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Abstract

Radioactive waste vitrified within glass is planned to be ultimately disposed of within a geological

disposal facility. This study has applied machine learning to predict static glass leaching using an

international  experimental  database of  approximately  450 glasses  to  train/test  various  algorithms.

Machine learning can accurately predict B, Li, Na, and Si releases for this complex database with

Tree-based algorithms (notably ‘BaggingRegressor’ and ‘RandomForestRegressor’ in Python). This is

provided that leaching experiment results, including elemental releases, are incorporated within the

algorithm training variables, given that this study finds inaccurate prediction solely using initial test

parameters as features. The trained algorithms underwent additional testing using an external database

with prediction showing worse performance, likely due to substantial MgO and Na 2O pristine glass

oxide compositional variations across databases, with B releases generally being overestimated and

Na  underestimated.  The  use  of  molar  oxide  content  performed  significantly  better  than  weight-

fraction oxide for learning.
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1. Introduction

The UK nuclear industry intends to ultimately dispose of its vitrified radioactive waste glass inventory

deep underground within a geological disposal facility (GDF). To achieve this aim, the regulatory

safety case  will  require  robust  radionuclide migration  models  which  appropriately quantify  glass

dissolution  uncertainty  due  to  the  various  glass  compositions,  groundwater  compositions,  and

leaching conditions that may be present within a repository. Machine learning may be a valuable tool

for correlating large-scale dissolution data, with a recent study having successfully predicted UK and

international waste glass dissolution behaviour from static and dynamic leaching experiments  [1].

Such  methods  have  a  potential  advantage  from  not  making  assumptions  about  glass  alteration

behaviour like in reactive-transport mechanistic models. However, considering the relatively small

compositional ranges and test conditions used in this previous study, there has been a need to examine

machine learning dissolution prediction using a significantly larger and more diverse dataset. Here,

this study aims to build upon this previous work by firstly applying machine learning to a large

international glass dissolution database. Secondly, it aims to examine the transferability of the trained

algorithms derived from data measured separately by many organisations to predict other independent

data. 

2. Methods 

Machine  learning  algorithms  (multiple-linear,  Lasso,  Ridge,  Elastic-net,  support-vector  machine

(SVM), gradient boosting, bagged random forest, single-layer feed-forward neural networks, random

forest  regression)  of  varying  complexity  were  applied  to  predict  B,  Li,  Na,  and  Si  elemental

concentrations  and normalised  releases  (Section  2.2)  from experimental  features  (including  glass

composition, glass density, dissolution temperature, solution pH, elemental concentrations/releases).

Algorithms  were  both  trained  and  tested  using  ALTGLASS  data  (Section  2.1),  and  the  trained

algorithms were  subsequently  applied  to  independent  experimental  data  (Section  2.2).  Algorithm

performance  was  assessed  via  R2/mean  square  error  (MSE)  metrics.  MSE  was  computed  using
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Equation  1 considering  each  measured observation  i  (yi,m),  predicted  observation  i  (yi,p),  and n

observations.  

MSE = ∑i=1

n

( y i ,m− y i , p)
2

n

                      Equation 1

Training  data  was  obtained  only  using  the  ALTGLASS  database  by  partitioning  the  available

experimental leaching data using random sampling, splitting training and test data with a five-fold

cross validation (three repeats) method. Five-fold cross-validation was also applied on the training

data to optimise various model hyper-parameters in Python. The full set of variables extracted from

the ALTGLASS (and similarly independent database) were: leaching test duration, glass surface area

to leachant volume (SA/V), glass density, nominal glass mass, nominal leachant volume, composition

(see Table S1 for oxide members), pH (in time), and Si, Li, Na, and B concentrations in solution in

time. These were used as they represent the most important variables in leaching experiments and

allowed minimal loss of experimental information across the two databases. 

