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ABSTRACT

Cone-beam computed tomography (CBCT) is increasingly used in radiotherapy for patient

alignment and adaptive therapy where organ segmentation and target delineation are often required.

However, due to the poor image quality, low soft tissue contrast, as well as the difficulty in acquir-

ing segmentation labels on CBCT images, developing effective segmentation methods on CBCT

has been a challenge. In this thesis, we propose a deep model for segmenting organs in CBCT

images without requiring labelled training CBCT images.

By taking advantage of the available segmented computed tomography (CT) images, our ad-

versarial learning domain adaptation method aims to synthesize CBCT images from CT images.

Then the segmentation labels of the CT images can help train a deep segmentation network for

CBCT images, using both CTs with labels and CBCTs without labels. Our adversarial learning

domain adaptation is integrated with the CBCT segmentation network training with the designed

loss functions. The synthesized CBCT images by pixel-level domain adaptation best capture the

critical image features that help achieve accurate CBCT segmentation. Our experiments on the

bladder images from Radiation Oncology clinics at the University of Texas Southwestern Medical

School (UTSW) have shown that our CBCT segmentation with adversarial learning domain adap-

tation significantly improves segmentation accuracy compared to the existing methods without

doing domain adaptation from CT to CBCT.
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NOMENCLATURE

CBCT Cone beam computed tomography

CT Computed tomography

ART Adaptive Radiotherapy

DA Domain Adaptation

GAN Generative Adversarial Networks

CycleGAN Cycle Generative Adversarial Networks
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CNN Convolutional Neural Network
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1. INTRODUCTION

Radiotherapy is one of the most effective ways to treat cancer. Cancer radiotherapy could take

several weeks. During the process, patient’s anatomy may change significantly and the initially

optimized treatment plan may become sub-optimal, leading to degraded treatment outcome. One

way to address this problem is adaptive radiation therapy (ART) [1], where the treatment plan is

re-optimized using the updated patient anatomy right before the treatment on a particular treatment

day. Cone-beam computed tomography (CBCT), the most widely available 3D imaging modality

on modern linacs, is commonly used for ART re-planning, whose efficacy depends on accurate

segmentation of the organs and treatment target(s) in CBCT images.

The typical workflow of ART is shown in Fig. 1.1. Patients have CT scans when initializing the

treatment. With the planning CT scans, physicians draw contours and calculate the dose prediction

based on them to make a treatment plan. In the traditional treatment, the plan would keep the

same without considering the tumor shrinking or anatomy changing. The aim of ART is to adapt

the radiotherapy by using CBCT to observe the patients’ organ and tumor changes during the

treatment. These changes should be considered to adjust the radiotherapy location and dose. For

example, if the tumor becomes larger or smaller, which means the current plan is not suitable, it is

necessary to let the patient re-plan again according to the updated record. Obtaining precise CBCT

contours/segmentation is the key to the success of ART.

The main challenge when analyzing CBCT for ART is, unlike CT images, whose image quality

is much better and the segmentation labels are readily available from the routine treatments, accu-

rate segmentation in CBCT images is far more challenging. But, CBCT is widely used for patient

positioning in radiation therapy. It has the most up-to-date patient anatomy as its frequently taken.

But due to inaccurate Hounsfield Unit (HU) values, more artifacts and scatters on CBCT compared

with CT, its applications are limited.Thus, labels are not part of routine clinical work, and therefore

are not available in a supervised learning setting.

The popular way to analyze CBCT images for ART is deformable image registration (DIR) [2].
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Figure 1.1: ART using CBCT

It is to register the planning CT (pCT) with daily CBCT, also register the pCT contours of multi-

organs into CBCT. However, since the CBCT images can have some scatter, noise, artifacts [3]

and inaccurate HU values, the DIR sometimes is problematic. The DIR can be wrong because the

CBCT, and CT exists a significant difference between their anatomy. Due to this, the deformed

CT (dCT) images sometimes will not represent the anatomy in CBCT well. As shown in Fig. 1.2,

the orange contours from DIR are also inaccurate, and cannot be used in ART.

In the Computer Vision and Medical Imaging research, there are many existing pipelines in

image domain adaptation and segmentation. Recently, the generative modules, such as generative

adversarial networks (GANs) [4] and variational autoencoders (VAEs) [5], aim to generate synthe-

sized images similar as the ones from the input domain of interest. This approach has been applied

to medical image analysis in [6], for synthesizing unpaired head and neck MR and CT images. For

CT and CBCT datasets, the authors in [7] have explored image translation between Head&Neck

CT and CBCT dataset using a CycleGAN [8] module. Fully-convolutional Networks (FCNs) [9]

have been applied for medical image segmentation. For example, [10] implemented the 3D FCN

in male pelvic CT images, to segment prostate and surrounding organs at risk (OARs). The authors

in [11] and [12] combined image domain adaptation and FCN segmentation to segment cardiac CT

images and obtain the improved results.
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Figure 1.2: Examples of wrong CBCT contours from DIR: In the images, the orange contour is
from Deformable registration algorithm by a open-source software Velocity AI, and the pink one
is from a professional physician.

