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INTRODUCTION

A Turing machine consists of a two-way potentially infinite paper tape

and a confuting element. The paper tape is divided into squares urtiich

initially have zero printed on each square. The coiiputing element has a

finite number of states and is capable of reading from a particular square

and overprinting a zero or one on that square. It also is capable of mov-

ing the tape one square to the right or left.

At a given time the computing element will be in a certain state and

will be reading the entry on a particular square of the tape. The next

operation will be determined by the current state and the syntool being read

on tiiie tape. This operation consists of overprinting a zero or one on the

scanned square, shifting to the right square or left square and then as-

suming a new or unchanged state. A Turing machine can con$)ute numbers by

following a program which is but a collection of states. This thesis shall

demonstrate numeric and Boolean algebra confutations,

TOPICS REUTED TO TURING MACHINES

Con5)utable Nunibers

A. M, Turing originated the idea of a primitive computer. According

to Turing's definition (10), a number is confutable if its "floating-point

decimal" can be written by a machine. Computable numbers also can be con-

.^idered as those numbers for which an algorithm exists that can be used to

compute their values. The class of computable numbers is quite large. Two

particular classes are real algebraic numbers and real transcendental niun-

bers such as "n-and e. A Turing machine is not allowed to print symbols
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indefinitely, hence, con?)utable irrational nunbers must be approximated.

The class of confutable nimibers does not include all well-defined

numbers. A well-defined number may not be confutable because there exists

no algorithm for calculating the value of the number, but yet the nunfcer

has a very definite small or large value associated with it. An example

of a well-defined number that is not confutable is the number of squares

that a given Turing machine overprints on a particular tape. Given the

program and the input tape of a Turing machine there is no algorithm for

determining the number of squares that will be overprinted. The tape must

be run through the given Turing machine and the overprinted squares counted

if the answer is to be found.

Using Turing's definition of computability, it can be shown (1) that

any nuntoer which is defined by a general recursive function is a confutable

number. Because of this it is possible to tell if a nuntoer is computable

sinfly by noting recursiveness,

Turing Machines and Digital Computers

Turing's original work with computable numbers is considered to be

f\indamental in the development of a theory of digital confuters. The

stnacture of Turing machines and digital computers implies deterministic

confutations in the sense that, while either of them is in operation the

entire future is specified by its present status by means of the program.

It follows that all ordinary digital computers which do not contain random

or probabilistic elements are equivalent to some Turing machine.

Because of the Turing machine's structural simplicity, the great

problem and focus of attention is the program. This contrasts with

present day digital confuters whose greater structural complexity enables
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use of simple programs such as FORTRAN. In this way, trade-off between

con^juter conplexity and programming complexity is brought to light.

The Decision Problem

One of the primary tasks of present day mathematicians is that of deter-

mining whether various propositions concerning mathematical objects are true

or false. Problems which inquire as to the existence of an algorithm for

deciding the truth or falsity of a whole class of statements, as opposed to

a question concerning a single proposition, are known as decision problems.

A positive solution for a decision problem consists of giving an algorithm

for solving the problem, while a negative solution consists of showing that

no solution exists,

Godel and Turing on the Hilbert Entscheidungsproblem

Basically the Entscheidungsproblem (decision problem in German) was to

find a general process for determining whether a given formula of the

functional calculus K is provable. In the 1920' s, a great nuntoer of

mathematicians were concerned with finding a solution to the Entscheidungs-

problem. Finally, in 1931 Gbdel (2) showed that there were propositions U

such that neither U nor -U is provable. This in itself was not a solution

to the Entscheidungsproblem. However, it was a very definite result vrtiich

set the basis for the eventual solution of the problem by Turing,

In 1936, A. M. Turing (10) published a now classic paper: "On Com-

putable Numbers with an Application to the Entscheidungsproblem." Here,

he developed the notion of a confuting machine and then used it to show

that the Entscheidungsproblem has no solution. He showed that there can
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be no machine inhich, supplied with any formula of the functional calculus K

will eventually say whether the particular formula is provable in K.

THE NATURE OF TURING MACHINES

The Tape and the Con^juter Conqponents of a Turing Machine

The paper tape which moves through the computing element is potentially

infinite in length. This means that if the tape needs to be longer more

tape is available. Thus a Turing machine can store as much information as

may be needed. The tape has squares into which are entered the symbols

zero or one dictated by the computing element. The initial entries are

zeros.

The con^juting element contains the states of the Turing machine. These

can be conveniently represented by cards which tell exactly which operation

is to be performed. The k-^ state of a Turing machine with n states has

the following representation on a card,

Card k
aero line —

one line

Po So Co

1 Ci

alphabet column^/ \^call column
overprint column ' shift column

Pq, and S^^ all can assume values of zero and one, while both C^

and C-j^ can be any nuidDer from zero to n.

Assume that a Turing machine is in state k and that the conputer is

scanning a square which has a zero printed upon it. Card k's instructions

are to overprint the aero with P^ (either a zero or a one) and shift the

tape one square so that the machine scans the square immediately on the
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right of the one it had scanned previously if is a one or just to the

left of the square it was scanning if is a zero. The final instruction

of state k is for the machine to assume state C^. Had the original scanned

square contained a one instead of a zero the instructions on the one line

would then have been followed. ;

A Turing machine starts its operation by performing the instructions

of card one on the original square it was scanning and then assuming dif-

ferent states until it receives an instruction to assume state zero, the

stop state. There is no stipulation as to the number of times a machine

can be in a particular state or to the order in which the machine passes

through the states.

