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ABSTRACT 

 

 

Virtual Simulation of Robotic Operations Using Gaming Software 

 

 

Eric Robles 

Department of Electrical and Computer Engineering 

Texas A&M University 

 

 

Research Advisor: Dr. Stavros Kalafatis 

Department of Electrical and Computer Engineering 

Texas A&M University 

 

 

The main objective of the project is to provide a Virtual Reality (VR) representation for 

robotic simulations using a game engine software such as Unity. It is useful to an ongoing 

research on testing the compatibility of training collaborative robots entirely in VR to further 

enhance the use of human-robot collaboration in industry. The success of the research project 

implies that collaborative robots can be tested and trained via software running numerous 

simulations more efficiently than the traditional operation of robotic designs in industry.  

The UR10e robot arm is the industrial robot to be tested in VR. To provide the simulation 

for the research, four objectives are set across a timeline. A CAD model of the UR10e will be 

imported into Unity without any loss of data. Next, the UR10e’s degrees of freedom (DOF) will 

be added into the game engine such that its movements have the same constraints as its actual 

design. Then, a 3D environment is added onto the game engine simulation such that the game 

engine robot can interact with a virtual workspace. Finally, the game engine robot is assigned to 

perform a simple task such as a pick and place activity. The robot must be able to perform the 

task autonomously and a user interface (UI) must also be added such that an operator can 

manually direct the robot’s movements for the task given.  
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ACRONYMS AND ABBREVIATIONS 

 

 

API  Application Programming Interface 

 

DOF  Degrees of Freedom 

 

EE  End Effector 

 

FOV  Field of View 

 

GUI  Graphical User Interface 

 

HMD  Head Mounted Display 

 

HMI  Human Machine Interface 

 

HRC  Human Robot Collaboration 

 

SDK  Software Development Kit 

 

UI  User Interface 

 

VR  Virtual Reality  
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CHAPTER I 

INTRODUCTION 

 

 

Background 

 It was not until the early twenty-first century [4] that the compatibility between robotics 

and VR technology emerged in research and development area as the quality of the human-

computer interface of VR technology has improved drastically through its applications in the 

gaming sector [3]. VR simulations for operating industrial robots augment the efficiency and 

safety in robotic training [4] through its advanced visual graphics and real-time controller 

feedback [3]. Virtual simulations can be recorded and reevaluated such that accurate 

measurements are easily collected, and readjustments can be made. In addition, using VR 

interface to interact with robotic machines, the operator can experience real-world scenarios and 

assess detailed processes remotely.   

 There is a research project that used the game engine Unity to develop a VR simulation 

on virtual model of the robot design called ABB IRB 120 robot manipulator [Figure 1] [2]. The 

VR simulation involves an operator wearing a Head Mounted Display (HMD) and using 

controllers to manipulate the movements of the virtual robot which is mimicked by the actual 

robot in real-time. The Unity software provides game development tools to implement control 

algorithms for the virtual model such that it can accurately animate the robotic design to the 

extent that its movements invokes almost instant response from the actual robot. This project is 

one of the motivations for my current URS research. The research project will enhance this 

system by using VR representation to simulate a robotic task for the UR10e robot arm entirely in 
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software such that the performance of the virtual robot design can later be translated into the 

actual robot using reinforcement learning techniques outside the scope of this project. 

 

 

Figure 1. ABB IRB 120 Robot in VR [2] 

 

 In addition, this project is directly under an ongoing graduate research conducted in 

Texas A&M University. This graduate research aims to prove the compatibility of designs of 

collaborative robots in industry by conducting simulations entirely in VR to gather data for 

applying machine learning onto the UR10e robot model. Collaborative robots are automated 

systems that operate in tandem with human operators such that both assist one another in 

completing tasks (see Appendix in page 36). Unlike fully autonomous machines, cobots are 

guided through complex tasks by human operators who possess critical thinking and specialized 

skills required for these processes. Operators must interfere in some cases for precise 

performance of the robotic machines [3]. The implementation of VR teleoperation is useful for 

operating cobots such that the operator can visualize an immersive, tridimensional view of the 
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actual robot while controlling it remotely. This can help evaluate the compatibility and reliability 

of training collaborative robots entirely in VR to further enhance the use of human-robot 

collaboration in the industry.  

 Traditional Human-Machine Interface (HMI) requires barriers to protect human operators 

from dangerously massive forces generated from the robotic machines [3]. On the other hand, 

VR eliminates safety risks while it allows the operator to control these machines in real-time 

with realistic conditions. In fact, the training duration for skill acquisition from reinforcement 

learning is shorter when using VR teleoperation than the conventional console [8]. Compared to 

the traditional architecture of manual control of the robotic design through a console, the 

proposed architecture replaces the console with VR technology. 

