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Abstract:  

Abrupt climate changes during the last glacial period have been detected in a global array of 

palaeoclimate records but our understanding of their absolute timing and regional synchrony is 25 

incomplete. Our compilation of 63 published, independently dated speleothem records shows that 

abrupt warmings in Greenland were associated with synchronous climate changes across the Asian 

Monsoon, South American Monsoon and European-Mediterranean regions that occurred within 

decades. Together with the demonstration of bipolar synchrony in atmospheric response, this 

provides independent evidence of synchronous high-latitude to tropical coupling of climate 30 

changes during these abrupt warmings. Our results provide a globally coherent framework with 



Submitted Manuscript: Confidential 

2 
 

which to validate model simulations of abrupt climate change and to constrain ice-core 

chronologies.  

 

One Sentence Summary: Compilation of 63 speleothem records demonstrates widespread 

synchronous timing of the onset of interstadials during the last glacial.   5 

 
 
Main text 

Climate records from Greenland ice cores spanning the last glacial cycle (115,000 – 11,700 years 

ago) reveal a series of centennial-to-millennial-scale cold-warm oscillations called Dansgaard-10 

Oeschger (DO) events (1-3). In Greenland, each event commenced with a rapid transition to warm 

conditions (a ‘Greenland Interstadial’, GI) followed by a gradual, then abrupt, return to a cold 

climate state (a ‘Greenland Stadial’, GS) (2, 3). This pattern is widely accepted to be associated 

with changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC), which 

regulates interhemispheric oceanic heat flux, as captured in the thermal oceanic bipolar seesaw 15 

theory (4-7). During the DO warm phase, a strong AMOC exports heat from the south and tropics 

to the high latitudes of the North Atlantic, leading to cooling of the global ocean north of the 

Antarctic Circumpolar Current (ACC) and reduced temperatures over Antarctica (6). At times of 

DO cooling, a weakened AMOC reduces northward ocean heat transport and results in heat 

accumulation in the Southern Ocean, leading to Antarctic warming. These changes are broadly 20 

reflected in ocean-sediment records across the Atlantic (8-10) as far south as the mid-latitude South 

Atlantic, where both surface (4) and deep-ocean signals (11) show a similar abruptness and timing 

to those seen in the North Atlantic, but of opposite sign in surface ocean temperature. Further 

poleward, the abruptness is dampened by the ACC, which influences heat flux into and out of the 
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Southern Ocean (4-6). This ultimately leads to less abrupt air-temperature changes over Antarctica 

(12), whose onsets lag the Greenland counterparts by around 200 ± 100 years (13). The Antarctic 

changes are therefore symptomatic of a slow-oceanic response to the abrupt changes recorded 

north of the ACC (6, 15). 

 5 

Changes to the cross-hemisphere ocean-temperature difference induced by switches in AMOC 

mode drive meridional shifts in the atmospheric mean state, particularly the position of the 

Intertropical Convergence Zone (ITCZ) (14, 15). This is most vividly observed in terrestrial 

monsoon records from both sides of the equator (16, 17) at times when Greenland climate switches 

abruptly from a stadial to an interstadial (termed here an ‘interstadial onset’), and is supported by 10 

numerical climate model outputs (18-20) (Fig. 1). These higher-amplitude warming episodes 

correspond to air-temperature increases over the Greenland ice sheet of up to 16°C (21), typically 

in around 80 years. Such a strong high-latitude-to-tropical teleconnection indicates widespread 

atmospheric reorganisation at the onset of interstadials. However, there is uncertainty over the 

exact phasing: were climate responses synchronous between different monsoon regions, and 15 

between the wider tropical realm and Greenland? Recent reassessments of ice-core data (22, 23) 

suggest that atmospheric changes associated with abrupt warming and cooling in Greenland were 

transmitted more or less synchronously as far south as the Antarctic ice sheet, indicating rapid 

reorganisation of atmospheric circulation. Such bipolar synchrony implies that mid-latitude and 

tropical regions also responded rapidly as Greenland temperatures changed abruptly. This has been 20 

the assumption in previous studies (e.g. (24, 25) ), but has yet to be rigorously tested. Answering 

these questions will deepen our understanding of the underlying dynamics of global climate 
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teleconnections during abrupt climate changes, which serves as a basis to test climate models used 

for future projections (26).  

 

Testing the large-scale synchrony of stadial-interstadial changes to augment the suggestion of 

bipolar synchrony is hampered by the limited availability of independently dated palaeoclimate 5 

time series with sufficiently constrained chronologies (2s age uncertainties in the range of decades 

to centuries). Indeed, the chronologies of many last-glacial records are simply aligned to other 

marine, ice-core or speleothem age models under the assumption that abrupt events did occur 

synchronously between sites at the resolution of the records in question (25, 27, 28). This prevents 

any independent assessments of potential regional leads and lags between these records (29). The 10 

current Greenland Ice Core Chronologies (GICC05 and its extension GICC05modelext) (30-32) 

provide the chronological framework for the latest event stratigraphy of abrupt climate changes 

(3), but published age uncertainties in the annual-layer counting accumulate with increasing age, 

reaching ± 2,600 years at 60 kyr before 1950 (BP). Beyond this, age uncertainties of the flow-

model extension to the chronology, GICC05modelext, are unquantified (32). Thus, any 15 

comparison of the timing of interstadials and stadials between ice cores and other archives 

becomes less certain through time, even though the incremental nature of the ice-core counting 

errors produces high-precision constraints on the time difference between successive events, i.e. 

duration of and spacing between events (Fig. S1).  

 20 

Speleothem records of interstadial onset 

To test the global synchrony of these events we investigated the timing of the abrupt interstadial 

onset for 25 major and 28 minor interstadial events (3, 33) using 63 published, high-resolution and 
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precisely dated speleothem records covering the last glacial period (Fig. 1; (34); Table S1). 

Speleothems (secondary mineral deposits found in caves) have great potential because they can be 

radiometrically dated with great accuracy by uranium-series methods to a precision of 0.1 – 1% 

(2s) over last-glacial timescales (e.g. (35)). Numerous speleothem oxygen-isotope (d18O) records 

spanning the Northern Hemisphere (NH) mid-latitudes to the Southern Hemisphere (SH) sub-5 

tropics capture stadial-interstadial transitions, particularly the more pronounced interstadial onsets, 

where local precipitation and/or temperature changes lead to significant changes in d18O (17, 36, 

37).     

 

We standardised all speleothem time-series to avoid methodological bias in age calculations and 10 

depth-age model construction, then identified the onset of each interstadial by adapting a technique 

applied to the ice-core record (3) ((34); Fig. S2). Due to the nature of speleothem growth, 

variability is exhibited in the temporal span of each record, with the majority covering a few tens 

of thousands of years, although some are much shorter (Fig. S3). Within a single record the 

temporal resolution may vary greatly, due to changes in the growth rate of the speleothem. All 15 

records are dated directly using uranium-thorium methods, and each time series is free of 

synchronisation to any tuning target. The isotope records for all speleothems are presented in Data 

S3. Of the 53 interstadials identified in the ice cores (3), 39 could be confidently resolved in at 

least two records in the speleothem dataset, with the overwhelming majority of records falling into 

either the Asian Summer Monsoon (ASM), the South American Monsoon (SAM), or the Europe-20 

Mediterranean (EM) domains (34) (Fig. 1). The speleothem d18O in these three regions exhibits 

well-documented changes across interstadial onsets (Fig. 2), with patterns generally well 

reproduced in DO-type transient climate-model simulations (see background maps in Fig. 1). In 
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the ASM domain, warming in the North Atlantic is associated with a strengthening of both the 

Indian and East Asian Summer Monsoon subsystems, which produces decreased d18O values 

driven by variations in rainout, air-mass trajectories and/or rainfall amounts (36-38) (Fig. 1a). The 

d18O in the SAM domain increases due to the same processes under a weakened monsoon (39) 

(Fig. 1b). This ‘monsoon-seesaw pattern’ over interstadial onsets is consistent with a northward 5 

shift of the ITCZ (10, 17). In the EM region, the speleothem d18O response to interstadial onsets 

is slightly more complex. Sites situated around the Alps and western Turkey (i.e. Sofular) show 

increased isotopic values (40, 41) as the climate warms, consistent with the dominating 

temperature effect (Fig. 1c) on the d18O of local precipitation (42), whilst seasonal changes in 

moisture source and the source effect cause d18O values in north-eastern Turkey (i.e. Karaca) to 10 

decrease (43). Around the Mediterranean, regional warming increases the amount of rainfall 

reaching cave sites (44), leading to decreasing d18O values due to the rainfall amount effect (42). 

This effect also occurs in the eastern Mediterranean where it may be modified by changes in local 

sea-water d18O composition related to higher Nile discharge (45). The abruptness of speleothem 

d18O change at the onset of the interstadials (Fig. 2) is, in most cases, comparable to what is 15 

observed in the ice-core record (e.g. (41)), when accounting for differences in temporal resolution, 

speleothem age-model uncertainties and the smoothing of atmospheric signals in speleothems due 

to groundwater transport and mixing processes in the karst aquifer (46).  

 

Testing the synchrony of interstadial onset 20 

In restricting our comparison to the three regions best represented by the speleothem data, we first 

tested the intra-regional synchrony of an interstadial onset, hypothesising that abrupt changes 

within a single region should be recorded practically simultaneously by speleothems at each cave 
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site. Second, we tested the synchrony between the three regions for each interstadial onset. The 

degree of intra- and inter-regional synchrony was assessed using the reduced chi-square statistic, 

known in geochronology as the mean-square weighted deviation (MSWD) (47, 48), which tests if 

a group of radiometric ages belong to a single population (34). Where we found statistical 

agreement between speleothem ages from the same region, we calculated the error-weighted mean 5 

(EWM) (34) and assigned this as the ‘regional age’. These regional ages were used to test the 

synchrony between regions and to derive a composite speleothem age for each interstadial onset 

in cases where data from multiple regions were available. These age estimates for interstadial 

onsets form the Speleothem Interstadial Onset Compilation data set (SIOC19). We also assessed 

the extent to which an age estimate for the timing of an interstadial onset based on data from only 10 

one region could be used as a wider event-age indicator. We then compared the SIOC19 age 

estimates for each interstadial onset with their timing in the ice-core GICC05 and 

GICC05modelext chronologies (3). Finally, we investigated the regional age offset over events for 

which two or more speleothem records from the same region were available. 

 15 

For 34 of the 37 interstadials recorded in multiple speleothem records, there is strong intra-regional 

agreement (within 2s uncertainties), comprising cases where one (n=9) or multiple (n=25) regions 

are represented (Fig. 2; Table S2; Fig. S4). The three remaining onsets (into interstadials 12a, 14e 

and 23.1) show disagreement within all of the represented regions (i.e. the MSWD lies outside the 

accepted range; (34)) and we assigned an indeterminate result to these (Table. S2d). Three of the 20 

34 transitions show disagreement within one or more of the regions represented (interstadials 4 – 

ASM and EM, 12c - ASM, 24.2 – ASM), so we excluded the data from the anomalous region from 

further (inter-regional) comparisons (region listed as ‘unresolved’ in Table S2a-b). The strong 
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overall intra-regional agreement validates the assumption of intra-regional synchrony. This 

enables us to treat the records from each region as a single population and combine them into a 

single regional age, based on the EWM, with a reduced uncertainty relative to the individual 

records. It is likely that significant age differences within a region may be due to either sample 

and/or site-specific processes affecting the registration of the climate signal (e.g. competing 5 

mechanisms driving local d18O) or chronological issues such as undetected growth hiatuses, 

uranium leaching (49) and/or sub-optimal positioning of uranium-thorium age or stable isotope 

samples.  