Due to the lower quality, wrong HU value, lack of annotated organ contours, we cannot do

CBCT segmentation in the naive supervised setting. In this thesis, we propose to solve this problem

by developing an adversarial learning domain adaptation, aiming to train a segmentation without

using CBCT’s contours. Specifically, we address the following two main questions: 1. How to

apply recent deep learning methods in CBCT image segmentation without training segmentation

labels? 2. Since in clinical settings, patients in ART have their preoperative CT images with

labeled organ contours. Can we utilize these labels to help CBCT segmentation task?

First, we plan to use GAN to convert the preoperative CT images to CBCT-like images, named

sCBCT (synthetic CBCT), and use sCBCT and its corresponding annotated CT contours to train

segmentation in the supervised learning setting. At the same time, we will perform adversarial

learning for pixel-level domain adaptation between sCBCT and CBCT images. Eventually, the

adapted model translates CT contours for CBCT images. The algorithm is designed using two

deep neural networks, i.e., pre-trained CycleGAN transformation and FCN image segmentation.

We use the output from the segmentation model to train a pixel-level discriminator, which will

leverage pre-trained sCBCT segmentation labels into the CBCT domain to guide CBCT image

segmentation.

In Chapter 2, we will review the literature on CBCT application in ART, image segmentation

3



and domain adaptation. Chapter 3 introduces our proposed method, including the network ar-

chitecture and loss function definitions. The implement details, evaluation results and discussion

are described in Chapter 4. Finally, Chapter 5 concludes the thesis and describes potential future

research directions.
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2. LITERATURE REVIEW

Our purpose is to generate CBCT contours via advanced machine learning methods to guide

CBCT segmentation. To get the reasonable CBCT contours, transfer learning or domain adaptation

between CT and CBCT images can be adopted to help train robust image transform and segmenta-

tion modules jointly for reliable segmentation of CBCT images, on which medical physicians can

carry out better dose prediction and adaptive radiation therapy planning respectively.

In this chapter, we will first review recent works in CBCT application for ART, deep seg-

mentation, generative adversarial network, and domain adaptation, which contribute to different

components of our proposed CBCT segmentation model.

2.1 CBCT Application in Adaptive Radiotherapy (ART)

In the radiation therapy, to confirm the correctness of the treatment delivery, it needs a dose

guidance procedure. Essentially, with visualisation of the dose distribution in three-dimensional

images (e.g. CBCT) created just before the dose delivery, the dose guidance procedure can estimate

the collection of radiation (by a detector) that is actually delivered to the patient.

Currently, re-planning doses based on images collected during the treatment is regarded as the

state-of-the-art for dose-guided procedures [13, 14]. Non-rigid/deformable registration and dose

mapping algorithms for dose accumulation should cause some anatomy changes in different frac-

tions. Based on anatomy/geometry changes and the dose delivered to tumor, it is often required to

check the agreement between the treatment plan and its implementation. If there is any disagree-

ment, the initial treatment plan should be re-planned to the clinically confident one to meet the

radiation therapeutic objectives. This is called adaptive radiation therapy (ART). Thus, to utilize

CBCT in ART to track possible changes of the organ contours between CT and CBCT, different

registration methods have been proposed. For example, Li et al. [15] adopted rigid-registration

in a hybrid approach called “AIGRT” (adaptive image guided radiation therapy). The authors in

[16, 17, 18, 19] proposed deformable methods to map HU values between CBCT and CT images.

5



Boggula et al. [20] developed an algorithm using multi-level threshold values for HU conversion

from CT to CBCT images.

2.2 Deep Segmentation

A lot of famous convolutional neural networks (CNNs) have been developed. LeNet [21] has

demonstrated successful digit image classification. Then, AlexNet[22] has been released, which

is a deeper and wider version of the LeNet, to learn more complex objects in the image. Szegedy

et al. proposed GoogleNet [23], a combination of convolutional filters and pooling layers in its

main architecture. Then, Inception v2-v4 were developed [24, 25] with some modifications to

GoogleNet. He et al. [26] proposed ResNet, using a new way to solve the vanishing gradient

problem by skipping one or more layers, as shown in Fig. 2.1. The gradients training ResNet

can easily flow to the shortcut connection without any obstacle during back propagation. Although

these networks are successful in image classification on famous benchmark datasets (MNIST digit,

ImageNet, etc.), they have limited performance for image segmentation. Because of the fully

connected layers in each architecture, these CNNs can only be applied to segment small images or

small patches of given images.

