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ABSTRACT

Collisions of nuclei at large energies create fireballs of hot hadronic matter and quark gluon

plasma. The properties of these extreme forms of nuclear matter can be studied by the experiments

at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC). In this work we

refine tools to study the matter in nuclear collisions and we infer the shear viscosity of hot hadronic

matter from data.

Hadronic observables in the final stage of the heavy-ion collisions can be described well by hy-

drodynamics or blastwave parameterizations. We construct a blastwave model with self-consistent

viscous corrections by calculating the viscous stress tensor from the parameterized flow field in

the Navier-Stokes approximation. We improve similar models developed earlier by using a more

realistic flow field and by calculating the time derivative terms by solving the ideal hydrodynamic

equations analytically. Such a viscous blastwave can describe important features of the fireball

without running numerically expensive hydrodynamics. We can validate the blastwave by compar-

ison with established hydrodynamic calculations. We can quantify the uncertainty and bias from

the simplifications of hypersurface and flow field by systematically comparing to hydrodynamic

calculations with resonance decays and bulk stress included.

As a first application, we focus on the freeze-out temperature Tfo and the specific shear viscosity

η/s of hot hadronic matter at that temperature. We use statistical Bayesian analysis tools to extract

η/s at T = Tfo from experimental data. Our approach is complementary to existing extractions

from viscous hydrodynamics. The latter is sensitive to an averaged shear viscosity during that time

evolution while our analysis is only sensitive to the shear viscosity at kinetic freeze-out. We can

use the comparison to hydrodynamics to remove some systematic bias in the extraction results of

T and η/s.

We can also use the viscous blastwave to provide realistic input for quark recombination mod-

els. These calculations had previously assumed breaking of thermal equilibrium in a naive way

which is now replaced by viscous corrections to equilibrium. We get the quark spectra at T ≈ Tc

ii



from the blastwave and then use recombination to get spectra and elliptic flow v2 of identified

hadrons at intermediate transverse momentum pT (2 GeV/c < pT < 6 GeV/c). We find a moderate

breaking of the constituent quark number scaling (QNS) law consistent with experimental data

from RHIC and LHC. Thus, we demonstrate that the QNS law is not a necessary feature of quark

recombination.
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1. INTRODUCTION

1.1 Quark Gluon Plasma

Quantum chromodynamics (QCD) is the theory of the strong interaction. Quarks are the fun-

damental degrees of freedom and couple to each other through gluons with coupling constant g.

QCD is a non-Abelian theory and gluons can also interact with each other.The coupling strength

αs = g2/(4π) between quarks and gluons becomes small at high energies. This is known as "the

asymptotic freedom" [5, 6]. On the other hand, QCD exhibits confinement, the property that quarks

and gluons can only exist in bound states that are color neutral, i.e. have no strong charge. No free

single quarks or gluons have ever been observed in experiment. However, asymptotic freedom pre-

dicts that a new state of matter will be generated if the nuclear matter is hot and dense enough. In

the new state, color-free quarks and gluons are deconfined from hadrons. This new state is called

quark gluon plasma (QGP). The temperature to reach deconfinement and chiral phase transition is

about Tc = 160 MeV [1].

There are several reasons why we need to study QGP. First it is related to the evolution of the

universe. In the standard Big Bang theory, the universe was very hot initially. Its temperature T

was higher than 200 MeV at about 10−6 s after the Big Bang. We expect that the universe was filled

with QGP at those early times and had a QCD phase transition or crossover to hadronic matter at

T = Tc.

To understand the evolution of the early universe, one must understand the properties of the

QGP phase at high T . QGP may also exist in the core of neutron stars, where the mass density is

higher than 1014 g/cm3. With such high density, neutrons and protons are closely packed so that

quarks and gluons may be deconfined. Thus quarks and gluons may have a large influence on the

properties of neutron stars.

The early universe at T ∼ 200 MeV is in the past and we can only observe neutron stars

through indirect methods. How do we test our theoretical modeling of QGP? The answer is rel-
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Figure 1.1: Phase diagram given by LQCD calculation, reprinted from Ref. [1]. The solid line
shows the first-order phase transitions, the dotted line indicates crossover transitions. Reprinted
with permission from Ref. [1] Copyright 2004 by SISSA.

ativistic heavy ion collisions. The Relativistic Heavy Ion Collider (RHIC) and the Large Hadron

Collider (LHC) are experimental facilities aiming to probe the properties of nuclear matter at ex-

tremely high temperatures and densities. QGP will be generated if the nuclear matter is hot and

dense enough. In the initial stage of heavy-ion collisions, hot and dense fireball is created by the

overlapping nucleons of the target and projectile. The fireball cools down rapidly and expands

into the surrounding vacuum, then reaches a chemical freeze-out stage Tchem where hadron species

decouple from each other. Hadrons further collide and scatter elastically and reach a final kinetic

freeze-out Tkin when the hadronic matter becomes so dilute that no interactions occur between
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hadrons any more (free streaming).

Based on the idea of asymptotic freedom, QGP is expected to have gas-like behavior. Soon after

the start of the RHIC program it was realized that experimental data from this machine required a

new paradigm. Although the original motivation for postulating the existence of QGP came from

the known weakening of the strong-interaction coupling constant with temperature, it turned out

that in reality QGP close to the pseudo-critical temperature Tc, i.e. at temperatures probed by the

experimental programs at RHIC and LHC, behaves like a strongly coupled liquid [7, 8].

The first hint came from the great success achieved by ideal hydrodynamics (or hydrodynam-

ics) in describing the flow of hadrons measured at RHIC [9, 10]. As it turns out, the process of

cooling and expansion of the fireball of QGP and hadronic matter behaves hydrodynamically from

very early times in the collision onward. In other words, the fireball exhibits a strong collective

behavior. By convention, the beam goes in the longitudinal direction and the collision zone perpen-

dicular to beam is called the transverse plane. In experiment, we can study the collective properties

through transverse momentum (pT ) distributions of identified particles. These distributions have

information about the transverse expansion and the temperature when the hadrons decouple from

the system. For this reason, studying the bulk properties of the expanding fireball is important. In

addition, probes can be used to study QGP further. Probes are particles created in the collision

that are usually not part of the bulk of the fireball but can interact with it. Examples are QCD

jets created by very high momentum quarks or gluons, heavy quarks and their bound states, and

photons. In this thesis we will work exclusively with the bulk of the heavy ion collisions.

1.2 Relativistic Hydrodynamics

Relativistic hydrodynamics describes the space-time evolution of the energy-momentum tensor

T µν of the strongly interacting QGP or hadronic matter and has been extensively applied to high en-

ergy heavy-ion collisions [11, 12]. It assumes that the created fireball reaches thermal equilibrium

rapidly, which means local relaxation times need to be much shorter than macroscopic dynami-

cal time. Applying ideal hydrodynamics to describe the expansion of the strongly-coupled matter

generated in heavy-ion collisions was first proposed by Landau in 1953 [13]. As a macroscopic
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theory, hydrodynamics can provide several general properties of the system without tracking the

complicated dynamics of every quark, gluon and hadron in the system. The ideal hydrodynamic

equations of motion (EOM) can be written as

∂µT
µν = 0 (1.1)

which are equivalent to the local conservation of energy and momentum of a relativistic fluid. The

energy-momentum tensor of an ideal fluid of energy density e and pressure p in its local rest frame

is

T µν = (e+ p)uµuν − pgµν (1.2)

where uµ is the 4-velocity describing the collective motion of a fluid cell. For viscous hydrody-

namics, one needs to include the shear stress tensor πµν and bulk viscous pressure Π

T µν = (e+ p+ Π)uµuν − (p+ Π)gµν + πµν (1.3)

πµν and Π are given by the gradient expansion of 4-velocity uµ. For the first order (Navier-Stokes)

approximation πµν = 2η 〈∂µuν〉 and Π = ζ∂µu
µ, where η and ζ are the corresponding shear

and bulk viscosity constants. Various types of hydrodynamics have been developed for heavy

ion collisions. For example, VISH2+1 is a (2+1)-dimensional hydrodynamic code which adopts

longitudinal boost-invariant in the evolution [14]. MUSIC is a (3+1)-dimensional hydrodynamic

code which has full space-time evolution [15]. We will use MUSIC in this work, but running in

the numerically less expensive (2+1)D mode.

Hydrodynamics needs realistic initial conditions at a starting time τ0. In the earliest stage of

collisions, the coherent longitudinal motion is partially redirected into the transverse directions.

This process starts out far from thermal equilibrium and thus cannot be described by hydrody-

namics. At that time, the system can be described by classical gluon fields [16, 17]. In order to

apply hydrodynamics, we need to know the energy-momentum distributions at the starting time
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(τ0 ∼ 0.2 − 1.0 fm/c) of the hydrodynamic stage. In practice initial conditions are typically pro-

vided by the Glauber Model [18] or classical gluon field calculations (color glass condensate)

[16, 17]. Initial conditions play an important role in hydrodynamics. It turns out the positions

of the nucleons and the color charge density inside the colliding nuclei fluctuate event-by-event.

Collisions at finite impact parameter b lead to fireballs with (an average) elliptic shape in the trans-

verse plane. This causes anisotropic pressure gradients and finally leads to anisotropies in flow.

Thus the initial spatial an isotropy of the nuclear reaction zone is finally transferred to momentum

anisotropy. The most important observable of this effect is elliptic flow v2. It is defined as the

second order Fourier coefficient of the azimuthal particle spectrum

dN

d2pT
=

dN

2πpTdpT
[1 + 2v2(pT ) cos(2θ) + ...] (1.4)

whereN is the number of the particle, pT is the transverse momentum and θ is the azimuthal angle.

Besides initial conditions, we also need to know the nuclear equation of state (EOS) to solve

Eq. 1.1. The EOS is usually given by p(e) or the speed of sound squared c2
s = ∂p

∂e
and can be

modeled or extracted from lattice QCD calculations [11, 12]. In the simplest case, nuclear matter

above the critical temperature Tc is often modeled as an ideal gas of massless quarks and gluons

with corresponding EOS p = 1
3
e− 4

3
B, whereB is the bag pressure constant. Below Tc, the system

is treated as a hadron resonance gas that includes all experimentally identified resonance states and

has corresponding EOS. We will use the modern lattice QCD insprired EOS provided with MUSIC

in chapter 3.

Once knowing initial conditions and EOS, the space-time evolution of the system can be calcu-

lated. As the system is expanding rapidly, the hydrodynamic description must be stopped when the

mean free path of particles becomes too large and the fluid described by hydrodynamics must be

converted into particles. The criterion to stop hydrodynamics is usually set to be constant temper-

ature Tfo or constant energy density. Once all points in the hydrodynamic medium are below Tfo,

hydrodynamics is stopped and the Cooper-Frye formula [19] is applied to convert hydrodynamic
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output into particles; see chapter 2.

The success of ideal hydrodynamics points to low shear viscosity η and low dissipation in QGP.

However to measure shear viscosity one needs to go beyond ideal hydrodynamics and one should

use viscous hydrodynamics.

1.3 Shear Viscosity

Ideal hydrodynamics was successful in central collisions between large nuclei (A≈200) at

midrapidity at the top RHIC energies (
√
sNN = 130 GeV and 200 GeV), but gradually broke down

in smaller collision systems, such as particles away from midrapidity, peripheral collisions and

low-energy collisions [20]. This fact reveals the importance of dissipative effects and the necessity

of developing viscous hydrodynamics. One of the most popular approaches is the Israel-Stewart

formalism, which includes second order viscous corrections [21]. One can find how viscous cor-

rections affect elliptic flow especially at large pT , as shown in Fig. 1.2. Generally speaking, viscous

corrections include both bulk and shear stress as introduced in Eq. (1.3).

The success of ideal hydrodynamics points to very low dissipation in QGP and thus very low

specific shear viscosity η/s, i.e. the ratio of shear viscosity η to entropy density s. Viscous hy-

drodynamics simulations compared to data allowed for the quantitative extraction of specific shear

viscosity η/s from data [22, 23, 24]. Kovtun, Son and Starinets hypothesized that there might be

a universal lower bound of η/s = 1/(4π) for the specific shear viscosity, based on their study of

strongly interacting systems using AdS/CFT correspondence [25]. Collective flow observables like

v2 are particularly sensitive to shear viscosity. The first generation of calculations used relativistic

hydrodynamics with a fixed, temperature-independent η/s as a parameter. Hydrodynamics was

run all the way to kinetic freeze-out at the end of the hadronic phase, which was modeled very

similar to the approach discussed further below here. Obviously the value of η/s extracted from

this method is averaged over the entire temperature evolution of the QGP and the hot hadronic

matter below Tc, a range of several hundred MeV at top RHIC and LHC energies. Shear stress

signals a departure from thermal equilibrium and microscopical particle distributions are no longer

thermal. Their deformation has to be taken into account at freeze-out. η/s extracted through this
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Figure 1.2: Transverse flow of protons with and without viscous corrections. Events are generated
by the MUSIC hydrodynamic code. Here "ideal" means no viscosity, "bulk only" means no shear
viscosity, "bulk+shear flow only" means there is no deformation δf at freeze-out and "bulk+shear"
includes viscous corrections both during evolution and at freeze-out. The freeze-out temperature
T is set to be 130 MeV and the specific shear viscosity η/s is set to be 0.2.

method thus also includes the effects of deformations of particle distributions at freeze-out that are

present at finite shear stress [26, 23]. This deformation effect is extremely important and will be

used here to measure η/s at freeze-out. It will be described in detail in chapter 2. Fig. 1.2 shows

how large the expected effect is.

Subsequently, several groups have argued that the hadronic phase should be rather described

by hadronic transport models because the specific shear viscosity in the hadronic phase could

be too large for the evolution to be described accurately in second order viscous fluid dynamic

codes [27, 28]. This argument was aided by estimates of η/s for a hadronic matter from chiral

perturbation theory or hadronic transport by various groups [29, 30, 31, 32, 33, 34, 35, 36, 37].

While these calculations do not agree quantitatively, they generally find rather large specific shear

viscosity for hot hadronic matter, η/s & 5/(4π) even very close to Tc; examples see Fig. 1.3.

Thus fluid dynamic calculations were matched to hadronic transport models just below Tc while
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η/s was retained as a parameter only for the QGP phase and the crossover region around Tc. Even

more recently, fluid dynamic calculations using simple parameterizations have also been used to

constrain the functional form of the temperature dependence of η/s, mostly for the QGP case

[27, 38, 39]. We refer the reader to [40] for a review of fluid dynamic simulations of nuclear

collisions, including the extraction of shear viscosity.

On the theoretical side, lattice calculations of η/s have been attempted but are challenging

[41, 42, 43, 44]. They generally find η/s to be close to the conjectured lower bound around Tc with

a rather slow rise towards higher temperatures, for examples see Fig. 1.3. However, pushing these
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Figure 1.3: Previous calculations for specific shear viscosity η/s as a function of temperature. We
will add our results in chapter 4.

calculations into the hadronic phase below Tc is difficult. Perturbative QCD calculations at leading
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order have indicated large values of η/s at temperatures well above Tc [45, 46], but a recent next-

to-leading order calculation predicts a significant drop towards Tc which makes the perturbative

results comparable to lattice QCD [47]. From general arguments one expects a minimum of η/s

around Tc which has been found to be the case for a large variety or systems [48]. How fast the

specific shear viscosity is rising towards lower temperatures below Tc cannot be seen as settled

from either data nor first principle calculations. In any conceivable experiment information on

specific shear viscosity in the QGP phase is always diluted by contributions from the hadronic

phase, and thus uncertainties in hadronic η/s are directly responsibly for increased uncertainties

of QGP shear viscosities extracted from data. One common feature of most hadronic transport

calculations of η/s is that they do not seem to go smoothly to the QGP result (1 . . . 2)/(4π) around

Tc. As the transition between QGP and hadronic matter is a crossover at small baryon chemical

potential, very sharp features in the temperature dependence of η/s are not expected.

It is clear that an independent assessment of the hadronic specific shear viscosity is necessary

to improve our extraction of QGP specific shear viscosity. As a reasonable minimum requirement,

theoretical uncertainties coming from incomplete knowledge of the hadronic phase should inform

realistic contributions to error bars for quantities extracted for the QGP phase. Moreover, the

question of the specific shear viscosity of hot hadronic matter in itself is compelling. Maybe

hadronic matter close to Tc is strongly interacting as well.

It is one of the main points of this thesis to argue that it is possible to use experimental data

to estimate the specific shear viscosity of the hot hadronic matter at the kinetic freeze-out inde-

pendently. The main effect of the time evolution of the system before freeze-out is the build-up

of a flow field uµ which leads to the system expanding and cooling. Viscous corrections to first

order are given by gradients of the flow field (Navier-Stokes approximation). Computing the flow

field in hydrodynamics, introduces additional dependences on initial conditions and the equation

of state. We take a complementary approach and fit the final flow field, together with the tem-

perature and system size at kinetic freeze-out. The specific shear viscosity is then a parameter at

just one fixed temperature Tfo, the kinetic freeze-out temperature, and a set of chemical potentials
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µfo = (µB, µπ, . . .). Of course, such fits of flow fields and temperatures at freeze-out are well

established and generally known as blastwave parameterizations [49, 50, 51]. We will use such a

blastwave, with η/s added as a parameter, to extract η/s(Tfo, µfo) for a variety of points (Tfo,µfo)

in different collision systems.

1.4 Blastwave Parameterization

Hydrodynamics is powerful and predictive but also requires significant computing resources.

For some applications it is sufficient to consider blastwave parameterizations. Blastwave param-

eterizations try to capture an approximate snapshot of a hydrodynamic system at a fixed time or

temperature. In fact it uses the same formalism, Cooper-Frye, which is also used for the freeze-out

of hydrodynamic calculations. However, the details of the freeze-out (isothermal) surface and other

properties, e.g. the flow field on the hypersurface are parameterizations with a set of fit parameters

of the result of calculations. Using a simple ansatz for the flow field and freeze-out hypersurface,

blastwaves can nevertheless provide good descriptions of some important features such as observed

transverse momentum (pT ) spectra and elliptic flow. Due to their simplicity, blastwaves have been

widely used in heavy ion collisions. Blastwaves are a useful way to discuss trends in heavy ion

collision data. For example, from the parameters extracted by blastwave fits to experimental data,

we can study the trends of flow velocity and freeze-out temperature in different centrality bins and

different collision energies [52, 53]; see Fig. 4.3. The term "blastwave" comes from the assumption

that the transverse velocity increases linearly with respect to the radius, akin to an explosion.

In 1976, Westfall et. al first introduced the nuclear fireball model, which assumed protons were

emitted from the source isotropically [49]. In 1993, Schnedermann al. developed a blastwave

model using boost-invariant longitudinal flow and radially increasing transverse flow [50]. They

successfully fitted the transverse momentum spectra with only two parameters: a kinetic tempera-

ture (Tfo), and a radial flow strength (αo). In 2001, Huovinen generalized this parameterization to

noncentral collisions by adding an additional parameter (α2) so that the flow strength is stronger in

the reaction plane than out of the plane [10]. In 2003, Retiere and Lisa added the spatial deforma-

tion of the fireball and treated the transverse plane as an ellipse with semi axes Rx and Ry, so that
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the elliptic flow v2 receives contributions both from the elliptic deformation (α2) of the flow field,

and from the elliptic spatial deformation (Ry/Rx) [51]. We will discuss these parameters in detail

in chapter 2.

In this work, we introduce non-equilibrium deformations of particle distributions due to shear

viscosity into the blastwave. We use the Navier-Stokes approximation to calculate viscous cor-

rections, which are proportional to the traceless shear gradient tensor. Viscous corrections to

blastwaves have been studied in [26, 54]. Both of these previous works assume spatial spheri-

cal symmetry in the transverse plane and free streaming for simplicity. We will generalize these

assumptions here. The shear gradient tensor is expressed by the derivative terms of the flow field.

The spatial derivatives are straightforward once the flow field is established. The time-derivatives

cannot be given by the blastwave itself, but can be obtained by solving ideal hydrodynamic equa-

tions of motion. The details are presented in chapter 2. Here we emphasize that our blastwave is

self-consistent and all viscous corrections are calculated from the same flow field.

By adding shear corrections, v2 will increase and then decrease at large transverse momentum

pT > 2 GeV/c, unlike in the ideal case where v2 continues to increase; see Fig. 2.5 (similar to the

hydrodynamic case in Fig. 1.2). We can validate the blastwave by comparison with established

hydrodynamic calculations; see chapter 3. Since the blastwave, for simplicity, ignores the effects

of feed-down from hadronic resonances as well as bulk stress, we can quantify the uncertainty

and bias from these simplifications by comparing to MUSIC calculations with resonance decays

and bulk stress included. The latter comparison is important to remove the systematic bias in the

extraction results of T and η/s in chapter 4. To our knowledge, this is the first such systematic

comparison between hydrodynamics and blastwave fits.