 

In comparing the regional EWM ages, we find strong evidence of synchronous onset for 23 of the 10 

25 interstadials for which we were able to make inter-regional comparisons (Table 1, dark blue 

shading, Fig. 2, Table S2, Fig. S4). In the case of onsets younger than 40 kyr BP, the difference in 

the mean age between any region represented by multiple speleothem records (thus giving greater 

confidence and narrowing the regional uncertainty) ranges from 3 to 72 years (Table S2), with an 

uncertainty that spans zero. This indicates that the onset of interstadials is likely synchronous 15 

within decades. It also highlights that the major limiting factor in deriving more precise constraints 

of event synchrony is related to the magnitude of the uranium-thorium dating errors of individual 

speleothem records, rather than scatter in the ages themselves.  

 

The onset of the two interstadials that are not recorded synchronously between regions are those 20 

to interstadial 15.1 (recorded 334 ± 185 years earlier in the EM compared to the ASM) and 

interstadial 23.2 (recorded 716 ± 287 years later in the EM compared to the ASM); in both cases, 

there were no high-quality records from the SAM region (Fig. 2B, Table S2c). These anomalies 
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could reflect a genuine asynchrony, implying that these interstadials are of an unusual nature in 

the context of the other 23. However, such asynchrony may reflect varying sensitivity to these 

short-lived interstadials, also suggested by some structural difference to the very sharp peaks in 

Greenland.  The regional lead-lag is not consistent however, so does not suggest a systematic 

regionally asynchronous response to interstadials of this type.  5 

 

Given that the great majority of interstadial onsets tested for inter-regional synchrony (23 out of 

25) show chronological agreement, it is reasonable to assume that an EWM age estimate for an 

event where only a single region is represented (n = 9: Table 1, light-blue shading; Table S2b) is 

also indicative of a transition’s broader timing. We tested this assumption by comparing the 10 

spacing of consecutive interstadial onsets in the speleothems with the corresponding annual-layer-

counted intervals in the GICC05 ice-core record (3, 31, 50) (Fig. 3). As noted earlier, whilst the 

precision on the absolute ages of the GICC05 chronology decreases significantly back in time, the 

interval between the onset of consecutive interstadials over the layer-counted section (0 – 60 kyr 

BP) can be estimated with relatively high precision (5.7 ± 1.5%, 1s) (Fig. 3; Fig. S1). Interstadial 15 

duration estimates based on the SIOC19 age estimates (including those based on data from only 

one region) agree within uncertainty with those from the GICC05 chronology, with the exception 

of one interval out of 22 (interval 12c – 11, GICC05 estimate 3.52 ± 0.18 kyr, SIOC19 3.89 ± 0.16 

kyr) (Fig. 3). Beyond the layer-counted section (>60 kyr BP), only two out of nine intervals show 

discrepancies outside of the uncertainty estimate of SIOC19 (interval 19.2 – 18, GICC05modelext 20 

8.240 kyr, SIOC19 6.998 ± 0.312 kyr; interval GI-18 - 17.2 GICC05modelext 4.660 kyr, SIOC19 

5.107 ± 0.273 kyr) (Fig. 3). Overall, however, the agreement between SIOC19 and the GICC05 

and GICC05modelext chronologies for the duration of consecutive interstadials validates the 
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accuracy of the relative ages (within uncertainties) of the single-region estimates, and thus their 

inclusion alongside the multi-regional EWM ages. Nevertheless, we suggest that the timing 

estimates of interstadial onsets based on data from only a single region should be treated cautiously 

until they are verified by additional high-quality speleothem records from other regions.  

 5 

The fact that the regional speleothem ages of interstadial onsets from three geographically diverse 

areas are likely synchronous well within a century suggests that the timing should agree – within 

the same uncertainty – with corresponding events in Greenland. We now evaluate the GICC05 and 

GICC05modelext chronologies by comparing speleothem and ice-core ages for the 32 interstadials 

in Table 1. The multi-region (n=23) and single-region (n=9) speleothem age estimates are all 10 

within 1.1% of the ice-core mean ages (Table 1; Fig. S6 A). Three of the four largest offsets (20c, 

19.2, 18) are observed beyond the layer-counted interval, where ice-core chronological control is 

less secure due to uncertainties associated with the glaciological modelling that underpins this 

section (GICC05modelext) (32). We do not detect any systematic GICC05-to-SIOC19 age 

difference that could be linked to either background climate state, or interstadial duration, 15 

amplitude and rate of warming (Fig. S6 C-F).  

 

Since the interstadial onsets captured by the speleothems are sufficient in number and encompass 

the entire range of interstadial types for the last glacial (e.g. including longer-duration events and 

rebound-type events), they can therefore be regarded as a representative sample of the population 20 

of all last glacial interstadial onsets. Based on this assumption, we quantified the GICC05-to-

SIOC19 age difference across all 23 events younger than 60 ka using robust regression (GICC05 

versus SIOC19 ages; (34)). The regression yields a slope of 1.000 and a y-intercept (i.e. mean age 
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difference) of -48 (-160/+240) years (Fig. S6 B), providing compelling evidence that the 

speleothem and ice-core ages agree to within, at a maximum, a couple of centuries. These 

radiometric-age comparisons provide strong support for the accuracy of both the GICC05 and 

GICC05modelext chronologies throughout the duration last glacial period, and suggest that the 

quoted uncertainties are too conservative. Based on our time points for the time period, we do not 5 

find strong support for GICC05 being too young over the period 45 – 15 kyr BP as is suggested 

by linking the GICC05 and U-Th timescales through the use of cosmogenic radionuclides (51), 

nor can we confirm the 0.63% counting bias correction found by correlation to Hulu cave U-Th 

dates during the dating of the WAIS Divide ice core (24). Such differences may arise due to 

methodological approach, including the choice of detrital-thorium correction and depth-age 10 

modelling (see (34)). The effect of compiling multiple speleothem records is also likely to be 

significant, in that the influence of potentially younger or older individual records is not as 

dominant. Our study also looks across the whole of the last glacial period, rather than subsections 

or the individual temporal span of selected records.  

 15 

Whilst overall synchrony between individual monsoon regions, and between Europe and the 

monsoon regions, has been assumed (e.g. (25, 41)) it has yet to be fully tested quantitatively. To 

examine this further, we undertook two steps. First, we computed the EWM (and 95% 

uncertainties) of the differences between the Asian and South American Monsoon speleothem age 

estimates for each interstadial onset, where a zero mean would indicate perfect synchrony (Table 20 

S3 A). We included only the interstadial onsets in which both monsoon regions were represented 

by two or more speleothem records (n=8) on the grounds that multiple speleothem records for an 

onset provide a more robust age estimate. The results give an EWM age difference (ASM minus 
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SAM) of 19 ± 113 years (MSWD = 0.26) (blue PDF curve in Fig. 4A; Table S3A). This strong 

degree of synchrony suggests the ASM and SAM regions can be treated as a single category to 

yield ‘monsoon’ EWM ages (and 95% uncertainties). Second, we then determined the age 

difference between the EM and combined monsoon regions for the same onsets. There are six 

interstadials (3, 8c, 9, 10, 12c and 13c) for which there are at least two records from the EM region 5 

and at least two monsoon records (regardless of their origin). The mean onset-age difference and 

uncertainty (EM minus Monsoon) is 25 ± 84 years (MSWD = 0.90) (red PDF curve in Fig. 4A; 

Table S3B). This implies that the 95th percentile EM lead and EM lag over the monsoon regions 

is 109 years and 59 years respectively. 

 10 

Comparison with model output and implications 

We now compare the regional phasing of the onset of interstadials as indicated by the speleothems 

with modelling simulations and previous research (12, 14, 23, 24) to attain an overall picture 

regarding global climate teleconnection during an abrupt interstadial onset associated with AMOC 

recovery. We employed long-term North Atlantic hosing experiments (52), in which a ~0.2 Sv 15 

freshwater flux was released to the Ruddiman Belt for 1000 years to mimic a cold ‘stadial’ climate 

state. As the freshwater flux is removed at the 501st model year (1st model year in Fig. 4), the 

AMOC starts increasing instantly and reaches its ‘interstadial’ state within a century (Fig. 4). We 

acknowledge that other forcing factors (e.g. ice-sheet height and atmospheric CO2) are also able 

to mimic DO-type abrupt AMOC changes (19, 20), and freshwater flux may not be a realistic 20 

forcing factor for all interstadials (i.e. non-Heinrich stadials). However, freshwater forcing is the 

ideal surrogate to evaluate the role of AMOC changes on the spatial phasing of climate changes 
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(53), since changes in ice-sheet height and atmospheric CO2 will exert additional regional and 

global climate responses that are not associated with AMOC changes (19, 20) ((34); Fig. S7). 

 

The climate response to AMOC reinvigoration expressed in the modelled regional climate 

anomalies is consistent with the observations from the regional array of speleothems (Fig. 4). 5 

Furthermore, the degree of synchrony shown by the speleothems between ASM and SAM, and 

EM and the combined Monsoon, agrees with the timing of modelled regional precipitation and 

temperature anomalies in the Monsoon and EM respectively (Fig. 4).  Based on this we can 

summarise the pattern of climate changes during the interstadial onsets in three stages (Fig. 4 B-

K). At the beginning, AMOC recovery (Fig. 4B) will lead to an initial warming anomaly in the 10 

northern North Atlantic (Fig. 4C-D), causing thermal asymmetry between the North and South 

Atlantic. This would drive a fast atmospheric response in which the Atlantic ITCZ starts migrating 

towards the subtropical North Atlantic (Fig. 4 yellow shading). As the AMOC is strengthened 

further, the entire NH warms, pulling the ITCZ further northwards globally (Fig. 4 E-H, pink 

shading). This strengthening (weakening) of the ASM (SAM) leads to the observed decrease 15 

(increase) in speleothem d18O records (37-39). Over Europe and the Mediterranean, warming 

drives increased speleothem d18O at sites where the local rainfall d18O is most sensitive to mean 

atmospheric temperature changes (40, 41) and lower speleothem d18O at sites where warmer ocean 

temperatures drive higher rainfall amounts (44). Meanwhile, Antarctica starts perceiving the 

northern signal via the atmospheric bridge (6, 22). This is evident in the model output of changes 20 

to the Southern Annular Mode index, a proxy for meridional changes in the position of the 

westerlies: as interstadial onset commences, and the ITCZ shifts northward, the index becomes 

more negative over a similar time frame to the ITCZ changes (Fig. 4 I). This is consistent with a 
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northward migration of the southern mid-latitude westerlies and supports the conceptual model 

proposed by ref. (23) to explain the changes in the d-excess of Antarctic ice across the warming 

transitions. Once the AMOC reaches interstadial mode (Fig. 4 blue shading), atmospheric 

circulation assumes its interstadial mean state, leading to a cascade of processes that alters heat 

transport across the ACC, leading to an Antarctic temperature decrease (6) (Fig. 4 K) that lags the 5 

AMOC recovery (and Greenland warming: Fig. 4 C) by approximately 200 ± 100 years (13) (Fig. 