Long et al. [9] proposed a fully-convolutional network (FCN) framework, which replaces

all the fully connected layer with convolutional layers in the popular CNNs mentioned before

and can transfer them for effective image segmentation. The output of these networks are the

spatial heatmaps and the deconvolution layers for upsampling enabled dense inference and learning

the per-pixel labels for segmentation. Although FCN is successful, it does not take into account

useful global context information. SegNet [27] is a successful example to introduce an encoder-

decoder structure in FCN to further improve segmentation performance. The decoder in SegNet

is constructed by a set of upsampling deconvolution layers followed by a softmax output layer to

predict the pixel-wise labels.

In medical imaging, Olaf Ronneberger et al. [28] released Unet, which is also based on the

encoder-decoder architechure. Unet contains two parts, the encoder (or contraction path) is a tra-

ditional stack of convolution layers and maxpooling layers, to capture the context in images. The

6
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Figure 2.1: Residual learning: a building block

decoder is the symmetric expanding path using transposed convolution (deconvolution) layers, to

enable more accurate localization. Unet has played a significant role in medical image segmenta-

tion. For example, the authors in [29] applied a dense Unet to liver and tumor segmentation in CT

images. In [30], a modified Unet by adding more intermediate layers to skip connections allows

more new upsampling paths from different depths, enables various receptive fields to better capture

global and local information to achieve accurate segmentation.

2.3 Generative Adversarial Network

In the past few years, generative adversarial network (GAN) has gained more attention in com-

puter vision because of their significant performance in image generation, image to image transla-
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Figure 2.2: Architecture of GAN

tion, etc. I. Goodfellow et al. [4] proposed the original GAN in 2014.

The structure of the original GAN, shown in Fig. 2.2, has two components: one is a discrimi-

nator (D) to distinguish between real images and generated images, while the other one is a gen-

erator (G) to generate images to fool the discriminator. Give a distribution modeling real images

x ∼ Pdata and input noise variables pz(Z), G models a probability distribution Pg over data x. The

loss function to help train D and G is:

LGAN = min
G

max
D

Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))]. (2.1)

More extensions of GAN have been proposed, DCGAN [31] has added a deconvolutional layer

to the generator to enable the generation of higher resolution images. Progressive GAN (PRO-

GAN) [32] updates the network architecture in progressive steps with training starting with 4 ×

4 small image and then growing the training image size. Recently, BigGAN [33] has also been

designed to improve performance by increasing model complexity and batch size. CycleGAN [8]

8



and pixel-to-pixel GAN [34] have been proposed for image translation between two domains. The

latter requires that images from two domains should be paired while CycleGAN doesn’t require

the paired data. CycleGAN also uses the cycle-consistent loss as one part of its training objective

function, to make sure about the image style transformation. It has been widely used in medical

image translations between two modalities.

2.4 Domain Adaptation

Domain adaptation (DA) in deep learning has been viewed as a new strategy to solve the learn-

ing challenge due to the lack of labeled data. In the real-world applications, it can be extremely

expensive and time-consuming to get enough labelled data. But, other domains and tasks may

have enough number of data. So, using data from other domain(s) may help the current task,

which doesn’t have enough training data. However, there is always some domain shift or distri-

bution gap between two domains. If using a learning model trained for one domain to another

domain directly, it may degrade the performance. The purpose of domain adaptation is to find an

“adaptation” method to let the model from one domain to work well in another domain.

The most straightforward way to do domain adaptation is fine-tuning the model. There have

been some methods trying to minimize the statistical distribution shift. Long et al. [35] proposed

Deep Adaptation Network (DAN) to use the maximum mean discrepancy (MMD) in the training

objective function to reduce the domain discrepancy. Zhuang et al. [36] proposed to minimize

the Kullback-Leibler (KL) divergence for DA. With the development in GAN, adversarial models

were shown to achieve significant improvement in DA. Tzeng et al. [37] proposed adversarial dis-

criminative domain adaptation (ADDA), using an additional domain classification between source

and target domains. Cao et al. [38] released a selective adversarial network (SAN), to obtain par-

tial DA from large domain to small domain. Based on Wasserstein GAN [39], Shen et al. [40]

used a discriminator to estimate the Wasserstein distance between source and target domain, and

optimize the network to minimize the distance. Hoffman et al. [41] proposed a framework that

combines CycleGAN and ADDA, to derive both the pixel-level and feature-level DA.
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2.5 Deep Learning Applications in Medical Imaging