Niimber Representation on a Turing Machine

There are several codes which can be used to represent numbers -on

a Turing machine, Turing used a binary representation. A positive integer

n can also be represented on the tape of a Turing machine by a string of

ones in n + 1 adjacent squares.

The second representation is more frequently used because of that

Turing machine's lesser structural conplexity. Another advantage of the

second code is that the absence of a signal will not be interpreted as an

order. Hence, the integer zero is represented as a single one on that

machine' s tape.

Negative integers are not representable on a Turing machine. This

does not inpose ar^ serious restrictions, since most mathematical operations

csm be expressed in terms of positive integers.
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Variants on Turing Machines

The literature contains a large number of papers on Turing machines.

Most authors consider Turing machines from different viewpoints and use

many different representations for Turing machines. There are two main

ways to consider Turing machines. One way is to define a Turing machine

as a finite set of quintuples q^S^Sj^q^^. This method follows Turing (10)

and corresponds to the definition previously discussed. The q^^ refers to

the state of the machine. The S. refers to the scanned aymbol and the

to the symbol printed. The D refers to shifting right or left one square

or not moving at all. The state the machine will go into next is given by

^n-

The other way of defining a Turing machine follows Davis (1). Davis'

formulation considers a Turing machine as a finite set of quadruples. Davis'

definition differs from Turing' s in that Davis does not consider the pos-

sibility of both overprinting a symbol and shifting one square in the same

operation.

All three of the definitions described are equivalent to each other.

The definition of a Turing machine presented by the writer is the invention

of Tibor Rado of Ohio State University. Rado's method of treating Turing

machines is the clearest and most straight forward of any available in the

literature

,

The main difference between Turing' s approach and Rado' s is that Tur-

ing considered the reading and printing of symbols other than zero or one,

Turing also allowed the machine to scan the same square after it had printed

a syni)ol upon that square.



Universal Turing Machines

Turing also developed the concept of a universal confuting machine.

This machine has the property that if a suitably coded description of any

Tiiring machine is printed on its input tape, it will act like the machine

described provided the machine is started at a suitable point and in a

suitable state. The machines act in the same manner because the universal

machine will compute the same number as the described machinej but normally

at a much slower rate. Universal Turing machines generally use more than

two symbols (say, zero and one) and are quite con^slex in their structure.

At the present time the smallest universal machine uses five symbols and

has eight states. The state-symbol product is representative of the size

of a universal Turing machine. This universal machine with a product of

forty was constructed by Watanabe (12).

ELEMENTARY PROGRAMS

The Copying Turing Machine

The simplest recursive function of x is f(x)=x and its determination

generates the copying machine. A copying machine will copy any string of

ones on the input tape to the right of the given string with one separating

zero between the two strings. The scanning should start at the rightmost

one of the string of ones when the program begins. This is the standard

starting position of a Turing machine. When the machine has copied the

string it will stop at the rightmost one of the copied string. This is

illustrated as follows:
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input tape output tape

0| l|
I
1

I I I

n ones
machine starts

here (S)

n ones n ones 1

machine finishes
here (F)

The program that enables a Turing machine to copy strings of ones

consists of seven cards:

^2 ^3

12 10 17 1 U
110 1 110 13 1113

^5 ^6 ^7

6
1

1 1 2

110 5 ' 110 6 1117

10$
1 1 1 U

The program is called COPYR for "copy right".

Programming the Turing Machine

The difficult problem of programming a Turing machine can be alleviated

by subprograms. A flow chart of subprograms similar to that used by digital

computer programmers may be constructed which shows the entire operation of

the Turing machine. The price that is paid for this clear picture of the

Turing machine's operation is the addition of more states to the machine.

The time of execution of the program is related to the number of states and

the input tape.

The seven card COPYR program shown previously is a good example of a

Turing machine which takes fewer cards than the equivalent program obtained

by assembling subprograms. In this case the larger program requires twenty-

nine cards, but the operation of the Turing machine is much clearer than the

seven card program. Reduction of states is a matter of much additional
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insight. The minimvun number of states is an exan^jle of a small uncomr-

putable number.

Basic Machines or Subprograms

There are ten basic machines or subprograms from which larger programs

can be constructed. These ten subprograms and their designations are shown

below:

1) PZ (Print a zero on the scanned square.)

1 2

1 1 2 110

2) PONE (Print a one on the scanned square.)

1

3) FZR (Find the first zero to the right and stop there.)

12
1112

|0 1 3 i

11112 1

0;
110 0}

k) FONER (Find the first one to the right and stop there.)

Cl C2

12 iO 1 2

;

i

1112 illl3i 1 1 1
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5) RSTRR (Restore the string to the right.)

Input
"I 0|-|0

I
1

1 1 if

110 2} 10
Output

1
V
at least two zeros
S(machine starts here)

10 1

t t

S F(machine finishes here)

6) FZZR (Find the first pair of zeros to the right and stop under

the rightmost zero.)

C2 ^3 %
12 13 jo 1 U! !

1112 1112 1 1 1 1 2
1

i 1 1

7) GOTOR (Shift one square to the right.)

10
1110

8) is a sequence of zeros and ones which does not contain two

zeros in a row. The n refers to the number of strings of ones

in the sequence. Two adjacent zeros signify a barrier or end

of sequence.

ITOR (Shift right one square; stop at the right end of Xjj.