4A brown pdf). The compilation of precise speleothem records now lends support to this pattern 

of changes and provides crucial empirical evidence for the synchronous response to these changes 

in the mid-latitudes.  

 10 

The SIOC19 age estimates (Table 1) constitute the most precise, absolute dating of interstadial 

onsets yet produced. Using the full range of interstadial types across the whole last glacial period, 

and incorporating as much speleothem information as possible from the target regions, we 

demonstrate that synchronous climate changes (within a century) occurred between Europe and 

the Asian and South American monsoon domains at the onset of interstadials. A similar level of 15 

synchrony is observed between Europe and both monsoon regions (Fig. 4 A). Given the proximity 

of Greenland to EM, compared to the proximity of the EM to both monsoon domains, it is highly 

likely that such synchrony extends across the North Atlantic to Greenland. A recent comparison, 

based on four speleothem records, of interstadials in the latter part of the last glacial (<45 kyr BP) 

also shows the timing of the onset to be synchronous within uncertainties (51). Our findings are 20 

also consistent with a previous study of a single interstadial, where synchrony between tropical 

(using methane as a proxy) and Greenland temperatures took place within 24 years (54). Thus, our 

study strongly supports the long-held, but theretofore untested, assertions of practically 
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synchronous high-latitude-to-tropical climate changes during abrupt interstadial onsets (24, 25, 

28). Recent results from Antarctica suggest that changes in the source location of moisture 

reaching the ice sheet were abrupt and occurred within decades of DO warmings (and coolings) in 

Greenland (22), implying an interpolar atmospheric teleconnection. Our results provide crucial, 

independent supporting evidence of near-synchronous atmospheric propagation of abrupt climate 5 

changes during interstadial onsets that were global in scale by providing spatial detail between the 

NH mid-latitudes and the SH subtropics.  

  

The prospect of future abrupt climate change under global warming, and the importance of reliable 

climate-model predictions, has brought past abrupt changes, such as DO events, into sharp focus 10 

in recent years. Our study provides precise chronological information on the timing of climate 

changes during stadial-interstadial transitions, reveals the widespread synchrony of their response 

and provides radiometric validation and constraint for refining ice-core chronologies. The 

triggering mechanism for DO events (and the associated AMOC changes), however, remains an 

open question, and discriminating between external forcing (e.g. ice-sheet height, greenhouse 15 

gases, meltwater, volcanism) (18, 19, 55, 56) and “self-oscillation” mechanisms (57) as drivers of 

AMOC-mode transitions rests with future studies that take advantage of state-of-the-art Earth-

system models and well-dated, high-resolution palaeoclimate records. 

 
  20 
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Fig. 1. Location of last glacial speleothem records included in the compilation.  Cave sites for 
records from the Asian Summer Monsoon region (A), South American Monsoon region (B) and 
Europe-Mediterranean region (C). Grey triangles and italicised font represent records that were 
used in the comparison but are not represented in the age estimates for the synchronous events 
shown in Table 1. For reference to the numbering see Table S1 which shows the complete list of 5 
speleothem records and associated references. Shaded backgrounds are composite anomalies of 
annual mean precipitation (A and B) and air temperature (C) between interstadial and stadial states 
in DO-type transient experiments (19, 20, 34, 52).  
  



A

B C

Δmm Δ°C
-144        -96  -72  -48  -24      0        24   48   72  96  120  144 -0.5      0     0.5  1    2     4    6    8   10  12

36

39
35

40

38

37

31

28

29
34

26

3033
25

2732

1

8

9

7

19

5

6

17
18

15

12
13
14

16
21 3

2

10

4

11
2022 23

24



Submitted Manuscript: Confidential 

17 
 

Table 1. The timing of each interstadial onset in the combined speleothem records (SIOC19) 
and the corresponding ages in the Greenland ice-core record. The combined speleothem age 
is the error-weighted mean (and the corresponding 2s uncertainty) of multiple individual 
speleothem records that have been grouped at a regional level (Asian Summer Monsoon, South 
American Monsoon and Europe-Mediterranean regions). Each event is colour-coded according to 5 
the number of regions represented by the corresponding speleothem records: dark blue is all three 
regions, blue is two of the three regions and light blue is one region; ‘n’ denotes the total number 
of speleothem records. The corresponding GICC05 age (3) is shown, including the maximum 
counting error for the annual-layer-counted section (back to 60 kyr BP). No errors are shown 
beyond 60 kyr BP as the uncertainty on this section of the chronology is not quantified. The age 10 
difference between the ice-core and composite speleothem ages is given as both a percentage and 
absolute difference. Note that the ages in GICC05 are given to the nearest decade based on the 20-
year resolution of the data. All ages are reported in years BP (before 1950).  
  

Interstadial
number n 

% age 
difference

age 
difference 

(yrs)
1e 14,646 ± 34 9 14,642 ± 186 -0.03 -4
3 27,822 ± 72 10 27,730 ± 832 -0.33 -92
4 29,117 ± 189 4 28,850 ± 898 -0.93 -267
5.1 30,980 ± 103 7 30,790 ± 1,024 -0.62 -190
5.2 32,477 ± 115 7 32,450 ± 1,132 -0.08 -27
6 33,699 ± 174 5 33,690 ± 1,212 -0.03 -9
7a 34,884 ± 130 3 34,830 ± 1,293 -0.16 -54
7c 35,342 ± 90 6 35,430 ± 1,321 0.25 88
8c 38,044 ± 88 11 38,170 ± 1,449 0.33 126
9 40,251 ± 81 6 40,110 ± 1,580 -0.35 -141
10 41,431 ± 119 10 41,410 ± 1,633 -0.05 -21
11 43,185 ± 64 7 43,290 ± 1,736 0.24 105
12c 47,071 ± 145 6 46,810 ± 1,912 -0.56 -261
13a 49,015 ± 154 5 49,010 ± 2,021 -0.01 -5
13c 49,439 ± 106 7 49,230 ± 2,031 -0.43 -209
14c 53,713 ± 124 6 53,910 ± 2,289 0.37 197
15.2 55,770 ± 98 5 55,750 ± 2,368 -0.04 -20
16.1a 57,746 ± 311 2 57,870 ± 2,492 0.21 124
16.1c 57,910 ± 293 2 57,990 ± 2,497 0.14 80
16.2 58,315 ± 288 2 58,230 ± 2,511 -0.15 -85
17.1a 58,870 ± 346 2 58,730 ± 2,540 -0.24 -140
17.1c 59,199 ± 241 4 59,030 ± 2,557 -0.29 -169
17.2 59,489 ± 173 6 59,390 ± 2,569 -0.17 -99
18 64,596 ± 211 6 64,050 -0.85 -546
19.2 71,594 ± 230 5 72,290 0.96 696
20c 75,583 ± 248 7 76,390 1.06 807
21.1e 84,621 ± 971 3 84,710 0.11 89
22g 90,386 ± 617 2 89,990 -0.44 -396
24.1a 106,328 ± 325 2 106,170 -0.15 -158
24.1c 106,918 ± 204 3 106,700 -0.20 -218
24.2 108,254 ± 235 2 108,230 -0.02 -24
25c 115,310 ± 209 2 115,320 0.01 10

Combined 
Speleothem 

SIOC19
GICC05

Age (yrs BP)
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Fig. 2. Stable isotope records of individual speleothems for each interstadial onset. Each 
speleothem record displayed has met screening and event identification criteria (34) and is color 
coded according to region (EM = orange, ASM = blue, SAM = purple). All records are plotted on 
the re-calculated chronology (34). Plots are provided for interstadial onsets found to be 
synchronous (A) and non-synchronous (B). The NGRIP d18O series on the GICC05 or 5 
GICC05modelext chronology is plotted in black, with each event position (3), represented by a 
red square. The corresponding event position in each speleothem record is indicated by a solid 
black circle (see Data S1 for the timing and uncertainty). Markers with error bars at the top of each 
panel indicate the age and 2s uncertainty of the inter-regional age estimate (brown), and intra-
regional age estimates (EM = orange, ASM = blue, SAM = purple). Lettering provides the name 10 
of each speleothem record. Refer to Table S1 for the full details and reference of each record.   
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Fig. 3. Years between the onset of consecutive interstadials. The time interval between the onset 
of consecutive interstadials in the GICC05/GICC05modelext chronology is compared to the 
corresponding interval based on the SIOC19 ages. Error bars represent the 2s age uncertainties on 
the interval. For the GICC05 chronology, this was calculated as the change in the accumulated 
layer-counting uncertainty between events (see Fig. S1); errors are not shown for events within 5 
the GICC05modelext section as they are not quantified (32). For the speleothems, the error bar is 
the uncertainty of the consecutive SIOC19 age estimates in quadrature. The timing between 
interstadial onsets is shown for those interstadials demonstrated to be synchronous in the 
speleothems, including estimates based on data from only one region. 
 10 
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Fig. 4. Spatial synchrony of climate changes during interstadial onsets. (A) Probability density 
functions (pdfs) of spatial age offsets between the two monsoon regions (ASM minus SAM, blue) 
and between Europe and both monsoon regions (EM minus Monsoon, red) based on composite 
speleothem data (Table S3). Also shown (brown) is the previously determined offset between the 
West Antarctic Ice Sheet ice core (WAIS) d18O and NGRIP d18O (13). Lower panel (B-K): 5 
simulated climate changes in a DO-type hosing simulation, each expressed as anomalies from the 
mean of the simulation (see (34), Fig. S6, Table S4). (B) AMOC index (defined as maximal 
meridional stream function at the water-depth of 1500-3000 meters in the North Atlantic); (C) 
annual mean air temperature (MAT) over the NGRIP drilling site; (D) annual mean atmospheric 
temperature (MAT) over the Europe-Mediterranean region  (30°N-45°N, 25°E-40°E); mean 10 
annual precipitation over the (E) Eastern Asian (20°N-30°N, 108°E-120°E), (F) Indian (25°N-
35°N, 75°E-85°E), and (G) South American regions (5°S-10°S, 30°W-75°W); annual mean sea-
surface temperature (SST) in (H) the tropical-subtropical South Atlantic (5°S-30°S, 60°W-10°E); 
(I) Southern Annular Mode index reflecting changes in sea-level pressure from 20°S-90°S; (J) 
annual mean SST in the Atlantic sector of the Southern Ocean (55°S-75°S, 60°W-10°E); (K) MAT 15 
over West Antarctica (75°S -82°S, 90°W -135°W) taken to be representative of the WAIS ice core 
site. Yellow shading represents the period of fast atmospheric response in which the Atlantic ITCZ 
starts migrating towards the subtropical North Atlantic. Pink shading represents the period of 
further strengthening of the AMOC and NH warming. Blue shading represents the start of the 
AMOC interstadial mode. The grey series are raw model outputs and the colour series are 11-year 20 
running averages. The black dotted lines are model series derived from the application of a 
Bayesian, least-squares change-point analysis (58) to each raw time series. For all plots (B-K) in 
the lower panel, the x-axis shows model years, with year zero reset to the year of the onset of 
NGRIP warming according to the change-point analysis; for the upper panel (A), the year scale 
refers to the age offset for each pdf. The NGRIP-WAIS pdf is therefore in its approximate correct 25 
position with respect to the model-year scale in the lower panel (see (34)).  
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Materials and Methods 
 
