hence, to use the idea of distribution of particles affecting the

weight distribution, one must use the mean of the cubed diameters as a basis

for computing the weight distributions.

RATIONALE

History

Most of the work on problems involving mixtures of small particles

is based on the assumption that all of the particles have the same size

and are spherical in shape. The theory developed on such assumptions is

limited in its usefulness.

The discovery and development of new drugs and additives for animal

feeds have caused the idea of quality control on a mixing procedure to be

more important. It is necessary to make confidence statements about the

amount of additive that will be in each daily portion of the ration. Some

vitamins, drugs and minerals are needed daily, while others are stored and



can be nixed with vider tolerance Halts. Since the absence of a drug from

a daily ration can allow the start of a disease and sometimes a slight over-

dose of the same drug can he fatal , it is important that a very small quantity

of the additive is thoroughly mixed with a much larger quantity of feed so as

to meet the tolerance limits . This condition indicates that the number of

particles of the additive must be sufficient to allow dispersion to all of

the daily portions of feed.

Various methods have been used in trying to get a frequency distri-

bution of particles. Two of these methods are counting the particles with

the aid of a microscope and screening the particles by sieve analysis. The

first method results in a distribution by count while the second method is

often used to obtain a distribution by weight. It is possible to transform

a number distribution into a weight distribution and vice versa if one is

willing to make certain assumptions about the size and shape of the particles.

There are many articles on the distributions of particle sizes. These

include arguments for and against various distributions. Kottler (1951)

indicates that the lognormal distribution is representative of particle

sizes, especially when the particles are produced by severe crushing or

grinding. Other particles seem to be somewhat uniformly distributed. The

normal distribution might be fitted provided the area under the normal curve

below zero is small. Other distributions can be used to represent a particular

particle distribution. Some experimenters believe that fewer problems are

involved if distributions which are defined for non-negative values are used

such as the two parameter gamma distribution.



The Use of the Poisson Distribution

Under the assumption of uniform particle size researchers have indicated

that the number of particles in each portion of mix will follow the Poisson

distribution if the mixing is perfect. Bloom and Livesey (1953) assume per-

fect mixing in their results regarding the particle size needed when a given

quantity of additive is mixed. Their results and the normal approximation to

the Poisson distribution were used in developing the distribution of the

weight of an additive per portion of mix.

Suppose n spherical particles of additive, each with diameter v, are

available to be used in mixing r portions of feed. Then the total weight of

additive is

w=^v 3
n

6

where p is the density of the additive. The expected number of particles per

portion of mix is - • Let m be the number of particles observed in a given

portion of feed, then m follows a Poisson distribution with mean and variance

equal to — . As - becomes larger the Poisson distribution can be approximated

by the normal distribution. The results in this paper were obtained by assuming

that — is sufficiently large to make this approximation valid. This assumption

implies that

m- n

z

NT
is approximately a standard normal deviate. Note that the weight of m particles

is ^A> m and that the expected weight per portion is ^£v"\E(m) or |pv - .

Consider the result when z is multiplied and divided by 5^v ; that is



(1)

2^,3 m . Trpv, n
/• or

DM'*
is also approximately a standard normal deviate. The weight per portion

is normally distributed with mean -^—- and variance
or

defined to be a , then the variance is ~?h a .

312
If the

mean is

Consider the case where the diameters are not all the same size, but

where the diameters are classified in k classes . If the expected weight

per portion of particles with diameter v, is a. , then the following table

can be obtained when r portions are being mixed.

Classes

Table 1. Distribution of diameters

Diameter Number Weight per class

1

2

^11

ra

ra

2p

3p

k

Total

"k

ra

Let m. represent the number of particles from the ith class that is

observed in a given portion of the final mixture. Then the preceding argu-

ment can be used to show that the weight contributed to each portion by the

ith class will be normally distributed with mean a. and variance -A a. .

ip o ip

If x^ , Xp, . .
.
, x. are the weights contributed to a given portion by the

particles of size v.., Vp , ..., v. , then the total weight per portion of



mixture is x + x + ... + x. = X . The variable X is normally distributed

with mean

k
X,a. = an ip p

and variance

Since iisual mixing procedures would call for the addition of a given quantity

of additive to a fixed number of portions, the mean

weight of additive y>(v\a
p number of portions ~

* '

"

This shows that

X - a

(2)
JL

3a

is approximately a standard normal deviate.