Recently, deep learning modules have been widely applied in medical image analysis, espe-

cially in image segmentation. Accurate segmentation of OAR (organs at risk) in medical images

allows more precise quantitative analysis of organ’s size and shape, as in cancer treatment. Besides

Unet mentioned in the previous section, Milletari et al. [42] proposed a Vnet that is the 3D exten-

sion of Unet. Balagopal et al. [10] applied a 3D CNN network for male pelvic CT datasets. There

have been also a lot of works based on GAN for medical image reconstruction. For example, Ran

et al. [43] used wGAN for 3D MRI denoising. And Oksuz et al. [44] did the artifact correction by

GAN. Recently, for domain adaptation in medical imaging, Chen et al. [45] released an adversar-

ial domain adaptation model between two Xray datasets. They et al. [12] also proposed a similar

idea for MRI and CT images. Dou et al. [46] developed a DA method based on a plug-and-play

framework between cardiac MRI and CT images.

10



3. MODEL FORMULATION 1

As we discussed, it is hard to achieve accurate organ segmentation for CBCT images due to

their lower image quality. Compared with CT, CBCT has inaccurate Hounsfield Unit (HU) val-

ues, more artifacts and scatters. The traditional deformable image registration (DIR) methods to

infer CBCT segmentation by deforming the CT anatomy have limited successes because of signif-

icant appearance differences across two modalities. In addition, it is infeasible to acquire manual

segmentation labels for CBCT images. Hence, for adaptive treatment planning using CBCT, nei-

ther the traditional image registration nor supervised image segmentation using deep networks is

effective.

To address the challenges in CBCT segmentation, we propose to first use CycleGAN to bridge

the domain gap between CT and CBCT, and to apply the adversarial learning into segmentation

training. The proposed framework consists of two parts, image domain adaptation and segmen-

tation. We adopt model training based on the CyCADA architecture [41]. CyCADA enables

task-driven adversarial learning by combining domain adaptation using CycleGAN [8] with im-

age classification or segmentation as the ultimate goal. Specifically, CycleGAN is constituted by

two generative adversarial networks (GANs) [4] to transfer images between domains through a

consistency loss function, requiring no paired data when training. The integration of adversarial

domain adaptation and task-driven adversarial learning in CyCADA can capture both pixel-level

and feature-level domain invariant representations and therefore better helps the ultimate task.

In this chapter, we introduce the proposed adversarial domain adaptation guided image segmen-

tation network. As illustrated in Fig. 3.1, our network consists of two critical modules: adversarial

domain adaptation and deep segmentation. These two modules are intertwined with the segmenta-

tion module designed to provide necessary anatomical details as the feedback to help better guide

the synthesis of CBCT images from training CT images in adversarial domain adaptation. We will

describe these components in detail in the following two subsections.

1Part of this section is reprinted from our accepted manuscript [47] c©2019 MICCAI
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Figure 3.1: Workflow of our proposed method.

3.1 Adversarial Learning Domain Adaptation 2

We first introduce the adversarial domain adaptation module based on CycleGAN. The key idea

here is to develop a generative model for effective synthesis of CBCT images with inherited CT

image segmentation labels so that labeled CT images can be used for CBCT segmentation training.

In our implementation of CycleGAN for adversarial domain adaptation (in Fig. 3.2), Cycle-

GAN has two generators GCT and GCBCT , which synthesize CT and CBCT images respectively.

The synthesized images will be judged by two corresponding discriminators DCT and DCBCT .

During the training, the synthesized images will be compared to the corresponding CT images in

the source domain and CBCT images in the target domain. The generators also derive the “Cy-

cleCT” and “CycleCBCT” images from the synthesized images in a cyclic fashion. These images

will also be compared to the original CT and CBCT images to achieve “cyclic consistent” domain

adaptation.

In this framework, by training CycleGAN, two generators aim to synthesize the CT/CBCT im-

ages based on training CBCT/CT images so that two discriminators can not distinguish between

2Part of this section is reprinted from our accepted manuscript [47] c©2019 MICCAI
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synthesized images and original training images. Moreover, CycleGAN enforces the cyclic con-

sistency to make sure that the images synthesized by two generators in a cyclic fashion have the

consistent quality in the sense that generators can fool discriminators into believing that the gener-

ated “fake” images are “real”.

