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ABSTRACT

An experimental investigation into flooding phenomena was conducted to
acquire data using steam/water and air/water fluid pairs at varying conditions within a
large diameter vertical tube with annular flow. Experiments were performed to expand
the database previously collected and verify correlations developed. Additionally,
experimentation was conducted to determine hysteresis effects that may occur during
flooding.

Experiments were completed in a previously established vertical test section.
Flooding tests were conducted by forming an annular liquid film within the test section
then injecting gas into the bottom of the test section until reversal of the annular film.
Tests were performed at various gas inlet flow rates with water inlet flow rates ranging
from 5 to 8 gallons per minute, and pressure varying from atmospheric pressure to 45
psig.

Data collected extends the range data beyond previous studies at the Nuclear
Heat Transfer Systems laboratory. Data were collected in 0.5 GPM increments for the
liguid mass flow rate range, filling out the data set previously collected. The additional
data increases the reliability of the flooding database and flooding curves. Integration of
the new data set with previous data enhances understanding of the effects of pressure,
gas-liquid combination, and condensation effects of flooding phenomena.

Post-processing of data produced flooding curves to compare data sets.

Integration of flooding data showed that when data is plotted as dimensionless
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Kutateladze parameters showing that fluid-pair data overlay onto one another and a
slight dependence on pressure of the system is present for steam/water data.
Hysteresis data was post-processed, and hysteresis curves produced, both gas-
liquid systems exhibited hysteresis effects, namely as the gas flow rate was incrementally
decreased, flooding occurred at a Kutateladze gas inlet parameter below that which is
required to initiate flooding. The data suggests that higher carryover mass fraction can
be sustained when the gas flow rate is being lowered from a flow rate beyond that
needed to achieve the onset of flooding, effects were more dramatic at higher water
inlet flow rates and pressures. Further, air/water mixtures showed more hysteresis than

steam/water mixtures.
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ABBREVIATIONS
BWR
CCFL
CFM
GPM
LOCA
NHTS
psia
psig
PWR
RCS

RCIC

gps

SYMBOLS

Ck

D*

NOMENCLATURE

Boiling water reactor
Countercurrent flow limitation
Cubic feet per minute

Gallons per minute

Loss of Coolant Accident
Nuclear Heat Transfer Systems
Pounds per square inch absolute
Pounds per square inch gauge
Pressurized water reactor
Reactor Coolant System
Reactor core isolation cooling

Grams per second

Constant in Wallis correlation

Constant in Kutateladze correlation

Diameter of the test section

Bond number

Fraction of steam condensed
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g acceleration due to gravity

hi Enthalpy of phase i

Ji Superficial velocity of phase i

ji* Wallis parameter for the dimensionless superficial velocity of
phase i

Ku; Kutateladze parameter of phase j

Kge Kutateladze effective gas flow rate

m, Mass flow rate of phase i

Q Volumetric flow rate

Ti Temperature of phase i

Ts Saturation temperature of working fluid

Tw Temperature of the test section wall

V-x Valve labeled with number x
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1. INTRODUCTION

The flooding phenomena is a limitation that is present in a countercurrent flow
system. Countercurrent flow is phenomena that occurs when a liquid phase flows
downwards as an annular ring along a pipe wall and a gas core flows upwards through
the annular fluid ring. Flooding occurs when the gas phase reaches high enough velocities
to impart enough momentum on the water phase that the water phase reverses flow
direction, this is considered flooding or countercurrent flow limitation. The
countercurrent flow limitation and flooding can be further defined as onset, partial, and
full flow reversal by varying the gas phase mass flow rate in the system. This
phenomenon and its challenges are present in many engineering applications including
nuclear power reactors. Thus its study is of great interest in the nuclear field.

Like most instances of two-phase fluid flow these phenomena are complex
leading to the of use empirical correlations to predict and model the behavior of flooding.
These countercurrent flow correlations are often used in reactor safety codes to model
flooding incidents in severe reactor accident scenarios. Thus there is a need in the reactor
safety community for code validation to improve and provide more detailed models
supported by experimental data.

1.1 Project Motivation

This study is the sixth installment of flooding investigation at the Nuclear Heat

Transfer Systems (NHTS) laboratory at Texas A&M University. Flooding research began

at the NHTS in response to analysis of a possible station blackout event that could
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potentially lead to flooding in the pressurizer surge line of a Pressurized Water Reactor
(PWR) [1]. Since studies began at the NHTS, other hypothetical flooding limitations have
been identified in Boiling Water Reactors (BWR). Thus the motivation for this research is
to support and enhance the previous studies completed at the NHTS to better
understand the flooding phenomena and to improve reactor safety codes used in severe
accident analysis of nuclear reactors.