Moments of the Distributions of Diameters

Reference will be made to the moments of various distributions that are

assumed to be representative of the diameters of the additive particles.

Some of the moments can be obtained in closed form while others must be

obtained from general relationships (3) and (4) stated below. The following

notation will be used: a' is the rth ordinary moment of the distribution and

u is the rth central moment of the distribution.

The following formulae, Wilks (1962), can be used for obtaining the

ordinary moments when the central moments are known or for obtaining the

central moments when the ordinary moments are known



(3) «J 4, $ W*
and

oo * -A (-D
1

GO *./ •

Suppose the diameters of a group of particles are uniformly distributed

between a and b with the probability density function

(5) f(v) - -^- a £ v £ b

= v < a and v > b -

It can then be shown that the ordinary moments and central moments for (5)

can be obtained by the formulae

- r+1 r+1

() I*' -
b

'
a

r
(r+1) (b-a)

(?) u —

r

if r is even.
r

2
r
(r+l)

» if r is odd.

Consider a group of particles which have diameters that are lognormally

distributed with mean u, variance o2 , and probability density function

V >(8) f(v) = -±— exp
f-

(lo& v • ^)
2

*&ho I 2aa

= elsewhere

.

The ordinary moments for (8) are given by

(9) |g exp [rn + ~^\ .

Formula (4) can be used with (9) to obtain the central moments that are

desired.

If a given group of particles with diameters that are distributed as a

gamma distribution, with parameters a and p, and probability density function



(10)

8

m-jfr**** v> o

=* elsewhere,

rdinary moments of (10) are found to be given by

(id *i-W •

The use of (ll) with (k) will give the central moments for the gamma distri-

bution .

Consider a group of particles with diameters that are normally distri-

buted with mean u, variance cr
2

, and probability density function

(12) f(v) = —— exp f

"^V " ti

^ir a 20s
for all V

.

The central moments for (12) can be obtained from

(13) u „
i~lL o

2r
for r = 0, l, 2, ...

2r
2
r
r!

and

(l*0 »*
2r+1

= for r 0, 1, ft, ... .

The ordinary moments for (12) can be obtained by using formulae (13) and

(Ik) along with formula (3) •

DETERMINATION OF WEIGHT PER PORTION DISTRIBUTION

Introduction

Vitamins, drugs and other additives are not produced with uniform

diameters from one batch to another. Hence, it was assumed that the pro-

duction process produced the. batches in such a way that the population of

diameters, V, followed some known distribution. The following four distri-

butions were assumed to be representative of the various small particle



distributions: the uniform distribution; the lognormal distribution; the

gamma distribution; and the normal distribution.

This section deals with the problem of finding a distribution of the

weight of some additive per portion of feed (quantity of mixture) when the

additive batch is taken randomly from the production process. Two methods

of approach were used in analyzing this problem. The first method was to

find a marginal distribution of weight per portion, X, of mixture by inte-

gration of a joint distribution of X and v . Since in uost cases it is

difficult to obtain such marginal distributions, the second method was to

approximate these distributions by a Pearson type distribution. For

special cases attempts were made to evaluate the goodness of fit of such

distributions

.

Analytic Approach

General Case . Let f(v) be the density function of the diameters of

particles of a given additive used in a mix. If X is the weight of additive

per quantity of mix, then f(Xlv) is the conditional distribution of weight

per portion of feed when v, the diameter, is given. It follows from previous

assumptions that

(15) f(X|v) = -—= exp
H2Jr a(v)

p

where a is the expected weight per portion of mix and o(v) is the standard

deviation given by "A a
P

By definition the joint distribution of X and v is equal to the marginal

distribution of v times the conditional distribution of X given v, that is

f(X,v) * f(v) f(Xlv).
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Then the marginal distribution f(X) can he obtained by integrating the joint

distribution over v. Thus,

(16) f(X) =
I f(X,v)dv.

Special Case . Assume that v has a rectangular distribution between

and b. Formulae (5) and (lo) give

f(X,v)
b ^2Fa(v)

exp
(X - a )

2

P

Hence ,

f(x)
b^|2ir J

This can be transformed into

exp

2<j
2(v)

(X - a )
2 1

P

2o2 (v)
dv.