)

Input

I 1 1 l]

;1012 111121

st

Output "foTo |Xnl —
st Ft



9) MOPR (Erase all ones in the string to the right and stop at the

last one»)

10 11

Input

Output

S

T

s

oTo"-
t

F

10) A 1

Pi

(Branching Instruction)

If a one is seen go to the first card of sub-

program P"!^. If a zero is seen go to the first

card of subprogram P^,

12!
1 1 1 3|

(P.)

1 1 (Pq)
iO (P.)

|1 1 (FT)

Subprograms two through nine may be modified by replacing all zeros

and ones in the shift column of the cards by ones and zeros respectively.

The subprograms will then work to the left instead of the right. FZR,

for example, becomes FZL vriiich finds the first zero to the left.

Flow Chart of the Copying Machine

We can now discuss the construction of the program from the ten basic

programs.

Input [
-10

n ones

Output |0 1 iHl I I ll-ll i

0'

n ones n ones <

F
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com

26-28 FZRI

29 GO' OLl

Finish

•5t Start

FZL 1-3

If
GOTOR k

5-7

(FZL)2

ZI
PONE

8-9

(FZR)^l 10-15

PONE 16-17

18-23

2U-25

Starting with the first instruction, FZL, the subprograms are followed

until the last instruction, GOTOL, is executed. Instructions of a subprogram

with a superscript k should be followed k times. The numbers to the right

of the boxes indicate the card numbers of the particular subprogram. The

double arrows aid the assignment of card nunbers to the subprograms, be-

cause they link non-looping subprograms. The card numbers are assigned to

subprograms in consecutive order until a single arrow is reached. Card

numbering will continue with the next uncounted subprogram.
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Flow Chart of the Identity Function

Input Jo7x^ Output [0 Xn
I

Xj^ i

tF

Xjj is any sequence of seros and ones irtiich does not contain two zeros

in a row. The subscript n refers to the number of strings of ones in the

sequence. The i-th string of ones in Xj^ is x^. The program can be said

to compute {x-^,X2,--' ^±,'" Xj^) = x^^. When n=i=l the program is equivalent

to COPYR.

n

IfzzrI

1
(fzl)

n-i+1

|(GQTOR)
2 I

Igqtor

(_PZ

[

(FZR)""^"^^!

_±
PONE !

(FZL)
n-i+2

j PONE

This program takes 9(n-i)+31 cards,



Flow Chart of the Function fn, k

Input Output jo
I

oi-"|oi x„i ojo

k zeroS^ ^F

When k=l the function is written fn and its program is

f2

it

1
j

(U^)
I

n(9n+22) cards required

In general when k^l the program for ln,k is

Gi, k
n(9n+3k+19)+3(k-l)
cards required

IliFZL)^ GQTOR -» ITOr]
k-1

4

'

Flow Chart for the T/ilNDUP Program

Input
I
Vm

i
Q ' % 0- Output \Y-^

at least two ieros
T

S

i

X]_ !

t

F

The WNDUP program erases the sequence Vj^ and moves X-^ over within one

separating zero of Y^. A subscript on an upper case letter (such as X,Y,V)

represents the number of strings of ones (separated by one zero) contained

in the sequence of the upper case letter. Vjjj generally represents "scratch

work" and X^. represents the desired answer of some operation.
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WNDUP

FZL

GOTOL

FONER

I

FZR

|MOPL
j

29 cards required

GOTOL

noL

(GOTOL)
2

FONER

FZR

GOTOL

ARITHMETIC OPERATIONS ON TURING MACHINES

Flovf Chart for Addition

Input |0 I
x| 0[ y I I

0-"
j Output jO I xj | y! |

(x+y)
|

|

t t

Lower case letters on the tape represent positive integers,
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ADDITION FZL

HZ
PONE

FZR

GOTOL

95 cards required

(PZ -» GOTOL)'

Flow Chart for Proper Subtraction

Input y X Output

t

S

Proper subtraction is defined as follows:

'O if x<y

x-y if xs^y

*«y =

Since negative integers are not representable on a Turing machine, this

program finds frequent usage. The absolute value of the difference of two

integers is given by the relation: |x-y|=(x.«-y)+(yxx)
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PROPER SUBTRACTION

required

Flow Chart for Minimalization Program

This program will compute f(Xj^)=()iy)[F(Xj^,y)=o] given (program to

con5)ute F{l^y)). f(Xjj) is the minimum value of y that satisfies the

equation F{I^y)=Q, This program can be used to determine arithmetic

(bracket) square roots and quotients.

Input i Xn •
•

'

Output
j

I X
'^n

t

F
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MNIMALIZATION

FZZR

PONE

—s

GOTOL

GOTOR

1 ^

PZ

1

GOTOR

Cards required:

n(9rw-2$)+50+ cards of

machine f.

MOPL

FONEL GOTOL

WNDUP

Flow Chart for Multiplication Program

Input xj
i y I I

»" ;

t

S

Output |o
i
X

I I y 1
I

(xy) [0 t.o.

t
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1

MULTIPLICATION

GOTOL

zn
PONE

FZL

ZI
GOTOR

PZ

I
FZRm
PONE

ITOL

3_r:

(GOTOL)'

(FZR)

2

zirr
GOTOL

FZZR

(GOTOL)

2

GOTOR

irz
PONE

FONEL

irz
GOTOR

RSTRR

I
GOTOR

FZR

FZR

GOTCR

I 1

GOTOL

zzz
PONE

zn.
FZL

IT
GOTOR

PZ

FZL

zm
GOTOR

I
PZ

HZ
(FZL)'

GOTOR

GOTOR

A
PZ

J
(FZZR)^

X
j

(GOTOL)

III

2
;

COPYR

i
(7card)

i^ZL

iFZL^

X

106 cards required
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General Recursive Functions

Because a Turing machine can compute any general recursive function

it is of interest to construct a machine which can conpute such functions.