Simulations  were  performed  to  predict  Si,  Li,  Na,  or  B  concentrations  (µg/ml)  and  for  these,

composition was considered either on a mol. % or wt. % oxide basis. Alternatively, Si, Li, Na, or B

releases  (g  m-2)  (Section  2.2)  were  predicted  having  treated  composition  on  a  mass  fraction  by

element basis. For any given simulation, Si, Li, Na, or B concentrations/releases were predicted using

the remaining variables as learning features. For example, when predicting B release at each time

(Figures 1-3),  the leaching time, SA/V, glass density, nominal glass mass, nominal leachant volume,

composition, pH (in time), and Si, Li, Na release were all used as input variables. As another example

when predicting Si release, all variables excluding Si release were used for algorithm training. Note

that  other  simulations  were additionally performed to examine the ability  of  machine learning to

predict each species concentration/release solely from experimental setup conditions (leaching test

duration, SA/V, glass density, nominal glass mass, nominal leachant volume, and composition only).

The two databases are now described; See Table S1 for mean and standard deviation mol. % oxide

dataset values. 

2.1. ALTGLASS Database
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The ALTGLASS database [2] version 3.0 contains ~2600 observations of static glass dissolution data

from approximately 450 glasses, obtained following ASTM product consistency test (PCT) A and B

methods [3]. High-level and low activity waste (HLW and LAW, respectively) glass compositions are

included (both radioactive and simulant), provided by the international nuclear community, curated by

Savannah National River Laboratory (SRNL). A broad range of test durations (from a few hours to

timescales  exceeding 7426 days),  SA/V (1.1-39.1 m2/L),  temperatures  (25-200 °C),  leachate  pHs

(7.39-13.66), glass compositions (wt. % oxide), and leachate elemental concentrations (µg/ml) are

recorded.  Leaching  data  covers  a  broad  range  of  alteration  regimes,  although  the  ALTGLASS

database only includes a limited number of experiments of high enough leaching duration for stage V

dissolution (resumption of the initial alteration rate) [2].

2.2. Independent Experimental Data

To  independently  test  the  ALTGLASS  trained  algorithms,  a  separate  large  database  has  been

established  (~970  observations),  using  various  UK  vitrification  campaign  (National  Nuclear

Laboratory)  Magnox-THORP Blend,  Ca/Zn,  and  post-operational  clean-out  (POCO)  glass  90  °C

deionised  water  leaching  data.  Additional  contributions  include:  various  temperature  dissolution

experiments performed at the University of Cambridge with Mixture-Windscale 25 wt. % simulant

Magnox loading (MW25)  [4],  lithium-doped International  Simple Glass (ISG)  [5],  simple binary-

alkali (Li-Na) borosilicate glasses (submitted for publication); French CJ glasses [6]; and long-term

static  leaching  experiments  (MW  and  SON68)  [7].  The  database  draws  together  experimental

information that was previously recorded independently by different research organisations.     

Considering  the  lack  of  short-term  leaching  ALTGLASS  results  of  less  than  7  days  duration,

additional experimental  data has been generated in this time range.  To this end, ISG and MW25

glasses were crushed and sieved to achieve a particle size of 75-150 µm, ultrasonically cleaned in

absolute ethanol following the ASTM methodology  [3], dried at 90 °C, and magnetically filtered.

Static leaching experiments followed the ASTM PCT-B method  [3] using type 1 deionised water

(18.2 MΩ.cm at 25.0 °C) as leachant. Experiments used between 0.375 and 0.4 g sample (MW25/ISG

powder) leached at 40 and 90 °C in 4 mL of water (targeting a geometrical  SA/V of 2000 m -1).
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Measurements were taken at 1 hour, 3 hour, 5 hour, 1 day, and 7 day intervals with each being taken

from a separate stainless steel vessel with PTFE liner. Triplicate experiments were performed using

independent reactors (together with two solution blanks), with pH also being measured. Elemental

concentrations of glass species (all ISG species and the major species of MW25) were measured by

inductively coupled plasma mass spectrometry (ICP-MS). Normalised species releases (g m -2) were

computed by normalising the background and dilution corrected elemental concentrations to the SA/V

and mass fraction of that element within the glass (dimensionless). See Figures S1 and S2 for pH and

measured release data.

3. Results

3.1. ALTGLASS vs Independent Data Machine Learning Performance 

Figure  1  presents  predicted  against  measured  B,  Li,  Na,  and  Si  releases  using  ALTGLASS and

independent  data  using  the  highest  performing algorithm  ‘BaggingRegressor’ (Section  3.2).  This

algorithm  [8] works  by  aggregating  the  predictions  of  many regressors  each  fit  on  random data

subsets, and here, hyperparameter optimisation used a range of 1 to 300 estimators (increments of 10),

with optimisation performed on negative mean square error. Perfect performance would have data

points lying along the dashed lines in Figure 1. For ALTGLASS test data (not part of training set),

predicted releases were strongly correlated with experimentally measured values (B, Li, Na, and Si).