Overview 

 The scope of the project generally involves the familiarity of CAD modeling, C# 

programming, and utilizing game engine tools and VR device components. The correct 

dimensions of the UR10e arm [Figure 2] can be designed and measured in a CAD software. In 

addition, individual parts of the robot arm can also be assembled, and joint constraints added 

using the tools provided by the CAD software. Within the game engine, C# scripts can be 

attached to game objects (see Appendix in page 36) to provide them with various functions and 

other modules. An algorithm will be written onto a script attached to the UR10e to direct the 

rotation of each joint of the robot arm and lead the end effector (EE) to the path directed. The 

game engine also provides numerous built-in components that can help fulfill different needs 

such as animating, adding laws of physics, adjusting camera perspective, and constructing a state 

machine that can handle different animations for multiple game objects. Furthermore, the robot 

arm’s control architecture designed in the game engine will be integrated into a VR device that 
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will become the user interface (UI) for the actual UR10e arm. Thus, an operator can control the 

actual robot arm remotely using an HMD and VR controllers.  

 

Figure 2. UR10e with 2-Finger Gripper 

 

 The research project aims to create a VR representation simulating simple tasks for the 

UR10e robot arm to perform entirely in software using the tools provided by the game engine. 

The simulation will test the control architecture of the UR10e arm such that it will function 

properly once it is integrated onto the VR device. There will be three subsystems that will 

encompass the entire project. CAD modeling is one subsystem where Fusion360 will be the 

CAD software used and the CAD parts of the UR10e including its EE can also be borrowed from 

several sources in GrabCAD which provides an open source library of CAD models. The second 

subsystem is the game engine and Unity is the game engine that will be used for the project since 

it is most often used in the research projects conducted for similar purposes. The final subsystem 

is the VR integration where the VR device that will be used is the HTC Vive VR system. 

 There are several expected limitations that might be encountered in the project. For 

instance, the tradeoff between accuracy and speed of operating the robot arm. Improvement in 
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accuracy can compensate for the lack of speed of the design since faster operation of the arm has 

a tendency of overexerting motions due to the lag of detection from its sensors. One of the 

algorithms that are planned to be implemented in the project is the inverse kinematics solver [1] 

(see Appendix in page 36). This algorithm solves an optimization problem to minimize the 

distance between the robot arm’s EE and its intended location. However, the algorithm can rarely 

achieve an optimal result regardless of the number of iterations to solve the optimization problem 

[1]. The VR technology may require the simulation to be enhanced in terms of graphics such that 

it will have an immersive virtual experience. The proposed project only aims to test the 

practicality of integrating robotics and VR technology onto a virtual simulation generated by a 

game engine.  
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CHAPTER II 

METHODS 

 

 

The methods for the research project are categorized into the three subsystems illustrated 

in [Figure 3]. The CAD modeling subsystem involves assembling and importing a CAD model 

of the robot arm. The game engine subsystem deals with designing a VR simulation of the robot 

arm operation and creating the control architecture of the robotic system using an optimization 

algorithm. The VR integration subsystem is where the control architecture designed in the game 

engine is integrated onto the VR HMD and controllers to control the actual robot arm.  

 

Figure 3. System Level Description 

 

CAD Modeling 

 In this subsystem, the CAD parts of the UR10e is assembled in Fusion360, a CAD 

software. Joint constraints are assigned to the designated joints of the robot arm corresponding to 

its six DOFs. The pivot points of the joints are also added using the CAD software. Afterwards, 

the CAD model is imported into the game engine in FBX file format [Figure 4]. The validation 

of the transfer is conducted by visually checking any deformations of the model in the game 
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engine. Furthermore, the complete transfer of mesh data, which is a collection of vertices that 

renders the shape of the CAD model, is checked in the game engine. There must be no loss of 

data during the transfer from the CAD software to the game engine. A specific EE of the robot 

arm is chosen based on the chosen functionality of the robotic arm in the graduate research that 

will build upon this project. The EE CAD model will be assembled in Fusion360 and it is 

transferred to the game engine where it will be integrated onto the robotic arm.  

 

 

Figure 4. Import CAD Design to Unity as a Game Object 

 

Game Engine  

 Most of the project’s methods are executed in the Unity game engine. Unity provides 

editing tools and applications that are mostly used towards game development. Unity assets are 

also available to instantiate prebuilt components instead of reconstructing them. Furthermore, the 

Unity API provides various VR/XR SDK packages that target specific VR devices such as 

Oculus and HTC Vive [6]. Therefore, the VR design of the project is constructed and tested 

within the game engine to integrate it to the VR device used. After the CAD model of the UR10e 

is imported to Unity, the game engine model is checked for any deformation. The mesh of the 
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CAD model is a collection of vertices that encompass the shape and volume of each part. When 

the CAD model is imported to Unity, the mesh data must be completely preserved to indicate no 

loss of data. Unity’s mesh renderer component can then project the rigid shape of the UR10e 

model onto the simulation such that its dimensions are similar to that of the CAD model.   

 Once the complete transfer of the model is verified, a component called rigidbody is 

added onto each part of the UR10e robot arm. This component can control the transforms of 

game objects and subjects the them to the laws of physics such as gravity and collisions [6]. The 

rigidbody component also allows the addition and adjustment of a game object’s mass which 

affects the momentum of collisions with other game objects. It is important when the robot arm 

interacts with other game objects in the virtual environment. The robot arm has a certain payload 

that determines the maximum weight of the objects it can lift. This must also translate in the 

virtual environment where the robot model cannot lift objects with weights above its payload. 