In a PWR, the primary coolant system, known as the Reactor Coolant System
(RCS), is composed of various components designed to transfer heat away from the fuel
core to a heat exchanger to produce power. This coolant, typically water, is pressurized
so that the water stays in a liquid phase and is accomplished by controlling the system
pressure. Two of these major components that allow control of the system pressure is
the pressurizer and the pressurizer surge line. The pressurizer enables the system to
change pressure via steam generation or steam quenching and release. At the top of the
pressurizer, a relief valve is present to vent steam out of the pressurizer if the pressure
exceeds a maximum threshold during normal operation. The pressurizer surge line is a
system of piping that may include elbows, vertical and horizontal piping and associated
connections of the pressurizer to rest of the system. Presented in Figure 1 is a general
diagram of the components.

During a postulated accident scenario, large amounts steam may be generated in
the core and travel through the surge line and vent out the relief valve. Previous work by

Takeuchi, et al. found that flooding may occur in the pressurizer surge line leading to
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adverse system effects [2]. The concern is that as flooding occurs and high temperature
steam replaces the water over long periods time, creep may cause failure of the
pressurizer surge line or failure in the piping.

A second application of interest is in the emergency core cooling system (ECCS)
of nuclear power reactors. The ECCS is a combination of systems that are meant to shut
down a nuclear power plant after an accident safely. One of these systems in a BWR
allows for the injection of cold water into the reactor core. Under an accident scenario,
it is proposed that steam generation from the reactor core may be excessive leading to

flooding or flow reversal reducing the effectiveness or failure of this system [3].

Figure 1: Piping diagram of PWR with pressurizer surge line circled reprinted from
NUREG/CR-7110 Volume 2. [4].

3



1.2 Project Objectives

This study focuses on an experimental investigation into flooding of a large diameter
vertical pipe at the onset of flooding and beyond onset flooding, and its associated
hysteresis effects. An objective is to quantify this flooding phenomenon using air/water
and steam/water mixtures to induce flooding within a preexisting test facility. Previous
studies using the facility have been conducted to obtain onset of flooding data and
various levels of flooding to compare air/water and steam/water tests. This current
research will expand the data available, integrated data sets, and determine effects of
flooding phenomena. Additionally, data was collected to identify hysteresis effects that
occur in a flooded system after the gas inlet mass flow rate is reduced from the point at
the onset of flooding or above.

The flooding data, much like previous studies were used to generate flooding
correlations. The hysteresis data was analyzed based on conditions that allow the data
to be compared to one another. This data will be useful in flooding models and reactor
safety codes for post-flooding conditions.

1.3 Technical Approach

In previous installments of flooding at the NHTS flooding facility, Nick Wynne
modified an existing facility designed by Nicole Ritchey [5]. These modifications allowed
the facility to be pressurized up to 60 psia and for air/water or steam/water testing to be
performed in the same test section, via common entrance and exit paths [6]. The facility

was later modified by Matthew Garza to allow for water temperature, during
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steam/water tests, to be controlled via an additional heat exchanger [7]. These previous
upgrades allow for direct data comparison of steam/water and air/water data with
minimal effects to geometry and condensation [6][7]. This study will expand on the
available data to enhance the understanding of the flooding phenomena and investigate
the error produced during testing. Additional data sets were obtained to examine the
hysteresis effects of flooding and are presented.
1.4 Thesis Organization

This thesis is divided into seven sections. The first section introduces the project
motivation, objectives, and the general layout of this thesis. Section 2 contains a
literature review of relevant flooding research covering significant correlations and
flooding research performed outside of the NHTS Laboratory and flooding research
conducted at the NHTS Laboratory. Section 3 describes the flooding facility at the NHTS
Laboratory and explanations of design choices chosen by previous researchers. Within
section 4, changes to previously established operational procedures to the NHTS flooding
facility are presented. Section 5 presents results and discussion of flooding data. Within
this section, analysis of raw data is displayed along with raw data conversion and plots
to create flooding curves. The reduced data are then presented for steam/water and
air/water flooding tests for newly collected data followed by integration of flooding data
collected by Garza, Wynne, and the newly collected data [6] [7]. Section 6 presents
hysteresis results for steam/water and air/water. Conclusions and future work

suggestions are given in section 7. Appendices include reduced data collected for this
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study, additional flooding and hysteresis curves, operational procedures, raw data,

MATLAB® scripts, and instrumentation details.



2. LITERATURE SURVEY
2.1 Initial Flooding Research

Initial experimental flooding research began in the mid-20t" century by Wallis
who reported findings from the experimentation of air/water flooding experiments [8].
In these experiments, Wallis tries to identify velocities in a vertical tube with an annular
water film that will induce flooding [8]. Wallis proceeded to run experiments with
different entrance and exit geometries concluding that the geometry of a test section
affects the flooding velocities [8]. Using this information, Wallis determined a
correlation, found in Equation 1, that matched well with his data and data obtained from
a chemical packing tower experiments completed by Lobo and Sherwood [8] The
correlation is a balance of forces using the densities of each phase, gravity, and the

dimensions of the tube.