Values were not disproportionately under or over-estimated across the four species. Errors increased

when testing on independent data (not part of the ALTGLASS database), with release errors typically

being overestimated for B,  underestimated for  Li,  becoming more substantial  with increasing Na

releases,  and  primarily  overestimated  for  Si  with  predictions  being  restricted  to  less  than

approximately 1.8 g m-2.  Note that several Si releases were substantially underestimated as further

described in a subsequent publication, likely due in part to the relatively high SiO 2 content in the

specific glasses relative to the overall ALTGLASS database. The content of these four component (Si,

B, Na, Li) glasses is provided in Table S2. 

FIGURE 1
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3.2. Algorithm Performance 

Figure 2 compares MSE errors on the release predictions as a function of learning algorithm for both

sets  of  test  data.  Considering  all  four  species,  errors  were  found  to  be  lowest  for  the

‘BaggingRegressor’ and ‘RandomForestRegressor’ algorithms. Similar behaviour was observed for

concentration  (µg/ml)  prediction,  with  errors  also  being  lower  when  considering  compositional

features on a mol. % oxide rather than wt. % oxide basis in the algorithm learning. 

FIGURE 2

3.3. Observed Leaching Profiles

Figure  3  shows  predicted/measured  B  releases  for  several  experiments  within  the  test  data

(independent of ALTGLASS). Predicted B releases are shown to be overestimated in several cases, as

is consistent with Figure 1, despite trends in the leaching behaviour being generally preserved. 

FIGURE 3

4. Discussion

Predicting glass dissolution is of vital importance for the nuclear industry and its plans for geological

disposal. This study has aimed to understand if machine learning can predict static glass leaching on a

substantially larger and more diverse international database than previous work [1]. This database was

chosen as the compositions are extremely relevant to the international nuclear industry and it is one of

the most extensive databases publicly available. One of the advantages offered by applying machine

learning in this study is that no explicit assumptions about glass dissolution mechanisms have been

made.  Mechanistic  models,  for  example,  in  reactive-transport  modelling,  frequently assume glass

alteration behaviour, and they remain to be fully validated and parametrised over a wide range of

glass compositions and leaching conditions  [9–11]. As an example, there is still debate on whether

glasses corrode following diffusion-based or interfacial dissolution-reprecipitation models  [12–14].

Moreover, uncertainties remain regarding secondary phase composition, passivating capabilities of

the altered layers, and passivating reactive interface/depleted gel end-members. Generally, there has
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been a need to better explore the use of large-scale data, particularly as leaching experiments take

considerable time, and to see if machine learning might be used as an alternative prediction method.

This study has showed that machine learning was able to predict the four major glass species, B, Li,

Na, and Si static leaching behaviour reasonably accurately in the ALTGLASS database (Figure 1),

depending on the algorithm (Figure 2) and features used. Therefore, machine learning may be used as

a  benchmark for  similar  compositions  to  check for  experimental/compositional  anomalies.  Errors

were found to increase when predicting independent data using ALTGLASS trained algorithms. This

may have been either due to the substantial difference in composition between the complex glasses of

the ALTGLASS database and the more simplistic glasses of the independent data, or differences in

leaching experimental design. For example, owing to significant differences between ALTGLASS

and  the  independent  data  leaching  test  durations,  or  general  differences  between  database

compositions as  the independent  data used here (comprising Magnox-THORP Blend,  Ca/Zn,  and

POCO  glasses)  typically  had  higher  MgO  and  lower  Na2O  oxide  compositions  than  that  of

ALTGLASS.  Nonetheless,  machine  learning  could  preserve  general  leaching  behaviour  trends,

particularly for B, even when the values were often overestimated (Figure 3), and therefore, it might

be  used  as  a  test  of  consistency  in  newly  acquired  data.  The  ‘BaggingRegressor’  and

‘RandomForestRegressor’  algorithms overall  performed  best  for  predicting  releases  (followed  by

gradient boosting), with Na release identified as the most important of the training features (Section 2)

for accurate B learning. The same algorithms performed best for concentration (µg/ml) prediction,

with it being found that mol. % oxide features gave better learning performance than wt. % oxide

species; likely due to higher mass species being given greater feature importance in learning when wt.