1.5 Quark Recombination

Early experimental results from RHIC showed that there is a large baryon-to-meson ratio (close

to 1) at intermediate transverse momentum regime, 2 GeV/c < pT < 6 GeV/c [55, 56]. This was

surprising as baryon production is usually suppressed compared to meson production in elementary

collisions. Besides, an interesting scaling of elliptic flow v2 between mesons and baryons is also
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found in this regime [3, 4, 2] suggesting the relationship

v2(pT ) = nqv
(q)
2 (pT/nq) (1.5)

between the elliptic flow of hadrons and the elliptic flow v
(q)
2 for quarks at T = Tc (nq is the

number of valence quarks contained in the hadron) This is called the constituent quark number

 (GeV/c)q/nTp
0 0.5 1 1.5 2

q
/n 2v

0
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Figure 1.4: Quark scaling results from PHENIX and STAR experiment, reprint from Ref. [2].
(a) v2/nq vs pT/nq and (b) v2/nq vs KET/nq for identified particles obtained from PHENIX
in minimum bias Au+Au collisions. The STAR results are from Refs. [3, 4]. Reprinted with
permission from Ref. [2] Copyright 2007 by APS.

scaling (QNS) law. As a result, plotting v2/nq vs pT/nq leads to a universal curve, at least at

intermediate pT , see Fig. 1.4. One can also check the scaling law at low pT by plotting v2 as

a function of the transverse kinetic energy KET = mT − m0, where m0 is the hadron mass

and mT =
√
p2
T +m2

0 is the hadron’s transverse mass. KET scaling can be understood well

in hydrodynamics or blastwaves [57]. However, the constituent quark number scaling poses a
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big challenge to hydrodynamic models. In hydrodynamics, the valence quark number should not

influence the behavior of a hadron species. For example, the proton and phi meson with roughly

equal mass should have very similar flow. Also, the QNS law applies in a region in pT > 2 GeV/c

where v2(pT ) has stopped growing and is flat or even decreasing. Such a behavior of v2(pt) is not

possible in (ideal) hydrodynamics and it suggests that in this region thermalization is broken.

To describe the baryon-over-meson enhancement and QNS at intermediate pT , new ideas were

needed. In 2003, it was found that the observations at intermediate pT are successfully described

by quark coalescence or recombination models [58, 59, 60, 61]. In these models, valence quarks

are assumed to be abundant in phase space at T = Tc and recombine to hadrons through quark

recombination. The hadron formation process is usually assumed to be instantaneous and take a

infinitely thin hypersurface (∆τ ∼ 0). Such an approximation usually gives good results for in-

termediate pT . Energy conservation is violated and only momentum is conserved in these models.

At intermediate pT the violation is small but as a consequence instantaneous recombination cannot

be applied in the low pT range. As mentioned in [60], energy conservation approximately holds if

Q/pT � 1 which is guaranteed at intermediate pT and for small Q = m− (mq +mq̄), where m is

the hadron mass and mq,q̄ is the quark mass.

In order to extend recombination to low pT , in 2007 Ravagli and Rapp proposed an alternative

implementation [62] and later formulated as Resonance Recombination Model (RRM) [57, 63]. In

RRM, quark coalescence was interpreted as a resonance formation process, q+q 
M , and imple-

mented via a Boltzmann equation. By doing this, energy-momentum conservation is guaranteed.

The long-time limit for the Boltzmann equation naturally recovers thermal equilibrium.

In all recombination implementations, one main concern is how to implement hadron and par-

ton distributions in coordinate and momentum space with their correct space-momentum correla-

tions. Often, quarks are assumed to be in thermal equilibrium and hadron wave functions are as-

sumed to be narrow (close to δ-functions) in momentum space. In order to describe the QNS law,

thermalization is broken in [59, 60] and the elliptic flow of quarks in the fireball is implemented lo-

cally (cell by cell) and thus space-momentum correlations are neglected. This establishes the QNS
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law to high accuracy but it is unphysical since the elliptic flow should come from the collective

flow field of the fireball.

Subsequently, it was widely believed that the QNS law is a necessary feature of quark recom-

bination, and that violations of the QNS law found experimentally can be interpreted as evidence

against quark recombination. Indeed, data from LHC shows the elliptic flow of identified hadrons

following the QNS law to a lesser extent than data from RHIC [64]. Recent publication from AL-

ICE report deviations from QNS law for Pb-Pb collisions [65]. They find significant deviations for

the intermediate region (mT −m0)/nq ∼ 0.8 − 2 GeV/c2 and the scaling law exhibits deviations

at the level of ±20%.

Here we argue that it is possible to describe the hadron elliptic flow with physical space-

momentum correlations using quark recombination. To do this, we will generalize the calculation

in [58, 59, 60] and use our improved blastwave as an input for quark recombination. In that case,

the blastwave is utilized to give quark spectra at the critical temperature Tc. Note this is different

from chapter 4, in which blastwave is applied to hadrons at Tkin. The blastwave has realistic space-

momentum correlations. In addition, equilibrium at higher pT is broken by viscous corrections in

a systematic gradient expansion. This is the physical way to introduce the breaking of kinetic

equilibrium and stop the growth of v2(pT ) that was not well understood in 2003.

In chapter 5, we use the viscous blastwave model and instantaneous quark recombination to fit

spectra and elliptic flow v2 of identical hadrons at intermediate pT . In particular we check the QNS

scaling law by fitting v2 of different hadrons at a variety of collision energies and impact parame-

ters. Though experimental measurement shows a deviation from QNS, we can obtain a rather good

description via this quark recombination model. We also apply our blastwave together with the

RRM and calculate the elliptic flow with the same blastwave parameters. We find these two mod-

els provide similar results. Our results indicate that QNS can be broken in quark recombination

and careful quantitative calculations have to be carried out to study quark recombination.

In the next chapter, we present the viscous blastwave formalism. In chapter 3, we systemati-

cally compare our blastwave to hydrodynamic calculations with resonance decays and bulk stress

14



included. In chapter 4, we apply our blastwave to extract the freeze-out temperature Tfo and the

specific shear viscosity η/s of hot hadronic matter at that temperature. In chapter 5, we use the

viscous blastwave to provide realistic input for quark recombination models. In chapter 6, we

summarize our work.
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2. A VISCOUS BLASTWAVE ∗

In this chapter, we present a blastwave parameterization of nuclear collisions at high energies.

We will subsequently apply it to describe the final state of nuclear collisions at T = Tfo. However

we will also apply it to the T = Tc hypersurface in chapter 5. Comparing with previous blastwave

models in the literature, we include non-equilibrium deformations of particle distributions due to

shear viscosity η/s in the Navier-Stokes approximation, following previous work in Ref. [26, 54,

66]. We discuss details for computing the Navier-Stokes corrections including spatial and time

derivative terms of the flow field. The spatial derivatives are straightforward once the flow field is

given. The time-derivatives cannot be given by the blastwave itself, but can be obtained by solving

ideal hydrodynamic equations of motion on top of a blastwave profile.

2.1 Cooper-Frye Formula

The spectrum of particles emitted from a constant temperature hypersurface is given by the

Cooper-Frye formula [19]

E
d3N

dp3
=

g

(2π)3

∫
Σ

f(r, p)pµdΣµ (2.1)

where f(r, p) is the distribution function of the given particle species, pµ is the particle 4-momentum,

g is its degeneracy and dΣµ is the normal vector on the hypersurface. A major application of the

Cooper-Frye formula is the freeze-out process where the particles are hadrons or hadron resonances

and T is the freeze-out temperature Tfo.

For the blastwave, we make two major assumptions in our analysis, both of which have been

routinely used and studied in the literature. The first is that at freeze-out the system of hadrons is

close enough to kinetic equilibrium so that at any position rµ = (t, x, y, z) there exists a local rest

frame with a local temperature T (r) and a set of chemical potentials µ(r) such that the particle

∗Part of this chapter is reprinted with permissions from “A Blast Wave Model With Viscous Corrections” by
Zhidong Yang and Rainer J. Fries, 2017, J. Phys. Conf. Ser. 832, 012056, Copyright 2017 by IOP.
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distribution in the local rest frame can be written as

f(r, p) = f0(r, p) + δf(r, p) (2.2)

where f0 is the equilibrium Bose/Fermi-distribution with the local temperature and chemical po-

tentials,

f0(r, p) =
1

e(E−µ(r,p))/T (r,p) ∓ 1
(2.3)

with "-" for Bosons and "+" for Fermions and δf is a gradient correction of Navier-Stokes type. In

the laboratory frame we can replace E with pµuµ which is a Lorentz invariant, Eq. (2.3) becomes

f0(r, p) =
1

e(pµuµ−µ(r,p))/T (r,p) ∓ 1
(2.4)

where uµ is the flow field of the fireball.

For the δf term, we use the general form

δf(r, p) =
η

s

Γ(6)

Γ(4 + λ)

(
E

T

)λ−2
pµpν
T 3

σµνf0(r, p) (2.5)

which follows from a generalized Grad ansatz [67]. The power λ parameterizes further details of

the underlying microscopic physics. Here we mostly restrict ourselves to the original Grad ansatz

λ = 2 which is widely used. Eq. (2.5) becomes

δf(r, p) =
η

s

pµpν
T 3

σµνf0(r, p) (2.6)

We will include λ as a tuneable parameter in chapter 5. In the Navier-Stokes approximation, the

viscous correction is proportional to the traceless shear stress tensor, defined as

σµν =
1

2
(∇µuν +∇νuµ)− 1

3
∆µν∇αu

α (2.7)
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Here ∇µ = ∆µν∂ν , with ∆µν = gµν − uµuν , is the derivative operator perpendicular to the flow

field vector uµ. The gradient corrections need to be small. For the quantitative analysis in chapter

4, we will ensure that numerically δf . f for all relevant momenta in that analysis.

The second major assumption for the blastwave pertains to the simplified shape of the freeze-

out hypersurface and flow field. In the longitudinal direction (along the colliding beams), we as-

sume boost-invariance, which turns out to be a good approximation for particles measured around

midrapidity at LHC and top RHIC energies. In the specific case of freeze-out, blastwave param-

eterizations assume it to happen at constant T and µfo which is approximated by the constant

(longitudinal) proper time τ = τ0 hypersurface.

This is supported by hydrodynamical calculations. In the transverse direction, the t-x-y shape

of T = const (smooth) hydro hypersurfaces have the famous Muffin shape which comes about

through the competition of cooling and expansion; for examples see [14, 23]. In the blastwave, the

sides of the muffin are removed for simplicity, and only the "lid" is modeled. Most particles in a

rapidly expanding fireball will emerge from the lid since the flux scalar pµdΣµ in the Cooper-Frye

formula is the most favorable (recall Σ is the normal vector on the hypersurface). In a last step, the

lid which has a curvature and might cover several fm/c is approximated by a constant τ surface.

The study in chapter 3 will test the uncertainties introduced by these two basic assumptions for

blastwaves.

2.2 Blastwave Parameterization

To parameterize the flow field, we start from the longitudinal rest frame. In the longitudinal

(z-axis) rest frame there is only transverse flow in the x− y-plane which can be written as

~v = vT~er + vL~ez = (vT cosφb, vT sinφb, 0) (2.8)

or in relativistic form

uµ = (cosh ηT , sinh ηT cosφb, sinh ηT sinφb, 0) (2.9)
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where vT is the transverse velocity, ηT = 1
2

log[(1+vT )/(1−vT )] is the transverse flow rapidity, and

φb is the azimuthal angle of the flow vector in the transverse plane. We can extend expression (2.9)

to all z, where the longitudinal velocity vL is nonzero by using the boost symmetry. Specifically

we apply a Lorentz boost with a rapidity ηL to arrive at

uµ = (cosh ηL cosh ηT , sinh ηT cosφb, sinh ηT sinφb, sinh ηL cosh ηT ) (2.10)

where ηL = 1
2

log[(1 + vL)/(1− vL)]. Boost invariance means that ηL = ηs where ηs = 1
2

log[(t+

z)/(t − z)] is the space time rapidity. we can rewrite the position vector in Milne coordinates

(τ, ηs, x, y) as

rµ = (t, x, y, z) = (τ cosh ηs, x, y, τ sinh ηs) (2.11)

Recall that boost-invariance naturally follows from a velocity ordering of particles emerging from

a single position z = 0 as vL = z/t. Here boost invariant means longitudinal flow does not depend

on x and y and transverse flow is the same at different space time rapidity. Our final expression for

the flow field everywhere is

uµ = (cosh ηs cosh ηT , sinh ηT cosφb, sinh ηT sinφb, sinh ηs cosh ηT ) (2.12)

where ηT and φb only depend on transverse coordinates x and y. For those, we follow the Retiere

and Lisa (RL) parameterization [51]. The transverse shape of the fireball is assumed to be an ellipse

with semi axes Rx and Ry in x- and y-directions respectively. We agree to define the coordinate

axes such that the impact parameter b of the collision is measured along the x-axis. In the following

we use the reduced radius ρ =
√
x2/R2

x + y2/R2
y. The transverse velocity can be parameterized

as [51]

vT = ρn (α0 + α2 cos(2φb)) (2.13)

which encodes a Hubble-like velocity ordering with an additional shape parameter n. It is common

to fix n=1 and thus vT increases linearly with respect to the radius ρ. In chapter 4, we will keep
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n as an independent parameter for increased precision. α0 is the average velocity on the boundary

ρ = 1, and α2 parameterizes an elliptic deformation of the flow field coming from the original

elliptic spatial deformation of systems with finite impact parameters. Higher order deformations

could be present [54], but the observables discussed here are not particularly sensitive to them.

The time evolution of pressure gradients in the expansion leads to flow vectors tilted towards

the smaller axis of the ellipse [51]. This is accomplished by demanding that the transverse flow

vector is perpendicular to the elliptic surface at ρ = 1, i.e. tanφb = R2
x/R

2
y tanφs, where φs =

arctan y/x is the azimuthal angle of the position rµ. It is convenient to write the radial coordinate

as ~r = (x, y) = (Rxρ cosφ,Ryρ sinφ) with tanφ = Rx/Ry tanφs. Using Eq. (2.11), we can

write the hypersurface as

dΣµ = dxdydzdτδ(τ − τ) nµ = τRxRyρdρdφdηs n
µ (2.14)

with outbound normal vector

nµ = (cosh ηs, 0, 0, sinh ηs) (2.15)

The momentum vector in the laboratory frame is written in the standard form as

pµ = (mT cosh y, pT cos θ, pT sin θ,mT sinh y) (2.16)

where pT is the transverse momentum, y is the longitudinal momentum rapidity, θ is the azimuthal

angle of pT in the transverse plane, and mT =
√
p2
T +m2 is the transverse mass for the particle.

Then we have

pµdΣµ = τRxRymTρ cosh(ηs − y)dηsdρdφ (2.17)

We can also write

dp3 = dp2
Tdpz = mT cosh ydp2

TdY = Edp2
Tdy (2.18)

Hence for hadrons measured around midrapidity (y = 0) the spectrum given by Eq. (2.1) takes the
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standard form

dN

dyd2pT
= gτRxRymT

∫ 1

0

dρ

∫ 2π

0

dφ

∫ ∞
−∞

dηs
ρ cosh ηs

(2π)3
f0(ρ, φ, ηs)

[
1 +

η

s

pµpν
T 3

σµν
]

(2.19)

2.3 Shear Stress Tensor

We can now determine the shear stress tensor σµν for the RL blastwave. As we have mentioned

in chapter 1, viscous corrections to the blastwave have been studied in [26, 54] but have assumed

spatial spherical symmetry in the transverse plane (Rx = Ry) and free streaming for the time

derivatives in σµν . Both assumptions seem to be inadequate. In particular, the elliptic spatial

deformation contributes significantly to the elliptic flow v2, as we will demonstrate at the end of

this chapter. With spatial azimuthal symmetry the derivative terms are much simpler than in our

case.

Once the ansatz for the flow field is fixed, as done in the last section, computing shear stress

can be reduced to the task of computing derivatives of ηs, ηT and φb. For spatial derivatives, ηs

only depends on z and the latter two only depends on x and y. For time-derivatives, we will

use the hydrodynamic equations of motion. By convention, in the following part we will use

gµν ≡ {1,−1,−1,−1}, xµ ≡ gµνxν , ∂µ ≡ ∂
∂xµ

and xµ = (x0, x1, x2, x3).

2.3.1 Spatial Derivatives

We start with the derivatives of ηT , which are expressed by radius ρ and azimuthal angle φb.

Recall that we have ρ =
√
x2/R2

x + y2/R2
y and tanφb = y

x
R2
x

R2
y
. Then

∂ρ

∂x
=
∂
√
x2/R2

x + y2/R2
y

∂x
=

1√
x2/R2

x + y2/R2
y

x

R2
x

=
1

ρ

x

R2
x

=
cosφ

Rx

(2.20)

∂ tanφb
∂x

=
R2
x

R2
y

∂(y/x)

∂x
=
R2
x

R2
y

(
y

−x2
) =

tanφb
−x

(2.21)
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For derivative of cosφb, when cosφb = 1√
1+tan2 φb

> 0

∂ cosφb
∂x

= − tanφb

(1 + tan2 φb)
3
2

∂ tanφb
∂x

=
1

x

tan2 φb

(1 + tan2 φb)
3
2

=
1

x
sin2 φb cosφb (2.22)

when cosφb = − 1√
1+tan2 φb

< 0

∂ cosφb
∂x

=
tanφb

(1 + tan2 φb)
3
2

∂ tanφb
∂x

= −1

x

tan2 φb

(1 + tan2 φb)
3
2

=
1

x
sin2 φb cosφb (2.23)

which is identical to Eq. (2.22). Using derivatives of tanφb and cosφb, we can easily obtain

derivatives of sinφb and cos 2φb = 1−tan2 φb
1+tan2 φb

,

∂ sinφb
∂x

= cosφb
∂ tanφb
∂x

+ tanφb
∂ cosφb
∂x

=
sinφb
−x

+
1

x
sin3 φb = −1

x
sinφb cos2 φb (2.24)

∂ cos 2φb
∂x

=
−4 tanφb

(1 + tan2 φb)2

∂ tanφb
∂x

=
4 tan2 φb

(1 + tan2 φb)2

1

x
=

sin2(2φb)

x
(2.25)

Based on the above expressions, we now obtain the x-derivative for vT and ηT

∂vT
∂x

=α2
∂ cos 2φb
∂x

ρn + vT
n

ρ

∂ρ

∂x
= α2

sin2(2φb)

x
ρn + vT

n

ρ

cosφ

Rx

(2.26)

∂ηT
∂x

=
1

1− v2
T

∂vT
∂x

= cosh2 ηT
∂vT
∂x

(2.27)

Following the same process, we can obtain the derivative in the y-direction. For ρ and φb, we have

∂ρ

∂y
=
∂
√

x2

R2
x

+ y2

R2
y

∂y
=

1√
x2

R2
x

+ y2

R2
y

y

R2
y

=
1

ρ

y

R2
y

=
sinφ

Ry

(2.28)

∂ tanφb
∂y

=
R2
x

R2
y

∂(y/x)

∂x
=
R2
x

R2
y

1

x
=

tanφb
y

(2.29)

∂ cosφb
∂y

= − tanφb

(1 + tan2 φb)
3
2

∂ tanφb
∂y

= −1

y

tan2 φb

(1 + tan2 φb)
3
2

= −1

y
sin2 φb cosφb (2.30)
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∂ sinφb
∂y

= cosφb
∂ tanφb
∂y

+ tanφb
∂ cosφb
∂y

=
sinφb
y
− 1

y
sin3 φb =

1

y
sinφb cos2 φb (2.31)

∂ cos 2φb
∂y

=
−4 tanφb

(1 + tanφb)2

∂ tanφb
∂y

= − 4 tan2 φb
(1 + tanφb)2

1

y
= −sin2(2φb)

y
(2.32)

then obtain the y-derivative for vT and ηT

∂vT
∂y

=α2
∂ cos 2φb
∂y

ρn + vT
n

ρ

∂ρ

∂y
= −α2

sin2(2φb)

y
ρn + vT

n

ρ

sinφ

Ry

(2.33)

∂ηT
∂y

= cosh2 ηT
∂vT
∂y

(2.34)

2.3.2 Time Derivatives

The task of determining the time-derivatives in σµν can be reduced to the question of computing

∂τηT . We start from the relativistic ideal hydrodynamic equations of motion

∂µT
µν =0 , (2.35)

T µν =(e+ p)uµuν − pgµν . (2.36)

where e is the local energy density and p is the pressure. We can restrict ourselves to ideal fluid

dynamics to obtain the leading order expressions in a gradient expansion for the time derivatives.