 Colliders are also added in order to trigger collisions when they overlap each other [6]. A 

collider is a built-in Unity component that wraps the surface area of a game object to detect 

physical interactions with other objects. A collision between objects occurs when their colliders 

come in contact with each other. When a collision is detected, the objects’ respective rigidbody 

components will allow the Unity physics engine to determine how these objects will react from 

the collision. The collider can also be used as an event trigger where contact with other game 

objects will set active the event of the collision. When a collider is used as an event trigger, the 

rigidbody of the object will not cause physical contact with the other objects that will collide 

with it. In other words, the objects will pass through each other. Event trigger colliders are used 

in the project to differentiate collisions. Collisions between parts of the arm must be 
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differentiated from collisions of the arm with other game objects. To prevent the arm from 

tangling with its own parts, the arm must stop moving when it comes in contact with itself.  

 For the UR10e, a mesh collider is needed to encompass the entire model based on the 

mesh data collected from the CAD model. When the CAD model of the robot arm is imported 

into Unity, each individual part of the UR10e has its own mesh that maps the shape and size of 

the object. Therefore, there are individual mesh colliders that can be derived from the meshes of 

the different parts of the robot arm [Figure 5]. These mesh colliders must recognize contact 

amongst themselves by using the event trigger mode and writing a script to handle the contact 

behavior.   

 The script will stop the operation of the arm when it detects an event of a collision 

triggered by certain parts of the arm. It will only stop when the arm collides with its upper and 

lower parts causing entanglement. The upper parts are the wrists and lower arm while the lower 

parts are the base, shoulder and upper arm. There is no trigger on the collision between the lower 

arm and upper arm because they are already connected to each other.  The script will also allow 

the arm to have physical contact with other game objects by temporarily disabling the trigger 

mode of the colliders when they collide with the other objects. The behavior of the collision 

between two objects can also be influenced by the texture and stiffness of the objects. These 

attributes can be adjusted by adding a physic material into the collider of an object.  

 

 

Figure 5. Mesh and Mesh Colliders of Robot Arm  
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 A hierarchy of all the parts of the robot arm is constructed in the game engine. The 

hierarchy starts with the base as the root since it anchors the robot arm in place. Thus, it is the 

parent of all the parts. Then, the hierarchy descends with each joint as a node such that the 

movement of a joint involves relative movement of its children. The movement of the robot arm 

is through the rotations of the joints. To manipulate the EE of the arm to reach a certain point in 

space, inverse kinematic techniques must be applied to direct the rotation and displacement of 

each joint such that the EE can reach its desired position in the virtual environment. To apply the 

logic and mathematics involved in utilizing inverse kinematics, an algorithm must be constructed 

to describe the behavior of system that solves the inverse kinematics objective function. The 

algorithm is written in C# script that is attached to the UR10e model in the game engine to 

integrate it into the arm.  

 Inverse kinematics describes how the joints of the arm will orient themselves based on 

where the EE is positioned [9]. There are two inverse kinematics algorithm that are tested for the 

project. The method that was initially used is called FABRIK which is Forward and Backward 

Reaching Inverse Kinematics [1]. It iteratively performs an approximation of the new 

coordinates of the joints to reach the target.  

 Indicated at the top image of [Figure 6] is the backward process of the algorithm. The 

target indicates the desired location of the EE. For each joint, the new coordinates are determined 

by finding the direction of which it must move towards while maintaining the length between 

joints. It starts with the joint preceding the EE which is P3. For instance, P3 must move towards 

the direction of the vector that points towards the target. The distance between the target and P3’ 

is the original length between P3 and EE. The next joint will move in the direction of P3’ and so 

on. The process ends with the base displaced from its original position.  
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 The bottom image of [Figure 6] is the forward process. It uses the same method but starts 

with the joint after the base. P1 is directed towards the vector from P0’ to P1’ formed by the 

backward process. The algorithm always ends with the forward process where the base is stable. 

The process iterates multiple times to improve the distance between the target and EE. However, 

at a certain point, the improvement of the solution is insignificant regardless of the number of 

iterations it will run through. 

 

Figure 6. Forward and Backward Reaching Inverse Kinematics 

 

 There is a flaw in using the FABRIK algorithm while maintaining the constraints on the 

joints of the robot arm because it encounters gimbal lock. This restricts the movements of the 

arm and sometimes the best solution given by the algorithm is inaccurate which means the 

distance between the EE and target is still significantly large. Thus, when the solution renders 

onto the frame, the arm is at a drastically different orientation than it was in the previous frame. 
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 An alternative algorithm is the gradient descent method used in solving optimization 

problems. The distance between the EE and the target is the function to be optimized by the 

gradient descent method. By reconfiguring the rotation of each joint, the EE should move closer 

to the target for each iteration of the algorithm. In other words, let each joint’s rotation be, x, in 

the function, 𝒇(𝒙), that defines the distance between EE and target. For each joint, i, the descent 

direction, ∆𝒙𝒊, is determined by sampling neighboring values for the angle of rotation of the joint 

at a fixed sampling distance and calculating its estimated partial gradient [Equation 1] [9].  