1. Selection of speleothem records  
Speleothem stable isotope records falling within the interval 119 to 12.5 kyr BP were identified 
from peer-reviewed literature. For each record, the stable-isotope depth series and the uranium-5 
thorium (U-Th) age data were sourced from either the publication, the NOAA palaeoclimate 
database (https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/speleothem) or 
by personal communication with authors. Records were excluded from the comparison in cases 
where all data could not be obtained.  
 10 
The records were screened in two steps: first, to identify suitable records for reprocessing (see 
below) and, second, to evaluate the ability to identify individual events in each speleothem once 
the data have been reprocessed. The following criteria were used to select records for reprocessing: 
i) continuous temporal coverage over the entirety of one or more formally designated (3) stadial-
to-interstadial transitions; ii) temporal resolution consistently better than at least three proxy data 15 
points per thousand years (it is important to note that temporal resolution may be highly variable 
within a speleothem due to changes in growth rate – this constraint was used initially to exclude 
very low-resolution records but does not guarantee that an event can be detected in the record); 
and iii) a chronology established by direct U-Th dating and having at least three age determinations 
over a continuous growth section (this being necessary to obtain an accurate representation of the 20 
depth-age relationship). A total of 71 records met the above criteria as of mid 2017. It is important 
to note that these criteria comprise the first-stage of screening, and whilst serving a useful purpose 
in identifying records for inclusion in the comparison, we are not implying that these criteria are 
sufficient to detect an interstadial in all cases. Instead, these are the base conditions a record must 
meet for further consideration.  25 
 
Following reprocessing, the exclusion or inclusion of a record was judged on an event-by-event 
basis according to the event characteristics discussed in section 3. Events were only identified in 
sections of each record that exhibited a temporal resolution of at least three data points per 
thousand years and a chronological precision better than 3.5% over the transition. This additional 30 
criteria of a having a precision of better than 3.5% was determined as the lowest level of precision 
that would provide suitable constraint to the intra- and inter-regional age calculations. Each 
reprocessed record is represented in Fig. S3 (temporal span only) and Data S3 (full oxygen isotope 
profile) showing in colour the sections that fulfil these criteria (grey sections do not fulfil these 
criteria). We stress that meeting these criteria does not guarantee an event identification is possible.  35 
 
The vast majority of qualifying records are from the Asian Summer Monsoon (ASM), South 
American Monsoon (SAM) and European-Mediterranean (EM) regions. Given the focus of our 
work on the investigation of regionally coherent speleothem records and the importance of making 
robust comparisons between regions, we restricted our study to records from these three regions. 40 
Based on the number of available speleothem records, it is not possible to subdivide these regions 
into smaller areas for more in-depth intra-regional comparisons. The full list of records is provided 
in Table S1.  
 
2. Standardisation of speleothem records 45 
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All records were standardised and a revised chronology for each proxy time series was constructed 
to overcome potential biases originating from methodological inconsistencies in the calculation of 
U-Th ages and in the modelling of depth-age relationships in order to permit robust comparisons 
to be made. To standardise the data, the activity ratios and 2s uncertainties of (230Th/238U), 
(234U/238U) and (232Th/238U), or other appropriate isotope concentrations or ratios to reconstruct 5 
these values, were required.  
2a. Recalculation of uranium-thorium ages. All ages were recalculated using the most 
recent estimates of the decay constants of 234U (l234 = 2.82206 x 10-6) and 230Th (l230 = 9.1705 x 
10-6) (59). This led to a shift to slightly younger ages (generally between 0.1 – 0.2%) for records 
published prior to 2013 or that otherwise used previous estimates of the decay constants (60).  10 
Detrital thorium correction is essential to U-Th dating and can be performed by estimation of the 
initial 232Th/230Th activity ratio using one of several potential methods (61). The 232Th/230Th 
activity ratio used in the original publication was preserved when based on isochron techniques or 
stratigraphic constraints specific to that setting. By far the most common approach assumes a bulk 
Earth 232Th/230Th activity ratio of 0.82 ± 0.41 (equivalent to an atomic ratio of 4.4 ± 2.2 x 10-6), 15 
derived from the bulk Earth 232Th/238U atomic ratio of 3.8 x 10-6, but this does not encompass the 
full range of 230Th/232Th variability observed in speleothems (61). Where the bulk Earth value had 
been assumed, it was replaced by a 232Th/230Th activity ratio of 1.5 ± 1.5 which has been shown to 
be a more appropriate estimate where no prior information is available, given the range of values 
seen in speleothems (61). Where necessary, stratigraphic constraints (61) were used to refine this 20 
to a speleothem-specific estimate. In all other cases, where it was otherwise unclear what (or if 
any) correction had been performed, a 232Th/230Th activity ratio of 1.5 ± 1.5 (2s) was applied. 
Shifting to this correction value resulted in a slightly larger correction leading to slightly younger 
corrected ages for samples with a significant detrital component. The uncertainty associated with 
correction for detrital thorium was fully propagated to the final age. 25 
All recalculated ages are expressed as ‘thousands of years before present’ where ‘present’ is the 
year AD1950. U-Th ages are calculated in years before the day on which the U-Th measurements 
were made. In cases where the year of measurement was not given in the literature, it was assumed 
to be two years prior to the date of publication of the record. This was performed for consistency 
and makes an infinitesimal difference to the final calculated ages or any comparisons. 30 
 
2b. Remodelling of depth-age relationships.  Methods used in speleothem science for 
modelling depth-age relationships include simple linear interpolation or regression to more 
sophisticated speleothem-specific algorithms based on Monte-Carlo simulations, such as StalAge 
(62), COPRA (63) or the finite-positive-growth-rate model (64, 65). Different methods may return 35 
slightly different depth-age relationships and thus chronologies, although such differences are 
generally small in the more densely dated speleothems (65). Linear interpolation or regression was 
the most commonly reported technique used for the records considered herein, despite their 
inability to model realistic growth-rate changes or account for interpolation uncertainty between 
age determinations. To overcome modelling inconsistencies, all depth-age relationships were 40 
reprocessed  using the finite-positive-growth-rate model (described in the first version (66) and 
current version (64) developed within Wavemetrics Igor Pro. This model is specifically developed 
to model speleothem growth, accounts for sampling depth uncertainty and enables the extraction 
of the probability distribution of the modelled age for any depth. At the time of publication of this 
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manuscript, no other available model possessed all such capabilities. Briefly, a least-squares best-
fit age sequence is fitted through the U-Th age determinations of a speleothem, subject to the 
constraint that average growth rate between them must be finite, positive and relatively invariant. 
A user-adjustable parameter, growth rate tolerance, adjusts the weighting with which the model 
attempts to minimise growth-rate variability, such that values less than one favour reduced growth-5 
rate variability and values greater than one force the model close to the central values of each age 
determination. Growth rate tolerance was adjusted (within a defined uncertainty range) in each 
case to best reduce “steps” in which growth rate would otherwise spike between adjacent inverted 
age determinations, and has little effect elsewhere.  
The finite-positive-growth-rate model also accounts for sampling uncertainty in the depth 10 
dimension and for interpolation uncertainty between two age determinations (such that, by default, 
growth rate is allowed to vary over an order of magnitude at all time scales). Where a measure of 
sampling-depth uncertainty was not directly provided in the publication, an estimate was made 
based on the description of the sampling technique, sample mass used or from images of the 
speleothem showing sample locations. Unless it was otherwise stated or clearly obvious in images, 15 
a single depth uncertainty estimate was applied to all age determinations for a single speleothem. 
Sampling depth was taken as the distance from the top of the stalagmite in millimetres. Any 
hiatuses, either described in the original publication or inferred from depth-age models, were 
observed in the construction of the chronology by, in most cases, treating each continuous growth 
interval independently. Each model is normally run as a 10,000-iteration Monte-Carlo simulation 20 
in which for each iteration each age determination is randomised within its uncertainty, along with 
growth-rate tolerance, which also has a user-assigned uncertainty. The resulting population of 
depth-age models gives a median age at any depth in the speleothem and allows extraction of 
probability distributions with 95% confidence intervals. 
Outlier detection and exclusion was performed independently of decisions made in the original 25 
publication and based on visual determination of disagreement of an age and its uncertainty with 
the depth-age model evolved from surrounding age determinations. Where multiple ages were 
provided for a single depth increment, the most precisely constrained age was used, if it did not 
appear to be inaccurate for any other reason. The depth-age models produced for each data set are 
illustrated in the Supplementary Materials Data S2. In several cases, it was determined that a 30 
reliable depth-age model could not be produced from the available data due to multiple ages falling 
out of stratigraphic order, suggesting open-system behaviour or diagenesis in the speleothem (as 
per (49)). In such cases, the record was excluded from the comparison.    
There is discussion in the literature as to the extent to which depth-age modelling can be 
automated, and to which skilled human adjustment of parameters, such as growth rate weighting 35 
and outlier rejection, is required (65).  The human decision-making approach used here requires 
that we develop depth-age models independently of their associated proxy records to avoid the 
possibility of bias, so the models were finalised prior to moving to the next step. 
Following finalisation of each depth-age model and uncertainty envelope, an age and uncertainty 
interval was extracted at the depth of each oxygen isotope measurement. Models are not 40 
extrapolated to proxy isotope data falling outside the range of the depth interval covered by the 
first and last age determination. The standardisation of all data sets per this methodology led to 
some differences between revised and published chronologies. Differences were most often 
observed where a linearly interpolated model created very abrupt growth-rate changes, while the 
finite-positive-growth-rate model allowed for a smoother growth-rate change; or where the 45 
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application of a revised detrital-thorium correction to samples with a significant detrital component 
led to larger corrections, although in such cases the uncertainty associated with the correction was 
also considerably larger. Any differences were usually small and within the age uncertainty 
envelope of the final model (see examples in Fig. S5). 