Dissipative corrections in the determination of the time derivatives would lead to terms of order

η2 × (second order spatial gradients) in δf which we neglect. The ideal fluid dynamics equations

can be rewritten as follows. We first plug T µν into Eq. (2.35)

(e+ p)uµ∂µu
ν + (e+ p)uν∂µu

µ + uµuν∂µe+ uµuν∂µp− gµν∂µp = 0 . (2.37)

then we contract with uν and simplify the result to be

0 = 0 + (e+ p)∂µu
µ + uµ∂µe+ uµ∂µp− gµνuν∂µp = (e+ p)∂µu

µ + uµ∂µe . (2.38)
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Now we make use of uµuµ = 1 and uµ∂νuµ = 0. With Eq. (2.38), Eq. (2.37) becomes

(e+ p)uµ∂µu
ν + uµuν∂µp− gµν∂µp = 0 (2.39)

By convention, ∆µν ≡ gµν − uµuν is the projection operator orthogonal to the flow four-velocity,

5ν ≡ ∆µνdµ, D ≡ uαdα is the co-moving derivative and dα is the covariant derivative. In

Cartesian coordinate, dα = ∂α. Eq. (2.38), (2.39) can be generalized to be

De =− (e+ p)∂µu
µ = −(e+ p)4µu

µ , (2.40)

Duµ =
∇µp

e+ p
. (2.41)

Freeze-out is the process of decoupling of particles where the mean free path rapidly grows

beyond the system size. In fluid dynamics this process is modelled through a sudden transition

during which the mean free path goes from very small values to infinity instantaneously at T = T .

The system is assumed to be free streaming, Duµ = 0, after the transition, i.e. from T = T − ε on

(with small ε > 0). This free streaming assumption has been used to determine time derivatives

in the blastwave model in Ref. [26, 54]. However, it seems more physical to assume that the

local particle distributions f(r, p) remain frozen across the T = T hypersurface and that σµν ,

including time derivatives, should be set by T = T + ε. This is consistent with the treatment

in hydrodynamics. Moreover, applying the viscous blastwave to temperatures higher than Tfo

mandates using the proper time evolution. Eq. (2.40), (2.41) can be solved for the blastwave

geometry and flow field assumed here to obtain the time derivatives we seek.

We rewrite Eq. (2.38), Eq. (2.39) as

uµ∂µe =− (e+ p)∂µu
µ (2.42)

uµ∂µu
ν =

c2
s

(e+ p)
gµν∂µe−

c2
s

(e+ p)
uµuν∂µe (2.43)

where c2
s = ∂p/∂e is the speed of sound squared, given by the equation of state of the system at
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T = T , and plug Eq. (2.42) into Eq. (2.43)

uµ∂µu
ν =

c2
s

(e+ p)
∂νe+ c2

su
ν∂µu

µ . (2.44)

Recall the hypersurface is given by τ =
√
t2 − z2 or t = τ cosh ηs, z = τ sinh ηs, so

∂0 =
∂

∂t
=
∂τ

∂t

∂

∂τ
+
∂ηs
∂t

∂

∂ηs
= cosh ηs∂τ −

sinh ηs
τ

∂ηs (2.45)

∂3 =
∂

∂z
=
∂τ

∂z

∂

∂τ
+
∂ηs
∂z

∂

∂ηs
= − sinh ηs∂τ +

cosh ηs
τ

∂ηs (2.46)

The flow velocity is uµ = (cosh ηs cosh ηT , sinh ηT cosφb, sinh ηT sinφb, sinh ηs cosh ηT ), then

∂µu
µ =∂0u

0 + ∂1u
1 + ∂2u

2 + ∂3u
3

= cosh ηs∂τu
0 − sinh ηs∂τu

3 + ∂1u
1 + ∂2u

2 + (cosh ηs/τ)∂ηsu
3 − (sinh ηs/τ)∂ηsu

0

=∂τ cosh ηT + ∂1u
1 + ∂2u

2 + cosh ηT/τ

(2.47)

and for a random 4-vector

uµ∂µx =u0∂0x+ u1∂1x+ u2∂2x+ u3∂3x

=(u0 cosh ηs − u3 sinh ηs)∂τx+ u1∂1x+ u2∂2x+ (u3 cosh ηs/τ − u0 sinh ηs/τ)∂ηsx

= cosh ηT∂τx+ u1∂1x+ u2∂2x

(2.48)

Using ∂1e = ∂2e = 0 and ∂ηse = 0 because of the constant temperature hypersurface, then we

have ∂0e = cosh ηT∂τe, ∂3e = − sinh ηT∂τe. Using Eq. (2.48), (2.42) and (2.44) become

cosh ηT∂τe = −(e+ p)∂µu
µ (2.49)
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cosh ηT∂τu
0 + u1∂1u

0 + u2∂2u
0 =

c2
s

e+ p
cosh ηs∂τe+ c2

su
0∂µu

µ

cosh ηT∂τu
1 + u1∂1u

1 + u2∂2u
1 = 0 + c2

su
1∂µu

µ

cosh ηT∂τu
2 + u1∂1u

2 + u2∂2u
2 = 0 + c2

su
2∂µu

µ

cosh ηT∂τu
3 + u1∂1u

3 + u2∂2u
3 =

c2
s

e+ p
sinh ηs∂τe+ c2

su
3∂µu

µ

(2.50)

The first and fourth equations in (2.50) are equivalent. Using one of them and together with Eq.

(2.49), we have

cosh ηT∂τcosh ηT + u1∂1cosh ηT + u2∂2cosh ηT = − c2
s

cosh ηT
∂µu

µ + c2
s cosh ηT∂µu

µ (2.51)

Now the only unknown term in Eq. (2.51) is ∂τcosh ηT . Plugging in Eq. (2.47), we obtain the time

derivative of the transverse flow rapidity,

(1− c2
s tanh2 ηT )∂τ cosh ηT = c2

s tanh2 ηT (∂1u
1 + ∂2u

2 +
cosh ηT
τ

)− u1∂1u
0

u0
− u2∂2u

0

u0
(2.52)

in terms of known spatial derivatives. The time derivative of the direction of the transverse flow

field can be computed by using (2.52) in the second and third equation in (2.50).

2.3.3 Full Derivatives

Using the expressions obtained in the two previous sections, we can write all the derivative

terms with respect to rµ = (t, x, y, z). Recall we have τ =
√
t2 − z2, ηs = 1

2
ln t+z

t−z , then

∂τ

∂z
= − z√

t2 − z2
= − sinh ηs

∂ηs
∂z

=
t

t2 − z2
=

cosh ηs
τ

∂τ

∂t
=

t√
t2 − z2

= cosh ηs

∂ηs
∂t

= − z√
t2 − z2

= −sinh ηs
τ

(2.53)
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The full derivatives of u0 = cosh ηs cosh ηT are



∂u0

∂t
= cosh ηs

∂u0

∂τ
− sinh ηs

τ

∂u0

∂ηs
= cosh ηs

∂u0

∂τ
− sinh ηs

τ
sinh ηs cosh ηT

∂u0

∂x
= cosh ηs sinh ηT

∂ηT
∂x

= cosh ηs sinh ηT cosh2 ηT [α2
sin2(2φb)

x
ρn + vT

n

ρ

cosφ

Rx

]

∂u0

∂y
= cosh ηs sinh ηT

∂ηT
∂y

= cosh ηs sinh ηT cosh2 ηT [−α2
sin2(2φb)

y
ρn + vT

n

ρ

sinφ

Ry

]

∂u0

∂z
= − sinh ηs

∂u0

∂τ
+

cosh ηs
τ

∂u0

∂ηs
= − sinh ηs

∂u0

∂τ
+

cosh ηs
τ

sinh ηs cosh ηT

(2.54)

The full derivatives of u1 = sinh ηT cosφb are



∂u1

∂t
= cosh ηs

∂u1

∂τ
− sinh ηs

τ

∂u1

∂ηs
= cosh ηs

∂u1

∂τ

∂u1

∂x
= cosh ηT cosφb · cosh2 ηT [α2

sin2(2φb)

x
ρn + vT

n

ρ

cosφ

Rx

] + sinh ηT ·
1

x
sin2 φb cosφb

∂u1

∂y
= cosh ηT cosφb · cosh2 ηT [−α2

sin2(2φb)

y
ρn + vT

n

ρ

sinφ

Ry

]− sinh ηT ·
1

y
sin2 φb cosφb

∂u1

∂z
= − sinh ηs

∂u1

∂τ
+

cosh ηs
τ

∂u1

∂ηs
= − sinh ηs

∂u1

∂τ
(2.55)

The full derivatives of u2 = sinh ηT sinφb are



∂u2

∂t
= cosh ηs

∂u2

∂τ
− sinh ηs

τ

∂u2

∂ηs
= cosh ηs

∂u2

∂τ

∂u2

∂x
= cosh ηT sinφb · cosh2 ηT [α2

sin2(2φb)

x
ρn + vT

n

ρ

cosφ

Rx

]− sinh ηT ·
1

x
sinφb cos2 φb

∂u2

∂y
= cosh ηT sinφb · cosh2 ηT [−α2

sin2(2φb)

y
ρn + vT

n

ρ

sinφ

Ry

] + sinh ηT ·
1

y
sinφb cos2 φb

∂u2

∂z
= − sinh ηs

∂u2

∂τ
+

cosh ηs
τ

∂u2

∂ηs
= − sinh ηs

∂u2

∂τ
(2.56)
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The full derivatives of u3 = sinh ηs cosh ηT are



∂u3

∂t
= cosh ηs

∂u3

∂τ
− sinh ηs

τ

∂u3

∂ηs
= cosh ηs

∂u3

∂τ
− sinh ηs

τ
cosh ηs cosh ηT

∂u3

∂x
= sinh ηs sinh ηT

∂ηT
∂x

= sinh ηs sinh ηT cosh2 ηT [α2
sin2(2φb)

x
ρn + vT

n

ρ

cosφ

Rx

]

∂u3

∂y
= sinh ηs sinh ηT

∂ηT
∂y

= sinh ηs sinh ηT cosh2 ηT [−α2
sin2(2φb)

y
ρn + vT

n

ρ

sinφ

Ry

]

∂u3

∂z
= − sinh ηs

∂u3

∂τ
+

cosh ηs
τ

∂u3

∂ηs
= − sinh ηs

∂u3

∂τ
+

cosh ηs
τ

cosh ηs cosh ηT .

(2.57)

The last task is to calculate shear stress tensor σµν and correction pµpνσ
µν . According to the

definition σµν ≡ 1
2
(∇µuν +∇νuµ)− 1

3
∆µν∇αu

α with∇µ = ∆µν∂ν , ∆µν = gµν − uµuν , we have

∇µuν = ∂µuν − uµuα∂αuν ∇νuµ = ∂νuµ − uνuα∂αuµ, (2.58)

1

2
(∇µuν +∇νuµ) =

1

2
(∂µuν + ∂νuµ)− 1

2
uα∂α(uµuν) (2.59)

and obtain 
σ00 =∂0u0 − u0uα∂αu

0 − 1

3
(1− u0u0)∂αu

α

σ0i =
1

2
(∂0ui + ∂iu0)− 1

2
uα∂α(u0uj) +

1

3
u0ui∂αu

α

σij =
1

2
(∂iuj + ∂jui)− 1

2
uα∂α(uiuj)− 1

3
(gij − uiuj)∂αuα

(2.60)

where ∂0 = ∂0 = ∂
∂t

, ∂1 = −∂1 = − ∂
∂x

, ∂2 = −∂2 = − ∂
∂y

and ∂3 = −∂3 = − ∂
∂z

, are the spatial

and time derivatives we calculated earlier.

Finally the correction pµpνσµν is given by

pµpνσ
µν = p0p0σ00 − 2p0piσ0i + pipjσij (2.61)

with pµ = (mT cosh y, pT cos θ, pT sin θ,mT sinh y).

28



2.4 Blastwave Parameters

In this part we discuss the parameters in the viscous blastwave model and study some of the

dependences of particle spectra and elliptic flow on these parameters. The initial parameters in the

model are P̃ = (µ, c2
s, λ, τ, T, Ry, Rx, n, α0, α2, η/s), where µ denotes any chemical potentials for

the particles considered. Not all parameters are good fit parameters but can rather be constrained

by additional physics considerations. We are also often interested in reducing the number of fit

parameters for efficiency and stability. The following considerations can help. Some of the pa-

rameters play important roles and reflect the main features of the model, which we are interested

in. We make them fit parameters. Others are less interesting even though some physical meaning

can be attached to them, such as the speed of sound squared c2
s and chemical potentials µ. For

the latter, we may estimate or obtain their values otherwise. In addition, some of the parameters

are highly correlated with each other. For these parameters, we may resolve the correlations by

additional theoretical considerations.

The parameter λ is related to the scalar momentum dependence in δf . As we mentioned earlier,

we will mostly use λ = 2, which is also an assumption widely used in the literature [26, 14, 54].

We will retain λ as a tuneable parameter in chapter 5.

In terms of the geometric parameters, it turns out the ratio Ry/Rx has a large influence on

elliptical flow, so we always choose Ry/Rx as a fit parameter. Our observables depend on Rx, Ry

and τ primarily through the ratio Ry/Rx, and through the overall volume ∼ RxRyτ which deter-

mines the normalization of spectra. Dependences on the individual size parameters are completely

absent in the ideal blastwave, which only depends on the overall volume RxRyτ . However these

dependences enter in a sub-leading way through the viscous correction terms in our model. We

constrain Rx, Ry and τ by fitting the ratio Ry/Rx, the time τ and by adding the simple geometric

estimate

Rx ≈ (R0 − b/2) + τcτ (α0 + α2) , (2.62)

for the propagation of the fireball boundary in x-direction. Here R0 is the radius of the colliding
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nucleus, b is the impact parameter and cτ = ᾱ0/α0 relates the time-averaged surface velocity.

Based on the discussion above, we will restrict the set of simultaneously fitted parameters to

a maximum of seven, choosing P = (τ, T,Ry/Rx, n, α0, α2, η/s) from the full set P̃ . It is also

interesting to explore the dependence of spectra and elliptic flow on the remaining parameters.
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Figure 2.1: Transverse momentum spectra of proton, kaon and pion calculated with varying param-
eters T, α0, n and α2. The spectra are normalized to 1. The default parameters are from blastwave
fit results for ALICE 30-40%, i.e. τ = 11.4 fm, T = 122 MeV, Ry/Rx = 1.27, n = 0.87, α0 =
0.83c, α2 = 0.056c, η/s = 0.32.

Generally speaking, spectra are most sensitive to the freeze-out temperature T , boundary veloc-
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Figure 2.2: Transverse momentum spectra of proton, kaon and pion calculated with varying pa-
rameters τ, λ, Ry/Rx and η/s. The spectra are normalized to 1. The default parameters are the
same as used in Fig. 2.1.

ity α0 and velocity profile n. The elliptic flow is most sensitive to the azimuthal flow deformation

parameter α2, spatial deformation Ry/Rx as well as the specific shear viscosity η/s. When fit-

ting experimental measurements, α2, Ry/Rx and η/s are mostly constrained by elliptic flow, other

parameters are constrained by both spectra and elliptic flow. The dependence of spectra on the

set of parameters (T, α0, n, α2, τ, Ry/Rx, λ, η/s) are shown in Fig. 2.1 and 2.2. The systematic

dependence of elliptic flow on these parameters are shown in Fig. 2.3, 2.4 and 2.5.

From Fig. 2.1, we can find the spectra become steeper as T decreases, which comes mainly

31



from the particle distribution term ∼ e−E/T . We can also find that spectra become steeper as

the average flow velocity decreases. This can be achieved by lower boundary velocity α0, higher

radial profile parameter n and lower elliptic flow deformation α2. This is because small flow

velocity means fewer particles are pushed to large momentum and thus fewer particles in high

pT , which makes the spectra steeper. From Fig. 2.2 we can find the dependence of spectra on

(τ, λ, Ry/Rx, η/s) is rather small, because these parameters mainly affect the shape of the spectra

through viscous corrections δf , which is a more subtle effect than a dependence through f0.

In general, elliptic flow v2 starts to deviate from the equilibrium behavior with the increase of

pT . From Fig. 2.3, we can find (τ, T, n) have little influence on elliptic flow at low pT and only

change elliptic flow at high pT . From Fig. 2.4, we can find a large dependence of elliptic flow on

(α0, α2, Ry/Rx). In particular, elliptic flow increases dramatically for larger α2 and it moves up

parallelly as Ry/Rx increases. At last, the dependence of elliptic flow on λ and η/s is shown in

Fig. 2.5. For λ, we can find viscous corrections become larger as λ increases and λ = 2 has the

largest corrections. Similarly, viscous corrections also become larger as η/s increases since they

are directly proportional to η/s.

We can also check the magnitude of viscous corrections with respect to pT . In particular, for

the dependence of the spectra on η/s, we calculate the spectra for the same parameters with and

without the correction term δf . As expected, we find at large pT the correction δf is largest and

increases dramatically. This is due to the p2-dependence of δf . Note that despite the p2-dependence

of δf in the local rest frame, δf does not have to strictly vanish at small transverse momenta pT in

the lab frame. In fact, due to the largest correction δf at large pT , extracted values of η/s are very

sensitive to v2 at large pT . Since δf cannot be too large, we should be cautious when choosing fit

ranges. Generally we exclude points for which the slope of v2 turns negative, since in this case δf

may be too large.

From Fig. 2.6, we can read the ratio of correction δf to original f0. Within the pT range, e. g.

0-2.0 GeV/c for pions, 0-2.5 GeV/c for kaons and 0-3.3 GeV/c for protons, the largest correction

is 9% for pions, 14% for kaons and 23% for protons respectively. The typical size of viscous
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corrections is much smaller than the maximum numbers quoted here. We have to be mindful that

δf cannot be too large. As discussed earlier, higher order corrections in shear stress would have to

be taken into account if δf ≈ f
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Figure 2.3: Elliptic flow of proton, kaon and pion calculated with varying parameters τ, T and n.
The default parameters are the same as used in Fig. 2.1.
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Figure 2.4: Elliptic flow of proton, kaon and pion calculated with varying parameters α0, α2 and
Ry/Rx. The default parameters are the same as used in Fig. 2.1.
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Figure 2.5: Elliptic flow of proton, kaon and pion calculated with varying parameters λ and η/s.
The default parameters are the same as used in Fig. 2.1.
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Figure 2.6: The ratio of corrections δf to f0 for transverse momentum spectra. The default param-
eters are the same as used in Fig. 2.1.
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3. COMPARISON TO HYDRODYNAMICS

Blastwaves have been a simple and effective tool that can be used to parameterize the final

state of nuclear collisions. Basic information like the kinetic freeze-out temperature and average

radial flow at freeze-out are easily read off from fits to final hadron spectra. However, given the

approximations made in blastwave fits, the main question is how well the extracted parameters

reflect the actual values. If systematic uncertainties from blastwave fits could be quantified, or

systematic deviations could be corrected for, blastwaves would be a more widely accepted tool

for quantitative analyses. In this chapter we will start this process of quantification by comparing

freeze-out conditions from smooth viscous hydrodynamics to blastwave fits. The global picture is

one of two successive approximations

experimental data � hydro simulation � blastwave fit

where � means "approximated by". There are several approximations in describing the freeze-

out process with hydrodynamics [40]. They are briefly discussed here but their quantification is

outside the scope of this chapter. Approximations that blastwaves make are discussed in more

detail and then quantified in a specific case. We focus here on the accuracy of the extracted freeze-

out temperature Tfo and the specific shear viscosity η/s at freeze-out. The results from the analysis

here can be used directly to improve our extraction of η/s from experimental data in chapter 4.