 

𝛛𝒇(𝒙)

𝝏𝒙𝒊
 =   

𝒇(𝒙𝒊 + 𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈_𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆,   𝒙𝒊+𝟏,...,   𝒙𝒏) − 𝒇(𝒙𝒊,   𝒙𝒊+𝟏,...,   𝒙𝒏)

𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈_𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆
  

Equation 1. Partial Gradient Approximation 

 

 In the example seen in [Figure 7], the descent direction is always opposite the gradient to 

minimize 𝒇(𝒙). Thus, the descent direction is equal to the negative of the partial gradient 

[Equation 2] [9].  

 

∆𝒙𝒊  =  −
𝛛𝒇(𝒙)

𝝏𝒙𝒊
 

Equation 2. Descent Direction 

 

 The step size is a multiple of the gradient vector and it determines the magnitude of 

which the angle value will traverse towards the descent direction. The step size used in the 

gradient descent method is a constant learning rate, L, which is fixed and predetermined. After 
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calculating its partial gradient, each joint’s angle, 𝒙𝒊, will be updated for every iteration 

[Equation 3] [9]. 

𝒙𝒊  =  𝒙𝒊  +  (𝑳 ∗  ∆𝒙𝒊)  =  𝒙𝒊  +  (𝑳 ∗  −
𝝏𝒇(𝒙)

𝝏𝒙𝒊
).  

Equation 3. Updating Angle of Rotation for ith Joint 

 

 The algorithm starts from the joint subsequent to the base so that it will take less 

iterations for the EE to be close enough to the target. This is because the larger rotations from the 

lower joints will close the distance between the EE and target more efficiently. The algorithm is 

written on a script that is attached to the EE in Unity to apply inverse kinematics to the UR10e 

robot arm. In addition, whenever the arm collides with its own parts during operation, the arm 

can untangle itself by sampling neighboring points in the opposite direction causing the joints to 

rotate opposite to where they were rotating just before the collision occurred. In this way, the 

arm can still reach the target using gradient descent without further colliding with itself or 

stopping the operation entirely. 

 

 

Figure 7. Example of Gradient Descent Method 
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 After the inverse kinematics solver is incorporated onto the robot arm model, the arm can 

be controlled by moving the target which the EE follows. The target can be any game object such 

as a sphere, pointer or an empty game object that has no shape. To visually observe and 

troubleshoot the simulation in the game engine, the target is assigned to be a sphere. A control of 

the user’s field of view (FOV) of the simulation must also be added in order to observe the 

movements of the robot arm in different angles. This is done by adding a script to manipulate the 

Main Camera which is the primary camera that renders the simulation onto the scene window 

during play mode in the game engine. The UI used in the Unity game engine is the Logitech 

Dual Action controller [Figure 8]. Three scripts are written to implement the UI with the analog 

controller. One script controls the movement of the target such that it can direct where the 

UR10e will reach. The left joystick and the up/down gamepad are used to move the target within 

the 3D space in the simulation. The other script controls the rotation of the camera’s FOV in the 

simulation to enable the user to observe in different angles. The right joystick is used to control 

the FOV of the camera. Finally, the last script is used to trigger the grasping motion of the 

gripper tool attached to the tool flange of the robot arm. The gripper used in this project is the 2-

fingered Robotiq gripper seen in [Figure 2]. The trigger is Button A. When it is pressed, the 

gripper will close its grip and opens when the button is released. 

 

 

Figure 8. Analog Controller Used as User Interface in Unity 
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 Finally, the simulation must be validated within the game engine before it is integrated 

onto a VR system. The validation is done by having the robot model perform a simple pick and 

place task. The robot arm must be able to interact with other game objects within the virtual 

environment. Objects with different shapes, sizes and weights must be involved in the validation 

task to test the capabilities of the virtual model of the UR10e. To verify the simulation, the robot 

arm model must be able to reflect the performance of the actual robot design in real-world 

scenarios. 

VR Integration  

 Due to unforeseen events surrounding the COVID-19 virus in spring 2020, this 

subsystem is not completed at the time of publication for this URS thesis. 

 In this subsystem, the user interface used in the virtual system constructed in the game 

engine subsystem must be translated onto the VR controllers and the tridimensional simulation 

must be displayed on the HMD through Unity API which targets several VR devices [6]. The 

simulation constructed in Unity will be translated onto the VR device using Unity’s OpenVR 

package that enables VR integration in the game engine. The simulation projected in the HMD 

must also incorporate the video images from the camera that is directed to the actual robot’s 

perspective FOV. The latency of the feedback from the camera must satisfy the minimum 

requirement to avoid disrupting the cohesion of the simulation with the actual environment such 

that the operator can still have an immersive experience in the VR environment. After the 

simulation is integrated into the VR device, the control of the actual robot must be validated. The 

VR system can be validated by repeating the pick and place task executed in the game engine. 