(17) f(x) =

3
1*X^ (pa//6

1 -

|I7r ^o

..1/6 -l -u _.
U ' e dU

where

3(X-a )* 3(x-a )
2

r«

b3irpa

1/6 -l -u
e

u
dU

irpa V
p

is an incomplete gamma function. Formula (17) can be evaluated by using tables

of the incomplete gamma distribution. Clearly the evaluation of the distri-

bution function of X is quite difficult even under the assumption of a simple

v distribution.

Moments of the Weight Per Portion Distribution

Formula (2) gives the mean and the variance of a weight per portion distri-

bution obtained from particles having diameters with intra-batch variation.



II

The mean is a and the variance is
P

This variance can be expressed as 5^ a u'(v) where u-Uv) is the third ordinary

moment for the distribution of v

.

Consideration of the quantity uJ(v) when working with a weight per portion

distribution produced by particles having diameters with inter-batch variation

gives

(18) ^(X) - ifelL [^ u«
r
(v) for r - 0, I. ft, ...

and

^(X) - for r = 0, l, 2, ... .

These formulae can be used to find the parameters for a given weight per

portion distribution when the density function cannot be easily obtained.

Fitting Pearson Curves to the Empirical Distributions

Introduction . Pearson and Hartley (195*0 state that the type of Pearson

curve to be used is determined by the size of p.^ and Pp . These values are

defined as

A %
p - -* and p = -=•

.

1
3 ^2

^2 ^
Since all of the theoretical distributions are symmetrical in shape p, »

for all the distributions. This indicates that either type II or type VII

curves should be used. For P2
> 3, the type VII curve would be appropriate,
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while ap„<3 would require a type II curve. If £2
= 3, a normal curve

should be used in fitting the distribution.

Determining the Type of Curve to be Fitted . The use of formula (l8)

shows that

3n£(v)

ft.

[^(v)]e

From the consideration of the variance of a new variable, y « v , it follows

that ui(v) £ [u'(v)]s . This indicates that P £ 3 for all distributions of V.

Therefore, a type VTI Pearson curve should fit the weight per portion distri-

bution regardless of the distribution of particle diameters. For the special

distributions of diameters considered in this thesis, it follows that

48
P * ~ when v i3 uniformly distributed between and b,

e2
-3e

e2
-3

9c2
when V is lognormally distributed,

x + ?P
2

+ *^P j ^0

p
J + 3p + 2p

when V has a gamma distribution,

and

P2
- 3 1 , tAt * fcV *y

u + 6u or
2 + 9u2cr

when V is normally distributed.

Fitting a Type VII Pearson Curve to the Empirical Data. The probability

density function for the type VTI curve as given by Pearson and Hartley (1954)

is

f(y) \*£ -m
for - co < y < oo.
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To fit this curve it is necessary to evaluate y , m, and a. These quantities

are the simultaneous solutions obtained by setting the integral of f(y) equal

to 1, Efy2 ) equal to the theoretical second central moment given by formula

(l8), and E(y ) equal to the fourth theoretical central uoaent given by

formula (18) . This simultaneous solution gives

(19)
J^L

a (l/? |m - 1/2
l

1/2
f

Tpa 1

(20) a - l(2m - 3) -^ u^(v)j

and

3Luj(v)]2 - 5ti<*(v)

(21) ra

2[u^(v)]2 - 2u£(v)

For convenience of computation the quantity m can be expressed in terms

of the parameters of the diameter distribution. If V is uniformly distributed

between a and £, then

(21a) „ - *4 * p^) - age*/' - 2y^3
+ f°

6
>

.

l8(a° + p°) - kap(8er - 70V + da)

Note that when a is equal to 0, formula (21a) reduces to m => ~£ .

If V is lognormally distributed witli mean u and variance a2 , then

(21b) m - 2.5 -55a •

If V has a gamma distribution with parameters a and p, then

(2ic) m , 2p
3
^ ?lp? + 3*9P 300

.

l8p2 + 90p + 120

If V is normally distributed with mean u and variance g2 , then

(2id) = "^Vm& t afl£ t ^
.