 5 
3. Identification of interstadials 

Attempt at event identifications were made in sections of the reprocessed records that fulfilled the 
criteria of having at least three data points per thousand years and a chronological precision better 
than 3.5% (represented as coloured sections in Data S3 and Fig. S3). Interstadial onsets were 
identified where a clear transition could be seen in the speleothem d18O record that was structurally 10 
similar to that seen in Greenland ice (i.e. the record showed clear evidence of relatively stable 
stadial conditions, followed by a period of transition to interstadial conditions). This took account 
of the behaviour of the speleothem d18O over both short (decadal/sub-decadal) and longer time 
scales in order to differentiate, for example, between longer-term changes driven by insolation 
(39) and from abrupt transitions. In most cases, identification of individual DO events was inferred 15 
by authors of the original publications. Here we sought to define the timing of interstadial onsets 
in each record. We adopted the method utilised in developing the event stratigraphy in the 
Greenland ice cores (3) in order to enable direct comparison to the event ages produced therein. 
Each interstadial onset is taken to be the ‘the first data point of the steep part that clearly deviates 
from the base-line level preceding the transition’ (3). In the application of this method, the baseline 20 
conditions are considered to be the proxy values throughout the stadial (or sub-stadial) period 
preceding the interstadial (Fig. S2). The timing of the interstadial onset is defined as the age 
assigned to the first data point of the interstadial transition that ‘exceeds’ (this may be more or less 
negative depending on the direction of the d18O response) the ‘maximum’ value recorded during 
the stadial period. In this sense, the timing of the interstadial onset is defined as the point at which 25 
the proxy response exceeds the level of variability observed during the previous stadial period. See 
Fig. S2 for a depiction of this method. However, in applying this rule strictly we found that the 
position of the point within the interstadial transition (i.e. peak, mid-point, first rise) often varied 
between different speleothem records due to differences in their resolution and noise. To ensure 
that the comparison of the timing of a given event was based on a consistent positioning between 30 
speleothem records, it was occasionally necessary to shift the point to a position structurally similar 
to that of the event’s assigned position in NGRIP (3). All such changes fell well within the 
uncertainty of the age estimates. All event identifications are shown in Data S3.  
In assigning interstadial numbers to the transitions, we studied the record across its length to 
identify the sequence of events, based on characteristic features such as shape, duration and 35 
magnitude. We have only included interstadial onsets where both the assignment of interstadial 
numbers, and identification of the interstadial onset itself could be accomplished with confidence. 
Statistical methods to identify the onset of interstadial transitions were found to be difficult to 
implement consistently to all speleothem records due to the variability in resolution of the 
speleothem data and the short duration of many interstadials. To the best of our knowledge, no 40 
automated technique has been successfully developed to identify individual events within a 
sequence (i.e. automatically assign event numbers).  
Of the 53 events described by ref. (3), we excluded seven (GI-1a, 1c1, 1c3, 2.1, 2.2, 8a and 20a) 
from the comparison, deeming them too subtle to be detected adequately in the speleothem records. 
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In all cases, d18O was chosen as the palaeoclimate proxy in the speleothem record because of its 
ability to act as a rapid atmospheric tracer (as opposed to carbon isotopes, which can respond to 
vegetation/soil CO2 changes that may occur over longer time periods). For each event, 
identification of its age and ±2s uncertainty was obtained from the depth-age model. In total, 63 
individual speleothem records were included in the final compilation (see Table S1 for full list).  5 
The recording of a palaeoclimate signal in a speleothem is very different compared to the surface 
of an ice sheet (and ultimately in an ice core), even for profound climate perturbations such as DO 
events. Many factors combined to influence the oxygen isotope signal in speleothems, including 
climate and environmental effects in the epikarst above the cave, and the physical conditions 
within the cave (e.g. PCO2, humidity) during speleothem formation. These processes are site, and 10 
often speleothem, specific and may vary through time at a single site. Therefore, a speleothem may 
clearly record one interstadial but not another. Speleothem growth rate is also highly variable, 
meaning sections of a record may have sufficient resolution to clearly resolve one interstadial onset 
whereas others may go undetected. For example, for many of the records that met the criteria to 
attempt event identification, event identification was not possible due to: lack of sufficient 15 
resolution to record an event (e.g. many short lived events require decadal or sub-decadal 
resolution to be resolved); complacency in the speleothem signal due to competing processes that 
dampen the local isotope response; insufficient confidence to differentiate between neighbouring 
events (e.g. if a difference between 14e and 14c cannot be clearly discerned); structural differences 
with NGRIP that add uncertainty to the event ID or otherwise a lack of confidence in the event ID. 20 
This explains why many speleothem records represented in Fig. S3 cover certain interstadials yet 
positive event identification could not be made. Such variability in the preservation of the signal 
in speleothems is not unexpected; this is the nature of speleothems as palaeoclimate archives, and 
it clearly highlights the importance of drawing on numerous records. The reader is directed to Data 
S3 for the full isotope record of each speleothem included in the comparison.  25 

 

4. Testing of the synchrony of interstadial onsets  
 
For each region (and finally between regions), we take the error-weighted mean (EWM) age as 
 30 
Eq. 1 

𝑡#$% = 	
∑𝑤*𝑡*
∑𝑤*

			 

 
Where the weights are given by 
 35 
Eq. 2     𝑤* = 	

+
s,
- 

 
Uncertainty in tewm is then calculated as  
Eq. 3 

s./01 =
1

3∑𝑤*
 40 
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For each individual speleothem age estimate, age uncertainty (si) was taken as the average of the 
plus and minus errors obtained from the depth-age model.  
The Mean Square Weighted Deviation (MSWD) statistic (47, 48) was used to test the synchrony 
in the timing of interstadial onset between different records. This statistic is more broadly known 
as the reduced chi-square statistic (c4#5

6 ), but is commonly used in geochronology to test the 5 
reproducibility of multiple ages taken from a single crystal or rock layer. The MSWD compares 
the measured differences between the individual ages (𝑡*) and the error weighted mean (tewm see 
Eq. 1) to the expected difference that is indicated by the variance (s2), and is calculated here as 

 

Eq. 4 10 

c4#5
6 = MSWD =

1
𝑛 − 1

>
(𝑡* − 𝑡#$%)6

𝜎.,
6

A

*B+

 

 

Where 𝑡i may represent either (1) individual speleothem age estimates (when testing intra-regional 
synchrony), or (2) regional EWM ages (when testing inter-regional synchrony and there are 
multiple records from a region). 15 
A scatter of ages that agrees with that expected from the estimated uncertainties yields a MSWD 
approximately equal to 1, with the MSWD tending closer towards 1 with increasing n. The 
acceptable range of the MSWD for the given degrees of freedom (n – 1) at the 95% confidence 
interval is given in ref. (48) (for example, the range is 0.00 – 2.61 at n = 4 and 0.14 – 2.05 at n = 
8). Here we applied the MSWD to test if the spread in the timing of the onset of an interstadial 20 
between different speleothem records can be explained by analytical uncertainty alone (MSWD 
within the accepted range and interpreted as the synchronous timing of the onset within the bounds 
of uncertainty) or if there are differences in the timing of the interstadial onset that exceed that 
which can be attributed to analytical uncertainty alone (MSWD > accepted range).  
In the comparison, we used only interstadial onset timings with a precision better than 3.5%. We 25 
first tested the synchrony of the onset of an interstadial within each of the three regions, and then 
between regions. We assumed that within a region an abrupt change should be recorded 
synchronously given that the records should all be responding to the same climate forcing. This 
assumption enables us to test the quality of the different records. In the majority of cases, there is 
good agreement between records within a region to indicate the synchronous timing of the 30 
interstadial onset. Where the within-region MSWD exceeds the expected range, the region was 
marked as unresolved, unless the identification and exclusion of an outlying record could be 
justified. In several cases we found some individual records to be anomalous compared to multiple 
records from the same region. This highlights the importance of not relying on single individual 
speleothem records, no matter their precision, due to a variety of issues that may afflict the 35 
chronology. 
To test the synchrony between regions, we calculated the MSWD based on the EWM and 
uncertainty for each region. We then obtain a combined speleothem EWM and uncertainty for the 
event. The calculation of both the MSWD and EWM was performed within Isoplot, a Visual Basic 
add-in for Microsoft Excel (67). 40 
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5. Regression 
The non-parametric robust regression test, implemented in Isoplot, was used to determine the slope 
and y-intercept of the bivariate plot of speleothem ages (±2s) versus GICC05 ages (±MCE) (x and 
y respectively). Due to the tendency for age errors to increase with age (monotonically in the case 5 
of GICC05), the residuals are not normally distributed and therefore a parametric test (least-
squares) is inappropriate. 
 
6. Model information  
6a. Fully coupled atmosphere-ocean circulation model 10 
We employ a comprehensive fully coupled atmosphere-ocean general circulation model (AO-
GCM), COSMOS (ECHAM5-JSBACH-MPIOM) to study the spatial synchrony of climate 
changes during DO events (Table S4; Fig. S7). The atmospheric model ECHAM5 (68), 
complemented by a land surface component JSBACH (69), is used at T31 resolution (~ 3.75°), 
with 19 vertical layers. The ocean model MPIOM (70) including sea-ice dynamics that is 15 
formulated using viscous-plastic rheology (71), has a nominal resolution of 3°	 × 	1.8° in the 
horizontal, with 40 uneven vertical layers. This model has successfully simulated DO-type climate 
changes under glacial climate background conditions. Distinguishing it from other AOGCMs that 
mainly employed freshwater perturbations to mimic DO events (52, 72, 73), this model can further 
simulate abrupt changes in glacial AMOC modes by gradual changes in ice sheet and/or 20 
atmospheric CO2 (19, 20), of which results are in good agreement with paleoclimate 
reconstructions. This indicates that this model captures the large-scale dynamics of DO events (and 
the AMOC changes in which they are expressed), and so is a reliable platform to study the 
associated spatial phasing of the climate changes.  
 25 
6b. Composite of simulated stadial–interstadial climate anomalies  
Inter-comparison of climate responses to the AMOC changes under similar/identical forcing 
scenarios is often made to assess common features and dynamics among models (53). Instead, here 
we compare the climate responses to different forcing scenarios in one climate model. Given the 
identical physical scheme in the model, this enables us to identify the robust common features in 30 
response to a broad range of forcing scenarios that represent most of triggering dynamics of DO 
events (Fig. S7). In addition, this will help us to evaluate whether the regions represented by 
speleothem records compiled in this study are representative of climate changes during these 
events.  