The graduate research supervising this research will use HTC Vive VR device, so it is the VR 

system utilized in the project. 
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CHAPTER III 

SYSTEM CHARACTERISTICS 

 

 

Functional / Performance Requirements 

Design Data Consistency 

 The must be zero loss of data from importing the CAD model of the UR10e arm into the 

Unity software such that the scale, shape, and DOFs of the UR10e still remain unchanged. The 

main purpose of the project is to accurately depict the UR10e robot in a virtual simulation such 

that it can be trained and tested entirely in the simulation.  

Accurate Representation of Motion Behavior 

 The speed at which the virtual robot model performs must reflect the torque values at 

each joint of the actual model such that the capabilities of the virtual robot are consistent with the 

actual design. The performance of the virtual robot must be consistent with the actual model.  

Physical Characteristics 

Max Payload 

 The maximum payload that the UR10e arm model can sustain is 10 kg [5]. The UR10e 

can only carry load less than 10 kg. To avoid malfunction of the actual design, detecting weight 

of objects is necessary when testing the VR simulation. 

Max Reach 

 The maximum reach of the UR10e model is 1300 mm with all 6 DOFs [5]. Each joint of 

the UR10e robot arm enables two parts linked by the joint to rotate 360o around the joint’s fixed 

axis [5]. This is a constraint of the actual UR10e design and defines its reach radius. 

Weight 
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The UR10e Robot weighs approximately 33.5 kg with a maximum capacity payload of 10 

kg. Thus, the maximum weight of the whole device is estimated to be 43.5 kg. The programmed 

speed at which the robot arm performs should be adjusted to maintain stability of the actual robot 

during operation.  

Mounting 

 The weight of the UR10e robot arm is around 33.5 kg [5] and its maximum payload is 10 

kg. The robot must be mounted on a stable base that can sufficiently support at least 43.5 kg 

weight. 

Failure Propagation 

 The simulation in Unity should incorporate an algorithm that stops execution of the 

simulation in case of connection failure between the VR system and the UR10e robot. This is a 

safety precaution for testing the VR simulation. 

Physical Interface 

Video Interfaces 

 The HTC Vive HMD connects to a computer where the simulation runs via a 3-in-1 cable 

that is composed of the HDMI, USB and power cables. The display of the positions of the joints 

of the robot from cameras attached to the UR10e robot will be fed back to the Unity program via 

ethernet. USB cables will be used to connect cameras onto the computer running the program. 

User Control Interface 

 HTC Vive VR wireless controllers will be used as UI for the UR10e robot arm. The 

controllers indirectly control the actual robot through the VR system. To validate simulation in 

the Unity game engine, another UI is needed to manipulate the UR10e robot arm. In this case, an 

analog controller is used. The joysticks are used to control the movement of the target, which 



20 

directs the movements of the UR10e, in 3D space. The analog controller can then be translated 

onto the VR controllers and the HMD in the VR subsystem. 

HMD HTC VIVE 

 The HMD possesses 1080 x 1200 pixels per eye resolution, 90 Hz refresh rate and 110o 

FOV [7]. The immersive tridimensional environment of VR technology has high-end visual 

standards that satisfy the minimum requirements to have an engaging proprioception [4] for 

operators to immerse into the virtual environment. 

Virtual Interface 

Importing CAD Designs to Game Engine 

 The CAD parts must be assembled into one CAD file. The CAD file must be converted 

into a Unity compatible file format such as FBX or OBJ. This can be done by using Fusion 360, 

another CAD software other than SolidWorks. Fusion 360 can export the CAD file as an OBJ or 

FBX file. That file can be imported to Unity as a game engine asset (see Appendix in page 36). 

VR Integration of Simulation 

 XR settings in Unity game engine provides compatibility with VR devices by enabling 

VR supported applications or VR SDKs for the simulation program. The Unity XR API can 

interact with multiple VR systems including the HTC Vive without any external plug-ins. 

Enabling XR settings allows automatic rendering of the main camera with virtual cameras as 

children set up in the simulation onto the HMD.  

UR10e Visual Feedback 

 Visuals of the positions of the UR10e joints are provided by cameras attached to the 

robot arm. The user will then move the virtual robot model based on the reference points 

provided by the cameras. 
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CHAPTER IV 

RESULTS 

 

 

Reach Validation 

 The reach of the arm is determined in the game engine by measuring the height of the 

robotic arm from its base to its EE at its rest position where the arm stands upright and there are 

no rotations of all the joints as seen in [Figure 9].  

 

 

Figure 9. Rest Position of UR10e with Reach Measurement 

 

 In Unity, one unit of measurement for distance is equivalent to 1 meter. According to the 

specifications of the actual UR10e design, the reach of the arm should be 1.3 meters. Thus, the 

scale of the virtual design is accurate since the reach of the arm is approximately 1.3 units.  