6(5o
6

12aV + 3oV)
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If v is uniformly distributed between and .08 centimeters, then

formulae (19), (20) and (21a) give m * 3-28, a = .00021333 and y
Q

= 4210.4.

When v is lognormally distributed with u = 4.244 and a2 .28346

formulae (19), (20) and (21b) give m - 2-58, a - .000047922 and yQ
= 15997-2.

If v is distributed as a gamma distribution with a equal to 250 and

p equal to ten, then formulae (19), (20) and (21c) give m = 3-44,

a « .00018087 and yQ
5126.7-

When v is normally distributed with u equal to 04 and a equal to .01

formulae (19), (20) and (21d) give m - 4.645, a = .00021337 and yQ
5223-6.

These values when substituted into the equation of the type VII curve

give the equations that fit the distributions in Table 3- A transformation

is used to locate each distribution at the theoretical mean of the distri-

butions .

The equations are

(22) f(X) 4210.

4

t ,
(X - .000175)'

( 00021333) 2

when v is uniformly distributed,

(23) f(x) = 15997-2

- 3.28

x +
fa - .O00175)g

(.000047922

)

2

2.58

when v is lognormally distributed,

(24) f(X) 5126.7 •L
+ (X - .000175) 2

( .00018087 )
2

3-44

when v follows a gamma distribution and

(25) f(X)=5223-6fl + tX - •°001^
( .00021337

)

2

a1 - 4.645

when v is normally distributed-
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Tabulation of the Probabilities Associated with (22) , (££) , (2k) and (££)

,

The cumulative distribution is defined as

(26) F(y') « y
vi-«

1 + ^~

or

co l a

>y»

-m
dy

Hr4
)

a 2* £(y)*v f°r y' > o.

This can be transformed to give

(27)

where

F(y') - | |
B(£^ - 1) I

«
2-_z

i£^
(i -z)

(* - h "I | -1

Z^ dZ

Ji
a' y

2

The quantity in brackets is the incomplete beta function. Hence, these tables

can be used in evaluating F(y').

The symmetry of f(y) can be iised to obtain values for y* less than zero

when

(28) F(y') . | | B(m - |,
i) ^0

yt2
1-

a^'-ty'
2

, lv l
r * (m - ±)-l i -1

/ Z (1 - zr ^

for y' £ 0.

Formulae (27) and (28) could be used with tables of the incomplete beta

function to obtain the probabilities to the right of the mean for each

fitted curve. However, Table 2 was obtained by directly integrating the

type VII curves given in (22) to (25) by using computer methods of applying

Simpson's rule for approximating the area under a curve.
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Table 2. Theoretical frequency for 2500 samples fro.i (22), (23), (24) and (25)

Class Boundaries v Distributions
Multiplled by

1

105 Uniform Lognormal Gaxaa Normal

-50 to -45 •25 .00 .08 .01
-45 to -40 .41 .00 .13 •03
-40 to -35 .67 .01 .22 •05

-35 to -30 1.16 .01 39 .11
-30 to -25 2.06 .02 •74 .26

-25 to -20 3.82 .03 1.47 .62
-20 to -15 7-4l •07 3-11 1.58
-15 to -10 15-04 •15 7-01 4.31
-10 to - 5 31.69 38 16.85 12.40
- 5 "to 68.10 1.17 42.66 36.63

to 5 143.50 4.86 109-46 105.02
5 to 10 276.10 32.49 260.51 264.15

10 to 15 438.14 392.25 493.59 505.12
15 to 20 518.52 1637.36 627.12 639-41
20 to 25 438.14 392.25 493.59 505.12
25 to 30 276.10 32.49 260.51 264.15
30 to 35 143.50 4.86 109.45 105.02
35 to 40 68.10 1.17 42.66 36.63
40 to 45 31.69 .38 16.85 12.40
45 to 50 15-04 •15 7.01 4.31
50 to 55 7.4l .07 3-11 1.58
55 to 60 3.82 •03 1.47 .62
60 to 65 2.06 .02 -74 .26
65 to 70 1.16 .01 • 39 .11

Experimental Approach

A sieve analysis of vitamin A was used to obtain computation constants

so that most of the density for the diameter distribution was between and

.08 centimeters. This data was used as a basis for generating random samples

of a distribution of weight per portion. The sampling procedures are given in

the appendix. Table 3 gives the frequency distributions observed when 2500

samples were generated from each distribution of diaaeters.