Here we use the viscous hydrodynamics code MUSIC [15, 68] for this purpose. We generate

events at different temperatures and with various specific viscosities with MUSIC. These events use

smooth initial conditions and include shear viscosity. Then we extract the flow field from spectra

and elliptic flow v2 of these hydrodynamic calculations with our viscous blastwave. Especially

we compare the extracted freeze-out temperature Tfo and specific viscosity η/s to values used in

hydrodynamics and obtain the mapping matrix between them. By using the mapping matrix, we

are able to unfold our blastwave fit results of experiment measurement.
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The setup of our hydrodynamic calculations reflects conditions in Au+Au collisions at RHIC

as described below, although none of the hydrodynamic calculations in this chapter were fit to

data. For comparison to data we refer the reader to chapter 4 and Refs. [15, 68]. We also check

several fits to hydrodynamics set up for Pb+Pb collisions at LHC to establish that our results are

sufficiently universal for our purposes. We will establish a map in the Tfo-η/s-plane from the

values for a set of hydrodynamic simulations to the corresponding values extracted from viscous

blastwave fits of hydrodynamic spectra and elliptic flow. We are then providing a parameterization

of this map and its inverse. The inverse map can be used to unfold the bias from blastwave fits. We

will also estimate the uncertainties from this procedure.

This work only presents one specific aspect of a systematic blastwave-hydrodynamics compar-

ison, focusing on a particular range of hydrodynamic initial conditions, and on temperature and

specific shear viscosity as observables. However, the results should still be very useful in heavy

ion collisions. We also do not attempt to assign how much of the bias and uncertainties we discover

are due to particular assumptions in the blastwave. We will only offer a qualitative assessment of

the impact of bulk viscous effects.

3.1 Hydro Events Preparation

We use the viscous hydrodynamics code MUSIC to simulate Au-Au collisions at RHIC en-

ergies and at different impact parameters. MUSIC is a (3+1)D relativistic second-order viscous

hydrodynamics code for heavy ion collisions. It was initially developed at McGill as an ideal

(3+1)D hydrodynamic code in 2009 and later extended to include first and second order shear

viscous corrections [15, 68]. The work flow is as follows. First, we carry out the hydrodynamic

evolution starting from suitable initial conditions. Then we freeze out and finally carry out all res-

onance decays. MUSIC has many parameters that can be set by the user. For most settings, we use

the default values. We choose boost-invariant (2+1)D mode consistent with the blastwave. We use

the built-in optical Glauber model as initial conditions and the equation of state (EOS) s95p-v1.2.

We include a constant shear viscosity η/s and the default MUSIC bulk viscosity in the evolution.

We freeze out at a constant freeze-out temperature Tfo and add the shear correction terms δf in the
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Cooper-Fry formula consistent with the blastwave. Other MUSIC settings are documented in Tab.

3.1.

Parameter Set
Target+Projectile Au+Au
Initial_profile Optical Glauber model
EOS_to_use lattice EOS s95p-v1.2 for UrQMD
reconst_type solve flow velocity for hydro eqns
Maximum energy density 54.0
SigmaNN 42.1
boost_invariant 1
Viscosity_Flag 1
Include_Shear_Visc 1
T_dependent_Shear_to_S_ratio 0
Include_Bulk_Visc 1
Include_second_order_terms 0
Do_FreezeOut 1
freeze_out_method Schenke’s more complex method
use_eps_for_freeze_out use temperature
pt_steps 36
min_pt 0.01
max_pt 3.0
phi_steps 40
Include_deltaf_in Cooper-Frye formula 1
Inlucde_deltaf_bulk 1

Table 3.1: List of parameter set for MUSIC. 1 and 0 are flags (1 = YES and 0 = NO).

As discussed above, we focus here on the relation of extracted to true temperature and specific

shear viscosity. We expect η/s to decrease with temperature in the hadronic phase and Tfo increases

with impact parameter b. For this study to be useful, we focus on a band in the T -η/s-plane, varying

the impact parameter b with T . These choices were guided by fits to RHIC data to be discussed in

chapter 4. The values of T and η/s in the center of the band are listed in Tab. 3.2 together with

the impact parameter used. From MUSIC output files we extract transverse momentum pT spectra

and elliptic flow v2 at rapidity y=0 for pions, kaons and protons as our pseudo data. As set in the

code, the full pT range of the pseudo data is from 0 to 3 GeV/c.
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b(fm) 5 5 6 6.5 7 8 9 10.5 10.5
Tfo(MeV) 105 110 115 120 125 130 135 140 145
4πη/s 6.03 5.28 4.52 3.77 3.02 2.51 2.01 1.51 1.01

Table 3.2: The first set of impact parameter b, freeze-out temperature Tfo and shear viscosity η/s
for MUSIC hydro runs.

MUSIC
spectra (GeV/c) v2 (GeV/c)

pion kaon proton pion kaon proton
105 0.34-1.95 0.34-2.23 0.76-2.52 0.53-3.0 0.34-3.0 0.34-3.0
110 0.34-2.37 0.34-2.68 0.34-3.0 0.34-3.0 0.34-3.0 0.34-3.0
115 0.34-1.95 0.34-2.23 0.34-2.52 0.34-3.0 0.34-3.0 0.34-3.0
120 0.40-1.95 0.40-2.09 0.34-2.37 0.34-2.84 0.34-3.0 0.34-3.0
125 0.40-1.95 0.40-2.09 0.34-2.37 0.34-2.68 0.34-2.84 0.34-3.0
130 0.46-1.95 0.40-2.09 0.29-2.23 0.34-2.68 0.34-2.68 0.34-2.84
135 0.34-1.82 0.29-1.95 0.24-2.09 0.34-2.52 0.34-2.68 0.34-2.68
140 0.24-1.57 0.20-1.69 0.20-1.82 0.24-2.23 0.53-2.23 0.20-2.37
145 0.24-1.57 0.20-1.69 0.20-1.82 0.24-2.23 0.53-2.23 0.20-2.37

Table 3.3: Fit ranges for different hydro pseudo data.

We will discuss the effect of the choice of fit range on blastwave fits in detail in chapter 4.

Here we just summarize the discussion briefly. First, the pT range can be expanded to higher pT

going from peripheral to central collisions, because thermal particle production dominates up to

higher pT . Note that in pure hydrodynamics all particles are thermal, but we choose our fit ranges

to roughly represent the fit ranges appropriate for experimental data discussed in chapter 4. It turns

out that elliptic flow can be fitted exceptionally well even at large pT (> 2 GeV/c) and we make

use of this to constrain η/s more effectively. The default fit ranges for events at different Tfo are

shown in Tab. 3.3.

To do the analysis, we need to assign uncertainties to hydro pseudo data. We assign 5% uncer-

tainty and 2% uncertainty for spectra and v2 respectively, with a pedestal of 0.002 for v2 since v2

vanishes for small pT . We will vary the uncertainties later on to estimate uncertainties from this

choice.
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3.2 Bayesian Method

Before we start the analysis, we would like to introduce the statistical tools used. We use

the statistical analysis package from the Models and Data Analysis Initiative (MADAI) project

[69, 70] to determine fit parameters. The MADAI package includes a Gaussian process emulator

and a Bayesian analysis tool. It works as follows. First, we choose prior ranges for each parameter

with flat probabilities and generate a set of training points in parameter space. Second, we calculate

all fitted observables at each training point. The package then builds a Gaussian process emulator,

which can estimate observables for random parameter values. Finally a Markov Chain Monte Carlo

provides a likelihood analysis and gives the maximum likelihood parameters and uncertainties.

As a general strategy we often start with a very wide prior range and narrow it down subse-

quently for better resolution. In order to guarantee the accuracy of the Gaussian emulator, the prior

range should not be too wide and the number of training points needs to be large enough for the

chosen number of parameters. Our final prior ranges have ∆T ≈ 15 MeV, ∆η/s ≈ 2/(4π) and use

N = 500 training points for the Gaussian process emulator. As an example, the final prior range

for this T -η/s choice is shown in Table. 3.4.

parameter prior range
T (GeV) 0.111 – 0.123
α0(c) 0.73 – 0.78
Ry/Rx 1.07 – 1.13
α2(c) 0.037 – 0.057
4πη/s 1.5 – 3.5

Table 3.4: Prior range for MUSIC event T = 130 MeV, η/s = 2.51/(4π).

We can check the quality of the Gaussian emulator by comparing the predicted values and

the actual calculation. For example, we can pick a random set of parameters: T = 115 MeV,

α0 = 0.75c, Ry/Rx = 1.1, α2 = 0.05c, η/s = 2/(4π) and ask the Gaussian emulator to make

a prediction. Using the same parameters, we also calculate the spectra and v2 directly from the
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blastwave. We find the accuracy of the emulator to be extremely good, i.e. the results of the

Gaussian emulator are identical with the true blastwave results within ≤ 1% accuracy. The only

exception is for elliptic flow at large pT where deviations read a few percent. Fig. 3.1 and 3.2

demonstrate the accuracy of our Gaussian emulator for this example.
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Figure 3.1: Comparing the predicted values from the Gaussian emulator and the actual blastwave
calculation for the spectra of π, K, p. Parameters are given in the text.

The blastwave computation Eq. (2.19) is carried out by a short program in C language. A single

computation of Eq. (2.19) is quite fast and takes about 1 minute for one particle at 30 different pT

values. For the task of training the Gaussian process emulator, we use the Brazos Cluster of Texas

A&M University to complete it. Once the Gaussian process emulator is built, the full statistical

analysis runs easily on a single CPU.
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3.3 Blastwave Fit

The parameters used in the blastwave fit to hydro pseudo data are (τ, T,Ry/Rx, n, α0, α2, η/s).

Chemical potentials µ are set to zero in MUSIC. We will ultimately only use T and η/s in this

analysis. We fix the parameters n and τ by choosing values close to those extracted from RHIC

data in chapter 4. The values can be found in Tab. 3.5. Later we will estimate the uncertainty of

this choice by varying n.

As an example, we discuss here the MUSIC event T = 130 MeV, η/s = 2.5/(4π) in detail.

Fig. 3.3 shows the result from the statistical analysis for the chosen fit range of this data set; see

Tab. 3.3. The horizontal and vertical axes show the chosen prior ranges for the parameters. From

left to right (top to bottom): T (MeV), α0, Ry/Rx, α2, η/s. Plots on the diagonal show posterior

likelihood distributions. The off-diagonal plots show correlations between parameters. The cor-

relations on the off-diagonal plots are important since they demonstrate the connections between

parameters. Besides, they also help to verify the Gaussian emulator. Only when we have the cor-

rect correlations, the statistical analysis becomes reliable. For example, the negative correlation
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Figure 3.3: Likelihood analysis for MUSIC event T = 130 MeV, η/s = 2.5/(4π) provided by
the MADAI package. The diagonal show posterior likelihood distributions. The off-diagonal plots
show correlations between parameters.

between T and α0 shows the fact that increasing T makes the spectra softer and decreasing α0

makes it steeper. The positive correlation between α2 and η/s shows the fact that increasing α2

makes the elliptic flow larger and increasing η/s makes it smaller.

The likelihood plots on the diagonal of Fig. 3.3 show well defined peaks. Based the output of

the MADAI package, the preferred (average) values for MUSIC event T = 130 MeV are, T=117

MeV, α0=0.753c, Ry/Rx=1.10, α2=0.048c, η/s=2.6/4π (τ = 8.4 fm/c and n=0.88 are fixed in this

case). We proceed for the other T -η/s points in Tab. 3.2 analogously.

The extracted parameter values for MUSIC pseudo data in different freeze-out temperature are
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MUSIC τ (fm/c) T (MeV) α0/c n Ry/Rx α2/c 4πη/s

105 12.2 111 0.824 0.86 0.99 0.021 5.8
110 11.4 114 0.822 0.87 1.01 0.021 5.4
115 10.6 113 0.833 0.81 1.04 0.025 4.7
120 9.8 114 0.820 0.84 1.06 0.028 3.8
125 9.1 118 0.786 0.88 1.08 0.037 3.0
130 8.4 117 0.753 0.88 1.10 0.048 2.6
135 7.8 120 0.715 0.92 1.15 0.059 2.1
140 7.2 123 0.654 0.96 1.27 0.069 1.6
145 6.8 126 0.604 1.00 1.35 0.080 1.2

Table 3.5: Extracted parameter values for different MUSIC pseudo data. Note: τ and n are fixed
and not obtained by fitting.

shown in Tab. 3.5. We can plug these parameters into our blastwave and calculate the spectra and

v2, then compare to the hydro calculation. The plots of spectra and v2 for MUSIC in different

freeze-out temperature are shown in Fig. 3.4 and Fig. 3.5. We find blastwave calculations agree

very well with hydro pseudo data within a few percentage error.

Now we shall analyze the uncertainty of our extracted values. The uncertainty mainly comes

from 3 sources: (i) uncertainty due to a fixed value of n; see Tab. 3.6, (ii) uncertainty due to the

uncertainties assigned to MUSIC pseudo data; see Tab. 3.7 and (iii) uncertainty from the Gaussian

emulator and likelihood analysis; see Fig. 3.3. From Tab. 3.6 we find that T varies within a few

MeV and η/s becomes larger when using smaller n. From 3.7 we find T varies within a few MeV

and η/s does not change much when using different uncertainties assigned to MUSIC pseudo

spectra data. From Fig. 3.3 we can read the uncertainty from the likelihood analysis. In general,

the influence of these variations on the extracted values are moderate and we will treat them as

independent uncertainties and add them quadratically.

The final extracted freeze-out temperature and viscosities for the points from Tab. 3.2 are shown

in Fig. 3.6 with their combined uncertainties. We find that the extracted specific shear viscosities

are mostly consistent with true values within uncertainties. However the extracted temperature

is distorted and it underestimates the true temperature significantly at high T . The extracted Tfo
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Figure 3.4: Transverse momentum spectra for MUSIC pseudo data in different freeze-out temper-
ature T . Solid lines are blastwave calculations using extracted paramteres.

is about 15 MeV low for hydro events at high temperature (or peripheral collisions). For events

at low freeze-out temperature (or central collisions), the extracted Tfo are very close to the true

temperature within ±5 MeV. We also notice the uncertainty is much larger for hydro events at low

freeze-out temperature than events at high temperature. Low T seem to have large uncertainties

because they are very sensitive to changing n.

3.4 Mapping Hydro Event onto Blastwave

Once we extract parameters through blastwave, the next step is to build a map (T, η/s)hydro →

(T, η/s)bw so that we can map temperature and viscosity of "true" hydro events onto blastwave fits.
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MUSIC
small n large n

n T (MeV) 4πη/s n T (MeV) 4πη/s

105 0.81 109.3 6.73 0.91 113.0 4.77
110 0.82 112.2 6.71 0.92 116.1 4.25
115 0.76 111.5 5.90 0.86 113.2 3.31
120 0.79 114.1 4.52 0.89 113.7 2.93
125 0.83 118.2 3.62 0.93 117.2. 2.38
130 0.83 116.4 3.26 0.93 117.8 1.81
135 0.87 120.5 2.45 0.97 120.5 1.75
140 0.91 122.8 1.75 1.01 122.7 1.33
145 0.95 126.3 1.34 1.05 126.4 1.10

Table 3.6: The extracted values of T and η/s for different n. We vary the values of n by adding or
subtracting 0.05 from the default ones.

MUSIC
4% uncertainty 6% uncertainty
T (MeV) 4πη/s T (MeV) 4πη/s

105 112.4 5.92 108.7 4.92
110 114.4 5.54 114.0 5.43
115 111.8 4.49 113.0 4.67
120 112.9 3.61 114.9 3.83
125 117.3 3.01 118.4 3.07
130 116.2 2.43 117.8 2.62
135 120.2 2.08 120.8 2.12
140 124.2 1.60 122.0 1.52
145 127.4 1.24 125.2 1.19

Table 3.7: The extracted values of T and η/s for different uncertainties assigned to MUSIC pseudo
spectra data. The uncertainty for v2 is 2% with a pedestal 0.002. The uncertainty for spectra is
changed to 4% and 6% as shown in the table.
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Figure 3.5: Elliptic flow v2 for MUSIC pseudo data in different freeze-out temperature T . Solid
lines are blastwave calculations using extracted paramteres.

To do that, first we write input and fit results in matrix form in (T, η/s)-space

AT =

105 110 115 120 125 130 135 140 145

6.03 5.28 4.52 3.77 3.02 2.51 2.01 1.51 1.01



BT =

111.2 114.0 112.7 113.9 117.7 117.2 120.0 123.0 126.3

5.83 5.43 4.67 3.75 3.01 2.59 2.07 1.55 1.23


here A, B are the matrices of MUSIC and blastwave results respectively. The first column is the
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Figure 3.6: Comparison of extracted freeze-out temperature and shear viscosity from blastwave
and values used in MUSIC events. Gray line shows the values of mapping MUSIC parameters
using our matrix parameterization.

freeze-out temperature in MeV and the second column is the specific shear viscosity in units of

1/4π. It turns out that a linear map between A and B has sufficient accuracy for our purpose. Now

the issue becomes a simple math problem, i. e. , we need to find a transformation matrix M so that

 T

η/s


bw

≈M

 T

η/s


hydro

(3.1)

or in (T, η/s)-space

BT ≈MAT (3.2)

where M is a 2 × 2 matrix. We write ≈ because the equation for M is over-determined and we

look for the optimal approximate solution. Multiplying from the right with A yields

BTA = MATA (3.3)
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The solution of the new equation is the approximation of the original one and its existence is

guaranteed. The solution is

M =

0.8365 3.90

0.0011 0.98


Using this M , we can calculate the values B′ = (MAT )T and compare with the target results B.

This is shown in Fig. 3.6. The mapM describes the fitted values rather well within uncertainties. In

other words, the matrixM is a good approximation of the mapping of hydro events onto blastwave.

We rewrite Eq. (3.2) as

AT = M−1BT (3.4)

where the inverse of matrix M maps the blastwave onto hydro event

M−1 =

 1.2017 −4.78

−0.0013 1.03

 .

We will use this inverse map below.

To validate matrix M , we generate two more sets of MUSIC pseudo data and extract their

blastwave parameters; see Tab. 3.8 and Tab. 3.9. They are generated by increasing and decreasing

η/s compared to Tab. 3.2 to create a band in T -η/s space. We then solve the mapping equation

Eq. (3.3) and finally obtain matrices M2 and M3.

MUSIC
T (MeV) 105 110 115 120 125 130 135 140 145
4πη/s 5.28 4.52 3.77 3.02 2.51 2.01 1.51 1.01 0.05

Blastwave
T (MeV) 110.7 113.8 111.9 113.4 118.5 117.5 121.4 124.6 128.4
4πη/s 5.23 4.79 3.73 3.14 2.84 2.36 1.55 1.10 0.60

Table 3.8: Second set of MUSIC events, using the same impact parameters and freeze-out tem-
perature as Tab. 3.2 but with smaller viscosity. The Tfo and η/s extracted from blastwave are also
shown.
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MUSIC
T (MeV) 105 110 115 120 125 130 135 140 145
4πη/s 6.79 6.03 5.28 4.52 3.77 3.02 2.51 2.01 1.51

BlastWave
T (MeV) 111.9 114.4 113.0 113.8 118.2 117.6 120.7 123.7 124.4
4πη/s 6.50 6.11 5.21 4.06 3.62 2.78 2.55 1.80 1.44

Table 3.9: Third set of MUSIC events, using the same impact parameters and freeze-out tem-
perature as Tab. 3.2 but with larger viscosity. The Tfo and η/s extracted from blastwave are also
shown.

M2 =

0.8611 3.81

0.0012 1.00

 M3 =

 0.8227 3.75

−0.0007 0.99


We observe that M2 and M3 are very close to M . Again using M2 and M3, we can calculate the

values B′ = (M2,3A
T )T and compare with the target results B. This is shown in Fig. 3.7 and 3.8.

The map M2,3 describes the fitted values rather well within uncertainties. We will use M2 and M3

below to help estimate uncertainties.
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Figure 3.7: Comparison of extracted freeze-out temperature and shear viscosity from blastwave
and values used in MUSIC event set 2. Dotted line is MUSIC set 1.
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Figure 3.8: Comparison of extracted freeze-out temperature and shear viscosity from blastwave
and values used in MUSIC event set 3. Dotted line is MUSIC set 1.

For completeness, we have also run a similar analysis for hydrodynamics pseudo data created

for Pb+Pb collisions at LHC energies. We use the same T -η/s points as given in Tab. 3.2 with

slightly different impact parameters. We find consistent extracted freeze-out temperature and shear

viscosity from blastwave. For example, for hydro event (T, η/s) = (125 MeV, 3.0/4π), we extract

(T, η/s) = (118 MeV, 3.0/4π) for Au+Au collisions and (T, η/s) = (122 MeV, 3.3/4π) for Pb+Pb

collisions. For hydro event (T, η/s) = (140 MeV, 1.5/4π), we extract (T, η/s) = (123 MeV, 1.6/4π)

for Au+Au collisions and (T, η/s) = (127 MeV, 1.5/4π) for Pb+Pb collisions.