1 1
jo+mjjz = (1)
Where;
1 _1
Jg = JgpilaD(pr = pg)] (2)
1 _1
Ji = JrpilaD(pr = pg)] 2 (3)

Where m and c in Equation 1 are constants associated with the specific test
section geometry and j; are the dimensionless parameters known as the Wallis

parameters of the superficial velocity of phase i. Where in Equation 2 and 3 j;, and p; are



the superficial velocity and the density of phase i, g is acceleration due to gravity, and D
is the diameter of the test section.

From these equations, Wallis concluded that one could predict the gas velocity
required for full flow reversal of water within the system by setting the superficial liquid
velocity to zero [8]. Figure 1, presents the plot of equation 1 with respect to experimental
data obtained from Lobo and Sherwood showing the fundamental trend that occursin a
flooding environment, he constants used for ¢ and m are 0.775 and 1, respectively [8].
The underlying trend shows that as the superficial gas velocity, the y-axis, increases the

superficial water velocity decreases, x-axis.

Figure 2: Wallis correlation plotted to experimental data obtained by Lobo and
Sherwood reprinted from “Flooding velocities for air and water in vertical tubes” by
Wallis [8].
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Pushkina and Sorokin proceeded to experimentally study the Wallis correlation,
Equation 1, and flooding by collecting data in test sections with diameters ranging from
6 to 309 mm [9]. Pushkina and Sorokin determined from their findings that the diameter,
in Equation 1, played only a small roll in large diameter tubes; this results in inaccurate
predictions when using the Wallis Correlation at large diameters. Further analysis
determined that replacing the Wallis superficial velocities parameters, j}, with
Kutateladze (K) parameters, from prior work completed by Sorokin [9]. The Kutateladze
parameters, Equation 4 and 5, for the respective phase proceeded to predicted flooding

in large diameters more accurately.

1

P2
Ku, = —2%%8 (4)
lgo(pr—pg)l*
1
jfp3
Kuy = —27 (5)

=

lga(pr=pg)]
Where Ku; is the Kutateladze parameter for phase i, and o is the surface tension of the
liquid in annular flow.

Wallis further confirmed this and found that tubes above a certain diameter
flooding prediction using the Kutateladze parameter yielded better results than his Wallis
correlation [10]. Wallis concluded that much like his Wallis correlation the Kutateladze
parameter is a balance of forces; however, it does not account for the dimensions of the

test section but uses the viscosity of the fluid instead. Thus, Wallis determined a way of



identifying whether a tube fits the large diameter criteria by use of the Bond number,

Equation 6.

D*=D [MF (6)

The bond number is a dimensionless representation of the tube diameter
concerning the density of the liquid and gas phases and surface tension of the liquid
phase in the test section. Wallis found that if the bond number was greater than 30 the
tube is considered large diameter and to apply the Kutateladze parameters, whereas if
the bond number is less than 30 use the Wallis Correlation [10].

Vijayan later conducted an experimental investigation on into the effects of tube
diameter on flooding determined that flooding occurs differently within a small diameter
tube and that of a large diameter tube [11]. This same work further concluded that for
large diameter tubes use of Kutateladze parameters would more accurately predict
flooding behavior.

2.2 Flooding Research at Texas A&M University

Flooding research at the NHTS laboratory began with the work of Solmos who
conducted fundamental flooding tests in an acrylic test section using air/water mixture
at atmospheric pressure [12]. The test section Solmos designed was a scaled-down
version of the 10-in diameter pipe found in a PWR surge line. Solmos’ test section was a
3-in diameter acrylic tube that was determined to meet the large diameter criteria from

the bond equation. This section became the prototype for the current test section
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revealing key design decisions required for flooding to be achieved. Solmos developed
the methods used in the present test section to establish the annular liquid ring as well
as optimized gas inlet conditions.

The second series of flooding experimentation followed directly from Solmos’
prior work, where Ritchey conducted a similar scaling analysis using the design choices
made by Solmos to construct a stainless-steel test section, closely resembling the test
section built by Solmos [5]. The use of stainless steel allowed Ritchey to perform
steam/water tests in a facility that closely mirrored the acrylic air/water facility, known
to produce flooding. This stainless-steel test section is used in all proceeding flooding
experiments at the NHTS laboratory. Flooding was initially observed and confirmed using
air/water, and a benchmark was then obtained [5].

This benchmark data was then compared to steam/water data to begin
understanding the effects condensation plays on flooding [13]. These steam/water tests
were conducted at atmospheric pressure with a subcooling of 30°C with super-heated
steam at 110°C, ensuring condensation. This data showed that flooding curves of air and
steam with condensation would diverge from one another [13]. The Wallis parameter
and Kutateladze parameters were both used to correlate the data and predict flooding;
however, neither of these correlations accurately modeled the sub-cooled data, and a
new correlation was developed using an energy balance to account for the losses of

steam due to condensation from:
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Mgy (Ts—Tw)
=T 7

where f is the fraction of steam that condenses, T is the saturation temperature, T,, is
the inner tube wall temperature, m; is the mass flow rates of the respective phases, and
h; is the enthalpy of the respective phases.