Table 3* Enpirical distributions of weight per portion.

IT

Class Boundaries
Multiplied by

10? Uniform

v Distributions

Lognormal Gai a Normal

-50 to -45

-45 to -4o
-40 to -35
-35 to -30

-30 to -2p
-25 to -20

-20 to -15
-15 to -10

-10 to
- 5 to

to
to5

10 to

15 to
20 to

25 to

30 to

35 to
M to

45 to

50 to

55 to
60 to

65 to

- 5

5
10

15
20

25
30

35
40

45
50

55
60

65
TO

li

4

6

36

250
1929
22T
35

1

1

1

1

4

1

3
14
14

30
63

109
231
434
641

499
223
129
54
24
11

9
2

Total 2500 2500 2500 2500

Table 4 shows that the means and variances of the simulated distributions

are near the means and variances of the theoretical distributions. Perhaps

better results vould be realised if more intervals were used. Further, the

higher moments of the random normal deviates obtained by the method described

in the appendix differ from the moment of the exact normal deviates. Hence,

the simulated distributions differ from the expected distributions

.
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Table h. A comparison of means and variances of weight per portion distributions,

V Distribution
Expected Observed

Mean Variance Mean Variance

Uniform .000175 .o
7
i28 .0001736 .0

7
12783

Lognormal .000175 .0
8
10586 .00017^2 .0

8
10785

Gamma .000175 .0
85W .00017^1 .0^10795

Normal .000175 .0
8
78 .0001727 .0 82352

The Kolmogorov - Smirnov test indicates that the simulated weight per

portion distribution produced by the particles having diameters with a gamma

distribution was not significantly different from the theoretical weight per

portion distribution. However, the other three simulated distributions were

significantly different from their respective theoretical distributions by

the same test.

After obtaining the weight per portion distribution one can then compute

the error committed by assuming that all of the particles in all of the batches

are equal, when in reality the diameters are varying from batch to batch.

This can be done by computing the area under the normal curve that would

result from particles with equal diameters and the area under the corres-

ponding theoretical curve given by formula (22), (23), (2^) or (25). If the

batches are distributed as a gamma distribution and an error of 5 per cent is

claimed when assuming equal diaoeters, then the actual error committed is

approximately 10 per cent. This indicates the importance of having the

appropriate weight per portion distribution before attempting to make

inferences about the mixing process.
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A COMPARISON OF (v) 3 AND (v)
3

Introduction

The main purpose of this section is to calculate the amount of error

committed in making statements about the veight per portion when intra-batch

variation in the particle diameters is ignored. Research workers have been

ignoring such variations by calculating the average diameter and then assuming

that all of the particles are of equal size having diameters equal to the mean

dianeter. Under these assumptions the weight per portion, X, is normally

distributed with mean a and variance 9 a [u*(v)] . However, if intra-batch

variations exist, then X is normally distributed with mean a and variance
P

-jp- a jjl »(v ) . In this section these two approaches are compared by using the

normal deviates based on each type of assumption about v.

Comparing the Normal Deviates

Formula (2) states that the weight per portion distribution can be

transformed into a standard normal deviate by

X - a

h '

—

\[¥* v3.
i ip

This can be rearranged to give

X - a

(29) Z-l
- E

This standard normal deviate is based on the assumption that the weight per

portion distribution was obtained from particles having a specific distribution

of diameters.
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If the average diameter is used as the diameter of each particle, then

the weight per portion distribution can be transformed into a standard normal

deviate by

if7̂ -
This can be rearranged to give

(30)

A special case of formula (30) is when the diameters of all particles are equal.

As a basis for comparison of the two methods, the ratio Z. /£_ was considered

and calculated for each distribution of diameters. The ratio can be reduced

to give

(31)
h Im£Cv)1'

^(v)
J

iM

The reduction of this expression gives

(32)
5
+ ab

b* + a*

1/2

when v is uniformly distributed between a and b,

(33)
h -3a

2 1/2

when v is lognormally distributed with mean u and variance a2 ,

(3*0

2

-,1/2

(p+2)(p+l)

when v has a gamma distribution with parameters a and p, and
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(35) fZ
2

1/2

'-+30*

when V is normally distributed with mean u and variance o .