There are few MeV differences for the extracted freeze-out temperature and little differences

for extracted shear viscosity. We obtain the map matrix MPb for Pb+Pb collisions at LHC energies

and find MPb to be consistent with M , within the uncertainties already estimated for M . As a first

step, we choose the matrix M here as an universal mapping matrix to be applied to both RHIC and

LHC data. In the future, we would like to check the dependence of mapping on particle species

and collision energies in more detail.
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3.5 Unfolding Experimental Fit Results

The blastwave fit results for LHC and RHIC measurements will be presented in detail in chapter

4. We argue that there are systematic biases introduced by the simplistic freeze-out hypersurface

and flow field, which can be quantitatively estimated and removed by comparing with hydrody-

namics. Suppose we have extracted values (T, η/s)data using a blastwave fit, we can use the map

from previous section to undo the bias:

 T

η/s


true

≈M−1

 T

η/s


data

(3.5)

The "true" here refers to values that could have been inferred using hydrodynamic calculations. Of

course it still would suffer from shortcomings of a hydrodynamic treatment of freeze-out, which

is beyond the scope of this work. As shown in chapter 4, we extract T and η/s from data with

assigned Gaussian uncertainties. The 1-σ region before unfolding is given by an ellipse

(x′ − a′)2

σ2
1

+
(y′ − b′)2

σ2
2

= 1 (3.6)

where the x-axis is T , the y-axis is η/s, (a′, b′) is the central value and σ1, σ2 are the corresponding

Gaussian uncertainties. Assuming x and y are values after unfolding, then

x
y

 = M−1

x′
y′

 =

 1.2017 −4.78

−0.0013 1.03


x′
y′

 . (3.7)

The ellipse in the original data is mapped onto another ellipse around (a, b) = (1.2017a′ −

4.78b′,−0.0013a′ + 1.03b′).

Using (x′, y′)T = M(x, y)T , we can express x′, y′ in terms of x, y and plug them into Eq. (3.6),
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then obtain the expression for the image of the original ellipse

(0.8365x+ 3.90y − a′)2

σ2
1

+
(0.0011x+ 0.98y − b′)2

σ2
2

= 1 . (3.8)

When written in standard form

c1(x− a)2 + c2(x− a)(y − b) + c3(y − b)2 = 1 (3.9)

We recognize it indeed as an ellipse with center (a, b). By doing this, the initial uncertainties can

be mapped to the (T, η/s)true plane. Note however that the main axes of the new ellipse are no

longer along the x and y-axes, see Fig. 3.9.

We also need to consider the effects of uncertainties in the mapping matrix M . Recall that

we have obtained three maps M , M2, M3 representing the band in the (T, η/s) plane. We will

interpret the alternative unfolded results using M2 and M3 as indications of an average expected

uncertainty in M ; see Fig. 3.9. The combined distribution is given by

f(x, y) =

∫
f1(x− x0, y − y0)f2(x0 − a, y0 − b)dx0dy0 (3.10)

where f1 is the Gaussian distribution calculated from matrix M , f2 is a Gaussian distribution of

center around (a, b) inferred from M2, M3. The integral Eq. (3.10) gives a Gaussian distribution

representing combined errors from the data analysis and unfolding.

The results of unfolding the main result of chapter 4 are shown in Fig. 3.10. From Fig. 3.10,

we can see the uncorrected extracted temperature is roughly between 110 MeV to 140 MeV with

η/s reaching the proposed lower bound at the latter temperature. After correcting the bias, our

extracted η/s reach the proposed lower bound around the pseudo critical temperature Tc. Overall

these results together are consistent with the idea of a minimum of the specific shear viscosity

around Tc.
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Figure 3.9: Example for the unfolding of a blastwave fit result. The left panel shows initial data
points and uncertainty mapped using the inverse of M . The right panel shows the variance in the
center value due to slight variations in the mapping matrix. Example is the ALICE 40-50% fit
result, T= 126 MeV and 4πη/s= 2.5 with uncertainties σT= 7 MeV and ση= 0.24.
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4. EXTRACTION OF THE SHEAR VISCOSITY OF HOT HADRONIC MATTER ∗

In this chapter, we use the viscous blastwave to extract the specific shear viscosity η/s of hot

hadronic matter at the kinetic freeze-out Tfo. The main effect of the time evolution of the system

before freeze-out is the build-up of a flow field uµ which leads to the system expanding and cooling.

Viscous corrections to first order are given by gradients of the flow field. Computing the flow field

in fluid dynamics introduces additional dependences on initial conditions and the equation of state.

Using a blastwave, we can fit the final flow field, together with the temperature and system size at

kinetic freeze-out. The specific shear viscosity is then a parameter at just one fixed temperature Tfo

and a set of chemical potentials µfo = (µB, µπ, . . .).

Such an extraction is complementary to fluid dynamics, which integrates over the effects of

shear viscosity over a wide temperature range. Some of the uncertainties in both approaches are

the same. For example, the assumption of a sharp kinetic freeze-out at a fixed temperature is

common to both approaches and is only an approximation. Other uncertainties are different in

both approaches. For example, the dependence of fluid dynamic calculations on initial conditions,

which themselves are not well constrained experimentally [12], is not present in our approach. We

will discuss these uncertainties in more detail below.

Here we present the results for Au+Au collisions at top RHIC energies and Pb+Pb collisions

at LHC where the baryon chemical potential vanishes µB ≈ 0. However, non-vanishing chemical

potentials µπ, µK and µp are present at kinetic freeze-out, determined by the chemical freeze-out

at higher temperatures.

4.1 Data Selection

The viscous blastwave has already been presented in chapter 2. We carry out the analysis

using data on identified protons and antiprotons, kaons and pions from LHC and RHIC. We utilize

both transverse momentum spectra around mid-rapidity, and elliptic flow v2, the leading harmonic

∗Part of this chapter is reprinted with permissions from “Extraction of the Specific Shear Viscosity of Hot Hadron
Gas” by Zhidong Yang and Rainer J. Fries, 2018, preprint, arXiv:nucl-th/1807.03410, Copyright 2018 by arXiv.
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deformation of the spectrum in azimuthal momentum space angle θ in the transverse plane, as

functions of hadron transverse momentum pT . They are calculated from Eq. (2.19) as

dN

2πpTdpTdy
=

1

2π

∫
dθ

dN

dyd2pT
, (4.1)

v2(pT ) =

(
dN

2πpTdpTdy

)−1
1

2π

∫
dθ cos(2θ)

dN

dyd2pT
, (4.2)

respectively. Note that the blastwave does not incorporate fluctuations. This is one reason why

we will not analyze the most central and peripheral centrality bins available which are known to

exhibit large effects due to fluctuations. All expressions in the blastwave are taken at rapidity y = 0

and we have utilized matching data sets that have been taken around midrapidity.

We use data from the ALICE collaboration for Pb+Pb collisions at 2.76 TeV [53, 71, 65],

in 10% centrality bins, and from the PHENIX collaboration for Au+Au collisions at 200 GeV

[52, 72]. The PHENIX data is binned in 10 or 20% centrality bins for the spectra and 10% centrality

bins for elliptic flow. For this analysis, if the PHENIX spectrum is only available in a coarser

bin we combine a given 10% bin for elliptic flow together with the overlapping 20% bin for the

spectrum. We find that centralities that share the coarser spectrum bins give results for temperature

and specific shear viscosity that agree very well with each other within estimated uncertainties. E.g.

from Fig. 4.8 (will present later) we can read off that the results for the 20-30% v2 and 20-40%

spectrum bins are consistent with the same quantities extracted from the 30-40% v2 and 20-40%

spectrum bins. The same is found for the bins spanning the 40-60% centrality spectra bin. We

conclude that the increased uncertainty from the slight misalignment of bins is well covered by the

other estimated uncertainties to be discussed below.

The selection of data points for the fit can introduce a bias that we try to quantify as an uncer-

tainty. The following general principles were applied in the selection. We expect the blastwave

parameterization to extract inaccurate parameters at too low momenta where resonance decays

dominate the spectrum [73]. We also expect it to fail at too large momenta where gradient cor-

rections become large, and hadrons from other production channels, like hard processes, start to
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dominate soft particles from the bulk of the fireball. The maximum momentum pT described by

the blastwave increases from peripheral to more central collisions, since particles are expected to

be more thermalized when volumes and lifetimes are larger. In addition, flow pushes particles with

the same velocity to higher momentum if their mass is larger. Thus fit ranges for heavier particles

can extend farther.

Using these guiding principles, we choose a preferred fit range in transverse momentum for

each centrality, collision energy and particle species. We call this selection the regular fit range

(RFR). For example, the regular fit range for ALICE data in the 30-40% centrality bin uses data

points for the spectra in the pT -intervals 0.525-1.65 GeV/c, 0.225-2.25 GeV/c and 0.325-3.10

GeV/c for pions, kaons and protons, respectively. The RFR for all data sets used here is shown in

Tab. 4.1. The v2 data points included in this analysis are chosen to be consistent with the spectrum

data points.

Centrality proton (GeV/c) kaon (GeV/c) pion (GeV/c) b (fm) c2
s cτ

ALICE 2.76 TeV
10-20% 0.325-3.3 0.225-2.55 0.525-1.85 6.05 0.158 0.783
20-30% 0.325-3.1 0.225-2.35 0.525-1.75 7.81 0.162 0.755
30-40% 0.325-3.1 0.225-2.25 0.525-1.65 9.23 0.166 0.720
40-50% 0.325-2.95 0.225-2.15 0.525-1.45 10.47 0.170 0.679
50-60% 0.325-2.55 0.225-1.85 0.525-1.25 11.58 0.174 0.633

PHENIX 0.2 TeV
10-20% 0.55-2.9 0.55-1.85 0.55-1.65 5.70 0.164 0.780
20-40% 0.55-2.7 0.55-1.75 0.55-1.55 8.10 (7.4, 8.7) 0.170 0.735
40-60% 0.55-2.5 0.55-1.65 0.55-1.45 10.5 (9.9, 11,0) 0.178 0.660

Table 4.1: Regular fit range (RFR) selected for each ALICE and PHENIX centrality bin for the
spectra of all three particle species. The bins for elliptic flow data are chosen consistently. We
also show the average impact parameter b from Glauber Monte Carlo calculations quoted by the
experiments, and the speed of sound squared c2

s and the expansion parameter cτ determined for
each data set. For PHENIX data the average impact parameter for the two 10% bins included in a
given 20% bin are quoted in parentheses.

We note that our fit ranges for ALICE data extend to higher momentum compared to the fit
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ranges previously used by the ALICE collaboration for their blastwave fits without viscous cor-

rections [52]. In Ref. [52], the fit ranges for spectra are 0.5-1 GeV/c, 0.2-1.5 GeV/c, 0.3-3 GeV/c

for pions, kaons and protons, respectively. For each data set we supplement the regular fit ranges

with lower (LFR) and higher (HFR) fit ranges in an attempt to quantify uncertainties from fit range

selection. This will be discussed in detail in the next section.

As discussed in chapter 2, not all parameters are good fit parameters and we are often interested

in parameters that reflect the main features of the blastwave model; others are less interesting. We

constrainRx,Ry and Tfo by fitting the ratioRy/Rx, the time τfo and by adding the simple geometric

estimate (also mentioned in Eq. (2.62))

Rx ≈ (R0 − b/2) + τfocτ (α0 + α2) , (4.3)

for the propagation of the fireball boundary in the x-direction. Here R0 is the radius of the col-

liding nucleus and b is the impact parameter. The expansion parameter cτ = ᾱ0/α0 relates the

time-averaged surface velocity ᾱ0 with its final value α0 at freeze-out. The boundary velocity pa-

rameters α0 and α2 at freeze out are fitted to data. cτ can be estimated to be between 0.6 and 0.8

going from the most peripheral bin to the most central bin in the analysis. This can be inferred

from typical radial velocity-vs-time curves obtained in fluid dynamic simulations [74]. As this

is a simple model we vary cτ in the next section to explore the uncertainties from this choice of

parameter reduction, see Tab. 4.9. The impact parameter b used for each centrality bin is taken

from Glauber Monte Carlo simulations used by the corresponding experiment [53, 75].

The parameter λ is related to the scalar momentum dependence in δf . In principle, one could

choose it as a fit parameter. We have run analysis with different values of λ which indicated that

a value around λ ∼ 2 is preferred. For example, for the 30-40% ALICE centrality we have varied

λ in a step of 0.25 around 2. We find the best fits (largest likelihood) for λ = 2 ... 2.25 with

significant drops of likelihood outside of this region. We conclude that λ = 2 is a good choice for

this work. This is also an assumption widely used in literature [26, 14, 54]. Of course, it would be
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interesting to explore the effect more systematically in the future. Here we will set λ = 2.

The speed of sound squared c2
s for a hadronic matter is discussed e.g. in [76, 77]. We use [76]

to adjust c2
s iteratively with the temperature found for each fitted centrality and collision system.

The values we find are given in Tab. 4.1 for quick reference. Further below we will explore the

dependence of the extracted shear viscosity and temperature on our choice of speed of sound by

varying c2
s. The relevant chemical potentials are not quite settled in the literature [78, 79, 80, 81,

76]. Typical values of µπ= 60-80 MeV and µK= 100-130 MeV at kinetic freeze-out Tk= 110-120

MeV. We find good fits for chemical potentials for pions roughly consistent with [81, 76]. The

values for (µπ, µK , µp) for each data set are summarized in Tab. 4.2. Again we account for the

uncertainties by varying the chosen values in the uncertainty analysis in the next section.

centrality µπ (MeV) µK (MeV) µp (MeV) T (MeV)
ALICE 2.76 TeV
10-20% 70 100 245 113
20-30% 64 85 220 118
30-40% 61 73 203 121
40-50% 58 63 190 126
50-60% 55 47 170 130
PHENIX 0.2 TeV
10-20% 65 62 200 121
20-40% 61 51 188 124
40-60% 53 22 138 134

Table 4.2: Chemical potentials for pion, kaon and proton for each ALICE and PHENIX data set in
its regular fit range, together with the extracted freeze-out temperatures.

Error bars for experimental data are crucial inputs for the statistical analysis. In the absence

of further details about correlations between error bars we use the statistical and systematic errors

quoted by experiments, summed in quadrature, for each momentum bin. This is the uncertainty

input to the MADAI analysis. This procedure works well for ALICE data (here "works well"

means we obtain reasonable results from MADAI analysis).
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Total error ALICE PHENIX
30-40% 10-20% 20-40% 40-60%

spectra(%) 5.65 1.23 0.89 0.92
v2(%) 3.24 6.71 3.13, 3.29 3.27, 3.80

Table 4.3: Typical error percentage, defined as the median for all bins in the RFR, for PHENIX
data. The statistical error only is shown for the spectra. For comparison we also show one centrality
bin of ALICE data. When two values for the error on v2 are given they refer to the values in the
smaller 10%-wide centrality bin covered.

Systematic errors for PHENIX identified hadron pT -spectra are discussed in [52] but numbers

are not included in the published data files. We thus start with the provided statistical errors and

scale them up. Interestingly, we find that the statistical analysis also strongly suggests that statis-

tical error bars alone for the PHENIX pT -spectra are insufficient in the presence of much larger

uncertainties for elliptic flow. This comes about because there is a competition between fits to

pT -spectra and v2 regarding the best value of η/s. Momentum spectra prefer small viscous correc-

tions, while v2 data typically prefer large viscous corrections. The optimized η/s will be a balance

between these constraints. If error bars are unbalanced between spectra and v2, we see large like-

lihoods but nevertheless ill-fitting approximations for the quantity with larger error bars. We have

to assume that the extraction of η/s is then biased in one direction. This suggests that if there is an

imbalance, say the spectrum has much smaller relative error bars than elliptic flow, we increase the

error bars on the quantity with tighter error constraints. This amounts to accepting an overall larger

uncertainty for possibly less bias in the analysis. As a result of these considerations we multiply

the statistical error given for PHENIX spectra by factors of 1.5, 3 and 4 for the 10-20%, 20-40%

and 40-60% centrality bins, respectively. Table 4.3 shows the typical relative error in some data

sets in the regular fit range (RFR), before adjustments are made. The typical value is defined as the

median value within the RFR for all three hadron species.

4.2 Fit Results

With the preparations from the previous sections in place we go ahead and analyze the avail-

able data for each energy and centrality bin. We use the statistical analysis package MADAI to
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determine fit parameters, which we have introduced in chapter 3. The fit results are generally of

good quality despite the relatively large RFR fit range. As an example, we discuss here the 30-40%

centrality bin for ALICE data in detail. Fig. 4.1 shows the results for the fit parameter set P from

the statistical analysis for fits in the RFR of this data set.
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Figure 4.1: Likelihood analysis for ALICE data in the 30-40% centrality bin provided by the
MADAI package. The diagonal show posterior likelihood distributions. The off-diagonal plots
show correlations between parameters.

The horizontal and vertical axes show the chosen prior ranges for the parameters P . From left

to right (top to bottom): T (MeV), α0, n, Ry/Rx, α2, η/s, τ (fm/c). Plots on the diagonal show

posterior likelihood distributions. The off-diagonal plots show correlations between parameters.
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The likelihood plots on the diagonal of Fig. 4.1 show well defined peaks. Based on the output of

the MADAI package, the preferred (average) values for this ALICE centrality bin are τ = 11.4

fm/c, T=122 MeV, α0=0.830c, n=0.87, Ry/Rx=1.27, α2=0.056c, η/s=4.1/4π. The fit range and

the values for the external parameters cτ , c2
s and chemical potentials are given in Tab. 4.1 and Tab.

4.2, respectively.

Although we have already eliminated some parameters from the blastwave, there are still cor-

relations between the remaining parameters in P . Most prominently, there is an expected anti-

correlation between freeze-out time and temperature which comes from the constraint on the over-

all number of particles. Surprisingly there is no pronounced anti-correlation between temperature

and radial flow parameter α0, which means that the choice of three different hadrons to fit, and the

sizes of the fit ranges, are sufficient to cleanly separate thermal and collective motion. We note a

correlation between the elliptic flow parameter α2 and η/s. As expected, for larger values of pT

these two parameters move the elliptic flow in different directions, i.e. an increase in one of these

parameters will necessitate an increase in the other one. The correlations seen in this centrality bin

are found to be qualitatively true for the other energies and centrality bins as well.

Using the preferred parameters, we calculate the transverse momentum spectra and elliptic

flow v2 for the 30-40% ALICE centrality bin. We show these calculations together with the data

in Fig. 4.2. The bottom of the figure shows the ratio of calculation over data. For the majority of

pT -bins the deviation is less than 5%, and it rarely exceeds 20%. If the experimental error bars are

included, the ratio is consistent with one almost everywhere in the RFR.

We analyze other centrality bins of ALICE analogously. The results for all ALICE centrality

bins are summarized in Tab. 4.4 and the fits with preferred parameter values are shown in Fig. 4.4

and Fig. 4.5. We note that the general trends of parameters as functions of centrality are consistent

with expectations. The freeze-out temperature Tfo rises toward smaller systems. The boundary

velocity α0 reduces slightly at the same time. The spatially averaged radial velocity is given by

〈vT 〉 =

∫
α0ρ

nd2r∫
d2r

=
2

2 + n
α0 (4.4)
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Figure 4.2: Left panel: Transverse momentum spectra for pions, kaons and protons (solid lines),
respectively, using the extracted, preferred fit parameters for the ALICE 30-40% centrality bin.
Right panel: Elliptic flow v2 for the same parameters, together with ALICE data (circles). Ratios
of calculations to data are shown below the panels.

which drops more significantly due to the concurrent change in the radial shape parameter n, as

shown in Fig. 4.3. These systematic trends give an important qualitative check of the fit results.

However, we will not be interested in further interpretation of fit parameters other than the temper-

ature and specific shear viscosity. The ALICE data sets provide us with a range of temperatures

from roughly 113 MeV to 130 MeV.