Applying equation 7 and the Kutateladze parameters a final correlation was

developed to account for condensation:

(k,(1 - f))o'5 +0.56K5 = 1.45 (8)

The third installment of flooding investigation was performed by Cullum to
determine the effects of variable water subcooling at atmospheric pressure [14]. Work
involved modification of the test section to allow for water inlet temperature to vary
from 35°C to 97°C, for a subcooling range of 3°C up to 65°C. Data collected showed that
as water subcooling increased the trend line would increasingly diverge from air/water
data and that low water subcooling closely followed the air/water data [15].

Wynne began the fourth installment of flooding research at the NHTS laboratory
by heavily modifying the entire test facility, this allowed for the testing of air/water and
steam/water mixtures within the same test section under the same conditions.
Modifications also included extensive work to allow for pressurized tests up to 45 psig.
Additions included new sections of stainless-steel piping, high temperature pumps, high-
volume air compressor, devices for pressure regulation, and heat exchangers for heat

removal [6].
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Wynne proceeded to conduct onset of flooding tests with steam/water up to 15
psig and air/water tests up 45 psig. This work concluded that at higher pressures a lower
superficial gas velocity is needed to induce flooding due to the increase in gas density
[6]. Flooding curves were generated using the Kutateladze parameters and when
adjusted for condensation steam/water and air/water data was found to agree.

The fifth installment of flooding research followed and expanded upon Wynne's
work at elevated pressures, Garza slightly modified the Wynne facility allowing for the
temperature of the water entering the tests section to be controlled by the user during
steam/water testing. Heating the inlet water was accomplished by the addition of a heat
exchanger that uses steam to heat the incoming water from the water supply to the test
section, allowing for more control on the amount of subcooling that would occur [7].

Garza proceeded to conduct onset of flooding tests with steam/water and
air/water up to 45 psig while minimizing subcooling, less than 3°C and began testing at
various water inlet flow rates ranging from 5.5 GPM up to 7.0 GPM [7]. Flooding curves
were produced from this dataset using the Kutateladze parameters for the fluid down
test section and gas into the test section. Garza determined pressure had a minimal
effect on the shape or placement of flooding data on the flooding curve and observed a
small impact due to pressure; this was attributed to a random system error. Garza then
determined a value f in equation 8 to account for subcooling to allow for a direct

comparison of steam/water and air/water data [7].
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3. FACILITY DESCRIPTION

The facility used in this study for flooding experiments is preexisting, and a
culmination of work completed by Solmos [12], Williams [5], Cullum [14], Wynne [6], and
Garza [7]. A brief overview of the facility will be provided for an understanding of how
the facility is operated. Wynne provided an in-depth description of the facility, and no
significant modifications have occurred since therefore much of the information
presented here is presented in the Wynne thesis in detail [6]. A graphical representation
of the facilities piping and instrumentation is provided on the proceeding page in Figure
3, as no changes have been made to the facility since Garza’s work the P&ID presented
is that presented in the Garza thesis [7].

3.1 Test Section

The test section is the same that was initially designed and built by Williams; the
design drawing is presented in Figure 3 [5]. The design schematic introduced lists the
component labels as steam, however, previous experiments updated the facility to use
air in the same piping as steam. Thus the steam labels will be referred to as gas.

The test section assembly, labeled as 4 in Figure 3. is a 3-inch inner diameter
stainless steel pipe, with a wall thickness of 0.25-inches, and is 72-inches long. At the
ends of the test sections are Class 150 socket weld flanges, the top flange of the test
section was placed well below the end of the pipe to allow the creation of a plenum for

water to be collected and injected into the test section. At the bottom of the test
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section a water collection chamber is installed, item 5 in Figure 3, this allows water to
collect below the test section and exit via four 1-inch holes in the flange below, item 6,
without disturbing the incoming gas flow. A fifth hole is drilled into the same flange in
the center allowing for gas to enter the test section undisturbed. This flange is
constructed from a Class 150 blind flange with a 1.5-in national pipe thread (NPT) pipe
section welded to center, which allows gas to enter the test section, the top of this pipe

has a reducer installed to facilitate gas flow.

ITEM NUMBER ASSEMBLY O A
STEAM OUTLET 7R, )
WATER INLET CHAMBER e/

Figure 4: Design rendering of CCFL test section constructed by Williams reprinted from
Williams work [5].
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At the top of the test section is the water inlet chamber, item 2 in Figure 3,
constructed of 6-inch NPS pipe and is attached via a Class 150 socket flange. The top of
the test section, piece 4, protrudes into the 6-inch pipe creating a plenum for water to
collect and allow for water to flow into the test section via twelve equally spaced 0.25-
inch holes drilled into the circumference of the test section. Four equally spaced 0.75-
inch water injection ports made from half couplings are welded into the 6-inch pipe to
direct water into the plenum. For current testing, it was found that only two of the four
water injection ports were needed for the flow rates used in tests [5].