The values of (32), (33), (3*0 and (35) are limited by the terms which

determine them. Formula (32) is maximum when a is equal to b and minimum

when a is zero. The maximum of formula (33) is when az is zero, while it

is minimum when or
2 is infinity. The maximum of formula (3*0 is realized

when p is zero, while it is minimum when p is infinity. Formula (35) is

maximum when a2 is zero and minimum when s is infinity. Note that the

maximum for each quantity is one and the minimum is zero for formulae (33),

(31*) and (35) and the square root of one-half for formula (32). This implies

that Z
2

is always greater than or equal to Z for these four distributions of

diameters. The maximum of Z
1
/Z_ is obtained and the equality of Z- and Z

holds only when the diameter distribution is degenerate. If inference is

made on the assumption that the diameters of all particles are equal when

they have a distribution, the type I error committed will be greater than

the type I error claimed. The amount of increase in error will depend on

the characteristics of the distribution of diameters.

The value of Z, can be determined for a given Z- and a given distri-

bution of diameters. From formula (31) it follows that

(36) Z a
1

Ujfr)l-

^(v)

1/2

V
Formula (36) and tables of the standard normal distribution were used

to obtain Table 5* Table 6, Table 1, and Table 8.
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Table 5. Type I error for 2L distribution when v has a uniform distribution.

Type I error for Z_ distribution
a J*^ 2

b
10* ^ "ifr"

.00 2k.5<t> 16.6$ 6.9$

.05 22.2 1^.6 5.6

.10 20.3 12.9 ^.6

.15 18.6 11.

5

3.8

.20 17.1 10.3 3.2

.25 15.9 9-3 2.7

.30 14.8 8.5 2.3

.35 13.8 7.8 2.0

.1*0 13.1 7.2 1.8

.45 12.4 6.7 1.6

.50 11.9 6.3 1.4

.55 11.4 6.0 1.3

.60 11.0 5.7 1.2

.65 10.8 5.5 1.2

.70 10.5 5o 1.1

.75 10.4 5.3 1.1

.30 10.2 5.1 1.0

.85 10.1 5«1 1.0

.90 10.1 5.0 1.0

.95 10.0 5.0 1.0
1.00 10.0 5.0 1.0
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Table 6. Type I error for Z distribution wlien v has a lognornial distribution.

a

Type I error for Z distribution
2 2

oo 100 # 100 # 100 #
2.00 93-5 92.2 89.8

I.50 86.2 83.6 78.6
1.00 71.4 66.2 56.5

.95 69.2 63.7 53.6

.90 67.0 61.1 50A

.85 64.6 58A ^7.2

.80 62.0 55.5 ^3.8

.75 58.7 52.5 to.

3

.70 56.5 ^9.3 36.7

.65 53.5 ^.0 33.1

.60 50.4 42.6 29.5

.55 ^7.1 39-0 25.9
43.7 35.4 22.4

:S*5 4o.2 31.8 19.0
.40 36.7 28.2 15.7

.35 33.0 24.6 12.8

.30 29.4 21.1 10.1

.25 25.8 17.8 7.7

.20 22.3 14.6

.15 18.9 11.8

.10 15.7 9-2 2.7

.08 14.5 8.2 2.2

.06 13.3 7.3 1.9

.04 12.1 6.5 1.

tf

.02 11.0 5.7

.00 10.0 5.0 1.0
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Table 7. Type I error for Z, distribution when v has a gamma distribution.

10%"

Type I error for Zp distribution

TT

.90

1.00
1.10
1.20
1.30
i.4o

1.50
1.75
2.00
2.50
3.00

3.50
4.00

4.50
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
20.00
25.00
30.00
40.00
50.00

100.00
500.00

OD

100 #
95.5
91.4
87.5
84.0
80.6

77.5
74.7
72.0
69.4
67.1
62.8
59.1
55.8
52.8
50.2
47.8
45.7
43.8
42.0
4o.4
37.0
34.2
30.0
27.0
24.7
23.0
21.6
20.4
18.7
17.5
16.5
15.8
15.2
14.7
14.3
14.0
13.7
13.5
12.6
12.1
11.7
11.3
11.0
10.5
10.1

10.0

100 ?