For training the discriminator and generator for synthesized CT (sCT) images, the loss function

is:

LGAN(GCT , DCT ) = Ex∼PCBCT (x)[DCT (GCT (x))
2]

+ Ey∼PCT (y)[(1−DCT (y))
2], (3.1)

where PCT and PCBCT are the sets of unpaired input training CT and CBCT images. Again,

the generator GCT aims to generate sCT images that are similar to the input CT images; and

DCT aims to distinguish between sCT images and original input CT images PCT . Similarly, for

the synthesized CBCT (sCBCT) branch in Fig. 3.2 (top), we have the corresponding MSE-based

adversarial learning loss:

LGAN(GCBCT , DCBCT ) = Ey∼PCT (y)[DCBCT (GCBCT (y))
2]

+ Ex∼PCBCT (x)[1−DCBCT (x))
2]. (3.2)

Discriminator 
CT

Discriminator 
CBCT

Fake or 
Real

CT Sythesized CBCT

CBCTSythesized CT

Generator CT to 
CBCT

Generator CBCT 
to CT

Cycle CT Cycle CBCT

 Fake or 
Real Cycle loss 

Cycle loss

Figure 3.2: The CycleGAN architecture is used to generate sCBCT images from CT images.
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To guarantee the high-quality domain adaptation, an additional cycle consistency loss [8] is

imposed to have the reconstructed image in a cyclic fashion become identical to the original input

training images. This is done by imposing an L1 difference on the reconstruction error, given as:

Lcycle(GCT , GCBCT ) =Ey∼PCT (y)[‖( GCT (GCBCT (y))− y)‖1]

+ Ex∼PCBCT (x)[‖( GCBCT (GCT (x))− x)‖1]. (3.3)

Furthermore, an identity loss is added:

Lidentity(GCT , GCBCT ) =Ey∼PCT (y)[‖( GCT (y)− y)‖1]

+ Ex∼PCBCT (x)[‖( GCBCT (x)− x)‖1], (3.4)

leading to the final total loss function:

Lcyclegan =LGAN(GCT , DCT ) + LGAN(GCBCT , DCBCT )

+ λcycleLcycle(GCT , GCBCT ) + λidLidentity(GCT , GCBCT ), (3.5)

where λcycle and λid controls the relative importance of the Lcycle and Lidentity. Notice the sym-

metry of the designed loss functions to have the cyclic consistency guarantee for better quality

adversarial domain adaptation. For CBCT segmentation, we focus on the sCBCT branch on the

top of Fig. 3.2. When the training reaches an optimum with respect to the total loss function, we

hope that from the source CT images, we can generate sCBCT images whose representations are

similar to those of the target CBCT images so that they can be used to train an effective CBCT

segmentation network.

In our implementation, as shown in Fig. 3.3, we choose the generator network architecture

to be the U-net [28] for end-to-end pixel-level image transformation, as similarly adopted in the

original CycleGAN [8], where the inputs and outputs of the U-net are 512× 512× 1 images. For

discriminators, as shown in Fig. 3.4, a 142×142 PatchGAN [34] is applied to output the 32×32×1

14
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Figure 3.4: CycleGAN discriminator architecture

feature maps for discriminating the synthesized and original training images. All layers of these

networks utilize instance normalization and LeakyReLU (rate = 0.2) activation functions, except

that the last layers of the generators and discriminators use ‘tanh’ and linear activation functions,

respectively.
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3.2 Deep Segmentation via Adversarial Learning 3

Adversarial domain adaptation module feeds sCBCT images into the deep segmentation mod-

ule. Specifically, the deep segmentation network can be pre-trained using sCBCT images with their

inherited segmentation masks of original CT images. However, due to the domain shift between

CT and CBCT, the CT segmentation masks may not work properly for training the segmentation

network in CBCT domain. Thus, the segmentation module is designed to deploy both sCBCT

and CBCT images as inputs, creating the corresponding output segmentation maps. Then, a fea-

ture (segmentation) discriminator Dfeat is integrated to determine whether the segmentation maps

are from CT or CBCT domains (Fig. 3.1). The segmentation networks can be considered as the

corresponding generators of segmentation maps in GAN. When two generators can produce seg-

mentation maps to fool Dfeat so that the corresponding sCBCT segmentation maps and CBCT

maps are indistinguishable, we achieve a good segmentation network for CBCT images. Through

this operation, the segmentation network can learn more info about target domain (CBCT) via

adversarial learning, and predict on target images more reliably even without any label.

The segmentation network is denoted as Seg. To overcome the potential unbalance in medical

image segmentation masks, the loss function is chosen to be based on the DSC (DICE Similarity

Coefficient) [48]:

Lseg = 1− 2YCTYmap + a

YCT + Ymap + a
, (3.6)

where YCT is the CT segmentation mask (Ground Truth), Ymap is the output of the deep model.

The smoothing term a ensures the stability of the loss function by avoiding potential numerical

issues when the denominator becomes 0.