In this comparison, we collect equilibrium climate states from two hosing experiments (52), two 35 
sets of CO2-single forcing experiments (20), and three sets of ice sheet single forcing experiments 
(19) (Table S4). Given that responses of the AMOC to various forcing scenarios could be different, 
we define a simple algorithm to account for the weight of the AMOC changes in the climate 
anomalies:   

𝑉$ =
𝛿𝑣
𝛿𝜑	 40 

𝛿𝜑 and 𝛿𝑣 are the anomalies of AMOC strength and climate variables between different AMOC 
modes, and so 𝑉$  represents the 𝛿𝜑-weighted climate anomalies. We assume that climate 
responses to AMOC changes under different forcing scenarios are linear over a long-term 
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equilibrium time scale (~1000 years). Therefore, the overall composite field 𝐶L can be obtained 
by: 

𝐶L =
1
𝑛M

𝛿𝑣*
𝛿𝜑*

A

*B+

 

In which 𝑛 (=7) is the number of climate anomalous fields.  
 5 
As shown in Fig. S7, responses of annual mean air temperature and precipitation are coherent 
across different scenarios and consistent with paleoclimate reconstructions (19, 20), although the 
background conditions are also different. This highlights the critical role of AMOC changes, 
irrespective of forcing factors and climate backgrounds, in shaping global climate changes during 
DO events. This further highlights that the global synchrony in this study is difficult to explain in 10 
terms of the underlying mechanisms of these events. Since key processes that trigger AMOC 
changes happened at different regions under different forcing scenarios (18-20, 55), well-dated, 
high-resolution records from these key regions will be very instructive and crucial to identify the 
underlying dynamics of DO events. 
 15 

6.c Phasing analysis in hosing experiment  
To study global climate synchrony during DO events, we conducted long-term North Atlantic 
hosing experiments (52), in which a ~0.2Sv freshwater flux was imposed to the Ruddiman Belt 
for 1000 years to mimic a cold ‘stadial’ climate state. As the freshwater flux is removed at the 
1001st model year, the AMOC starts increasing instantly and reaches its ‘interstadial’ state within 20 
a century. Since we focus on the abrupt AMOC recovery phase, we treat the 1001st model year as 
the 1st year in Fig. 4, and only show the 500 years before and after it. Whilst other forcing factors 
(e.g. ice-sheet height and atmospheric CO2) are also able to mimic DO-type abrupt AMOC changes 
(19, 20), these will introduce additional uncertainties to assess the role of AMOC changes alone 
on the spatial synchrony, due to: 1) the uncertainty of ice volume changes during abrupt DO 25 
transitions (74, 75); and 2) the apparent lack of coherence between DO transitions accompanied 
by evident CO2 changes (76) (Fig. S6). Since our compilation represents the general characteristics 
of DO events in the last glacial period, we use the hosing experiment as a surrogate to quantify the 
spatial phasing of climate changes during abrupt AMOC recovery. A change-point algorithm 
implemented in Matlab (58) was used to determine the timing of the onset of changes through the 30 
simulated interstadial onset (Fig. 4B-K). This method uses a Bayesian least-squares approach to 
estimate the year (and the 95% uncertainties) when a parameter changes from one state to another. 
The 95% uncertainties are 15 years or less in all cases. 
 
 35 
7. Use of Greenland ice-core data  
We refer to the last glacial section of the Greenland NGRIP ice-core record (2) on the GICC05 
and GICC05modelext chronologies (32, 50, 77) with all ages reported as thousands of years before 
1950 (kyr BP). We take the Maximum Counting Error (MCE) as a 2s (95%) age uncertainty. We 
use the latest (3) nomenclature and timing of interstadials and stadials, with age expressed in kyr 40 
BP. 
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Fig. S1.  Determining the time interval and its uncertainty between consecutive 
interstadials in the annual-layer-counted section of the GICC05 chronology for NGRIP d18O. 
The example of the time interval between GI 6 and GI 5.2 is shown. The uncertainty in the duration 
between events is the difference in the maximum counting error (MCE) at each transition. Thus, 5 
the interval and its uncertainty is 1,240 ± 80 years. 
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Fig. S2 An example of the interstadial onset identification method. The example is provided 
for several interstadials in the Pacupahuain Cave (PH2) record (16) and NGRIP (2). Blue dashed 
lines indicate the baseline conditions preceding the abrupt transition. The timing of the event (black 
squares in PH2, red squares in NGRIP) is taken as the first data point that exceeds the baseline 
conditions, according to the method of ref (3). In cases where the position of the event within a 5 
transition does not mirror that of NGRIP (grey dots), the event identification point was translated 
to a structurally similar position, as shown in the identification of interstadial 7c in PH2.  
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Fig. S3. The temporal span of the 63 speleothem records included in the compilation. Shown 
are sections of each record that meet the criteria as being suitable for event identification (at least 
three data points per thousand years and age precision better than 3.5%) (34), colour coded by 
regional of origin (orange = EM, blue = ASM, purple = SAM). Sections of the records that do not 
meet these criteria are shown in dark grey. Although sections represented in colour do meet the 5 
above mentioned criteria this does not guarantee the record has sufficient resolution to detect 
certain interstadials, particularly the shorter-lived events, nor does it imply that the individual 
speleothem record may be sensitive to all interstadial changes. Therefore, a confident event 
identification is not possible at the intersection of every vertical light grey and horizontal coloured 
line. Light grey vertical lines represent the timing of interstadials as recorded in 10 
GICC05/GICC05modelext (3) for interstadial onsets included in the comparison. Sample codes 
are shown for each speleothem. See Table S1 for the full list of records and associated references 
and Data S3 full oxygen isotope record for each speleothem utilised in the compilation.   
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Fig. S4 Isotope plots showing the identification of specific interstadials in detail. Selected 
events at first appear equivocal in Fig. 2 and are shown here in more detail. A – interstadial 5.1 
and 5.2; B - interstadial 7a and 7c; C - interstadial 14c and 14e; E-F interstadials 16 to 17 in 
stalagmite BT2 (37), Wu23 (78) and MSL (79); and G- interstadial 24.1a, .1c and .2 in SX29 (80). 
Each record is shown on its own re-calculated age model (34) and is colour coded according to 5 
region (orange = Europe and Mediterranean; blue = Asian Summer Monsoon; purple = South 
American Monsoon). The age of each interstadial onset is indicated by a solid red square on the 
NGRIP d18O series (black curves; plotted on the GICC05 or GICC05modelext chronology) 
according to its position assigned by ref. (3). The corresponding position of the events in each 
speleothem record is indicated by a solid black circle. Only records used in the final age calculation 10 
are shown. Error bars represent 2s uncertainties. Lettering provides the sample code for each 
speleothem record. Refer to Table S1 for the full details and reference of each record. 
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Fig. S5.  Probability density functions (pdfs) from individual speleothem records for 
interstadials shown to be synchronous between two or more records. The pdfs were obtained 
from the histogram of the distribution of potential ages at the speleothem depth attributed to the 5 
onset of the interstadial and derived from the corresponding depth-age model. Pdfs were produced 
using a 5-year bin width and by applying a 40- point moving average. The combined error-
weighted-mean (EWM) age and 2s uncertainty is shown as a black horizontal error bar. In cases 
where there are at least two records from a region, coloured error bars give the regional EWM ages 
and uncertainties. Text refers to the name of each speleothem. Refer to Table S1 for details of each 10 
record. 
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Fig. S6 The age-offset between the NGRIP GICC05/GICC05modelext chronology and the 
SIOC19 ages at the onset of interstadials. (A) The age difference (y-axis, in kyr) between the 
NGRIP GICC05 or GICC05modelext age and composite speleothem age (SIOC19) for each 
interstadial onset versus  the age estimate of the event in NGRIP according to the GICC05 and 
GICC05modelext chronologies. Filled diamonds represent interstadial onsets for which 5 
speleothem data is available from multiple regions. Open circles represent interstadial onsets for 
which speleothem data is available from only a single region. Vertical error bars are 2s age 
uncertainties from the SIOC19 ages. The dotted line (mostly out of frame) represents the mean 
counting error of the GICC05 chronology. For reference, the dashed lines represent an age offset 
of ±1%. (B) Robust regression line-of-best-fit between the GICC05 ages (up to 60 kyr BP) and 10 
SIOC19 ages for the synchronous interstadial onsets. The error ellipses represent the uncertainty 
in both the GICC05 chronology (i.e. Maximum Counting Error) and the composite speleothem 
estimates (see Table 1). The line-of-best-fit is defined by the function AgeGICC05 = 1.000 * 
AgeSIOC19 - 48 (-160 / +240) years. (C -F) The age offset between the ice-core and the composite 
speleothem ages plotted against (C) Northern Hemisphere Summer Insolation (NHSI) at 65°N 15 
(81); (D) CO2 concentration (76); (E) interstadial abruptness (measured as the magnitude of change 
in NGRIP d18O divided by the duration of the transition); (F) interstadial onset amplitude 
(measured as the magnitude of change in NGRIP d18O  across the transition). The same conclusions 
apply to the subset of data used to compare timing between both monsoon regions, and between 
the combined monsoon regions and Europe-Mediterranean (see Table S3 and the main text). 20 
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Fig. S7. Composite maps of (A) monthly mean precipitation anomalies and (B) monthly mean 
air temperature anomalies between simulated interstadial and stadial mean states for four 
modelling scenarios (see Methods). CO2 composite (20), ICE (19), hosing composite (19, 20), 
and these three combined. Units: (A) mm/month /10Sv (Sv=106m3/s), (B) °C /10Sv. 
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Fig. S8. Examples where published depth-age models were modified following reprocessing 
of depth-age data for this study. These examples show cases where the reprocessing has led to 
sizeable changes in the chronology. Panels at left show the depth-age models from the original 
publication (blue) and from the finite-positive-growth-rate modelling undertaken in this study (red 
line gives mean depth-age relationship with 1s (red shading) and 2s (pink shading) uncertainty 5 
estimates). The original U-Th ages are in light blue and recalculated ages in black. The right-hand 
panels show the isotope records on their original (blue) and revised (red) age models compared to 
NGRIP (2) (black; plotted on the GICC05 chronology). Interstadial onset identification points are 
shown by black squares. (A) XL1 Xinglong Cave (35). The original model was developed using 
StalAge (62), which, in combination with slightly older original age calculations, has produced a 10 
different depth-age path. (B) Wu23 Wulu Cave (78). Original age determinations were slightly 
older and revised modelling has forced the age model through a slightly younger path at the age 
determination at ~480 mm, reducing the growth rate below it. (C) St8 Santana Cave (82). The age 
determination at 860 mm has been treated as an outlier and disregarded from the original (linear 
interpolation) model. This date did not meet the rejection criteria in our new depth-age model. The 15 
original approach gives a better fit to NGRIP but the revised model is used as this study requires 
that the derivation of age models be independent of their d18O records. 
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Table S1. List of speleothem records included in the compilation. Records are grouped by 
region (ASM: Asian Summer Monsoon, EM: Europe and Mediterranean, SAM: South American 
Monsoon) and are listed alphabetically by cave site. 
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Ref. 
number 

Region Cave Sample 
Name 

Country Latitude Longitude Elevation  
(m a.s.l) 

Min 
age 
(ka) 

Max age 
(ka) 

Reference 

 ASM 
      

  
 

1 

 

Bittoo BT1 
BT2 
BT5 

India 30.790 77.776 3000 11.7 
70.95 
27.97 

25.33 
24.86 
144.9 

Kathayat, G. et al. Indian monsoon variability on 
millennial-orbital timescales. Scientific Reports 6, 
24374–7 (2016). 

2 

 

Dashibao DSB3 China 26.083 105.050 1106 26.15 32.67 Zhao, K., Wang, Y., Edwards, R. L., Cheng, H. & Liu, 
D. High-resolution stalagmite δ18O records of Asian 
monsoon changes in central and southern China 
spanning the MIS 3/2 transition. Earth and Planetary 
Science Letters 298, 191–198 (2010). 

3 

 

Dongge D4 China 25.283 108.083 680 9.97 15.79 Yuan, D. Timing, Duration, and Transitions of the Last 
Interglacial Asian Monsoon. Science 304, 575–578 
(2004). 
Dykoski, C. et al. A high-resolution, absolute-dated 
Holocene and deglacial Asian monsoon record from 
Dongge Cave, China. Earth and Planetary Science 
Letters 233, 71–86 (2005). 