Above the water inlet chamber, item 1 in Figure 3, is a Class 150 blind flange with
a 2.75-inch outside diameter pipe and a wall thickness of 0.25-inch is welded to the
center, this acts as an exit path for gas and for any two-phase mixture exiting the top of
the test section without disturbing the water inlet flow. The gas outlet pipe was designed
so that it fits into the 3-inch test section ending below the 12 water injection holes drilled
into the test section, to facilitate the formation of an annular film along the test section
walls. Inserting the gas outlet pipe into the test section forced the water film to have a
thickness of 0.125-inches at this point [5]. The bottom of the steam outlet pipe is tapered
15° from the vertical axis to reduce vortices in the outlet flow two-phase mixture [5].

The test section has five 0.125-inch instrument ports three at the top of the test
section and two at the bottom. Both bottom instrument ports are used for pressure
measurements. At the top one port is currently unused, the second is used for centerline

temperature measurement of the test section, and the final is used for pressure
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measurements. All materials used in the test section are made of austenitic Type 304
stainless steel [5].
3.2 Gas Flow Path

The current facility, due to modifications made by Wynne, allows for steam or air
to enter the test section in common piping, and is controlled via a 1.5-inch globe valve
and is referred to as the throttle valve, and is listed as V-1 in Figure 3. The gas travels
through 1.5-inch NPS stainless steel piping into a Foxboro 83W Vortex Flow meter to
obtain a mass flow rate of the gas.

Gas leaves the flow meter in 1.5-inch stainless steel pipe and routed to the
bottom of the test section and injected upward into the test section. During testing, a
two-phase gas/water mixture may leave the test section and must be separated. A
multistage high efficiency, model LCCR-200-RL-SC separator manufactured by Anderson
was procured by Wynne to accomplish this and can remove down to 1-micron droplets
of water from the two-phase mixture.

After separation, the gas exits the separator in 1.5-inch stainless steel pipe, and
the mass flow rate is measured via a Foxboro 84F Vortex flow meter. Once mass flow
rate of the gas is obtained, the gas continues to flow through 1.5-inch stainless steel
piping into a Jordan Mark 50 back pressure regulator allowing for pressure control of the
system then allowed to exit the system.

While much of the path for both steam and air into and out of the test section

are the same, they do differ in two places; before the throttle valve and after the back-
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pressure regulator. Steam is generated inside an ASME certified pressure vessel by
boiling deionized water and is constructed of Schedule 10 Type 304 stainless steel with
a maximum allowable pressure of 135 psig at 350 'F. Steam is generated inside the steam
generator via six immersion electrical heaters produced by Watlow Process Systems,
having a maximum power output of 157 kW. The heaters are wired to a control panel
that allows the incremental operator control of the power level, giving the operator a
way to control subcooling or superheating of the steam. Steam from the steam generator
may have entrained water within it if testing is conducted below saturation, so an
Anderson Type TL centrifugal high-efficiency separator was procured and installed above
the steam generator to remove the entrained water as the steam leaves the steam
generator [5]. Steam exits the separator into a T-valve, and then the throttle valve
entering the common gas piping described previously.

At the exit of the facility, once the steam passes through the back-pressure
regulator, it will be disposed of and removed from the system. If steam/water testings
this is accomplished by condensing the steam with a steam condenser, an AlfaNova 27-
34H plate type heat exchanger, procured by Wynne. Domestic water is supplied on the
cold side of the heat exchanger and allowed to drain into domestic sewage. After the
steam is condensed, it is gravity drained into a 50-gallon blowdown drum and eventually
flowed into the domestic sewage line.

Air is supplied by a Quincy QT-15 air compressor procured and installed by

Wynne. The compressor is a 15 HP reciprocating compressor with a 120-gallon capacity
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and a maximum output of 51 ACFM at 175 psig. The air leaving the air compressor is
filtered through particulate and oil filters and then is dried, to remove entrained
moisture, via a refrigerated dryer supplied by Quincy. After exiting the air dryer, the air
is regulated via a pressure regulator and piped into the steam generator. The steam
generator is emptied during air testing and is used as an air supply tank, the air then
enters the test section in the same piping as steam. Once the air enters the test sections,
is separated, and measured, it will pass into the back-pressure regulator and release from
the system via a nylon braided hose to outside the lab.

A secondary gas side was initially installed by Wynne to measure the humidity of
air during testing [6]. To accomplish this a tee was introduced before the gas throttle
valve, V-1, and a second throttle valve was installed, called the secondary side throttle
valve, V-2. Air was controlled via the secondary throttle valve and sent to a Dwyer HHT
humidity/temperature transmitter, once air passes through the transmitter the air exits
to the environment [6].