94.6
89.7
85.2
80.9
77.0
73.4
70.0
66.9
64.0
61.3
56.4
52.2
48.5
45.4
42.4

39.8
37-5
35.5
33.7
32.0
28.6
25.8
21.7
18.9
16.8
15.2
l4.o
13.1
11.6
10.6
9.8
9.3
8.8
8.4
8.1

7.9
7.7
7.5
6.8
6.4
6.2

5.9
5-7
5.3
5-1

5.0

100 $

93.0
86.5
80.6

75-1
70.1
65.5
61.3
57-4
53.8
50.6
44.9
40.0

35.9
32.3
29.3
26.7
24.4
22.4

20.7
19.2
16.0

13.7
10.5
8.4

7.0
6.0

5.3
4.7
3.9
3.4
3.0
2.7
2.5
2.3
2.2
2.1
2.0

1.9
1.7
1-5
1.4
1.3
1.2
1.1
1.0

1.0
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Table 8. Type I error for Z, distribution -when v lias a normal distribution.

Type I error for Z
2
distribution

n 10;, * U
00 100 # 100 $ 100 $

20.00 96.2 95-5 94.i

15.00 95.0 94.0 92.1

10.00 92.4 91.0 88.2

9.00 91.6 90.0 86.9

8.00 90.6 88.8 85.3

7.00 89.2 87.2 83.2

6.00 87.5 85.I 80.5

5.50 86.4 83.8 78.8

5.00 85.0 82.2 76.8

4.50 83.4 80.3 74.3
4.00 81.4 77.9 71.3

3.50 78.9 75-0 67.5
3.00 75.6 71.1 62.6

2.50 71.1 65.9 56.2
2.40 70.0 64.7 5^.7
2.30 68.9 63.3 53.1
2.20 67.6 61.9 51.3
2.10 66.3 60.3 ^9.5
2.00 64.8 58.7 47.5
1.90 63.2 56.9 45.4
1.80 61.5 5^-9 43.1

1.70 59.7 52.8 4o.7
1.60 57.7 50.6

48.1
38.2

1.50 55-5 35.5
1.40 53.1 45.5 32.6
1.30 50.4

47.6
42.6 29.6

1.20 39-5 26.4
1.10 44.5 36.2 21.1
1.00 4l.l 32.7 19.8

.95 39.3 30.9 18.1

.90 37. ** 29.0 16.4

.85 35.5 27.1 14.8

.80 33.6 25.1 13.2

.75 31.6 23.2 11.6

.70 29.5 21.2 10.1

.65 27.5 19.3 8.6

.60 25.4 17.4 7.4

.55 23.4 15.6 6.2

.50 21.4 13.8 5.2

.45 19.5 12.2 4.2

.40 17.6 10.7 3.4

.35 15.9 M 2.8

.30 14.4 8.2 2.2
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Table 8 (Cont.).

!

.25

.20

.15

.10

.05

.00

Type I error for Z distribution

Lpjj 5# l*

13.1^ 7.2# uttf
12.0 6J* 1.5

11.1 5.8 1.3

10.5 5-3 1.1

10.1 5.1 1.0

10.0 5-0 1.0

CONCLUSIONS AND SUGGESTIONS

The distribution of the veight per portion variable is needed for making

inference about any mixing problem. It is important that the correct distri-

bution is obtained, since the inference based on the wrong distribution can

be costly. For example, a drug may be needed in the daily ration of an animal

for protection against disease but an overdose of the sane drug could be fatal.

Tables 5> 6, 7 and 8 indicate that inference can be in error by critical

proportions unless the distribution of the diameters is used in obtaining

the veight per portion distribution.

Another use of the weight per portion distribution is the determination

of the particle sizes of additive needed to insure that a sufficient number

of particles is available to meet the desired control limits.

The simulation method of obtaining an approximate distribution of weights

per portion for a given distribution of diameters seems to be effective.

Additional work needs to be done on the efficiency of estimates based on

distributions obtained by simulation techniques.