% oxide features were used. Therefore, it is suggested that future machine learning studies consider

these ensemble methods as a benchmark, use mol. % oxide composition and not wt. % oxide for

compositional learning features, and note the stronger learning importance of Na release on B release

prediction over other features (including pH, and Si/Li release). 

Machine learning and data analytics in general can be used to support glass corrosion understanding.

For example, Figure S3 presents the correlation between different learning features and B release in

the ALTGLASS data, highlighting that B release increases with pH, Li release, Li, Mg mass fraction
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by element, and with decreasing Al, Ca, Si mass fraction by element, etc. These results are supported

by  or  support  current  glass  alteration  understanding.  Machine  learning  might  also  be  used  to

understand how different  glass compositions influence prediction accuracy,  potentially identifying

compositions for further study. For example, by analysing the correlation between relative predicted-

test B release errors and compositional learning features within the independent data, errors were

found to have highest positive correlation with Zn, Zr, and Ca mass fraction by element and most

negative correlation with Mg. This may be partly due to the strong stabilising effect of Ca, Zn, and Zr

(and  destabilising  effect  of  Mg)  [7,15,16] which  causes  increasingly  significant  changes  and

unpredictability in B release as the contribution of each respective element is relatively modified

within the pristine glass. 

Importantly,  machine  learning  could  accurately  predict  B,  Li,  Na,  and  Si  glass  static  leaching

behaviour  using  the large-scale  ALTGLASS international  data,  provided  remaining  concentration

data, for example, that of Li, Na, Si in the case of B prediction, were used for learning. Significant

errors were observed when solely using experimental setup parameters as features, and therefore for

prediction  only  from  experimental  setup  parameters,  machine  learning  may  not  offer  significant

advantages  in  static  leaching  prediction  over  mechanistic  models.  Overall,  results  suggest  that

algorithm predictions cannot replace newly generated experimental leaching data, and that either more

data is needed for prediction from experimental setup variables, or that machine learning methods

may be more valuable for identifying glass compositional outliers which would require additional

consideration or assist in the interpretation of new data, assuming the underlying training set utilises

appropriate  experimental  parameter  ranges.  In  future  work,  it  would be interesting to  understand

whether machine learning can accurately predict  static glass dissolution solely from experimental

features within simplistic compositional matrices, and how diverse these can be before prediction

performance weakens.

5. Conclusions

One of the aims of this study has been to extend previous work [1] and apply machine learning to a

substantially larger and more diverse international database. A repeated observation has been that
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predictive errors increase significantly when predicting leaching behaviour purely from experimental

setup conditions, which naturally includes the pristine glass composition.  It therefore remains to be

shown that machine learning can predict dissolution results (for example, B release) independently of

evolving experimental conditions i.e., without including leachate pH or Na release, for example, as

learning features. Consequently, it may be better to use machine learning as a tool for correlating

large-scale data to identify compositional outliers on the basis that the training data uses appropriate

compositional  bounds,  or  to  guide  dissolution  data  interpretation,  rather  than  as  a  complete

replacement tool for experiments.  
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Figure 1
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Figure  1:  Predicted  versus  measured  normalised  releases  for  B,  Li,  Na,  and  Si,  for  ALTGLASS
training/test data [Left figures] and independent data [Right figures]. The ‘BaggingRegressor’ method
was applied, considering experimental setup conditions (temperature, SA/V, composition, etc.), leachate
pH, and other species releases input features for learning. Perfect datapoints would follow dashed black
lines. Several of the extremely underestimated Si releases are to be discussed in a subsequent publication.

Figure 2

Figure 2: MSE errors on the ALTGLASS test and independent B, Li, Na, and Si test release data as a
function of machine learning algorithm. All available features were used for algorithm learning. 
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Figure 3

Figure 3: Example predicted/measured B release curves for the independent data (‘BaggingRegressor’).
The  full  features  (experimental  setup  parameters,  leachate  pH,  Na/Si/Li  releases,  etc.)  were  used  for
algorithm learning.
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