Garza modified the secondary side to allow steam to heat incoming water
entering test section, by using steam from the steam generator allowing for more precise
control of the water temperature entering the test section, allowing the user to reduce
the amount of subcooling that may occur during steam testing [7]. The steam is
controlled via the secondary throttle valve and is passed through an AlfaNova 27-30H
plate type heat exchanger to heat the incoming water, procured by Garza [7]. This steam

line has an addition Jordan Mark 60 pressure regulator to increase pressure in the
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secondary path for pressurized testing; this steam is disposed of via a blowdown drum
where it can condense before being released to domestic sewer lines.
3.3 Water Flow Path

Water is stored in a 1400-gallon pressure vessel procured by Solom and is
referred to as the water supply/RCIC tank [16]. The water supply/RCIC tank is made of
Type 304 stainless steel and can maintain 88 psi at 400°F. Water is supplied to the
flooding test section by one of two pumps located directly underneath the water
supply/RCIC tank. The main pump used for flooding testing is referred to as the water
supply pump and was procured by Wynne. The water supply pump is a 1.5 HP Liquidflo
model 620 Century Series centrifugal pump capable of operating at 300 psig at 500°F [6].
The second pump, referred to as the RCIC pump, is a 0.75 HP Dayton five-stage
centrifugal pump capable of operating at 93 psig at 194°F was procured by Solom [16].
Water from the pump enters a shared 1-inch stainless steel line with a 1-inch stainless
steel globe valve used to adjust the water mass flow rate into the test section. After
passing through the valve, the water enters a 0.5-inch Azbil MagneW 3000 magnetic flow
meter to determine its mass flow rate. The water then flows into an AlfaNova 27-30H
heat exchanger to heat water before it is sent to into the top of the test section during
steam testing. If air testing is being performed the heat exchanger may be bypassed
allowing water to flow directly into the top of the test section.

Water has one of two ways of leaving the test section: by either flowing down the

walls of the test section or, after flow reversal occurs, out the top of the test section.
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Water leaving the bottom of the test section is collected in a water hold up tank located
below the test section. During testing if water is reversed, the water passes into the
separator at the top of the test section and is separated from the gas; the separated
water flows into a second .5-inch Azbil MagneW 3000 magnetic flow meter to determine
the water carryover mass flow rate, then diverted into the holdup tank. The holdup tank
is an 80-gallon stainless steel Type 316 pressure vessel capable of 150 psig at 400°F. As
the size of the water hold up tank is small and to conserve water, the water is transferred
back to the water supply/RCIC tank. Water from the holdup tank is sent into a second
AlfaNova 27-30H plate type heat exchanger used to reduce the temperature of the water
if steam testing is being conducted to avoid cavitation in the re-circulation pump, the
cold side of the heat exchanger is supplied via the domestic water supply and disposed
of via domestic sewage line. The water then enters a re-circulation pump and is returned
to the water supply/RCIC tank and is a 1 HP Liquidflo model 620 Century Series
centrifugal pump capable of operating at 300 psig at 500°F and was procured by Wynne
[6].

Water is sourced from a domestic water supply and purified via a resin bed
system provided by Culligan Water Treatment.

3.4 Instrumentation

The facility makes use of thermocouples, pressure transducers/transmitters, and

flow meters so that identification of system characteristics, safe facility operation, and

fluid parameters. Thermocouples are used extensively throughout the facility and used
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to measure axial temperature on the outside wall of the test section, monitor the water
supply/RCIC tank temperature distribution, monitor temperatures entering the facilities
pumps, holdup tank temperature, steam generator temperature, and the temperature
at each flow rate detector [7] [13] [14]. Thermocouples are identified on the P&ID in
Figure 3 and are labeled as “TT”. All thermocouples used in the facility are Type T copper
constant thermocouples produced by Omega Engineering [7].

Flow meter locations and models pertaining direcnntly to testing are described
previously. One additional 0.5-inch Azbil MagneW 3000 magnetic flow meter is used to
identify the water flow rate entering or leaving the steam generator allowing the user to
monitor fluid flow while emptying or filling the steam generator to or from the water
supply/RCIC tank.

Three Honeywell ST3000 STD924 differential pressure transmitters are used in
the facility: one used to measure the holdup tank water level, the second used to
measure the steam generator water level, the third is installed on the test section and is
used to identify when flooding occurs [1]. A Keller Valueline High Accuracy pressure
transmitter is used to obtain the absolute pressure of the test section [6]. Honeywell
ST3000 STA9400 pressure transmitters are installed to capture the absolute pressure of
the steam generator and pressure conditions at the Foxboro vortex flow meters to
determine gas mass flow rates [1].