A general recursive function is described by the following relations:

f(X„,0)=X(x„) f(Xn,yM)=A[x^,y,f(X^,y)]

The problem is to find fi^,y) given the machine to compute X(M^), the

machine to conpute y\^M^, and y.

The machine is composed of two major subprograms. The first is PREP.

?.'hen given the input .Lp_l Xni. o| 7 I
O! 0— the corresponding output tape

^ s

-Qi ^ 1 0| y| :0| yj O; 1 I Ol^i O I O- which is used as the input tape

for ROUND the other half of the program.



PREP

FZZL

GOTOL

PONE

FZL

GOTOR

PZ

I
(FZZR)'

X
\TODUP

ze:
FZL

(GOTOR)'

!

GOTOR

i PONE

PZ

j

FZR

I

PONE

GOTOR i

Cards required: n(9n+6U)+1764- cards of M.



Input Xri Oi y oi y| oi 1 o| ^
sT

Output Xr, i i y
i

f (x„,y)
i

0...

ROW©
FZZL

~T~
(GOTOR)^

—

r

PZ

I
GOTOR

^
1

FZZR

(GOTOL)^
I

WNDUP

Cards required:

98 + cards of

L

FZZR

I
i (GOTOL)'
i

i

M

I
(FZL)^

I

PONE

GOTOR

MOPR
I

zm:
FZZR

j

(GOTOL)'

WNDUP
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Finally, the machine GERF (general recursive function) can be formed.

GERF

1

PREP

«

ROUND 1

Cards required:

n(9n+6U)+27U+ cards of

and

BOOLEAN FUNCTOTS ON TURING MACHINES

• . - .)'-

Finite Automata, Restricted Turing Machines

Turing machines which are not allowed to shift to the left form a

very special subclass of Turing machines. Such restricted Turing machines

are called finite automata (U). Generally speaking, Turing machines have

two main features: their ability to make decisions and their access to an

essentially unlimited memory. By inposing the restriction of not shifting

to the left a Turing machine is reduced to a machine with no memory.

The loss of memory is quite a severe restriction. Because of their

limited memory, rather simple tasks lie beyond the reach of finite automata.

For instance, there is no finite automaton which will perform in the manner

of the COPYR Turing machine. This excludes finite automatons with an in-

finite number of states as inplied in the name finite automata.

Because finite automata cannot scan any square on the tape more than

once they require a prepared Irtpnt tape which is not initially filled with

zeros. A finite automaton with zero initial conditions is not capable of

being in a particular state more than once. If allowed to return to the

same state the automaton will never stop printing symbols. Such an initial
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state automaton is of little interest.

Automata Flow Charts and Subprograms

Subprograms and flow charts for finite automata can be constructed in

the same manner as unrestricted Turing machines. The finite automata sub-

programs are as follows:

1) APZ (Print a zero on the scanned square and shift right.

1

2) APONE (Print a one on the scanned square and shift right.)

1

1 1

3) ARSTRR (Restore the string to the right.)

Oil
10

Input Jo|-«'
i
1 1

j
-Output

S

h) AFZR (Stop to the right of the first zero seen.)

111

?) AFONER (Stop to the right of the first one seen.)

C-.

1
1 1

1
I

1

1

t

F
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6) AFZZR (Stop to the right of the first pair of zeros seen.)

2

111 1 1 1

7) AGOTOR (Shift one square to the right.)

110

8) AITOR (Shift right one square; stop two squares to the right

of the last one of X^.

)

1 2

Oil
112

9) AiiOPR (Erase all ones in the string; stop two squares to the

right of the last one.)

C-,

10)

1 1

1

(Branching instruction)

0^1
If a zero is seen, overprint with an "a", shift right and go to

the first card of subprogram P^. If a one is seen, overprint Ydth

a "b", shift right and go to the first card of subprogram P^.

a P^
1 b Pi
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An inspection of- the automata subprograms shows that each subprogram

is analogous to an unrestricted arithmetic Turing machine subprogram. Some

of these analogous programs are not used very frequently however.

Boolean Functions and Automata

Since finite automata are limited in their computational ability, they

can only perform rather specific operations. An automaton can be constructed

which will compute the value of any Boolean function given the functional

values corresponding to all possible input variables. Automata which evalu-

ate 2"-valued Boolean functions make use of the fact that it is possible

to represent the elements of a 2^-valued Boolean function by binary numbers.

Automaton that Conputes Two-valued Boolean Functions

Since finite automata always move to the right, they start at the

leftmost one of the input tape instead of the rightmost one. Another dif-

ference between automata and unrestricted Turing machines is that the

Boolean algebra elements (say, zero and one) are not represented on a tape

in the usual integer notation of a Turing machine. The element zero is

represented by a zero on the tape and the element one by a single one.

Also, the shift column is omitted from the state cards because of the right

moving property of finite automata.

For two literals x and y the Boolean function automaton will perform

in the following manner:

Input |x
j y i i

0|... Output f(x,y )
T f'

—
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^2

2
1

f(0,0) 1 f(l,0)

10 3 1
1 f(o,i)

1 1 f(i,i)

As another exanple consider a h literal (x,y, z,w) Boolean function

automaton.