 The validation of the arm’s reach is conducted by having an array of waypoints within its 

reach and positioning the target to each of these points until the arm reaches all the points within 

the array. The target is set to the next waypoint once the arm has successfully reached the 
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target’s current position. The next waypoint is chosen randomly to observe the arm’s transition 

between two random points such that it can also test the flexibility of the arm contorting to 

different orientations of its joints. The waypoints generated 0.1 meters apart by incrementing 0.1 

meters from the origin to the arm’s reach, which is 1.3 meters, in each of the three axes, x, y and 

z. The total number of waypoints generated is 9126. Points that are within the base and shoulder 

of the arm are excluded since the base is immobile and the arm cannot penetrate its own parts to 

reach these points. The test is successful if the arm reaches all the points. To visualize points 

reached by the arm, spheres are instantiated and positioned to the points that the arm reached. 

Results and Adjustments 

 During this validation, there are numerous times that the arm collided with itself to reach 

the target. During the collision, the arm stops operation momentarily and starts moving in the 

opposite direction to reach the target. Regardless of learning rate and iterations of the gradient 

descent algorithm to solve the inverse kinematics of arm, the arm initially moves relatively 

slower when reaching the target in the opposite direction due to a collision with itself. These 

collisions of the arm are significantly due to the rotation of the arm’s elbow which can swing the 

upper part of the arm towards the shoulder and base of the arm.  

 The gradient descent attributes that can influence the performance of the arm are the 

learning rate, iterations, and distance threshold. In this validation, the arm’s speed is mainly 

influenced by the learning rate and the number of iterations in running the algorithm. The 

learning rate is the magnitude at which a joint rotates from one iteration of the gradient descent 

algorithm. The number of iterations is how many times the algorithm runs before rendering the 

solution on each frame. Although a higher learning rate and a greater number of iterations allow 

the arm to react quicker from the movement of the target, these will cause the arm to jitter when 
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it encounters collision with itself. A higher learning rate will cause an overshoot of the arm in 

approaching the target. In addition, a higher number of iterations will cause the joints of arm to 

rotate more in each frame such that there is a greater chance of a late detection in triggering an 

event of a collision with its own parts. Therefore, the late detection and the overshoot will cause 

the arm to jitter when colliding with itself. Along with finding the optimal learning rate and 

number of iterations, another solution is to immediately exit the algorithm and render the latest 

solution when the arm is close enough to the target. This is done by adding the distance threshold 

parameter in the algorithm. This is the set distance between the EE and the target that the 

algorithm must achieve in order to stop solving for another solution. This prevented the arm to 

overshoot oscillating from one solution to another. The optimal learning rate and number of 

iterations that were determined by trial and error are 50 and 10 respectively. After this validation, 

the resulting graphical representation of all the points reached by the arm is seen in [Figure 10]. 

 

 

Figure 10. Validation of 9126 Points Within Reach of Arm 

 

Pick and Place Validation 

 The next validation of the Unity simulation is testing the arm’s pick and place 

performance. To perform the pick and place task, the arm must be able to grasp an object and 
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place it to a specified location in the tridimensional space within the game engine while 

maintaining control of the object. The pick and place tasks are performed with user control 

through an analog controller and with automated control where the robot performs the task with 

no aid from the user. There are three subtasks for the automated control of the arm that were 

performed successfully in the game engine. 

Automated Control 

Subtask 1 

 In the first subtask, there are six cubes placed on the edge of a platform and the arm is 

directed to move each of the cubes forward half a meter away from the edge. The half meter line 

is represented by a red line on the platform seen in [Figure 11].  

 

 

Figure 11. Half Meter Line on Platform with Cubes in Their Initial Positions 

 

 The automation of the arm is done by storing the positions of all the objects in an array 

and their respective destinations in another array. Then, the target is directed to the position of 

each object and it is then moved to the object’s designated location. This process iterates until 

the target has traversed through each member of both arrays. The grasping ability of the two-
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fingered gripper tool is due to two types of colliders on both fingers of the gripper [Figure 12]. 

The mesh colliders of the two fingers of the gripper allows them to collide with other game 

objects. However, it seems that the game engine does not allow objects to be crushed or 

deformed by forcing two colliders to pin it down. Thus, the gripper is not able to grip an object 

in the game engine using only the mesh colliders of its two fingers. The result is that the two 

fingers of the gripper will pass through the game object that it is gripping as if they are in event 

trigger mode. Adding a rigidbody to each finger of the gripper to provide solidity to the fingers  

does not solve the problem. The result of adding rigidbodies is that the two fingers will break 

apart from gripping a game object regardless of the mass set for both fingers’ rigidbodies. The 

solution that provided the optimal result is to add a box collider on the surface of each finger. 

It is difficult to control how much force the gripper applies to a game object when gripping so 

the box colliders will serve as a trigger to stop the two fingers from clamping down on a game 

object when it comes in contact with the surfaces of the fingers.  