Data is collected via a National Instruments SCXI 1000 Chassis and is recorded and

monitored in LabVIEW. The LabVIEW VI is set to record 20 samples at a rate of 200 Hz,
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resulting in a 10 Hz output [6]. The LabVIEW VI allows the user to monitor the facility for
safety, identify flooding events within the test section, and record data. Data from
LabVIEW is output to .dat files; additional post-processing occurs in MATLAB®. Wynne
compiled a table detailing operating range and accuracy associated with the

instrumentation used in the flooding facility and is presented in Appendix | [6].
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4. OPERATIONAL PROCEDURES

Safety is the primary concern when operating the flooding facility, as the use of
pressurized temperature fluids and gases are present during operation. Proper use of the
facility will also assist in maintaining consistent data across tests. Accordingly,
operational procedures were created. The current facilities operating methods were
initially developed by Wynne [6]. As modifications were made during Garza's work, the
procedures were updated accordingly, as such the operational procedure follow very
closely to the previous work and were updated for ease of use [7].

As most of the operational procedures for the flooding facility and associated
subsystems were established in previous work and presented in Appendix E. Major
changes to the procedure from Garza’s work are given below and are reflected in the
methods found in the Appendix E.

4.1 Changes to Operational Procedure

The operational procedure has been developed over two previous studies, with
no additional equipment being included in this study. However, during maintenance of
the air compressor, it was discovered that the oil level should be checked after the
compressor has been started [17]. Following the previous procedures, an oil level check
was done before starting the compressor if the oil level is tested at this point the level
may appear to be high as the oil may have drained out of the heads of the compressor

leading to an incorrect measurement of the oil level.
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5. RESULTS OF NEW FLOODING DATA AND DATA SET INTEGRATION

Additional data were collected for this study to expand beyond the parameters
of data collected by Wynne and Garza. Expansion of the dataset allows for a more
extensive and more comprehensive flooding curve, that will lead to new insights into
flooding of a vertical large diameter tube. Previous work performed at the NHTS
collected 179 valid data points, newly conducted work obtained for this study added 285
data points. This new data focused on two areas; onset of flood and high carryover flow
rate data, further details will be covered during data integration.

The proceeding sections summarize test parameters, newly collected data,
analysis of data for this study, and analysis of an integrated database. Raw flooding data
will be provided to explain the events of standard flooding test and explain why data
reduction was conducted. The data reduction techniques will then be described, and the
data set will be presented as flooding plots for steam/water and air/water tests. Finally,
an error analysis was conducted and presented.

5.1 Test Range and Target Parameters

Test ranges for this study were established to compare to and extend the work
by Garza; this leads to an operating pressure range from 1 to 45 psig. As 0 psig testing
was not possible to obtain in the facility due to system design, low psi testing was
conducted and was usually around 1.0 to 5.0 psig and will be referred to as ambient
pressure. Pressure creep, a phenomenon that occurs due to pressure build up or losses

in the system, developed in ambient and 15 psig testing at elevated gas mass inlet flow
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rates. The maximum pressure, 45 psig, was established by Wynne when he modified the
facility for pressurized testing [6]. Garza proceeded to break the pressure operating
range down into 15 psig intervals; the same convention is used here. Water mass flow
rates obtained by Garza were limited, this study expanded on the data set Garza
provided, by widening the range of mass inlet flow rates for water. The original water
inlet mass flow rate range was based on the water flow rate operating range established
by Williams [5]. Ritchie identified the water flow rates that the facility could adequately
perform at were 4.5 to 12 GPM, initial testing for this study determined that 5.0 to 8.0
GPM should be conducted [13]. This range was chosen as the water inlet flow rates
decreased below 5.0 GPM reasonable doubt of annular film creation of the water was
being created. The upper limit restriction is due to pressure, and the water inlet mass
flow rate, as both increases flow reversal is harder to achieve. Once this flow rate range
was identified an increment of 0.5 GPM was chosen to define the water mass inlet flow
rate range, testing at points that were already completed by Garza only occurred to
verify, that results were repeatable with a new user.

Gas inlet mass flow rates were chosen to be at three different points the first
being onset of flooding, or when countercurrent flow was first initiated in the test
section. Due to the nature of flooding, this is dependent on the mass flow rate of the gas
and the system pressure and was identified for each test. The second gas flow rate was
roughly 10 grams per second (gps) above the onset mass flow rate; this was selected as

it would ensure this target could be obtained for all testing. Finally, the last gas inlet mass
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flow rate was chosen as the gas flow rate required for full flow reversal. However, this
was not attainable with the current facility due to lack of gas generation capabilities, and
the pressure creep that developed as the mass inlet flow rate of the gas increased.

Water inlet and steam inlet temperatures for steam/water testing are
determined by the saturation temperature required for the pressure of the test being
performed, leading to a range from 100°C up to 144°C. From Garza’s work, it was
established that the water temperature was to be within 3°C of saturation temperature
[7]. The steam inlet temperature ideally was to be kept at the saturation temperature
for the pressure being tested. However, it was found that this became quite difficult to
control and maintain. Garza concluded that keeping the superheat to a minimum would
achieve adequate results establishing that the steam inlet temperature should not
exceed 10°C above saturation temperature, leading to a steam temperature range of
100°C to 154°C [7]. The same approach is used in this study. However, care was taken to
reduce the superheat as much as possible.