Ir^ut
I
X

i y I z
I

w

S

Output 1 { f(x,y,z,w)
I i

^2 '=3

jOO 2j 31 U f(0, 0,0,0) f(0,0>l,0)

110 9! 10 6] 1 5 1 f(0, 0,0,1) 1 f(0,0,l,l)

C6 '8

7 f(0, 1,0,0) f(0,l,l,0) 10

^ J i J >
1

•=11

* y ^ ^ '

^12 ^13

11
1 12

f(l,0,0,0)
1 f(l,0,0,l)

f(l,0,l,0)

1 f(l,0,l,l)
lU

1 15

f(l,l,0,0)
1 f(l,l,0,l)

f(l,l,l,0)
1 f(l,l,l,l)

In general the n literal case will take 2*^-1 cards, but some of the

cards with the functional values will be the same for four or more literals

thus permitting a reduction of cards to a maximum value of (2"-l)-(2'^~'^)+U =

2"-^3.

Binary and Gray Codes

The binary nvunber system provides one method of representing numbers

with electronic circuits which only recognize two voltage levels. Con-

sequently, digital conputers ordinarily use a binary-coded decimal
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representation or a weighted binary-coded representation.

Another code frequently used by conputers is knomi as the Gray (7)

(or reflected) code. It is a method of counting in such a way that only

one bit changes at a time. For devices which measure angular displacements

such as shaft encoders, this is a very desirable property. For in the case

of an anbiguous reading the error in resolution will not exceed the value of

the least significant bit.

Because of the separate advantages of the Gray and binary codes it

frequently is desirable to use both of the codes. If this is the case a

conversion technique will be needed to relate the codes.

Generation of the First n Binary Numbers

The program to generate the first n binary nunbers requires 3(2*^-1)

caids. The number of ones on the tape initially is q (q « 2,3,U,»*')«

The integer n is related to q by the expression; min 2 — n.

Input o!'"iO 1

zeros zeros zeros



BINARY

APZ

1

*

—

'

Oj 3

01 h

!0
1

For exan^jle consider n = 5. The output tape is:

output i|o|i|oio[o^i|Ho^o|oJo IE
r
F
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If the output tape is cut at the end of every n-th square starting

with the first square at the left and the resulting q sections placed on

top of each other (with the leftmost section on top) the first n binary

nunbers will be at hand. If this is done for the example (n = 5) the result

will be:

1 2 3 U
First section
Second sectior
Third section

1 1

1 1 0.

! 1

The binary numbers corresponding to 0, 1, 2, 3 and U are in a vertical

position and are read from the bottom up with the least significant bit

at the top.

Generation of the First n Gray Numbers

The program generating the first n Gray numbers is very similar to the

program used to generate the binary numbers. However, this program takes

5*2'^-.(U+q) cards. The integer q which is the number of ones on the tape

initially is related to n by the expression: min 2^n,.

Input

zeros

1 1 ojHo 1 1 I O]^^ 1 1 I I

zeros
n-1

zeros
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GRAY
IT

AFZ

1

^0 !0

01 2^-^-1

ol

2^-1

If the first 5 Gray numbers were desired the output tape would be:

Output jOi^ 1 1 1 1 lio 1 Otl
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The output tape shown is then cut into q sections of length n squares

starting with the first five squares at the left end. The result of placing

these sections on top of each other with the leftmost section on top is

shown below.

1 2 3 h
First section — 1 1 .

Second section- 1 1 1
Third section

—

9 i

The Gray nunfcers corresponding to the integers 0, 1, 2, 3 and k are

read from the bottom up with the least significant bit at the top.

Binary Numbers and 2^-valued Boolean Algebras

The fact that the first 2" binary numbers form a Boolean algebra can

be used in the construction of an automaton that will compute 2'^-valued

Boolean functions. A 2^-valued Boolean algebra will exist for any set of

2^ distinct elements which satisfies the following five postulates. There

are two operations in ary Boolean algebra: n(cap) and U(ci^).

Boolean Algebra Postulates .

1) The U and n operations are closed. Given any two elements of the

set, say a and b, a(Jb - c and a(^ b = d where c and d are also

members of the set.

2) The Uand Pi operations are commutative. If this is tmie then aUb =

b Ua and aOb = b P a.

3) There exists an identity element for the U operation and an

identity element 1 for the n operation such that aUO = OKja. = a

and ani = ina = a.
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h) The U ope ration must distribute over the O operation and the O

operation must distribute over theU operation such that

aU(bnc) = (a \jb) n(a Uc) and a O (b (jc) = (a Ob) ij(a n c).

5) For each element b there must exist an element b' such that b Ub' =

and b /^b' = 0.

The fact that the elements and 1 can have cup and cap operation

tables which form a Boolean algebra can be used to show that the first 2^^

binary numbers form a Boolean algebra.

Operation tables for the elements and 1,

1 ' n 1

i
1

1

;

1 1 1 1

Consider two binary numbers of the same length (say, abed and efgh).

Let these two numbers be represented by A = (a,b,c,d) and B = (e,f,g,h).

The cup and cap operations between these two binary numbers are defined

as follows:

AUB = (aue, bUf, c^g, dUh) = C

AOB = (ane, bPif, cOg, dOh) « D

The first 2" binary numbers contain all possible sequences of elements

zero and one which are of length n. Consequently the postulate of closure

is satisfied because of closure of the two elements zero and one which are

involved in every cup and cap operation between binary numbers. All of the

other postulates are satisfied by this same reasoning. The cup identity

is the binary number zero and the cap identity is the binary number 2'^-l,
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BOOLEAN TRANSFORMATIONS

Conversion of Gray Code to Binary Code

The binary number x^^Xq) equivalent (8) of a Gray number

(ynyn-i'"yiyo> ^ ^=?yn* ^-ryn©yn-i^ %-2 = yn©yn-l©yn-2>'"

= y^© yn_i© yn-2
®"' ^^2' ^ = yn© yn-1© yn-2©-© y2© yi*

xq = yn© yn-1©-© y3© y2© yi© yo-

The given Gray number is entered on the tape as shoiwn below.