As shown in Fig. 3.1, Dfeat aims to distinguish the segmentation maps of two domains. The

loss function of Dfeat is given as:

Ladv = Ex∼PCBCT (x)[Dfeat(Seg(x))
2] + Ez∼PsCBCT (z)[(1−Dfeat(Seg(z)))

2], (3.7)

3Part of this section is reprinted from our accepted manuscript [47] c©2019 MICCAI

16



Input
256x256x1

Resnet50
Block

Resnet50
Block

Resnet50
Block

Resnet50
Block

Resnet50
Block

Output
(segmentation 

Map)
256x256x1

Feature Map

Batchnorm, Conv 3x3, ReLU

Dropout, Upsampling 2x2

Conv 1x1, Sigmoid

Concatenate

Figure 3.5: Segmentation module

where PCBCT , PsCBCT are the sets of input CBCT and sCBCT images. Finally, we establish the

total loss function:

Lfeat = Ladv + λsegLseg. (3.8)

In the segmentation module, the Resnet50 [49] block is built in the encoder part of U-net [28]

as the basic architecture. The architecture as shown in 3.5.

Again, we choose PatchGAN [34] as a discriminator with the receptive field size 70 × 70. As

shown in 3.6, the network consists of 5 convolutional layers with 4 × 4 kernel size and stride of

2, except for the last one layers with convolution stride of 1. The numbers of feature maps are

64, 128, 256, 512, 1 for each layer, respectively. For the first four layers, each convolutional layer

is followed by a leaky ReLU with rate = 0.2 and an instance normalization layer. Through the

integration of adversarial domain adaptation and segmentation modules, the available CT images

with segmentation masks as well as CBCT images are taken the best advantage of when training

for CBCT segmentation. In the training, we first train Dfeat until the accuracy reaches an accuracy

threshold R (initial setting is 0.6). Next, we train the segmentation part until we get a reliable
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Figure 3.6: Feature discriminator architecture

module for CBCT.

3.3 Learning Diagram

Importantly, a key characteristic in our proposed method is to do domain adaptation in both

image and feature levels. More specifically, CycleGAN is optimized by cycle consistency loss

Lcycle and LGAN via the image adaptation perspective. The segmentation also collects gradients

back-propagated from the discriminators Dfeat towards feature adaptation. In these regards,the

feature discriminator is fitted in a multi-task learning setting, such that, it is able to distinguish CT

and CBCT predicted contours and feedback the loss into the segmentation module. In turn, our

proposed method has the great improvements, and emphasize pixel-wise cyclic reconstruction and

focus on structural semantics.

During training, for the CycleGAN module, its sub-modules are sequentially updated in the

following order: DCBCT → DCT → GCBCT → GCT . Specifically, the generator GCT and GCBCT

are updated first to obtain the fake (target-like) images. Then the discriminator DCT and DCBCT

are updated to differentiate the fake images from the actual target images. For the segmentation

module, followed by the segmentation part and feature discriminator to map the extracted features

to the segmentation predictions and generated target-like images. We first train the feature discrim-

inator, when the accuracy reaches the preset threshold, then update the Ladv and Lseg and propagate

back to the segmentation module for the feature level adaptation. Thus, the final loss function of

18



our proposed method is as follows:

L =LGAN(GCT , DCT ) + LGAN(GCBCT , DCBCT )

+ λcycleLcycle(GCT , GCBCT ) + λidLidentity(GCT , GCBCT ) + Ladv + λsegLseg (3.9)
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4. EXPERIMENTS AND RESULTS

4.1 Datasets 1

The data is collected 90 patients’ CBCT and CT images from UT Southwestern Medical

School, Department of Radiation Oncology. For each patient, we select one planning CT and

one CBCT to perform the CycleGAN training. As shown in Fig. 4.1 and Fig. 4.2, we can visualize

that CBCT images have more scatters, artifacts, and sometimes truncated regions than CT images

do.

In our experiments, the pixel spacing of CT and CBCT are normalized into 1 × 1, where the

thickness is 3mm. All slices are cropped into 512 × 512 resolution. Each CBCT study has 88

slices, and each CT study has about 220 slices, while we crop CT into 88 slices which focus on

bladder and prostate portions. The HU value range for CT is [-1000,3500], and that for CBCT is

[-1000,7000]. All the image HU values are normalized to (-1, 1) for training and validation. We

use the manual segmentation of CBCT slices as the ground truth to validate the proposed method

in this thesis.

4.2 Implementation Details 2

The networks are implemented and trained using Keras [50] on a PC with an NVIDIA Tesla

K80 dual-GPU. For CycleGAN [8], the following hyper-parameters are set for training the Cycle-

GAN module: the batch size is set to 1 with ADAM [51] for optimization at the learning rate 0.003

with scheduled decay rate at 0.005; β1 = 0.9 and the epoch number = 100. For the CycleGAN

loss, we set λcycle = 10, λid = 5.