 

 

Figure 12. Two-Finger Gripper with Two Types of Colliders 

 

 Once the event of a collision from a game object is triggered by both box colliders, the 

game object that is clamped down will become a child of the gripper such that it inherits the 

displacement of the gripper. The gravity effect on the game object is also disabled for it to follow 
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the gripper. Thus, the game object will be pinned down between the two fingers. However, the 

game object’s physical contact with the mesh colliders of the fingers is still effective. Therefore, 

the game object can bounce, slip and fall from the grasp of the two fingers due to its interaction 

with the mesh colliders.  

Results and Adjustments 

 The gripper needs to be in position to grasp the object as it approaches the item. 

Therefore, the gripper hovers directly above the object to position itself before grasping. The 

rotation of the gripper tool corresponds to the rotation of the target. Thus, the target rotates until 

the gripper is in position to grasp the object. The gripper is in position when the two fingers are 

horizontally aligned with the object it hovers. [Figure 13] illustrates the proper positioning of the 

gripper. The angle between the object’s vertical vector and the horizontal vector between the two 

fingers must be less than 95o and more than 85o. This is the threshold in which the gripper must 

rotate to achieve proper positioning to grasp the object. 

 

 

Figure 13. Proper Positioning of Gripper When Grasping Objects 

 

 Once the gripper is in position, it can have a better grasp on the object and maintain 

control of it during the process of pick and place. However, there are still cases where the objects 

slip and fall from the gripper’s grasp. The solution to this is by adding a physic material to the 
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game objects such that they can have set friction and firmness. Setting more friction allows the 

object to have a rougher texture. The firmness of the object is the bounce setting of the physic 

material. Lesser bounce allows the object to be more rigid. By adjusting the dynamic and static 

friction of the object to 0.8 out of 1 and setting the bounce to 0, the gripper can maintain control 

of the objects throughout the pick and place task. [Figure 14] displays the image when the arm 

has successfully performed the subtask.  

 

 

Figure 14. Validation of Subtask 1 

 

In addition, [Table 1] shows the success rate of the robot arm in performing the subtask by 

tabulating its success or failure in each of the 10 trials.  

 

Table 1. Subtask 1 Success Rate of 80% from 10 Consecutive Trials  

Trials Cubes Moved 

to Half Meter 

Successful Trial 

1 6 Yes 

2 6 Yes 

3 6 Yes 

4 5 No 

5 6 Yes 

6 6 Yes 

7 6 Yes 

8 5 No 

9 6 Yes 

10 6 Yes 
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Subtask 2 

 The next subtask is to stack the six cubes on top of each other on a platform. In this 

subtask, the robot model is programmed to take the positions of all the cubes initially and 

randomly chooses which object to pick. The first object chosen is placed onto a set location on 

the platform. The subsequent object that is chosen is placed on the same location. However, for 

each subsequent object chosen, the height of its destination increments from the previous object 

placed. The subtask is completed once all six cubes are stacked up together and remain stable.  

Results and Adjustments 

 There are cases when the gripper tips over the stacked cubes by moving directly towards 

the next object to pick up. Therefore, the gripper tool is slowly lifted for every object it picks up 

and places down. This will avoid collisions with other game objects on the platform during the 

pick and place process. Another adjustment is the height at which each object is placed on top of 

the stack. When the gripper places the object on top of the stack, it must gradually lower the 

object until it can be properly placed on the stack and remain stable. The gripper must avoid 

dropping the object on stack to prevent it from knocking over the stack. In this validation, the 

highest number of cubes that are stacked successfully is 5. With the sixth cube, the stack topples 

over due to the added weight. The cubes are stacked in varying positions since the gripper grasps 

the objects in different positions. Therefore, the validation is adjusted. The arm successfully 

completed the pick and place task if it can stack 5 cubes or more. [Figure 15] displays the image 

when the arm has successfully stacked 5 cubes on top of each other on a platform. In addition, 

[Table 2] shows the success rate of the robot arm in stacking at least 5 cubes by tabulating its 

success or failure in each of the 10 trials. 
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Figure 15. Validation of Subtask 2 

 

Table 2. Subtask 2 Success Rate of 90% from 10 Consecutive Trials  

Trials Cubes Stacked Successful Trial 

1 5 Yes 

2 5 Yes 

3 5 Yes 

4 5 Yes 

5 4 No 

6 5 Yes 

7 5 Yes 

8 5 Yes 

9 5 Yes 

10 5 Yes 

 

Subtask 3 

 The third subtask involves limited aid from user to simulate the human robot 

collaboration (HRC). The subtask requires the arm to grasp and pick up the object specified by 

the user while maintaining control of it. Then, the arm must be able to place the object to the 

location specified by the user on the platform without dropping the it. The user specifies the 

object and its destination by using the mouse pointer. 

Results and Adjustments 

 The positioning of the gripper to properly grasp an object varies. Therefore, some objects 

may not be properly grasped by the gripper because these objects may slip from the grasp of the 
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gripper or the gripper misses the objects without proper positioning. To mitigate this issue, the 

speed of the arm is minimized to gain more accuracy when grasping an object. In addition, the 

friction of objects and the gripper is adjusted through the physic materials assigned to them. 