Input
|yn|yn|yn-iiyn!yn-ityn-2|-"iyntyn-iiyn-2l-iy2l yilyn^n-il yn-2l-|y2|yil yo

I
s

The tape is run through the program

1
(ADD

~1
(ADD©).

I
(ADD©),

(ADD©)
n+1

The symbol © signifies addition modulo two. The subscript of

(ADD©)j^ refers to the number of digits being added modulo two. The

number of cards for (ADD©)j^ is 2k-l.
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(ADI®)k 2

2 3

3 U
1 (k+2) 1 (k+3)

k-2 k-1 k k+1 k+2

(k-1) n (k+2) (k+3)
1 (2k-2) 1 (2k-l) 110 1 3 10 h

2k-li 2k-3 2k-2 2k-l

(2k-3) (2k-2) (2k-l) 1
1 (k-2) 1 (k-1) 10k 1

The output tape has the following appearance.

Output {

x^l
jx^_^|

1
i 1

1 1
i^.3\-h OlXn -10

n-1 zeros n zeros F

The digit is found on the l/2(n-i+2) (n-i+l)th square from the first

square on the left. The number of cards needed for the entire program is
n+1

Yl (2k-l) = n(nf2).
k=2

Conversion of Binary Code to Gray Code

The relation between the binary code and the Gray code (8) is:

if the number x^^--- X3 X2 Xq (given binary number) is equivalent to

the number y^-'- y2 yi yQ (Gray representation of given binary
nunber)

then y^ = x^, yn_i = Xn© x^.i, • • • , y^.-^ = x^© x^.i, • • •
,

yo
= x^Qxq.

The given binary number is entered onto the tape in the following

manner.

Input J_0pc^x^_3_ Fi ^i-U

This tape is then run through the (ADD©)2 program. The resulting
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output is:

Output yn-1

The Gray digits occupy every other square of the output tape. This

program requires 3(n+l) cards,

ARITHMETIC OPHIATIONS WITH OTHER CODES

Binary Addition

Consider the sum of these two n-1 bit binary nunbers.

^iO ^n-l,0'" ^h,0 ^3,0 ^2,0 ^1,0 ^0,0

+ X,n,l ^-1,1- \i ^3,1 ^2,1 ^1,1 ^0,1 x^^o = ^n,l
=

n n-1 h ^3 ^2 '^O

Finite automata may be used in determining this sum. Enter the two

binary nunbers onto the input tape in an alternating fashion.

Input ^,o|^,il^i,o|^,i Ii2 n-1,0 n-1,1

n
This input tape is run through the program (ADD0)2

(ADD©),

resulting in

Output

C3

3
10 2

1
j

1
!

1 1

^0,0© ^0,1 ° ^1,0© ^1,1 ^n-l,0©^-l,l

The original input is run through another program: (MULT)^

MULT 3

10 2 1 1
}
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The output is Ox ^1,0 ^1,1 ^2,0 ^2,1

The nature of binary addition is such that = q©Xq -j^0 Cq,

z-]_ = x-]^^ © '^l, 1© "^1, ^"^^ ^n ~
"^n*

^6^6 the c parameters are: Cq = 0,

^1 = ^0,0^,1' ^2 = ^1,0^1,1 ^ = ^n-l,0^n-l,l
*

Cn-l(xn-l,0©xn-l,l)-

The parameters Cq and c-^ have already been determined. The other c's

are found by the following procedure.

To determine C2 run the input tape below through the following program

C.

Input X3^^^^|x^^Q©x^^^

Program C:

06

002
105

3

1 U 1 1 1

006
106

1 0!

1 1 ol

The output is 10 C2 •

1

F

The parameter C2 is now recorded and x. x and x ^©x, , are

now put on this output tape and then run throixgh program C. This deter-

mines c^.

New Input jxg^QXg^j, X2^q© Xg^j^j Cg o|o— Output ojo C3|o|o---

S ' F

This procedure is followed until all of the c parameters have been

determined.

A tape may now be prepared which when run through the (ADD©)" program

will yield the sum of the two binary numbers.
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Input Cq Xo^o(j)Xo^i|C3_|xi^o(gxi^lj...|c^_j^ix^.-^^o(V)x„~ ^n 01

Output
n

Note that 2q = Co©Xo^q©Xq^-l^ J Zn_i = c^.i© x^.^^q© ^-1,1

= c^. The z's are the digits of the binary answer written as z^

Z3
2-]^

Zq. This program requires 6(n+l) cards and is completed in n+-2

passes of the automaton.

Gray Code Addition

Lucal (5) modified the Gray code to find the sum of two Gray numbers.