For segmentation, we first train U-net with the Resnet50 backbones on both CT and sCBCT

datasets. Owing to data imbalance and memory limits, we crop all the images into 256× 256. The

following hyper-parameters are adopted for training: setting batch size as 20 and using the ADAM

optimizer with learning rate at 0.03 β1 = 0.9 and epoch number = 300.

1Part of this section is reprinted from our accepted manuscript [47] c©2019 MICCAI
2Part of this section is reprinted from our accepted manuscript [47] c©2019 MICCAI
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For feature-level adversarial learning in the segmentation module, We still use ADAM as the

optimizer with learning rate 0.03. Due to memory limit, the batch size is set to 2, epoch number

is set to 200. To get the best bladder segmentation performance, we have explored different loss

weight λseg settings during training.

4.3 Experimental Results & Discussion 3

We use 90 patients’ data, including CBCT images and planning CT images with outlined

contours, to train our model—Unsupervised segmentation based on Feature and Pixel Domain

Adaptation (UFPDA), specifically its constituting CycleGAN, supervised segmentation, and fea-

ture discriminator modules. Fig. 4.3 visualizes image domain adaptation via CycleGAN. To better

visualize the noise and scatters, we have set the range of displayed intensity to [-200,400] because

all soft tissue and main organ’s HU values are observed to be concentrated in this range. From

Fig 4.3, we can see that the sCBCT images from our domain adaptation generator have higher

noise and lower contrast compared with the original CT images; while it keeps the CT anatomical

structures when compared with the corresponding CBCT image appearance.

To evaluate our CBCT segmentation algorithm using adversary learning domain adaption, we

compare the derived segmentation with our manually labeled segmentations of 676 hold-out slices

from 7 patients. We emphasize here again that one of critical challenges for CBCT image analysis

using machine learning is that it has been very difficult to collect a large enough set of high-quality

manual CBCT segmentations for training due to both poor image quality and required intensive

labor. This is the exact motivation of this thesis. We have evaluated our model on this subset of

676 CBCT slices (note that we never used the CBCT segmentation in training). All the CBCT

slices from the 7 patients have been manually labeled by radiation physicians.

To evaluate the improvement after the domain adaptation module in our method, we adopt the

DICE similarity coefficient (DSC) as the evaluation metric [52]. The DSC score is defined as:

DSC =
2(YGT ∩ Ymap)

YGT ∪ Ymap

, (4.1)

3Part of this section is reprinted from our accepted manuscript [47] c©2019 MICCAI

21



Method Pixel Feature DSC (%)
Source only no no 70.1
CycleGAN yes no 75.8

UFPDA (Ours) yes yes 83.6

Table 4.1: Performance comparison for CBCT bladder segmentation, ‘Pixel’ means use CycleGAN
to trasfer CT image domain into CBCT, ‘Feature’ means use feature discriminator to do adversarial
learning in segmentation module.

where YGT is the image segmentation mask (Ground Truth), Ymap is the output of the deep model.

DSC is similar to the Jaccard index as a commonly adopted segmentation evaluation metric. Its

range is [0, 1] based on the ratio of the intersection to the union of the predicted segmentation and

ground-truth mask. We will show the DSC from different segmentation methods in the CBCT

validation dataset. Fig. 4.4 shows the segmentation maps by different methods together with the

ground truth. In Fig. 4.4, we can visually observe the improvement by our approach integrating

cycle-consistent domain adaption and adversary learning for segmentation. Specifically, ‘Source

only’ represents the results by segmenting CBCT images directly using the CT pre-training seg-

mentation model without any domain adaptation. ‘CycleGAN’ denotes the results by using Cycle-

GAN for pixel-level domain adaptation to generate sCBCT images and then train the segmentation

network using only sCBCT images and inherited CT segmentation masks. ‘UFPDA’ (Unsuper-

vised segmentation based on Feature and Pixel Domain Adaptation) is our proposed method, com-

bining the pixel-level domain adaptation and feature-level adversarial learning. Table 4.2 shows the

comparison of sensitivity analysis. With λseg = 2, we achieve the best segmentation performance

with DSC 83.6%.

Table 4.1 shows the DSC of ablation studies. Table 4.2 shows the comparison of sensitiv-

ity analysis with λseg. With λseg = 2, we achieve the best segmentation performance with DSC

83.6%. As shown in Fig. 4.4 and Table 4.1, our proposed method (UFPDA) improves CBCT seg-

mentation performance by about 7.8% for the DSC score, compared to the naive implementation

of CycleGAN to synthesize CBCT images.