The sensitivity of the calculated elliptic flow on η/s at freeze-out is shown in Fig. 4.2. As

expected, at large pT the corrections from δf are largest; thus extracted values of η/s are very

sensitive to v2 at large pT . As discussed earlier, δf cannot be too large and higher order corrections

in shear stress would have to be taken into account if δf ≈ f . We have chosen the RFR such

that v2 starts to deviate from the equilibrium behavior at large pT , but we generally exclude points

for which the slope of v2 turns negative. In the RFR, we find that the viscous correction is largest

for protons, topping out at 19% for the largest pT -bin in the spectrum for the 40-50% centrality

bin. For kaons and pions the largest corrections for the spectra are 11% and 4%, respectively. The

typical size of viscous corrections is much smaller than the maximum numbers quoted here.
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Centrality τ (fm/c) T (MeV) α0/c n Ry/Rx α2/c 4πη/s

ALICE 2.76 TeV
10-20% 14.8 113 0.856 0.78 1.14 0.036 5.9
20-30% 13.1 118 0.839 0.80 1.20 0.052 5.5
30-40% 11.4 122 0.830 0.87 1.27 0.056 4.1
40-50% 10.0 126 0.835 1.07 1.36 0.047 2.5
50-60% 8.7 130 0.823 1.27 1.43 0.043 1.7
PHENIX 0.2 TeV
10-20% 10.9 121 0.734 0.80 1.09 0.046 3.3
20-30% 9.3 124 0.742 0.94 1.17 0.053 2.0
30-40% 9.1 124 0.733 0.90 1.23 0.058 1.6
40-50% 7.2 132 0.704 1.03 1.31 0.063 1.1
50-60% 7.0 135 0.689 1.00 1.35 0.063 0.9

Table 4.4: Preferred values for the parameter set P obtained for different centrality bins for ALICE
and PHENIX data in the regular fit range.

We repeat the analysis with data from PHENIX in 200 GeV Au+Au collisions. The preferred,

average values are also summarized in Tab. 4.4. The fits with preferred parameter values are shown

in Fig. 4.6 and Fig. 4.7 together with PHENIX data. The behavior of the parameters as a function

of centrality is similar to the one discussed for the ALICE data sets. The extracted temperatures

range, roughly 122 MeV to 136 MeV, overlaps with ALICE.

It is an important consistency check that the extracted values for η/s are consistent between

ALICE data taken at
√
sNN = 2.76 TeV and PHENIX data taken at

√
sNN = 0.2 TeV, within

uncertainties. We summarize the results for η/s vs temperature T from all data sets in Fig. 4.8.

The main qualitative feature is a decrease in η/swith increasing temperature, as would be expected

from general principles. However, values close to the lower bound for η/s are already reached at

the upper end of the temperature range.

4.3 Uncertainty Analysis

Let us now turn to a discussion of the uncertainties in our analysis. We can group them into four

categories, ranging from basic statistical errors to rather fundamental in nature: (I) Fundamental

limitations in our freeze-out ansatz that are shared between blastwave and fluid dynamics, e.g.
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Figure 4.3: The spatially averaged radial velocity 〈vT 〉 from blastwave calculation using extracted
parameters. Centrality increases from left to right.

from the validity of the Navier-Stokes approximation, and the assumption of a sharp freeze-out

hypersurface. (II) Uncertainties and biases from assumptions made specifically in our blastwave

model, e.g. the simple ansatz for the freeze-out hypersurface and the flow field, and the lack of

resonance decays and bulk stress effects. (III) Uncertainties from our choice of external parameters

and choice of fit ranges. (IV) Uncertainties from the errors in experimental data and the quality

of the Gaussian emulator. A thorough analysis of item (I) is beyond the scope of this work and

cannot be achieved within the blastwave model. However we will attempt to analyze the other

three sources of uncertainty.

Uncertainties in extracted parameters from the error bars in our data sets and statistical analysis

(type IV), are provided by the MADAI code. We quote the widths σstat
T , σstat

η of temperature and

specific shear viscosity for each centrality bin and energy. We estimate uncertainties summarized

under (III) by systematically varying the underlying assumptions. E.g., as discussed earlier we

choose alternative fit ranges which are shifted to lower (LFR) or larger (HFR) pT . Limitations

apply as we do not want to push too far into regions where we expect our blastwave to fail, see the
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Centrality
low fit range (GeV/c) high fit range (GeV/c)

proton kaon pion proton kaon pion
ALICE 2.76 TeV
10-20% 0.325-2.05 0.225-1.45 0.19-0.975 1.25-3.3 0.775-2.65 0.875-2.05
20-30% 0.325-2.05 0.225-1.35 0.19-0.925 1.25-3.1 0.775-2.35 0.875-1.95
30-40% 0.325-2.05 0.225-1.25 0.19-0.825 1.25-3.1 0.725-2.25 0.825-1.85
40-50% 0.325-1.95 0.225-1.15 0.19-0.825 1.25-2.95 0.725-2.15 0.825-1.75
50-60% 0.325-1.95 0.225-1.15 0.19-0.725 1.05-2.75 0.725-2.05 0.825-1.55

PHENIX 0.2 TeV
10-20% 0.65-2.5 0.55-1.55 0.55-1.35 0.65-2.9 0.55-1.85 0.65-1.85
20-40% 0.65-2.3 0.55-1.45 0.55-1.25 0.65-2.7 0.55-1.75 0.55-1.75
40-60% 0.65-2.1 0.55-1.35 0.55-1.15 0.65-2.5 0.55-1.65 0.55-1.65

Table 4.5: Definitions of lower fit range (LFR) and higher fit range (HFR) for ALICE and PHENIX
spectrum data in different centrality bin. The ranges for v2 data are chosen commensurately.

discussion of fit ranges in Sec. 4.1.

We discuss results once more for the 30-40% ALICE centrality bin as an example. For the un-

certainty analysis we focus on the results for the extracted temperature and specific shear viscosity.

Table 4.5 shows the three fit ranges, LFR, RFR, HFR for all three particle species for this data set.

Both temperature and η/s show moderate dependencies on the fit range. This is expected for the

temperature, where a change in pT samples different admixtures of resonance decays in spectra

with different slopes and thus apparent temperatures. We parameterize the deviations seen from

the RFR values as Gaussian fluctuations with widths σrange
k (k = T, η). We repeat this analysis for

all other centralities and energies with qualitatively similar results.

As discussed earlier, we also study the effects of variations in the chemical potential, speed of

sound squared, and the expansion parameter cτ . Tab. 4.7 shows the values for T and η/s extracted

for the 30-40% ALICE centrality bin for ±15 MeV variations in the pion chemical potential.

We find that the temperature is rather insensitive to variations of µπ while η/s displays moderate

sensitivity. We again assign Gaussian widths σµk (k = T, η) for the uncertainty from this source.

We proceed similarly with variations in c2
s (Tab. 4.8) and cτ (Tab. 4.9). In both cases we find again

very little influence on the extracted temperature. Finally we combine the uncertainties of types
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Centrality
low fit range high fit range

T (MeV) 4πη/s T (MeV) 4πη/s

ALICE 2.76 TeV
10-20% 108.3 5.83 117.2 5.11
20-30% 110.8 5.40 121.4 4.94
30-40% 113.4 3.85 125.2 3.43
40-50% 115.5 2.42 131.3 2.10
50-60% 118.2 1.73 137.4 1.44

PHENIX 0.2 TeV
10-20% 116.1 2.61 124.8 3.24
20-30% 121.7 2.77 128.2 2.38
30-40% 122.9 2.31 129.1 1.89
40-50% 128.6 1.10 135.9 1.21
50-60% 132.7 1.07 139.1 0.97

Table 4.6: Extracted temperature and specific shear viscosity for lower fit range (LFR) and higher
fit range (HFR) for ALICE spectrum data in different centrality bin.

(III) and (IV) by adding the individual widths σiT and σiη in quadrature. Note that this assumption of

Gaussian behavior here is simply an approximation. The error bars in T and η/s shown in Fig. 4.8

are the result of this analysis. Tab. 4.10 and Tab. 4.11 summarize the uncertainties. The left panel

of Fig. 3.10 shows our best fit results for ALICE and PHENIX data with combined uncertainties

of types (III) and (IV).

Finally we discuss the impact of uncertainties of type (II) on our result. Our blastwave is com-

pared to viscous fluid dynamics in detail in chapter 3. We briefly summarize the results relevant

for this chapter. In order to quantify what happens when complex final states are fitted by blast-

waves, one can compare particle spectra and elliptic flow from output of the viscous fluid dynamic

code MUSIC, and subsequently apply the same analysis that we have carried out for experimental

data. The key is that in the case of MUSIC we know the precise temperature of freeze-out and the

specific shear viscosity set in the code. Let us recall that the there are four main simplifications

compared to fluid dynamics in our blastwave: (a) simplified hypersurface, (b) simplified flow field,

(c) absence of resonance production and decay, and (d) absence of bulk stress corrections to par-

ticle distributions. While we focus on the compound effect here one could in principle study the
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Centrality
small µfo large µfo

µπ (MeV) T (MeV) 4πη/s µπ (MeV) T (MeV) 4πη/s

ALICE 2.76 TeV
10-20% 55 112.4 6.14 85 114.5 5.64
20-30% 49 117.0 5.91 79 119.1 5.46
30-40% 46 121.0 4.01 76 122.7 3.82
40-50% 43 124.5 2.59 73 126.6 2.37
50-60% 40 127.5 1.76 70 131.5 1.58
PHENIX 0.2 TeV
10-20% 50 121.3 4.35 80 122.5 3.80
20-30% 46 125.0 1.90 76 126.3 1.79
30-40% 46 125.5 1.51 76 126.4 1.39
40-50% 38 133.5 1.29 68 134.4 1.10
50-60% 38 134.7 1.00 68 136.2 0.97

Table 4.7: The freeze-out temperature T and specific shear viscosity η/s extracted for different
values of pion chemical potential µπ. We vary the values of µπ by adding or subtracting 15 MeV
from the regular ones.

Centrality
small c2

s large c2
s

c2
s(c

2) T (MeV) 4πη/s c2
s(c

2) T (MeV) 4πη/s

ALICE 2.76 TeV
10-20% 0.142 113.1 5.92 0.174 113.7 5.74
20-30% 0.146 117.3 5.42 0.178 118.2 5.61
30-40% 0.15 121.8 4.27 0.182 122.0 3.85
40-50% 0.154 125.4 2.54 0.186 125.4 2.38
50-60% 0.158 130.5 1.70 0.19 130.4 1.63
PHENIX 0.2 TeV
10-20% 0.148 121.3 4.35 0.18 122.5 3.80
20-30% 0.154 125.7 2.19 0.186 125.8 1.76
30-40% 0.154 125.9 1.67 0.186 126.0 1.37
40-50% 0.162 132.0 1.07 0.194 132.6 0.99
50-60% 0.162 134.6 0.96 0.194 135.5 0.87

Table 4.8: The same as Tab. 4.7 for a variation of the speed of sound squared c2
s. We vary the

values of c2
s by adding or subtracting 0.016 from the regular ones.
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Centrality
small cτ large cτ

cτ T (MeV) 4πη/s cτ T (MeV) 4πη/s

ALICE 2.76 TeV
10-20% 0.737 113.8 5.91 0.832 113.3 6.04
20-30% 0.706 117.9 5.40 0.81 117.5 5.95
30-40% 0.666 121.6 3.82 0.781 121.2 4.12
40-50% 0.62 125.5 2.37 0.744 125.7 2.57
50-60% 0.568 130.3 1.59 0.706 129.3 1.72
PHENIX 0.2 TeV
10-20% 0.722 121.9 4.31 0.846 121.6 2.96
20-30% 0.668 125.7 1.77 0.815 125.4 2.02
30-40% 0.665 125.9 1.33 0.812 125.9 1.64
40-50% 0.586 133.5 1.29 0.76 134.4 1.10
50-60% 0.583 135.3 0.86 0.757 135.4 0.98

Table 4.9: The same as Tab. 4.7 for a variation of time-averaged surface velocity parameter cτ .

effect of each of these simplifications separately. In chapter 3, a map (T, η/s)hydro → (T, η/s)bw

is created from an array of blastwave fits to fluid dynamic calculations on a grid of (T, η/s)hydro

settings. We choose the T ranges and error bars for the analysis of MUSIC pseudo-data to be

roughly consistent with the T ranges used in the actual data analyses. We also determine uncer-

tainties analogous to the procedure used for fits to experimental data. We find that the extracted

specific shear viscosities are mostly consistent with true values within uncertainties. However,

the extracted temperature can be distorted and underestimates the true temperature significantly at

high T . The map can be parameterized to very good approximation in the region of interest by a

simple linear matrix M in (T, η/s)-space

 T

η/s


bw

=

0.8365 3.90

0.0011 0.98


 T

η/s


hydro

(4.5)

where temperatures are measured in MeV and η/s is in units of 1/4π. By inverting M we can cor-

rect the results (T, η/s)extracted in this work and undo the bias introduced by the blastwave approx-

imations: (T, η/s)extracted → (T, η/s)corrected. (T, η/s)extracted are the results from our fits together
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Centrality
uncertainties for 4πη/s

Stat. analysis fit range µπ c2
s cτ total ση

ALICE 2.76 TeV
10-20% 0.686 0.354 0.207 0.076 0.065 0.81
20-30% 1.005 0.228 0.214 0.083 0.247 1.08
30-40% 0.347 0.262 0.103 0.172 0.128 0.50
40-50% 0.169 0.161 0.09 0.066 0.081 0.27
50-60% 0.150 0.124 0.074 0.029 0.053 0.22

PHENIX 0.2 TeV
10-20% 0.784 0.482 0.262 0.434 0.556 1.11
20-30% 0.431 0.360 0.050 0.180 0.102 0.60
30-40% 0.306 0.280 0.098 0.133 0.144 0.47
40-50% 0.193 0.060 0.097 0.038 0.074 0.24
50-60% 0.162 0.062 0.033 0.037 0.049 0.19

Table 4.10: A summary of uncertainties σiη for specific shear viscosity. Here i refers to the different
contributions discussed in the text.

with uncertainties of type (III) and (IV). As a result of removing the bias from the blastwave fit η/s

drops more slowly with increasing temperature. We also propagate the error of our results through

M−1 and add the uncertainty from the determination of M . This is the error shown in our final

result discussed in the next section.

4.4 Discussion

We have introduced a blastwave model with viscous corrections due to shear stress in the

Navier-Stokes approximation. The blastwave model can obtain excellent fits to hadron spectra and

v2 over a large range of pT . The viscous correction term helps to describe the slow down of the

growth of v2 with pT . This model provides a reliable instrument that can give useful snapshots of

the dynamically evolving fireball.

To further demonstrate the usefulness we plot predictions for the spectra and v2 for two more

particles, the Λ baryon and the deuteron d, in a mid-central bin as examples. The results are shown

in Fig. 4.9, Fig. 4.10 and Fig. 4.11 together with ALICE data [82, 83, 65]. Note that our calculation

is a prediction in the sense that the Λ and deuteron data have not been used to fix the blastwave
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Centrality
uncertainties for T (MeV)

Stat. analysis fit range µπ c2
s cτ total σT

ALICE 2.76 TeV
10-20% 1.70 3.64 0.86 0.25 0.24 4.1
20-30% 1.70 4.42 0.86 0.39 0.22 4.8
30-40% 1.90 4.97 0.69 0.08 0.29 5.4
40-50% 2.20 6.53 0.86 0.05 0.09 6.9
50-60% 2.60 7.91 1.66 0.17 0.43 8.5

PHENIX 0.2 TeV
10-20% 1.17 3.61 0.49 0.09 0.12 3.8
20-30% 1.62 2.67 0.53 0.08 0.12 3.2
30-40% 1.76 2.54 0.44 0.26 0.28 3.2
40-50% 2.13 3.03 0.42 0.62 0.33 3.8
50-60% 2.11 2.62 0.62 0.45 0.12 3.5

Table 4.11: A summary of uncertainties σiT for temperature. Here i refers to the different contri-
butions discussed in the text.

parameters. Chemical potentials for both species have been fixed, for example in 30-40% they

are 344 and 314 MeV. We find overall good agreement for this centrality bin. This is interesting

since there have been questions in both cases about the validity of a common freeze-out with stable

hadrons. In particular, the deuteron is often thought to be emerging from coalescence processes

after freeze-out [82, 84, 85]. We find that, whatever the detailed mechanism of deuteron creation,

the spectra and elliptic flow are described reasonably well by the same temperature and flow field

that also describes stable hadrons, at least in mid-central collisions.

Let us now turn to a discussion of the particular application of our blastwave we have focused

on here. From two different collision systems, Pb+Pb at LHC energy and Au+Au at top RHIC

energy we have extracted several η/s-vs-T points that are consistent with each other within esti-

mated uncertainties. They give us a first (uncorrected) temperature dependence of η/s between

roughly 110 MeV to 140 MeV, reaching the proposed lower bound at the latter temperature. We

have carefully analyzed the uncertainties of type (II) that come specifically from the simplifying

assumptions made in blastwave models. We find a systematic bias that underestimates the temper-

ature T at larger temperatures. When we correct for this bias, we find the final result shown by the
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dots and stars in Fig. 4.12 with the compound uncertainties shown as ellipses.

We also show results for η/s for the hadronic phase from hadronic cascades UrQMD [35],

B3D [86] and SMASH [37]. They generally show larger values of η/s above T ∼ 100 MeV.

One could speculate that below T ∼ 100 MeV the results might converge within uncertainties,

as the UrQMD and SMASH results switch their behavior to a temperature slope similar to our

results. Unfortunately we do not have the data points to confirm this. After the work for this thesis

was completed, a new result by Dash et al. using hadronic transport was published [87]. They

obtain rather small values of η/s and are roughly consistent with our results. We also show several

calculations of the specific shear viscosity in the QGP phase, from lattice QCD [41, 42, 44] and

using next-to-leading perturbative QCD [47]. After correcting the bias, our extracted η/s reaches

the proposed lower bound around the pseudocritical temperature Tc. Overall these results together

are consistent with the idea of a minimum of the specific shear viscosity around Tc. Our result

specifically would indicate that interactions in the hadronic phase continue to be strong just below

Tc while hadronic transport suggests a more abrupt change below Tc. The gray band in Fig. 4.12

represents a simple parameterization of our result. The center line is η/s = 1.6× 102 × (0.160−

T )2 + 0.08 where T is measured in GeV. This is the preferred value of η/s as a function of T

between 100 and 150 MeV temperature.

We need to keep in mind that relatively large chemical potentials for stable hadrons build up in

the collision systems that we have analyzed here. E.g. the chemical potential for pions is as large

as 70 MeV at the lowest temperature points we have extracted. Thus Fig. 4.12 is a projection of

a more complicated plot with additional chemical potential axes. Studies with hadronic transport

have indicated that finite chemical potentials can indeed lead to smaller values of η/s [35] in this

picture.

The fate of η/s in the hadronic phase continues to be intriguing. We have added a scenario,

based on extraction from data, that predicts a gradual rise of η/s while the temperature drops from

150 to 110 MeV and chemical potentials increase. Our approach is based on data taken in heavy ion

collisions but has built in uncertainties. We have quantified the more accessible uncertainties (IV)
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and (III) related to the analysis itself and to systemic uncertainties from choices made during the

analysis. We have also made a first attempt to estimate the weaknesses of the blastwave compared

to a full fluid dynamic simulation, i.e. uncertainties of type (II). More fundamental uncertainties

remain which may be quantified elsewhere.

Certain aspects of the current analysis will be improved in the near term future. For example,

the detailed energy dependence of the shear stress term, parameterized by λ, and the effects of bulk

stress could be included, albeit at the expense of adding two parameters to the analysis. One could

also include an analysis of the asymmetry coefficient v4, which requires a generalization of both

hypersurface and flow field of the blastwave. Lastly, resonances and their decays could in principle

be included in the calculation.
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Figure 4.4: Transverse momentum spectra for pions, kaons and protons (solid lines), respectively,
together with ALICE data (circles) in different centrality bins. Solid lines are blastwave calculation
using extracted paramteres. Ratios of calculations to data are shown below the panels.
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Figure 4.5: Elliptic flow v2 for pions, kaons and protons (solid lines), respectively, together with
ALICE data (circles) in different centrality bins. Solid lines are blastwave calculation using ex-
tracted parameters. Ratios of calculations to data are shown below the panels.