Consider addition of the following two modified n-1 bit Gray numbers:

^n^oyn-ljO"" ^1,0 ^0,0

+yn,iyn-i,i'-yi,i yo,i

si Sq

yn,o = yn,i =

These Gray numbers are modified because extra bits Jq q and y^ -j^
have

been added to the Gray numbers. The Gray code with the even parity check

bits (yo^o yo,l) is known as the modified reflected binary code. The

meaning of Jq^q and
y^^j^ and the recursive nature of Gray addition is

shown in this procedure

:

^0,0 = yi,o©y2,o©y3,o©-©yn,o

^0,1 = y],i©y2,i©y3,i®'"®yn,i

Si = %-iFi.i©yi,i©yi,o

%= %-l Fi-i©yi,o©Ei-l

Fi= Ei_-LFi.i©yi^-L©Fi,l
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The problem is to find S^, and Fi. To find first start with

input tape

^"p^^
I %-il^i-ilyi,ilyi.o|_°l~:

S

This is then run through a finite automaton using the following program

(a combination of a two digit product and a three term sum modulo two):

1 2 3 h 5 6 7

003i jOOlii jOOU '005! iooo
10 2

I j
1 6 I !1 U

I

1 7
1

jl
I

7 1

i

1 j

jl 5
|

l£ o_o
j

The resulting output tape is then:

This same program is used to determine Ej_ and F^. The tape must be

run through the automaton 3(n+l) times, but the program only requires

seven cards.

Binary Subtraction and Multiplication

Because binary operations such as subtraction and multiplication employ

binary addition programs, only a description of the procedures is presented.

Binary subtraction is simply modified binary addition with all negative

numbers complemented. The complement of a binary number is achieved by

replacing all ones in the number by zeros and all zeros by ones and by

prefacing the number with a otie. Positive numbers are prefaced with a

zero. When considering negative numbers the following nile should be

followed. If two n bit binary numbers are added and the resulting sum

has n*-l bits with a one in the most significant place, replace the one
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by a zero and add the binary number one to this result. Negative numbers

appear in their complemented form.

Binary multiplication makes use of the fact that multiplication of a

binary number by 2^ can be accomplished by simply shifting all of the ones

in the number n places to the left. Since a binary number has the form of

b.2'^, multiplication consists of repeated additions of a shifted multi-
i=0
plicand.

Binary Division

Wilson and Ledley (13) devised an algorithm for binary division which

employs addition, subtraction, and decision processes. Consider binary

numbers as being conposed of strings of ones, strings of zeros, strings of

ones including isolated zeros, and strings of zeros including isolated ones.

This generates a condensed decimal representation of the binary nvunber.

The binary nunber 0.1111 0000 11011 00100 has a decimal representation as

2°-2-^2-8-2-ll-2-13+2-l^

The first step in finding the quotient Q = N/D is to make sure that the

denominator D is positive and normalized by making the most significant

bit one by a shift of the decimal point. The numerator N shovild also be

positive with N<D and either normalized or with a single zero after the

binary point.

The first remainder N' = N-D which is negative is now found. If N' has

<^-^ zeros to the right of the binary point, then the quotient Q has at least

e<-l ones to the right of the point. N' is now normalized to N' , and the
N

second remainder N" = N'^^ + D is formed. N" is now normalized to W'^ by

moving the binary point ©(^ bits to the right. If N" is negative then the
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oC-^-th bit of the quotient Qq^.^^^
= and the following ^-1 bits are ones.

If N" is positive, then Q^. rf = 1 following c*. -1 bits are zeros.

This procedure is continued until the quotient has the desired number of

bits in it.

As an exanple of the division algorithm, consider the quotient

rt ^ 1011011 _ 91. Q should first be put into the form:
1011 "11

A , 0.01011011 . 2^, where N<D.
0.1011

+ 0.01011011 N
- 0.10110000 D
- 0.0^1010101 N' Qj_ = o;?

- 0.1010101
+ 0.1011000 D
+ 0.00000^1 N" = 0.10000?

+ 0.11 N}J

- 0.1011 D

+ 0.0001 N' = 0.10000100?

Therefore, Q = • 2^ = 1000.0100 = 8,25.

Binary Square Root

The square root procedure described is a direct adaptation of the

conventional "long-hand" method of square-rooting. Scott (8) gives a

recursive relation which describes the procedure. The relation is ;

-, = 2x.-a. ( 2A.+2"^ ^a . The number x. whose square root is to
J*-'- J J+1 J J+1

be found is written as a binary decimal with an even number of bits to the

right of the decimal. Aj=a^,a^a2« • • a^ is the j-th approximation to the

square root. Initially A^ = A^ = 0. Each digit a^^^^ is either a zero

or a one. If the ejqjression X. = 2x.-(2A.+2"(j''"l))is negative, then

^0+1 ^^j* ^"'^ °^ 2;ero. If X^^^ is positive, then
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1/2
As an example consider the square root of 121 = (0.01111001) '

(28^1/2 _ ^1/2 convenient to work the problem in tabular form.

A.
2-(j^l)

J

A„ = 2"^ = 0.100

X.
J

0) 0.01111001 0.01110010
2x0^Xq 0.11110010

1) 0.01110010 -0.01011100

2^1 0,11100100

2) 0.11100100 h- 0.10101000
2x2 1.11001000

3) X3 0.10101000 0.00000000

23^ 1.01010000

2"^ = 0.01

2"^ = 0.0010

A^ = 0.101 2"^ = 0.0001

A^ = 0.1011

The square root of 121 is Aj^2^ = 1011 = 11 (eleven).

EXTENSIONS OF TURING MACHINES

A Two-square Automaton

A finite automaton which scans two squares of the tape at once is

capable of performing all the functions of a regular finite automaton, but

requires a fewer number of states. Such an automaton will overprint in the

right square of a scanned pair (x^,Xj) and shift one square to the right

according to the typical card below.
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The overprints, P^^, are either zero or one and the C^^'s are the called

states.