[Figure 16] displays images of the robot arm performing a pick and place task with a cube. The 

leftmost image shows the robot directed by the arrow pointer to pick up a cube. The rightmost 

image shows the robot arm directed by the arrow pointer to place the cube to the specified 

location. In addition, [Table 3] shows the success rate of the robot arm in performing this subtask 

for 10 trials by tabulating its success or failure in each trial with a specified object. 

 

 

Figure 16. Validation of Subtask 3 

 

Table 3. Subtask 3 Success Rate of 70% from 10 Consecutive Trials  

Trials Object Picked 

and Placed 

Successful Trial 

1 cube Yes 

2 cylinder  Yes 

3 capsule Yes 

4 cylinder No 

5 cube Yes 

6 sphere Yes 

7 cylinder Yes 

8 capsule No 

9 sphere No 

10 capsule Yes 
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Manual Operation 

 The validation for the user control of the arm in the game engine is essential during 

training and testing of cobots like the UR10e. This validation is similar to the third subtask for 

the validation of the automated control of the arm. To validate the user control, the arm must be 

able to grasp a certain object and place it to a specified location on a platform through the use of 

an analog controller. 

Results and Adjustments  

 The joystick sensitivity of the control causes inaccuracies in operating the arm it is 

adjusted through input settings within the game engine. Moreover, the gripping of objects is 

more adjustable resulting in a higher success rate of grasping the items than with automated 

control. [Figure 17] provides two images of the robot arm performing a pick and place task with 

a cube. The left image shows the robot manually controlled by the user to grasp a cube. The right 

image shows the robot directed by the user to pick up the object and moving it to the location 

chosen by the user .  

 

 

Figure 17. Validation of Manual Control 

 

 Furthermore, [Table 4] shows the success rate of the robot arm in performing this subtask 

for 10 trials by tabulating its success or failure in each trial with a specified object. 
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Table 4. Manual Control Success Rate of 60% from 10 Consecutive Trials  

Trials Objects Picked 

and Placed 

Successful Trial 

1 cube Yes 

2 cube Yes 

3 sphere No 

4 cylinder Yes 

5 cube Yes 

6 capsule No 

7 sphere Yes 

8 cylinder Yes 

9 capsule No 

10 sphere No 

 

VR Integration and Operation 

 Due to unforeseen events surrounding the COVID-19 virus in spring 2020, this 

validation is not completed at the time of publication for this URS thesis. 
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CHAPTER V 

CONCLUSION 

 

 

 The aim of the project is to provide a system for VR teleoperation of the UR10e robot 

arm such that an operator can control and observe the robotic design remotely through a VR 

device. The project can later be used in reinforcement learning applications for further research 

on automation. Although the VR integration is not completed, the virtual simulation in the game 

engine can still provide a software platform to aid reinforcement learning implementations. 

However, there are still further steps to be done to integrate the simulation onto a VR system. 

The visual graphics of the simulation must be up to par with the quality required for the VR 

system. This can be done using Unity’s post-processing tools to improve the visual quality of the 

simulation. Unity’s OpenVR package can provide the necessary tools to translate the simulation 

controls and visuals onto the HTC VIVE device which is the intended VR system that would be 

used in the project.  

 There are several procedures and components that could be improved or added to 

enhance the productivity of the research. For troubleshooting in the game engine, a graphical 

user interface (GUI) can be added onto the Main Camera during simulation such that sliders and 

buttons are organized onto the screen. Sliders can be used to control the rotation of each joint of 

the robot arm to test the DOFs with the constraints. A button to disable and enable inverse 

kinematics algorithm can also be incorporated to test conditions with and without the inverse 

kinematics. There may also be a small window projecting the rotation angles and transforms of 

each joint during simulation to aid in debugging the system.  
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 In addition, complex procedures could have been partitioned to ease debugging since it is 

difficult to debug larger, more complicated components. For example, the FABRIK algorithm 

used in the research runs under the constraints imposed on the joints to reflect the degrees of 

freedom of the actual robotic design. A problem occurred where the arm cannot reach the target 

due to gimbal lock where rotation axes are positioned parallel to each other. The joint constraints 

added in the CAD software did not transfer to Unity. Thus, the constraints were added within the 

game engine by attaching scripts to each of the joints. These scripts running concurrently with 

other components in the simulation makes it challenging to debug the problem. It may have been 

easier to separate the joint constraints to another subsystem where it would be validated 

separately.  
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APPENDIX 

 

 

Collaborative Robots Industrial robotic systems, often referred to as cobots, that interact 

closely with human operators to be guided and supervised by them. 

Complex tasks done meticulously by humans can only done 

accurately and efficiently by semi-automated machines supervised 

by humans. 

Game Engine Asset Figures, scripts, and other tools/materials that are used, modified 

and adjusted within the game engine. These can be instantiated 

along with its properties within the game engine. 

Game Object A figure/object that is an asset in the game engine. A single game 

object can be composed of other game objects that are referred to 

as its children. 

Inverse Kinematics A mathematical process that is usually applied in robotics to 

calculate the joint orientations of a kinematic chain in order to 

position the end-effector to a desired point relative to the base of 

the chain. 

 

 