Based on the method we proposed, and the results we have, we found that, even though CBCT
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λseg 1 2 3 4 5 6 7 8 9 10
DSC (%) 82.3 83.6 80.3 80.8 79.3 80.1 80.7 78.9 80.8 79.9

Table 4.2: Sensitivity analysis from λseg 1 to 10

has inaccurate Hounsfield Unit (HU) values and more artifacts compared with CT, our developed

deeper generator is able to generate more faithful 512 x 512 synthesised CBCT (sCBCT) to match

with the CBCT image quality. To handle transformation distortion, the adversarial loss, cycle-

consistency loss and identity loss help prevent the generators from having synthetic images with

distortion irrelevant to the input. The identity loss contributes to regularize the generator to be

near an identity mapping when something already looks like from the target domain. For example,

the identity loss helps preserve the HU values of CT when we try to translate CT to sCBCT.

We also have adopted patchGAN as the discriminator, together with the MSE loss functions to

correctly discriminate the predicted sCBCT and CBCT segmentation maps, with an adversarial loss

feeding back to the segmentation model with the needed feature level adaptation. The difficulty in

obtaining CBCT segmentation labels and the inferior image quality of CBCT yield a unique data

challenge. And, for unbalanced source and target data, we first normalize all CT and CBCT into

same slice thickness (3mm), then use all 88 CBCT slices and randomly select 88 slices from CT

for training. Our model adapts planning CT’s segmentation labels to the CBCT domain for finer

segmentation and has great clinical impact in adaptive radiotherapy. Patients with large anatomy

changes during radiation treatment can benefit from accurate contours for adaptive planning with

minimum human intervention. It will lift the major obstacle in adopting adaptive radiation therapy.
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Figure 4.1: Visualization of example CT images
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Figure 4.2: Visualization of example CBCT images
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Figure 4.3: Domain adaptation between CT and CBCT: From left to right are displayed raw CT,
sCBCT, and CBCT images.
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Overlapped Image Source Only CycleGAN UFPDA(ours) Ground TruthRaw Image

Figure 4.4: Visual comparison of segmentation results by different methods. From left to right: raw
CBCT image, Overlapped Image, segmentation by ‘Source only’ (yellow in Overlapped Image),
‘CycleGAN’ (blue) and UFPDA (red), Ground Truth (light blue).
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5. CONCLUSION AND FUTURE WORK

In this thesis, we have proposed a method combining the cycle-consistent domain adaptation

and adversarial learning for CBCT image segmentation. This is the first time CycleGAN and

CyCADA are integrated to address CBCT segmentation with domain adaptation. Although moti-

vated by CycleGAN and the domain adaptation scheme is similar to CyCADA, we have to refine

the architecture and several components for the segmentation-oriented domain adaptation between

CBCT and CT images, for which image features are significantly different. The method can gener-

ate reasonable CBCT segmentation without the need for labelled CBCT segmentation for training.

In our studies using 90 clinical bladder CBCT datasets, our method enables training with both

CT and CBCT images and improves the DSC score by about 13.6 percent as compared with the

segmentation model trained only with CT images. The proposed method can be extended to other

applications where existing segmentation labels can be transferred to the datasets in new domains.

Even though our method does improve CBCT segmentation accuracy, There are some unre-

solved questions:

1) The modules are still training stage by stage; that is, we first train the image domain adapta-

tion module, then train image segmentation. The segmentation loss or feature adversarial loss is not

fed back into the generative module. Thus, for our future work, we intend to design an end-to-end

architecture for domain adaptation and segmentation. The feature adversarial loss and segmenta-

tion loss will help to generate better sCBCT, which will improve the segmentation performance

consequently.

2) Currently, we only use the segmentation map as the feature discriminator input. However,

the original sCBCT and CBCT images may contain more information to train the discriminator.

It might be better to expand the input of two channels: one channel for the image, the other

channel for the segmentation map. The new two-channel discriminator may be more capable of

distinguishing CBCT and sCBCT images, and therefore improve the overall performance.

3) The medical images, like MRI, CT, CBCT, are often 3D datasets. Information in the z-axis
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was not used in our project. Balagopal et al. [10] designed a 3D segmentation module, and got the

best performance for prostate CT segmentation to the best of our knowledge. The authors in [53]

proposed a 3D version Autoencoder architecture for segmentation. To utilize 3D information for

CBCT, it would be better to design 3D modules for domain adaptation and segmentation.

We can re-design the image generator as a simpler network structure, but use 3-dimensional

convolutional network, for example 3D-AutoEncoder, to design a 3D version segmentation net-

work and feature discriminator. The final end-to-end network will consist of these three parts as

illustrated in the figure. Such a design presents a simpler network than the combination of Cycle-

GAN and U-net segmentation, which enables scalable learning with 3D images considering both

required memory and computational resources. By better leveraging 3D datasets, this model may

get more accurate CBCT segmentation compared to using 2D data to further improve adaptive

radiation therapy development.
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