After a symbol was printed by a finite automaton the machine moved to

the right and the overprinted symbol could not be seen again. The program

kept track of this overprinted symbol by having the machine go into one

state if the symbol was a zero or another state if the symbol was a one.

The output symbol of a two-square finite automaton is part of the input

to the next state. Because of this, the machine does not need to keep track

of the previously printed symbol by a particular state assignment.

A binary adder modulo two provides a good example of the card reduction

feature of the two-square finite automaton. A regular finite automaton re-

quires 2k-l cards to add k binary bits modulo two. A two-square finite

automaton only requires k-1 cards. The binary bits are entered on the tape

in the same manner as a regular finite automaton, but the standard starting

position is the square to the right of the leftmost bit on the tape. The

two-square finite automaton program for the sum of k binary bits modulo two

is:

^1 ^2 ^k-1

1 1 1

Evaluation of 2-valued Boolean functions of n-variables is an example

of an operation which a two-square finite automaton can generally do with

fewer cards than a regular finite automaton. For n-variables the regular

finite automaton required 2""-^+3 cards for the standard unreduced form.

A Boolean function must be expressed in either the maxterm or rainterm
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literal is entered on the tape as it appears in the canonical form from left

to right. The number of cards required is 2(k-l) where k is the nunber of

literals in the canonical form.

Two-square finite automata use four types of cards and require two

passes to evaluate two-valued Boolean functions. One type of card evaluates

sums of literals, another the product of literals, the third is a shifting

card and the last transfers a symbol one square to the right. On the first

pass the individual rainterms of maxterms are evaluated. The next pass forms

the sum of minterms or product of maxterms which evaluates the function. The

automaton which evaluates the Boolean function f = jqrz" + x'y'z is as fol-

lows: Input Ixjyjz X yj 2 0|" -

S
Ci

1 1

C3

1 1

"5

1

0/

A
0/
72

% 2

0/

0/
/5

0/A

0/
/o

0/
/o,

0/
/o

1/
/o

The output tape is then run through the program below irtiich evaluates the

Boolean function f by forming the sum of the two minterms.

^1

1 1 1

^2i/2

0/
A

1/

0/X
%

0/

A
1/X

^5

1

The value of f is found in the square which previously had the last literal

of £ printed on it.

These exanples demonstrating the operation of the two-square finite
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automaton give but a sampling of its capabilities. For instance, a single

card is capable of giving an instruction to go to any of four branches in a

flow chart. The next section discusses another aspect of two-square finite

automata capabilities.

Two-square Automaton with Cylindrical Tape

Some very interesting results evolve from a one card two-square finite

automaton which is given an input sequence on a cylindrical tape having a

finite number of squares. The machine always remains in the one state and

will print symbols indefinitely. Depending upon the input sequence and the

nature of the machine, it might eventually print zeros or ones exclusively

or it might set up a pattern of repeating a particular output sequence with

a period of a certain number of cycles of the cylindrical tape.

The two-square finite automaton with a cylindrical tape is a model for

sequential circuits. This representation of sequential circuits on automata

is a good subject for future investigation,

SUMMARY

Procedures for programming finite automata have been exhibited. The

basic binary arithmetic operations performed on finite automata required

repeated passes. Because of these repeated passes the operator of the

machine was required to prepare the tape and keep track of the output data

of the machine. The large amount of work performed by the operator was

necessary because finite automata have no memory.

Finite automata exist which compute ary2"-valued Boolean function by

representing the Boolean elements by binary elements and then using the
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2-valued Boolean operations. In general, finite automata can work with any

mathematical system which has a finite set of elements and is closed under

the operations of the system. Such a finite automaton can be constructed

by setting up an isomorphism between the elements of the system and binary

n\imbers. These machines work like the automata which compute 2-valued

Boolean functions. Functional values corresponding to all possible input

variables need to be known. Consequently, a system with very many elements

requires a finite automaton with a large number of states.

Programming of the general class of Turing machines differs considerably

from that of present day digital computers. A digital computer has a conplex

physical structure which enables the use of rather simple programs. On the

other hand, Turing machines quite frequently require complicated programs.

The reason is that the "physical structure" of a Turing machine is the pro-

gram itself. Conplexity of an operation on a Turing machine is evidenced

by the complexity of its program.
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This thesis describes the nature and operation of Turing machines

which use a different state representation than that presented in the

literature. Turing machines are of interest because of their similarity

to digital computers. Any computable function may be evaluated by either

a digital conputer or a Turing machine,

Turing machines are much simpler in their physical structure than

are digital computers. Emphasis falls on programming rather than on

machine structure. However, programs for simple operations euch as ad-

dition and multiplication are quite complicated.

Examples of Turing machines which compute simple functions are given

along with a machine that will conpute any general recursive function.

Finite automata which are but a subclass of Turing machines are in-

vestigated for their computational abilities. Finite automata are limited

in their operations because they are not allowed to scan previously com-

puted data. This reduces them to a madiine without any memory. Finite

automata are found to be particularly suited for the evaluation of Boolean

functions, A finite automaton which computes a Boolean function defines

that function by its truth table representation. Finite automata can

execute binary operations such as addition, multiplication and transfor-

mation of Boolean functions.

In an effort to achieve a greater computational scope a variant of an

automaton is introduced. This modified finite automaton achieves a reduc-

tion in size of most coioputational programs of the regular automaton. The

properties of this automaton variant are not completely investigated, but

their possible capabilities are discussed.