77



● ● ● ● ● ● ●
● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0.5 1.0 1.5 2.0 2.5 3.0

10-2

10-1

1

101

102

dN
/d
P
T
2
dy

(c
2
/G
eV

2
)

P+P(×0.2)

K
-+K+

π-+π+

 PHENIX Au+Au 10-20%
—— Viscous blast wave

◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★

◆ proton ▼ kaon ★ pion

0.5 1.0 1.5 2.0 2.5 3.0
0.6

0.8

1.0

1.2

1.4

PT (GeV/c)

fit
/d
at
a

● ● ● ● ● ● ●
●

● ●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

0.5 1.0 1.5 2.0 2.5 3.0

10-3

10-2

10-1

1

101

102

dN
/d
P
T
2
dy

(c
2
/G
eV

2
)

P+P(×0.2)

K
-+K+

π-+π+

 PHENIX Au+Au 20-40%
—— Viscous blast wave

◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★

◆ proton ▼ kaon ★ pion

0.5 1.0 1.5 2.0 2.5 3.0
0.6

0.8

1.0

1.2

PT (GeV/c)

fit
/d
at
a

● ● ● ● ●
● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0.5 1.0 1.5 2.0 2.5 3.0

10-3

10-2

10-1

1

101

dN
/d
P
T
2
dy

(c
2
/G
eV

2
)

P+P(×0.2)

K
-+K+

π-+π+

 PHENIX Au+Au 40-60%
—— Viscous blast wave

◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼★ ★ ★ ★ ★ ★ ★ ★ ★ ★

◆ proton ▼ kaon ★ pion

0.5 1.0 1.5 2.0 2.5 3.0
0.6

0.8

1.0

1.2

1.4

PT (GeV/c)

fit
/d
at
a

Figure 4.6: Transverse momentum spectra for pions, kaons and protons (solid lines), respectively,
together with PHENIX data (circles) in different centrality bins.
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Figure 4.7: Elliptic flow v2 for pions, kaons and protons (solid lines), respectively, together with
PHENIX data (circles) in different centrality bins.
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Figure 4.8: Specific shear viscosity η/s at corresponding kinetic freeze-out temperature T ex-
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Figure 4.9: Left panel: Transverse momentum spectra for Λs and deuterons (solid lines), re-
spectively, calculated for the 10-20% centrality bin in Pb+Pb collisions together with ALICE data
(symbols). Right panel: Elliptic flow v2 for Λ + Λ̄ and d+ d̄ (solid lines) in the 10-20% centrality
bin together with ALICE data (circles). We again show the elliptic flow calculated in the ideal case
as well. In both cases the preferred parameters for the 10-20% centrality bin extracted for stable
charged hadrons have been used.
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Figure 4.10: Same as 4.9 for the 20-40% centrality bin (20-30% for elliptic flow).
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Figure 4.11: Same as 4.9 for the 40-60% centrality bin (40-50% for elliptic flow).
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viscosity η/s as a function of temperature. A line and uncertainty band have been drawn through
our points to guide the eye. Details in the text.
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5. QUARK RECOMBINATION

In this chapter, we will generalize the calculations in Refs. [58, 59, 60] and use our improved

blastwave as an input for quark recombination. In that case, the blastwave parameterizes the be-

havior of quarks at the critical temperature Tc. Note this is different from chapter 4, in which the

blastwave was applied to hadrons at Tkin. With a viscous blastwave, we expect to provide a more

realistic quark space-momentum distribution compared to [60]. In particular we use the viscous

corrections in the blastwave to account for deviations from ideal elliptic flow, i.e. the plateau in

v2(pT ) at intermediate transverse momenta using a systematic and physical approach.

We use the viscous blastwave model to fit spectra and elliptic flow v2 of identified hadrons at

intermediate transverse momentum, 2 GeV/c < pT < 6 GeV/c. Note that this momentum range

is above the one discussed in chapter 4. For each hadron species considered there is no overlap

between the RFR and the intermediate momentum range here (except some minimal overlap in

central collisions). The big picture is that at low pT hadrons are created at Tc, possibly through

recombination, but continue to interact and form a cooling and expanding hadronic matter close to

kinetic equilibrium. On the other hand, hadrons in the intermediate pT range might form through

quark recombination and experience little rescattering so that the information from their properties

around T = Tc are encoded in their observed spectra and elliptic flow. Also, keep in mind that

while we carried out precision fits in chapter 4, the current chapter is rather an exploratory study to

demonstrate the viability of quark recombination with modern data sets that have become available

after Ref. [60] was published.

We check the constituent quark number scaling (QNS) law by fitting v2 of different hadrons at

a variety of collision energies and impact parameters. For RHIC, we fit v2 of π±, K±, p+p and φ,

and also calculate results for Λ, Ξ− and Ω−. For LHC, we fit v2 of π±, K±, p+p, φ, Λ+Λ, Ξ−+Ξ
+

and Ω−+Ω
+

. The overall description is rather good.

We also apply our blastwave as an input to the resonance recombination model (RRM) and cal-

culate the elliptic flow of φ meson with the same blastwave parameters fitted before. Interestingly,
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we find rather compatible results with the instantaneous recombination model.

This chapter is organized as follows: in section 5.1 we summarize the formalism for instanta-

neous recombination model. In section 5.2 we discuss parameters and data selection. In section

5.3 we present the fits results with data. In section 5.4 we introduce the resonance recombination

model.

5.1 Quark Recombination Formalism

In this section, we summarize the formalism for instantaneous quark recombination. For de-

tails, we recommend the reader to check Ref. [60]. We start from the number of mesons

NM = CM

∫
d3p

(2π)3
〈M ;P| ρ̂ |M ;P〉 (5.1)

here ρ̂ is the density matrix quarks and |M ;P〉 is a meson state with momentum P and CM is the

degeneracy factor of mesons. We insert full sets of space coordinates

NM =

∫
d3p

(2π)3
d3r̂1d

3r̂′1d
3r̂2d

3r̂′2 〈M ;P| r̂1, r̂2〉 〈r̂1, r̂2 | ρ̂ | r̂′1, r̂′2〉 〈r̂′1, r̂′2|M ;P〉. (5.2)

and change the coordinates to r1,2 = (r̂1,2 + r̂′1,2)/2 and r′1,2 = r̂1,2 − r̂′1,2. We write the 2-parton

Wigner function Wab(r1, r2;p1,p2) as

〈
r1−

r′1
2
, r2−

r′2
2

∣∣∣∣ ρ̂ ∣∣∣∣r1 +
r′1
2
, r2 +

r′2
2

〉
=

∫
d3p1

(2π)3

d3p2

(2π)3
e−ip1·r′1e−ip2·r′2Wab(r1, r2;p1,p2) (5.3)

and write the meson wave function ϕM as

〈
r1 +

r′1
2
, r2 +

r′2
2

∣∣∣∣ π;P

〉
= e−iP·(R+R′/2) ϕM

(
r− r′

2

)
(5.4)
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We then change variables again to

R(′) = (r
(′)
1 + r

(′)
2 )/2, r(′) = r

(′)
1 − r

(′)
2 (5.5)

P = p1 + p2, q = (p1 − p2)/2 (5.6)

We define ΦM as

ΦM(r,q) =

∫
d3r′e−iq·r

′
ϕM

(
r +

r′

2

)
ϕ∗M

(
r− r′

2

)
(5.7)

and integrate over R′, then obtain

dNM

d3P
=

∫
d3q d3R

(2π)3
ΦM(R,q)Wqq̄(p,q;R) (5.8)

With light cone coordinates and integrating over d3r, the spectra of mesons are finally expressed

as

E
dNM

d3P
= CM

∫
Σ

pµ · dσµ
(2π)3

∫ 1

0

dx1dx2ΦM(x1, x2)Wqq̄(x1P, x2P;R) (5.9)

where CM is the spin degeneracy factor of mesons, dσ is the hypersurface of hadronization, ΦM =

ϕ∗MϕM is the meson wave function squared, Wqq̄ is the two-parton Wigner function, and x1, x2 are

light cone coordinates (defined as p1,2 = x1,2P, the fraction of parton momentum). Note that two

simplifications had been applied in Ref. [60]. First, the integral d3r can be taken assuming that

the average fireball is weakly varying within the size of a hadron. Second, since only momentum

above 2..3 GeV/c are used it is assumed that the hadrons and quarks are essentially ultra-relativistic

and traveling along the light cone.

A similar expression can be derived for baryons

E
dNB

d3P
= CB

∫
Σ

pµ · dσµ
(2π)3

∫ 1

0

dx1dx2dx3ΦM(x1, x2, x3)Wq1q2q3(x1P, x2P, x3P;R) (5.10)

where CB is the spin degeneracy factor, ΦB is the baryon wave function squared and x1, x2, x3 are

light cone coordinates. Later we will use CM = 2 for π± and K±, CM = 3 for φ, CB = 4 for p+p,
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CB = 2 for Λ0 and Ξ−, and CB = 4 for Ω−.

The wave functions of hadrons in this situation are only poorly known. In the extreme light

cone limit is it possible to parameterize the wave function as polynomial [59, 60, 88]. An alterna-

tive option is to use a Gaussian ansatz

ΦM(x1, x2) = Ae
(x1−xa)

2+(x2−xb)
2

σ2
M δ(x1 + x2 − 1) (5.11)

ΦB(x1, x2, x3) = Be
(x1−xa)

2+(x2−xb)
2+(x3−xc)

2

σ2
B δ(x1 + x2 + x3 − 1) (5.12)

here A(B) is a fixed constant so the integral over ΦM (ΦB) is normalized to unity and xa, xb (xc)

are the peak values. ΦM should reach its maximum when the average velocity of the quarks is the

same, so xa, xb are proportional to the corresponding quark masses

xa =
m1

m1 +m2

, xb =
m2

m1 +m2

(5.13)

Similar expressions can be used for baryons

xa =
m1

m1 +m2 +m3

, xb =
m2

m1 +m2 +m3

, xc =
m3

m1 +m2 +m3

(5.14)

We have carried out calculations for both light cone (polynomial) and Gaussian wave functions.

We have used Gaussian wave functions in the final analysis in this chapter. It turns out the shape

of hadron wave function does influence observables. We find a narrower wave function increases

the hadron yield and elliptic flow. The transverse momentum spectra may increase by 50% and

elliptic flow may increase by 10% compared to a much wider wave function. we also notice that

polynomial and Gaussian wave functions give similar results if parameters are adjusted. Indeed

if we give a very large power to polynomial wave functions, or give a very small width σM,B to

Gaussian wave functions, both will reach the limiting case of a δ-shaped wave function

ΦM(x1, x2) ∼ δ(x1 − xa) (5.15)
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ΦB(x1, x2, x3) ∼ δ(x1 − xa)δ(x2 − xb) . (5.16)

For the Wigner function of quarks, we assume quarks are quasi-free and neglect interactions

between them. We then factorize Wqq̄ into classical single-particle phase space distributions

Wqq̄(ra, pa; rb, pb) = fq(ra, pa)fq̄(rb, pb) . (5.17)

In the previous work [58, 59, 60], quark distributions were first assumed to be in thermal equilib-

rium. However, if one uses thermal equilibrium distributions, one cannot describe the saturation

of elliptic flow growth with pT . In order to break prefect thermal equilibrium, the natural way is

to add viscous corrections. Indeed this was one of our motivations to develop a viscous blastwave.

As in chapter 2, with viscous corrections the distribution function becomes

fa(r, p) = f0(r, p) + δf(r, p), f0(r, p) =
1

epµ·uµ/T ∓ 1
. (5.18)

where f0 is the equilibrium Bose/Fermi-distribution with "-" for Bosons and "+" for Fermions and

δf is a gradient correction of Navier-Stokes type. For the δf term, we use

δf(r, p) =
η

s

Γ(6)

Γ(4 + λ)

(
E

T

)λ−2
pµpν
T 3

σµνf0(r, p) (5.19)

which follows from a generalized Grad ansatz [67]. The details for the viscous corrections have

already been presented in chapter 2 and will not be repeated here. We utilize our blastwave to

provide quark distributions at the critical temperature Tc. Fig. 5.1 shows the spectrum and elliptic

flow of up/down and strange quarks. One can find the dependence of spectra and elliptic flow on

the viscous corrections.
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Figure 5.1: Transverse momentum spectra (left panel) and elliptic flow (right panel) for up/down
quark and strange quark. Parameters are from ALICE 30-40% fit results. The case without viscous
corrections is also shown.

5.2 Parameters and Data Selection

Similar to chapter 4, we utilize both transverse momentum spectra around mid-rapidity, and

elliptic flow v2 as our experimental observables. They are calculated from Eq. (5.9), (5.10) as

dN

2πpTdpTdy
=

1

2π

∫
dθ

dN

dyd2pT
, (5.20)

v2(pT ) =

(
dN

2πpTdpTdy

)−1
1

2π

∫
dθ cos(2θ)

dN

dyd2pT
, (5.21)

respectively. Note all expressions in the blastwave are taken at rapidity y = 0 and we have utilized

matching data sets that have been taken around midrapidity.

We use data from the ALICE collaboration for Pb+Pb collisions at 2.76 TeV [53, 71, 65], in

10% centrality bins (20% for spectra of Λ,Ξ and Ω), and from the PHENIX collaboration for

Au+Au collisions at 200 GeV [52, 89], in 20% centrality (10% for spectra of φ). For LHC, we fit

seven different hadrons: π±, K±, p+p, φ, Λ+Λ, Ξ−+Ξ
+

and Ω−+Ω
+

. For RHIC, we fit π±, K±,
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p+p and φ, then calculate Λ, Ξ− and Ω−. The fit ranges of spectra and v2 are roughly 2 GeV/c

< pT < 4 GeV/c for mesons and 3 GeV/c< pT < 6 GeV/c for baryons. The fit ranges for different

hadrons in the same centrality bin, or for the same hadron in different centrality bins, are slightly

different.

Before presenting the results, let us discuss the fit parameters used in the model. The initial

parameters entering the model are (µ, c2
s, λ, τ, T, Ry/Rx, n, α0, α2, η/s), see chapter 2 for details.

Since our main purpose here is simply a viable description of experimental data, not a precision fit

of parton phase parameters, we will not focus on the precise quantities of some of the parameters

but fix them at reasonable values as long as our final conclusion is not sensitive to them.

For example, we fix the temperature to be Tc = 160 MeV and µB = 0, c2
s = 0.15. The value

of η/s should be universal with a fixed value at Tc and µB = 0. A preliminary round of fits for

individual data sets with η/s as a fit parameter yields 2.33/4π for ALICE 20-30% centrality and

1.66/4π for ALICE 50-60% centrality. We also obtain 2.10/4π for PHENIX 20-40% centrality

and 1.83/4π for PHENIX 40-60%. Thus we fit η/s to be 2/4π and we take the deviations we saw

in the preliminary fits as indicative of uncertainties in the η/s extraction. A precise evaluation of

η/s at Tc of course is an interesting topic and requires a more precise treatment in the future.

We carry out a similar preliminary study for λ, the scalar momentum dependence in δf . For

a full theoretical understanding of λ, a microscopic calculation of the relaxation to equilibrium

needs to be performed [90]. Since the departure from equilibrium is generally species-dependent,

we may choose different λ for up/down quark and strange quark. In our preliminary study, we

find that strange quark prefers smaller λ ∼ 1.5 and up/down quark prefers values slightly above

2. We fix λ = 1.5 for strange quark and λ = 2.5 for up/down quark. We have checked that for

λ = 2 which is widely used for freeze out from hydrodynamics, we get very similar final results.

Following the same idea, we study the meson wave function width σM and baryon wave function

width σB. Using this study we set σM = 0.42, σB = 0.18.

Valence quark mass are also fixed to be mu/d = 300 MeV, ms = 480 MeV, which are close

to values used in the other literature. Since we focus here on elliptic flow and the QNS law, we
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do not attempt to fit the overall yield of hadrons correctly. We introduce fugacity factors γu/d for

up/down quarks and γs for strange quarks to enable fits to spectra at intermediate pT . We find that

γu/d ≈ 3γs consistently.

In summary, we fix the critical temperature Tc = 160 MeV and quark masses mu/d = 300

MeV, ms = 480 MeV. We use a viscous correction factor λ = 1.5 for strange quarks and λ = 2.5

for up/down quarks. We also set hadron wave function widths to σM = 0.42, σB = 0.18. The

parameters left in our model are surface velocity α0, velocity deformation α2, velocity profile

power n and ratio of event plane radii Ry/Rx, which will be determined by Bayesian fits to data,

similar to chapter 3 and chapter 4.

5.3 Fit Results and Quarks Number Scaling

In this section we use quark recombination of the viscous blastwave at T = Tc to fit experimen-

tal data and extract blastwave parameters at Tc. By doing so, we neglect the interactions between

the hadrons after coalescence. In principle, elliptic flow is influenced by both the evolution in the

early, partonic stages of the system and the rescattering processes in the hadronic stage. However

the rescattering of intermediate pT hadrons is suppressed as they preferentially sit in the outer lay-

ers of the fireball, with large radial flow to the outside. Thus, there is the intriguing possibility to

directly probe the partonic character of anisotropic flow. The fit results are given in Tab. 5.1.

We can find that the lifetime of the fireball decreases from central to peripheral collisions, the

surface velocity α0 does not change much between different centralities and ratio of event plane

radii Ry/Rx and the velocity deformation α2 increase from central to peripheral collisions. This

is expected because more peripheral collisions means less overlapping nucleons of the target and

projectile, thus large initial event plane eccentricity R(0)
y /R

(0)
x . As a result, one expects larger final

Ry/Rx and α2. We find that the velocity profile power n decreases from central to peripheral

collisions, which means an increase of average transverse flow.

We can use the above parameters to calculate transverse momentum spectra and elliptic flow

for a variety of hadrons and compare with experimental data. Fig. 5.2, 5.3 show our results for

transverse momentum spectra in ALICE 30-40% and PHENIX 20-40% centrality. Fig. 5.4, 5.5
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Centrality τ (fm/c) α0/c n Ry/Rx α2/c

ALICE 2.76 TeV
10-20% 12 0.818 1.37 1.397 0.0118
20-30% 10 0.822 1.37 1.542 0.0174
30-40% 8.5 0.819 1.19 1.620 0.0205
40-50% 7 0.827 1.23 1.622 0.0261
50-60% 6 0.831 1.16 1.625 0.0261
PHENIX 0.2 TeV
10-20% 8.6 0.765 0.97 1.313 0.0142
20-40% 7.2 0.759 0.73 1.464 0.0215
40-60% 5.6 0.764 0.66 1.494 0.0332

Table 5.1: Fit parameters obtained from different centrality bins for ALICE and PHENIX data,
τ is set based on proton spectra. We use critical temperature Tc = 160 MeV and specific shear
viscosity η/s = 2/4π.

show our results for elliptic flow in ALICE 30-40% and PHENIX 20-40% centrality. The results

for other centrality bins are provided in APPENDIX A and APPENDIX B. As one can see from

Fig. 5.2, 5.3,5.4, 5.5, we obtain a rather good description via this quark recombination model.

Fig. 5.4, 5.5 are plotted with respect to transverse momentum pT . In order to show the con-

stituent quark number scaling, a more common way is to plot data with respect to transverse kinetic

energy, KET ≡ mT − m0, where m0 is the hadron mass and mT =
√
p2
T +m2

0 is the hadron’s

transverse mass, and divide v2 and KET by the constituent quark number nq. Fig. 5.6, 5.7, 5.8

show our results. For the right panel of Fig. 5.6, 5.7, 5.8, the upper lines are mesons and the bottom

lines are baryons, which clearly show the deviations between mesons and baryons when KET >

0.5 GeV, as observed in experiment. Thus our results clearly demonstrate that quark number scal-

ing can be broken in quark recombination, and that a consistent picture can exist between RHIC

and LHC data despite the varying degree of violation of the QNS law.

5.4 Resonance Recombination

In order to extend instantaneous recombination to low pT , we introduce resonance recombina-

tion model in this section. For details, we recommend the reader to check Ref. [62, 63, 57]. Below,

the 4-momentum of meson M is written as pµ = (p0, p), with energy EM = p0 =
√
m2 + p2 and
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Figure 5.2: Transverse momentum spectra for π±, K±, p+p, φ, Λ+Λ, Ξ−+Ξ
+

and Ω−+Ω
+

in
the ALICE 30-40% centrality bin. Λ, Ξ and Ω are from 20-40% centrality bin. Symbols are
experimental data, solid lines are recombination calculation. Parameters are given Tab. 5.1.

3-momentum p and meson mass m. The 4-momentum of quark q and anti-quark q̄ are written as

pµ1 = (E1, p1) and pµ2 = (E2, p2) with E1 =
√
m2

1 + p2
1, E2 =

√
m2

2 + p2
2 respectively together

with quark masses m1 and m2.