 

 

 
D3 

  
99.04 125.64 Yuan, D. Timing, Duration, and Transitions of the Last 

Interglacial Asian Monsoon. Science 304, 575–578 
(2004). 
Kelly, M. J. et al. High resolution characterization of 
the Asian Monsoon between 146,000 and 99,000 
years B.P. from Dongge Cave, China and global 
correlation of events surrounding Termination II. 
Palaeogeography, Palaeoclimatology, Palaeoecology 
236, 20–38 (2006). 

4 

 

Furong FR5 China 29.217 107.900 480 7.65 15.51 Li, T.-Y. et al. Oxygen and carbon isotopic systematics 
of aragonite speleothems and water in Furong Cave, 
Chongqing, China. Geochimica et Cosmochimica Acta 
75, 4140–4156 (2011). 

5 

 

Hulu H82 China 32.058 119.045 
 

12.09 16.16 Yuan, D. Timing, Duration, and Transitions of the Last 
Interglacial Asian Monsoon. Science 304, 575–578 
(2004). 
Wu, J., Wang, Y., Cheng, H. & Edwards, R. L. An 
exceptionally strengthened East Asian summer 
monsoon event between 19.9 and 17.1 ka BP 
recorded in a Hulu stalagmite. SCI CHINA SER D 52, 
360–368 (2009). 

 

 

 
MSL 
MSD 
PD 

  
35.86 
18.21 
10.61 

56.57 
53.18 
19.30 

Wang et al. A High-Resolution Absolute-Dated Late 
Pleistocene Monsoon Record from Hulu Cave, China. 
Science 294, 2345–2348 (2001). 

6 

 

Jintanwan J1 China 29.483 109.533 460 14.35 29.56 Cosford, J. et al. The East Asian monsoon during MIS 
2 expressed in a speleothem δ18O record from 
Jintanwan Cave, Hunan, China. Quaternary Research 
73, 541–549 (2010). 

7 

 

Maboroshi Hiro-1 Japan 34.817 133.217 450 12.61 15.53 Shen, C.-C. et al. East Asian monsoon evolution and 
reconciliation of climate records from Japan and 
Greenland during the last deglaciation. Quaternary 
Science Reviews 29, 3327–3335 (2010). 

8 

 

Mawmluh MWS-1 India 25.262 91.882 1290 5.30 33.53 Dutt, S. et al. Abrupt changes in Indian summer 
monsoon strength during 33,800 to 5500 years B.P. 
Geophys. Res. Lett. 42, 5526–5532 (2015). 

9 

 

Moomi M1-5 Yemen 12.500 54.000 400 11.06 27.03 Shakun, J. D. et al. A high-resolution, absolute-dated 
deglacial speleothem record of Indian Ocean climate 
from Socotra Island, Yemen. Earth and Planetary 
Science Letters 259, 442–456 (2007). 

10 

 

Sanbao SB22 
SB25 

China 31.667 110.433 1902 55.44 
78.03 

94.85 
94.89 

Wang, Y. et al. Millennial- and orbital-scale changes in 
the East Asian monsoon over the past 224,000 years. 
Nature 451, 1090–1093 (2008). 
Xia, Z., Kong, X., Jiang, X. & Cheng, H. Precise dating 
of East-Asian-Monsoon D/O events during 95–56 ka 
BP: Based on stalagmite data from Shanbao Cave at 
Shennongjia, China. SCI CHINA SER D 50, 228–235 
(2007). 

 

 

 
SB23 

  
98.54 130.75 Wang, Y. et al. Millennial- and orbital-scale changes in 

the East Asian monsoon over the past 224,000 years. 
Nature 451, 1090–1093 (2008). 

 

 

 
SB46 

  
26.58 32.23 Zhao, K., Wang, Y., Edwards, R. L., Cheng, H. & Liu, 

D. High-resolution stalagmite δ18O records of Asian 
monsoon changes in central and southern China 
spanning the MIS 3/2 transition. Earth and Planetary 
Science Letters 298, 191–198 (2010). 

11 

 

Sanxing SX7 
SX29 

China 27.367 107.183 720 86.49 
106.02 

108.39 
109.22 

Jiang, X. et al. Stalagmite-inferred abrupt climate 
change of Asian Summer Monsoon at MIS 5a/4 
transition. Climate of the Past Discussions 1–22 
(2017). 

12 

 

Shizi SI3 China 32.400 107.167 680 46.37 53.29 Zhou, H., Zhao, J., Qing, W., Feng, Y.-X. & Tang, J. 
Speleothem-derived Asian summer monsoon 
variations in Central China, 54-46 ka. J. Quaternary 
Sci. 26, 781–790 (2011). 

13 

 

Songjia SJ1 China 32.413 107.179 680 13.69 42.93 Zhou, H. et al. Heinrich event 4 and 
Dansgaard/Oeschger events 5–10 recorded by high-
resolution speleothem oxygen isotope data from 
central China. Quaternary Research 82, 394–404 
(2014). 

 

 

 
SJ3 

  
9.06 19.78 Zhou, H. et al. Distinct climate change synchronous 

with Heinrich event one, recorded by stable oxygen 
and carbon isotopic compositions in stalagmites from 
China. Quaternary Research 69, 306–315 (2008). 

14 

 

Suozi SZ2 China 32.433 107.167 
 

102.43 119.14 Zhou, H. et al. Decoupling of stalagmite-derived Asian 
summer monsoon records from North Atlantic 
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temperature change during marine oxygen isotope 
stage 5d. Quaternary Research 70, 315–321 (2008). 

15 

 

Wanxiang WXSM51 China 33.317 105.000 1194 78.78 90.73 Johnson, K. R., Lynn Ingram, B., Sharp, W. D. & 
Zhang, P. East Asian summer monsoon variability 
during Marine Isotope Stage 5 based on speleothem 
δ18O records from Wanxiang Cave, central China. 
Palaeogeography, Palaeoclimatology, Palaeoecology 
236, 5–19 (2006). 

16 

 

Wulu Wu3 China 26.050 105.083 1440 28.63 39.16 Duan, W.-H. et al. A high-resolution monsoon record 
of millennial-scale oscillations during Late MIS 3 from 
Wulu Cave, south-west China. J. Quaternary Sci. 29, 
83–90 (2014). 

 

 

 
Wu23 

    
55.26 59.70 Liu, D. et al. Sub-millennial variability of Asian 

monsoon intensity during the early MIS 3 and its 
analogue to the ice age terminations. Quaternary 
Science Reviews 29, 1107–1115 (2010). 
Liu, D. et al. Strong coupling of centennial-scale 
changes of Asian monsoon and soil processes derived 
from stalagmite d18O and d13C records, southern 
China. Quaternary Research 85, 333–346 (2016). 

 

 

 
Wu26 

    
58.27 61.16 Liu, D. et al. Sub-millennial variability of Asian 

monsoon intensity during the early MIS 3 and its 
analogue to the ice age terminations. Quaternary 
Science Reviews 29, 1107–1115 (2010). 

 

 

 
Wu32 

    
20.78 29.02 Zhao, K., Wang, Y., Edwards, R. L., Cheng, H. & Liu, 

D. High-resolution stalagmite δ18O records of Asian 
monsoon changes in central and southern China 
spanning the MIS 3/2 transition. Earth and Planetary 
Science Letters 298, 191–198 (2010). 

17 

 

Xiangshui X3 China 25.250 110.917 380 18.95 49.74 Cosford, J. et al. Millennial-scale variability in the 
Asian monsoon: Evidence from oxygen isotope 
records from stalagmites in southeastern China. 
Palaeogeography, Palaeoclimatology, Palaeoecology 
266, 3–12 (2008). 

18 

 

Xiaobailong XBL-1 China 24.200 110.917 1500 36.02 52.57 Cai, Y. et al. High-resolution absolute-dated Indian 
Monsoon record between 53 and 36 ka from 
Xiaobailong Cave, southwestern China. Geol 34, 621–
5 (2006). 

19 

 

Xinglong XL-1 China 40.483 117.483 710 49.92 56.73 Duan, W.-H., Cheng, H., Tan, M. & Edwards, R. L. 
Onset and duration of transitions into Greenland 
Interstadials 15.2 and 14 in northern China 
constrained by an annually laminated stalagmite. Sci 
Rep 6, 20844–6 (2016). 

20 

 

Xinya XY2 China 30.583 109.467 
 

60.07 69.55 Li, T.-Y. et al. High-resolution climate variability of 
southwest China during 57–70 ka reflected in a 
stalagmite δ 18O record from Xinya Cave. SCI CHINA 
SER D 50, 1202–1208 (2007). 

21 

 

Yamen Y1 China 25.483 107.900 
 

7.20 15.86 Yang, Y. et al. Precise dating of abrupt shifts in the 
Asian Monsoon during the last deglaciation based on 
stalagmite data from Yamen Cave, Guizhou Province, 
China. Sci. China Earth Sci. 53, 633–641 (2010). 

22 

 

Yangkou JFYK7 China 29.020 107.183 2140 48.65 75.37 Han, L.-Y. et al. Potential influence of temperature 
changes in the Southern Hemisphere on the evolution 
of the Asian summer monsoon during the last glacial 
period. Quaternary International 392, 239–250 (2016). 

23 

 

Yaoba Don YB1 China 28.800 109.833 420 8.84 29.84 Cosford, J. et al. Millennial-scale variability in the 
Asian monsoon: Evidence from oxygen isotope 
records from stalagmites in southeastern China. 
Palaeogeography, Palaeoclimatology, Palaeoecology 
266, 3–12 (2008). 

24 

 

Yongxing YX46 
YX51 
YX55 

China 31.583 111.233 
 

61.17 
22.03 
34.74 

89.01 
57.38 
65.36 

Chen, S. et al. Strong coupling of Asian Monsoon and 
Antarctic climates on sub- orbital timescales. Sci Rep 
1–8 (2016). doi:10.1038/srep32995 

 EM 
      

  
 

25 

 
Beatus EXC3 

EXC4 
Switzerland 46.633 7.817 875 101.19 

77.15 
110.22 
107.12 

Boch, R. et al. NALPS: a precisely dated European 
climate record 120–60 ka. Clim. Past 7, 1247–1259 
(2011). 

26 

 

Corchia CC5 Italy 44.033 10.283 840 89.27 128.69 Drysdale, R. N. Stalagmite evidence for the onset of 
the Last Interglacial in southern Europe at 129 ± 1 ka. 
Geophys. Res. Lett. 32, 1–4 (2005). 

 

 

 
CC28 

    
95.44 118.37 Drysdale, R. N. et al. Stalagmite evidence for the 

precise timing of North Atlantic cold events during the 
early last glacial. Geol 35, 77–4 (2007). 

27 

 

Hölloch Höl-7  
 
Höl-16 

Germany 47.133 10.250 1240– 
1438 

46.65 
 
50.68 

48.75 
 
64.18 

Moseley, G. E. et al. Multi-speleothem record reveals 
tightly coupled climate between central Europe and 
Greenland during Marine Isotope Stage 3. Geol 42, 
1043–1046 (2014). 