The chi-squares for fitting the distributions in Table 2 to the distri-

butions in Table 3 were highly significant. This implies that more samples
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should be studied. It might "be helpful to use more intervals since the

distributions are quite peaked in shape. A large portion of the chi-square

value for each fitted curve was from the middle class intervals.

The Kolmogorov - Smirnov test of goodness of fit indicated that the

distributions obtained from a uniform distribution of diameters, a lognormal

distribution of diameters, and a normal distribution of diameters differed

significantly from the theoretical distributions. However, the empirical

distribution based on a gamma distribution of diameters was not significantly

different from the theoretical distribution at the 5$ level for this test.

Future work might be carried out to find the sampling distribution of

estimates for the weight per portion distribution. More work is needed in

improving the simulation techniques. The integration approach to obtaining

the theoretical distribution could be studied more rigorously. These

distributions would serve as a guide for various simulation methods.
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APPENDIX

empirical sampling was set up in such a way that the v distribution

would be distributed with a large portion of the frequency between .001 and

.080 centimeters. A sieve analysis of vitamin A and a ration of chick starter

were furnished by the milling department . These were the basis for obtaining

the theoretical mean, a = .000175, and the theoretical variance

t> 3£ v J = .0001 v-

irpa

The first part of the sampling procedure was to select diameters at

random from the various distributions of diameters . The power residue method

was used to generate numbers uniformly distributed between and 1 The

normally distributed diameters were obtained from randomly generated standard

normal deviates , Tables of the incomplete gamma distribution were used to

obtain diameters at random from the gamma distribution. The lognormally

distributed diameters were obtained by using normally distributed exponents

of e • Transformations were then used to put these values in the proper size

range

.

The second step of the sampling procedure was to generate normally

distributed weight per portion variables based on the randomly selected

diameters. Standard normal deviates were selected by applying the central

limit theorem to twelve randomly selected rectangular numbers . These were

3
transformed to a normal variate with mean -000175 and variance .0001 V .

The distributions obtained by this method are given in Table 3
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The development of new additives for animal feeds has caused concern

about the mixing of minute quantities of additives with large quantities of

feed. It is necessary that the mixing be accomplished in such a way that each

sraall portion of mix will include some of the additive. If confidence state

-

.rents are to be made about the final mix, then a distribution of the weight

of additive per portion is needed. The purpose of this thesis was to study

some of the problems encountered in obtaining and using these distributions

of weight per portion.

Consider a process in which particles are being produced in batches.

The dianeters of the particles can vary either (l) from batch to batch and

be equal within a given batch or (2) within a given batch with each batch

having the sane distribution of diareters. These conditions were the basis

for determining the weight per portion distribution of an additive.

The batch dianeters were assuned to be uniformly distributed under the

first condition and the weight per portion distribution was obtained by

integration. The resulting distribution function can not be easily evalu-

ated. Therefore, an attempt was made to fit one of the Pearson type curves

to this and other distributions where the batch diameters follow normal,

lognomial and gaxma distributions. It was found that type VTI distribution

will provide the required fit. Using Kolmogorov's test for goodness of

fit it was confirmed that a simulated distribution when the inter-batch

variations follow a gamma distribution did not differ significantly from

the corresponding type VII distribution.

The second condition results in normal distributions of weight per

portion. These distributions of weight per portion can be used in making

inference about meeting the tolerance limits placed on a mixing process.
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A comparison of weight per portion distributions based on the mean

diameter cubed and on the mean cubed diameter was used to show the error

committed when making inferences from the wrong distribution. A distribution

determined by cubing the mean diameter is the saie as the distribution obtained

by assuming ail of the particles have equal diameters. The use of the mean

cubed diameter to obtain the weight per portion distribution allows the

distribution of diameters to influence the weight per portion distribution

A study of the ratio of the normal deviates based on these two means resulted

in Tables 5, 6, 7 and 8 These tables give the actual error committed by

assuming that the diameters are equal when in reality they follow some

distribution. The results of the study indicated that the mean cubed diameter

should be used when working with distributions of weight per portion of mix

The conclusions from this thesis show that more work is needed in

perfecting the simulation method of obtaining the weight per portion

distribution. More detailed studies can be competed for various additives

that are used in mixing feeds

.