In Ref. [62, 63, 57], quark coalescence was interpreted as a process similar to the formation of

resonances, q + q 
M , and described through a Boltzmann equation

pµ∂µfM(t,x,p) = −mΓfM(t,x,p) + p0β(x,p), (5.22)

where fM(t,x,p) is the phase-space distribution of the meson, x is its 3-position and the gain term
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Figure 5.3: Same as Fig. 5.2 in the PHENIX 20-40% centrality bin. φ is from 20-30% centrality
bin.

is given by

β(x,p) =

∫
d3p1d

3p2

(2π)6
fq(x,p1)fq̄(x,p2) σ(s) vrel(p1,p2) δ3(p− p1 − p2), (5.23)

where σ(s) is the cross section for the process q+ q̄ →M at center-of-mass (CM) energy squared

s = (pµ1 + pµ2)2, fq,q̄ are quark and anti-quark phase space distribution functions and the relative

velocity is vrel = |p1

E1
− p2

E2
|. The explicit cross section automatically satisfies energy-momentum

conservation and can be modeled by a relativistic Breit-Wigner form,

σ(s) = gσ
4π

k2

(Γm)2

(s−m2)2 + (Γm)2
, (5.24)

where gσ is the spin degeneracy factor, Γ is the reaction rate, same as the first term on the right-
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recombination calculation. Parameters are given Tab. 5.1.

hand-side (RHS) of Eq. (5.22), and k denotes the quark 3-momentum in the CM frame. Introducing

the notation p = p1 + p2,q = 1
2
(p1 − p2), we can rewrite Eq. (5.23) as

β(x,p) =

∫
d3q

(2π)3
fq(x,p,q)fq̄(x,p,q) σ(s) vrel(p,q) (5.25)

Integrating Eq. (5.22) over the fireball volume, the integral of the left-hand-side (LHS) gives

p0 ∂

∂t

∫
d3xfM(t,x,p) + p ·

∫
d3x∇fM(t,x,p) = p0 ∂

∂t
f

(p)
M (t,p) (5.26)

here f (p)
M (t,p) =

∫
d3xfM(t,x,p) is the momentum distribution of the meson and the second term

vanishes due to

p ·
∫
d3x∇fM(t,x,p) =

∫
d3x∇[pfM(t,x,p)] = 0 (5.27)

If hadronization is rapid enough to produce hadrons in equilibrium, e.g. in the long-time limit,
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Figure 5.5: Elliptic flow v2 for π±, K± and p+p in the PHENIX 20-40% centrality bin (left panel)
and φ, Λ+Λ, Ξ−+Ξ

+
and Ω−+Ω

+
in the STAR 10-40% centrality bin (right panel). Ω is from

the STAR 0-80% centrality bin. Symbols are experimental data, solid lines are recombination
calculation. Note: we only fit π,K and p, right panel is calculated using the same parameter as left
panel.

1/Γ� ∆τ , we have the equilibrium limit condition

∂

∂t
f

(p)
M (t,p) = 0 (5.28)

Using Eq. (5.26)(5.28), the integral of the LHS of Eq. 5.22 vanishes and the integral of the RHS

gives ∫
d3xf eqM (x,p)−

∫
d3x

p0

mΓ
β(x,p) = 0 (5.29)

Using the above equation, the number of mesons is given by

N eq
M =

∫
d3x d3p

(2π)3
f eqM (x,p) =

∫
d3x d3p

(2π)3

p0

mΓ
β(x,p) (5.30)
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and the invariant transverse momentum spectra

p0dNM

d3p
=

dNM

d2pT dy
= p0

∫
d3x

(2π)3

p0

mΓ
β(x,p) (5.31)

Now, what left is to work out the expression of CM energy squared s and 3-momentum k. From

p = p1 + p2,q = 1
2
(p1 − p2), we can easily write

p1 =
1

2
p + q, p2 =

1

2
p− q. (5.32)

with Eq. (5.32) we can rewrite expressions in terms of p and q. In the lab frame, the center-of-mass

(CM) energy squared is

s = (E1 + E2)2 − (p1 + p2)2 = (E1 + E2)2 − p2 (5.33)

which is a Lorentz invariant. In the CM frame, the quark 4-momentum can be written as

p′1 = (
√
m2

1 + k2,k), p′2 = (
√
m2

2 + k2,−k) (5.34)

s = (p′1 + p′2)2 = (
√
m2

1 + k2 +
√
m2

2 + k2)2 (5.35)

thus we get the expression for k

k2 =
1

4s
(s+m2

1 −m2
2)2 −m2

1. (5.36)

This concludes the overview of the RRM model. Now we apply RRM to the blastwave at

Tc extracted earlier in order to calculate the elliptic flow of φ mesons with the same blastwave

parameters fitted before. Interestingly, we find rather compatible results with the instantaneous

recombination model, see Fig. 5.9, 5.10. From Fig. 5.9, 5.10, we can find the elliptic flow of

instantaneous and RRM recombination are the same when there is no viscous corrections δf . And
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when δf is included, the deviations occur only at high transverse momentum. In the future, we

plan to explore similarities between instantaneous and RRM recombination in greater detail.
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Figure 5.6: Elliptic flow for π±, K±, p+p, φ, Λ+Λ, Ξ−+Ξ
+

and Ω−+Ω
+

in the ALICE 10-20%
(top), 20-30% (middle) and 30-40% (bottom) centrality bin. Symbols are experimental data (left
panel), lines are recombination calculation(right panel). In the right panel, the upper lines are
mesons and the lower lines are baryons.
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Figure 5.7: Same as Fig. 5.6 in the ALICE 40-50% (top) and 50-60% (bottom) centrality bin.
Symbols are experimental data, lines are recombination calculation. In the right panel, the upper
lines are mesons and the lower lines are baryons.
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Figure 5.8: Same as Fig. 5.6 in the PHENIX 10-20% (top), 20-40% (middle) and 40-60% (bottom)
centrality bin. Symbols are experimental data, lines are recombination calculation. In the right
panel, the upper lines are mesons and the lower lines are baryons.
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Figure 5.9: Elliptic flow of phi meson from RRM. Parameters are the same as the instantaneous
quark recombination fit results. For the case without viscous corrections, both models obtain the
same elliptic flow.
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6. SUMMARY AND OUTLOOK

In this work, we have constructed a blastwave model with self-consistent viscous corrections

based on the Retiere and Lisa (RL) ideal blastwave. The non-equilibrium deformations of particle

distributions due to shear viscosity were integrated into the blastwave. We used the Navier-Stokes

approximation and calculated the viscous stress tensor from the gradient of the flow field. The

spatial derivatives can be obtained directly from the parameterized flow field. The time derivatives

can not be given by the blastwave itself, but can be obtained by solving the ideal hydrodynamic

equations of motion analytically. It turns out time derivatives are indeed important for viscous

stress tensor. In our previous work, we obtained rather small η/s ∼ 1/4π when using free stream-

ing for the time derivatives [66]. By using a more realistic flow field and by calculating the time

derivative terms, we provided a more realistic blastwave than previous work.

The parameters in the blastwave are extracted from experimental data (or hydro pseudo data).

We have used the statistical analysis package from MADAI project [70] to determine fit param-

eters. The MADAI package includes a Gaussian process emulator and a Bayesian analysis tool.

Basically, we generate a set of training points in parameter space and calculate all fitted observ-

ables at each training point. The package then builds a Gaussian process emulator to estimate

observables for random parameter values. Finally a Markov Chain Monte Carlo provides a like-

lihood analysis and gives the maximum likelihood parameters and uncertainties. Comparing with

the regular χ2 method, the statistical package has two benefits. First, the Gaussian emulator saves

computing time. Otherwise, one needs to carry out massive computing tasks over the parameter

space. It may be proper for a small number of parameters (n ≤ 4), but not for a large number

of parameters (n ≥ 5). For the statistical package, one only needs to calculate few hundreds or

less training points. Second, it provides a likelihood distribution for each parameter and also the

correlations between them. With likelihood analysis figures, it is simple and straightforward to

find the probabilities and correlations of parameters, which one cannot obtain from the χ2 method.

Once we have established the blastwave model, we validated it by comparison with hydro-
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dynamic calculations. In particular, we systematically compared our blastwave to hydrodynamic

calculations with resonance decays and bulk stress included. If we believe experimental data can

be approximated by hydro simulations and hydrodynamic system can be approximated by blast-

wave, a general question is how well the extracted parameters reflect the "true" values. The "true"

here refers to values that could have been inferred using hydrodynamic calculation. To answer

this question, we utilized the viscous hydrodynamics code MUSIC and generated a set of events at

different temperature and with various specific viscosity in the Tfo-η/s-plane. Then we extracted

the flow field from spectra and elliptic flow v2 of these hydrodynamic calculations with our viscous

blastwave. Especially we compared the extracted freeze-out temperature Tfo and specific viscosity

η/s to values used in hydrodynamics and obtained the mapping matrix between them.

We found that the extracted specific shear viscosities were mostly consistent with true val-

ues within uncertainties. However the extracted temperature was distorted and it underestimated

the true temperature significantly at high T . The extracted Tfo is about 15 MeV lower for hydro

events at high temperature (or peripheral collisions). For events at low freeze-out temperature (or

central collisions), the extracted Tfo are very close to the true temperature within ±5 MeV. We

then parameterized a mapping matrix to remove uncertainties and bias from the simplifications of

hypersurface and flow field in blastwave and unfolded the blastwave fit results of experiment mea-

surement. In the future we can extend the comparison to other observables such as hypersurface

and radial flow at freeze-out.

For further improvement, it is possible to include resonance decays and bulk stress in the blast-

wave. In principle, blastwave would provide a more realistic description of experimental data if it

includes resonance decays and bulk stress. The advantage of blastwave is its simplicity, which pro-

vides an alternative option to running numerically expensive hydrodynamics. If one has to include

resonance decays, blastwave would become much more complicated and lose some of its simplic-

ity. Of course, even in this case, blastwave is numerically less expensive than hydrodynamics. For

the blastwave with resonance decays, we recommend the readers to check Ref. [50, 91, 92]. As far

as we know, the blastwave with bulk stress has not been attempted yet. It would be interesting to
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develop such a blastwave in the future but it is beyond the scope of this work.

As a first major outcome, we have built an improved and viscous blastwave and quantified

the uncertainties and biases in temperature and shear viscosity. Blastwaves have been used

by theorists and experimentalists in the past. If systematic uncertainties from blastwave

fits could be quantified, blastwaves would be a more widely accepted tool for quantitative

analyses. This work is a first step in this direction. And in fact, we have shared our code with

J. Schukraft from ALICE Collaboration.

As one of the main goals of this work, we applied our blastwave to extract the kinetic freeze-

out temperature Tfo and the specific shear viscosity η/s of hot hadronic matter from experimental

data. The transport properties of this hot hadronic matter are important properties of QCD that

we want to learn from the experimental program. They also influence the transport properties

extracted for the QGP, because all experimental information on the transport properties of QGP

must be extracted from final state hadrons. We have verified it is possible to estimate η/s of

the hot hadronic matter at the kinetic freeze-out in a way independent from existing methods.

Especially, our approach is complementary to existing extractions from viscous hydrodynamics.

The latter is sensitive to an averaged shear viscosity during that time evolution while our analysis

is only sensitive to the shear viscosity at kinetic freeze-out. We found that η/s of hadronic matter

is consistent with estimates for η/s of QGP around Tc. We also found a smooth and gradual rise

of η/s below Tc.

As discussed in chapter 1, AdS/CFT correspondence predicts a universal lower bound of η/s =

1/4π for the specific shear viscosity [25]. And lattice calculations find η/s to be close to the

conjectured lower bound around Tc with a rather slow rise towards higher temperatures [41, 42, 43,

44]. However, pushing these calculations into the hadronic phase below Tc turns out to be difficult.

The early calculations used viscous hydrodynamics with a fixed, temperature-independent η/s as

a parameter and hydrodynamics was run all the way to kinetic freeze-out at the end of hadronic

phase. They find a rather small η/s ∼ 2.5/4π [40]. The value of η/s extracted from this method is

averaged over the entire temperature evolution of the QGP and the hot hadronic matter below Tc.
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Subsequently, several groups argued that the low viscosity extracted from viscous hydrodynamics

originated from the partonic phase and the viscosity would increase rapidly when nuclear matter

transit from partonic phase to hadronic phase. In this case, the hadronic phase should be described

by hadronic transport models other than viscous hydrodynamics. This argument was aided by

estimates of η/s for a hadronic matter from hadronic transport models. While these calculations

do not agree quantitatively, they generally find rather large specific shear viscosity for hot hadronic

matter. For example, both URQMD [35] and SMASH [37] obtained η/s & 10/4π even very close

to Tc.

Two reasons may explain the extremely large value of η/s near Tc in URQMD and SMASH.

First, it can partially come from the absence of non-unit fugacities or finite chemical potentials for

hadrons. As shown in Ref. [35], by inducing non-unit fugacities λπ,K= exp(µπ,K/T ) ∼ 1.2-1.7,

η/s decreased from 12/4π to 7/4π near Tc. Based on our blastwave fit results, finite chemical

potentials are necessary to describe experimental data when the system cools down after chemical

freeze-out; see Tab. 4.2. The reduction in η/s can be understood, since non-unit fugacity in this

case means an increase in particle density and an increased particle density leads to a reduced mean

free path, which in turn reduces the viscosity [35].

Second, it comes from the treatment of hadronic interactions through resonances, which have

a non-zero lifetime. As shown in Ref. [37], introducing point-like interaction scenarios and adding

an overall elastic cross-section σ=10 mb, η/s in a system of pions can decrease from 10/4π to 4/4π

near Tc. The reduction in η/s can be understood from the relaxation dynamics. From theoretical

calculation [93], we have η ∼ ρτ v̄rel, where τ is the relaxation time and v̄rel ≈ 1 here. When the

resonance lifetime τlife is much smaller than the mean free time τmft (the inverse of the scattering

rate), the relaxation time τ is not affected by the resonance lifetime and τ ∼ τmft. When τlife � τmft,

the relaxation to equilibrium from resonance scattering is delayed. In Ref. [37], the authors have

checked that by including a large elastic point-like interaction, τ ∼ τmft is restored. In this case,

when temperature increases toward Tc, τmft will decrease (as scattering rate increases) and τ will

decrease and reach its minimum near Tc, which in turn gives a minimum value of η/s near Tc. This
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is similar to the result of B3D [86, 94], which obtains rather small η/s ∼ 3/4π near Tc.

The discrepancies between URQMD, SMASH and B3D are then qualitatively understood.

First, both URQMD and SMASH used Green-Kubo formalism to calculate the shear viscosity η

and obtained consistent results. The smaller η/s given by SMASH came from the fact that SMASH

used a larger π+π− cross section than URQMD, especially at low temperatures T ∼ 80-100 MeV

[37]. As a comparison, B3D extracted η/s directly from fits of evolution equations of the energy-

momentum tensor πzz, calculated from simulation using B3D code [95]. Besides, B3D included

an overall elastic cross-section σ=10 mb in addition to resonance cross sections. As discussed

in Ref. [37], this may explain why B3D obtained much smaller η/s than other transport models.

However, the question remains which model describes physics correctly. Also, the interactions

between hadrons are modeled using the cross sections and properties of hadrons at T=0 [96] or

from dilepton spectra [97]. From lattice QCD studies, it is known that the transition between QGP

and hadronic matter is not a true, sharp phase transition but rather an analytic cross-over transition.

As a result, very sharp features in the temperature dependence of η/s are not expected.

Our results suggest that there is no tension between η/s on the QGP and hadronic side of the

cross-over. For a long time, the term "hadron gas" was used to name the hadronic matter below

Tc, due to the results given by hadronic transport calculations that the viscosity increased rapidly

when nuclear matter transit from partonic phase to hadronic phase. However, our results show a

smooth and gradual rise of η/s below Tc, which indicates a strong-interaction character of hadronic

matter near Tc. This is consistent with results given by Ref. [97], as they found the ρ meson width

approaches its mass when the system moves from low temperature toward Tc. For this reason, we

would rather use "hadronic matter" instead of "hadron gas". If confirmed, our results show the

hadronic matter just below Tc has a relatively small η/s.

Another main goal of this work is to use the viscous blastwave to provide realistic input for

quark recombination models. The importance of quark recombination is that it allows us to directly

probe the partonic characters by extracting blastwave parameters at Tc, such as the pT spectra and

anisotropic flow of partons. In quark recombination models, valence quarks are assumed to be
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abundant in phase space at T = Tc and recombine to hadrons through quark recombination. In this

thesis, we followed the previous work [59, 60]. We parameterize the quark distributions at T ≈ Tc

using the viscous blastwave and then use recombination to get spectra and elliptic flow v2 of identi-

fied hadrons at intermediate transverse momentum pT (2 GeV/c < pT < 6 GeV/c). The parameters

of the blastwave are fitted to data in this pT range. This work extended the previous study in the

following aspects. In Ref. [59, 60], kinetic equilibrium was broken in a naive way and elliptic flow

of quarks was implemented locally, in which space-momentum correlations were neglected. Now

by adding viscous corrections, we provided a physical way to break kinetic equilibrium and stop

the growth of v2 at pT > 2 GeV/c and had realistic space-momentum correlations.

In addition, it was widely believed that the constituent quark number scaling (QNS) law was a

necessary feature of quark recombination, and that violations of the QNS law found experimentally

can be interpreted as evidence against quark recombination. Indeed, data from LHC shows the

elliptic flow of identified hadrons following the QNS law to a lesser extent than data from RHIC

[64]. Recent publication from ALICE report deviations from QNS law for Pb-Pb collisions [65].

They find significant deviations for the intermediate region (mT −m0)/nq ∼ 0.8− 2 GeV/c2 and

the scaling law exhibits deviations at the level of±20%. In this work, we checked the QNS law by

fitting v2 of different hadrons at a variety of collision energies and impact parameters. For RHIC,

we fit v2 of π±, K±, p+p and φ, and also calculate results for Λ, Ξ− and Ω−. For LHC, we fit

v2 of π±, K±, p+p, φ, Λ+Λ, Ξ−+Ξ
+

and Ω−+Ω
+

. The overall description was rather good and

we find violations of the QNS up to 14% for RHIC and 24% for LHC, which is consistent with

experimental data. Thus we demonstrate that the QNS law is not a necessary feature of quark

recombination and that quark recombination remains a viable method to describe hadron

production at intermediate momenta in heavy ion collision.
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APPENDIX A

HADRON SPECTRA FROM QUARK RECOMBINATION

Transverse momentum spectra of identified hadrons in different centrality bins of ALICE and

RHIC, as a supplement to Fig. 5.2, 5.3. Symbols are experimental data, solid lines are recombina-

tion calculation. Parameters are given in Tab. 5.1.
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Figure A.1: Transverse momentum spectra for π±, K±, p+p, φ, Λ+Λ, Ξ−+Ξ
+

anΩ−+Ω
+

in the
ALICE 10-20% centrality bin. Symbols are experimental data, solid lines are recombination cal-
culation.
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Figure A.2: Same as Fig. A.1 except in the ALICE 20-30% centrality bin. Λ,Ξ and Ω are from
20-40% centrality bin.
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Figure A.3: Same as Fig. A.1 except in the ALICE 40-50% centrality bin. Λ,Ξ and Ω are from
40-60% centrality bin.
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Figure A.4: Same as Fig. A.1 except in the ALICE 50-60% centrality bin. Λ,Ξ and Ω is from
40-60% centrality bin.
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Figure A.5: Same as Fig. A.1 except in the PHENIX 10-20% centrality bin.
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Figure A.6: Same as Fig. A.1 except in the PHENIX 40-60% centrality bin (φ is from 40-50 %
centrality bin).
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APPENDIX B

HADRON ELLIPTIC FLOW FROM QUARK RECOMBINATION

Elliptic flow of identified hadrons in different centrality bins of ALICE and RHIC, as a sup-

plement to Fig. 5.4, 5.5. Symbols are experimental data, solid lines are recombination calculation.

Parameters are given in Tab. 5.1.
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Figure B.1: Elliptic flow v2 for π±, K± and p+p (left panel) and φ, Λ+Λ, Ξ−+Ξ
+

and Ω−+Ω
+

(right panel) in the ALICE 10-20 % centrality bin. Symbols are experimental data, solid lines are
recombination calculation.
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Figure B.2: Same as Fig. B.1 except in the ALICE 20-30 % centrality bin.
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Figure B.3: Same as Fig. B.1 except in the ALICE 40-50 % centrality bin.
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Figure B.4: Same as Fig. B.1 except in the ALICE 50-60 % centrality bin.
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Figure B.5: Elliptic flow v2 for π±, K± and p+p (left panel) in the PHENIX 10-20% centrality
bin and φ, Λ+Λ, Ξ−+Ξ

+
and Ω−+Ω

+
in the STAR 10-40% centrality bin (right panel).Ω is from

the STAR 0-80% centrality bin. Symbols are experimental data, solid lines are recombination
calculation. Note:we only fit π,K and p, right panel is calculated using the same parameter as left
panel.
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Figure B.6: Same as Fig. B.5 except in the PHENIX 40-60% centrality bin and STAR 40-80%
centrality bin. Ω is from the STAR 30-80% centrality bin.
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