28 

 

Jeita J2 Lebanon 33.950 35.650 100 13.15 20.43 Cheng, H. et al. The climate variability in northern 
Levant over the past 20,000 years. Geophys. Res. 
Lett. 42, 8641–8650 (2015). 

29 

 

Karaca K1 Turkey 40.544 39.403 1536 5.82 104.80 Rowe, P. J. et al. Speleothem isotopic evidence of 
winter rainfall variability in northeast Turkey between 
77 and 6 ka. Quaternary Science Reviews 45, 60–72 
(2012). 

30 

 

Kleegruben SPA 49  Austria 47.088 11.672 2165 48.59 58.21 Spötl, C. & Mangini, A. Stalagmite from the Austrian 
Alps reveals Dansgaard-Oeschger events during 
isotope stage 3:. Implications for the absolute 
chronology of Greenland ice cores. Earth and 
Planetary Science Letters 203, 507–518 (2002). 
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SPA 126 

  
48.16 55.80 Spötl, C. & Mangini, A. Stalagmite from the Austrian 

Alps reveals Dansgaard-Oeschger events during 
isotope stage 3:. Implications for the absolute 
chronology of Greenland ice cores. Earth and 
Planetary Science Letters 203, 507–518 (2002).Spötl, 
C., Mangini, A. & Richards, D. A. Chronology and 
paleoenvironment of Marine Isotope Stage 3 from two 
high-elevation speleothems, Austrian Alps. Quaternary 
Science Reviews 25, 1127–1136 (2006). 

31 

 

Pindal CAN Spain 43.383 -3.500 24 18.10 25.68 Moreno, A. et al. A speleothem record of glacial (25–
11.6kyr BP) rapid climatic changes from northern 
Iberian Peninsula. Global and Planetary Change 71, 
218–231 (2010). 

32 

 

Schneckenloch SCH7 Austria 47.433 9.867 1270 110.98 118.02 Boch, R. et al. NALPS: a precisely dated European 
climate record 120–60 ka. Clim. Past 7, 1247–1259 
(2011). 

33 

 

Sieben 
Hengste 

7H-2 Switzerland 46.770 7.830 1540 20.53 29.92 Luetscher, M. et al. North Atlantic storm track changes 
during the Last Glacial Maximum recorded by Alpine 
speleothems. Nature Communications 6, 1–6 (2015) 

34 

 

Sofular So1 
 
So2 

Turkey 41.417 31.933 
 

24.10 
 
36.24 

51.02 
 
59.46 

Fleitmann, D. et al. Timing and climatic impact of 
Greenland interstadials recorded in stalagmites from 
northern Turkey. Geophys. Res. Lett. 36, L19707–5 
(2009). 

 SAM 
 

     
  

 

35 

 
Botuverá BTV3A Brazil -26.777 -48.844 230 0 89.93 Wang, X. et al. Millennial-scale precipitation changes 

in southern Brazil over the past 90,000 years. 
Geophys. Res. Lett. 34, (2007). 

 

 

 
Bt2 

    
0 115.55 Cruz, F. W., Jr. et al. A stalagmite record of changes 

in atmospheric circulation and soil processes in the 
Brazilian subtropics during the Late Pleistocene. 
Quaternary Science Reviews 25, 2749–2761 (2006). 
Cruz, F. W., Jr. et al. Insolation-driven changes in 
atmospheric circulation over the past 116,000 years in 
subtropical Brazil. Nature 434, 63–66 (2005). 

36 

 

Diamante Nar-C Peru -4.267 -76.500 960 2.33 175.06 Cheng, H. et al. Climate change patterns in Amazonia 
and biodiversity. Nat Commun 4:1411. Nature 
Communications 4, 1411–6 (2013). 

37 

 

El Condor ELC-B Peru -4.067 -76.700 860 4.30 53.37 Cheng, H. et al. Climate change patterns in Amazonia 
and biodiversity. Nat Commun 4:1411. Nature 
Communications 4, 1411–6 (2013). 

38 

 

Pacupahuain P09PH2 Peru -11.240 -75.820 3800 15.92 49.74 Kanner, L. C., Burns, S. J., Cheng, H. & Edwards, R. 
L. High-Latitude Forcing of the South American 
Summer Monsoon During the Last Glacial. Science 
335, 570–573 (2012). 

39 

 

Santana St8 Brazil -23.469 -47.273 550 0 131.78 Cruz, F. W., Jr., Burns, S. J., Karmann, I., Sharp, W. 
D. & Vuille, M. Reconstruction of regional atmospheric 
circulation features during the late Pleistocene in 
subtropical Brazil from oxygen isotope composition of 
speleothems. Earth and Planetary Science Letters 
248, 495–507 (2006). 

40 

 

Santiago Sant4 
Sant5 

Ecuador -2.983 -77.867 980 35.20 
34.63 

93.58 
46.39 

Mosblech, N. A. S. et al. North Atlantic forcing of 
Amazonian precipitation during the last ice age. 
Nature Geoscience 5, 817–820 (2012). 
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Table S2. Summary of the timing of interstadial onsets based on the compilation of multiple 
speleothem records. MSWD, Mean Square Weighted Deviation. Regional speleothem ages are 
error-weighted means based on multiple individual speleothem records within a given region (n 
denotes the number of records). The combined speleothem age (SIOC19) and uncertainty is the 5 
error-weighted mean of the regional ages. Total other records includes all records that met the 
criteria for event identification (resolution of at least three data points per thousand year, 
chronological precision better than 3.5%) and cover the time interval for the event (Fig. S3), but 
in which the event has not been identified. In the majority of cases the resolution was insufficient 
to detected the event; see for example, many of the short-lived events around interstadial 16 and 10 
17 which require decadal or sub-decadal resolution in order to be resolved.  Section A presents the 
timing of interstadial events for which synchronous timing can be demonstrated across multiple 
regions. Section B presents event ages using speleothem records from only one region because 
other regions lack high-quality records. Section C presents the regional ages for the two non-
synchronous events. Section D presents the three unresolved events. All other interstadials not 15 
listed were not detected in at least two speleothem records. The corresponding GICC05 / 
GICC05modelext age and uncertainty for each event is shown (3). Errors are not provided beyond 
the limits of annual layer counting (60 kyr BP). All age errors shown are ±2s uncertainties, and 
all ages are reported as kyr BP (before 1950).  
  20 
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Table S3. Age offset between regional speleothem estimates for interstadials. EM, Europe-
Mediterranean; EWM, Error Weighted Mean; MSWD, Mean Square Weighted Deviation. (A) 
Interstadial ages for those events recorded in at least two records from the ASM and SAM and the 
age offset between both. (B) Interstadial ages for those events recorded in at least two records from 
the EM and Monsoon (either ASM and/or SAM) and offset ages between both. Numbers in 5 
brackets give the number of records for each region. Ages are given in kyr BP. All uncertainties 
are 2s. 

  

A

Interstadial
3 27.825 ± 0.090 (5) 27.789 ± 0.330 (3) 0.037 ± 0.342
5.1 31.000 ± 0.230 (3) 30.946 ± 0.127 (3) 0.054 ± 0.263
5.2 32.379 ± 0.296 (3) 32.367 ± 0.214 (3) 0.012 ± 0.366
7c 35.359 ± 0.123 (2) 35.287 ± 0.139 (3) 0.072 ± 0.186
8c 38.025 ± 0.130 (7) 38.094 ± 0.380 (2) -0.070 ± 0.401
10 41.355 ± 0.155 (6) 41.455 ± 0.291 (2) -0.100 ± 0.329
18 64.576 ± 0.217 (4) 64.948 ± 0.914 (2) -0.372 ± 0.940
20c 75.574 ± 0.267 (2) 75.578 ± 0.740 (4) -0.004 ± 0.786

EWM 0.019 ± 0.113
MSWD

B

Interstadial
3 27.822 ± 0.127 (2) 27.823 ± 0.087 (8) -0.001 ± 0.154
8c 38.057 ± 0.127 (2) 38.032 ± 0.123 (9) 0.026 ± 0.176
9 40.235 ± 0.199 (2) 40.254 ± 0.089 (4) -0.018 ± 0.218
10 41.602 ± 0.242 (2) 41.377 ± 0.137 (8) 0.224 ± 0.278
12c 46.975 ± 0.222 (4) 47.141 ± 0.191 (2) -0.166 ± 0.293
13c 49.478 ± 0.135 (4) 49.378 ± 0.169 (3) 0.100 ± 0.216

EWM 0.025 ± 0.084
MSWD 0.9

ASM SAM Offset (ASM-SAM)

0.26

EM Monsoon Offset (EM-Monsoon)
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Table S4. The details of the experiments used for composite of DO climate changes. 𝛿𝜑 
represents changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC) 
modes in each set of experiments. In the hosing scenario, the average of the last 100 model years 
is used to represent the corresponding hosing states (i.e. weak AMOC mode), which is then 5 
compared with their control state to determine the AMOC changes. In the ICE scenario, each set 
of experiments includes two equilibrium ocean states as described in ref. 16. That is, NHIS_0.4 
represents experiments NHIS_0.4s NHIS_0.4w, NHIS_0.35 represents experiments NHIS_0.35s 
and NHIS_0.35w, and NHIS_0.3 represents experiments NHIS_0.3s and NHIS_0.3w.  

  10 

Experiment ID Forcing details Other boundary conditions δφ Reference

Hosing *

lgm015 0.15Sv freshwater flux into Ruddiman belt for 800 years full LGM conditions 16.45 (52)

lgm02 0.2Sv freshwater flux into Ruddiman belt for 1000 years full LGM conditions 20.19 (52)

CO2

Hys_CO2 two AMOC states under a CO2 rang of 209 and 225ppm 
20% LGM ice volume 
while the rest is identical 
to the LGM

12.017 (20)

LGM_015_CO2 two AMOC states under a CO2 rang of 210 and 225 ppm
full LGM conditions with 
persistent 0.15Sv NA 
hosing

10.082 (20)

ICE
NHIS03 two AMOC states under 40% LGM ice volume LGM conditions 8.61 (19)

NHIS035 two AMOC states under 35% LGM ice volume LGM conditions 8.004 (19)

NHIS04 two AMOC states under 30% LGM ice volume LGM conditions 7.598 (19)

*Reference state is the Last Glacial Maximum (LGM) control run, i.e. LGM-W in ref. 52.
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Data S1. (separate file) 
Individual speleothem event timings. This file provides the timing of the onset of interstadials in 
each of the individual speleothem records.  

Data S2. (separate file) 5 
Speleothem depth age models. This file provides the depth-age models produced for each of the 
speleothem data sets.  

Data S3. (separate file) 
Plots of the isotope records of speleothems used in the comparison. This file provides the full 
isotope record of all speleothem used in the comparison, grouped by region and showing all 10 
event identification points and sections of the records used.  

Data S4. (separate file) 
Code utilised for the calculation of uranium-thorium ages.  

Data S5. (separate file) 
The finite positive growth rate model source code for Wavemetrics Igor Pro.  15 
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