All testing parameters for flooding testing are summarized below for flooding
testing in Table 1.

Table 1: Flooding test parameters.

Parameters Steam/Water Range Air/Water Range
Test Section Pressure [psig] 3-45 3-45

Gas Inlet Flow rate [gps] 25-66 35-75
Gas Inlet Temperature [°C] 100 - 154 15
Water Inlet Flow Rate [GPM] 5-8 5-8
Water Inlet Temperature [°C] 100 -144 25
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5.2 Raw Data of a Typical Flooding Test

Data collection was completed using National Instruments LabVIEW with the raw
data output as .dat files. A file collected all pertinent information for a test performed
which included a variety of parameters such as mass flow rates, pressure, and
temperatures at critical locations in the test section and facility so that a flooding profile
was obtained. The data files for steam/water and air/water are similar with the caveat
that for steam, additional data is collected for temperature as fluid and gas properties
are affected by the temperature, some of this data was not collected for air/water
testing, and it was assumed the effects of temperature would be minimal.

The purpose of a single test was to conduct a flooding test in which the user-
controlled parameters are at a quasi-steady state. These parameters are water inlet
mass flow rate and temperature, gas inlet mass flow rate and temperature, and system
pressure. Testing was conducted for the onset of flooding and beyond onset of flooding.

A test is initiated by first allowing water to flow into the test section and stabilize
at a predetermined water inlet mass flow rate, seen in Figure 5, from 0 to roughly 180
seconds. Typically, this flow rate and other system parameters are determined in a

preliminary test, before a test is recorded.
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Figure 5: Water flow rates for a typical flooding test. This plot corresponds to test
2017_05_15_test_04.

After the predetermined water flow rate is established, the gas is allowed into
the test section, shown in Figure 6, and slowly brought up to the point flooding will be
initiated at, this is typically found and confirmed when establishing the water inlet flow
rate.

Once the gas flow is initiated the system pressure begins to increase to the
predefined pressure. This target pressure should be reached before flooding occurs.

The gas outlet flow rate will tend to lag the gas inlet flow rate. Ideally, the gas

inlet and outlet flow rates should match, and typically do in air/water tests. However, it
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was found that during steam/water testing this was highly unlikely due condensation of
the steam that may occur during testing. As a test progresses, the gas inlet and outlet
flow rates tend to converge, although a test is limited to the amount of available gas and

may end before a complete convergence of gas inlet mass flow rate and gas outlet mass

flow rate appears.
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Figure 6: Gas flow rates and pressure for a typical flooding test. This plot corresponds
to test 2017_05_15_ test_04.

Once flooding is initiated the carryover flow rate appears, shown in Figure 4,

carryover flow rate is a rate at which water is no longer flowing down the test section
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but is reversed by the gas and is exiting the top of the test section. This flow rate tends
to follow a sinusoidal shape during a test.

Once a test is completed, the valve regulating the gas mass flow rate is closed
causing pressure and gas inlet and outlet mass flow rates to fall immediately, in the case
of gas flow rates to zero. The water inlet mass flow rate is then shut off and quickly
drops to zero. The carryover mass flow rate typically will do that same unless large
amounts of water are still present in the separator. The above parameters are monitored
during testing and adjusted if needed manually.

Due to the non-opaque nature of the test section in use, direct visual
confirmation of flooding is not possible. Therefore, flooding is identified in the LabVIEW
VI using the test section differential pressure. From previous studies, it was determined
that as flooding occurs, a significant drop in a test section differential pressure appears
[11]. Further studies showed that this is due to a pressure wave forming the moment
flooding is initiated and travels up the test section, creating a positive pressure at the low
side port of the differential pressure transmitter, leading to an overall drop in the test
section differential pressure.

A plot of differential pressure for the onset of flooding test is provided in Figure
7, as the test begins the test section differential pressure is approximately 55.75 in H,O.
Roughly 120 seconds into the test, test section differential pressure starts to deviate
from the set point, informing the user that flooding has started to occur. Throughout the

length of a test if flooding is occurring the differential pressure change is observed. At
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roughly 175 seconds the test is concluded, the gas flow is stopped, and a substantial
differential pressure decrease is observed. This effect is from the remaining gas in system

evacuating, causing a reduction in system pressure.
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Figure 7: Test section differential pressure of a typical flooding test. This plot
corresponds to test 2017 _05_15 test_04.

The water temperature, gas inlet temperature, and the saturation temperature
are also monitored and shown in Figure 8. Under ideal circumstances all three of these
values should be identical for steam/water tests; with air/water testing the saturation
temperature is neglected and gas inlet and outlet should be equal. For the test presented

in Figure 8, it is observed that the gas inlet temperature is slightly higher, approximately
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0.4°C, above the saturation temperature. The liquid inlet temperature started out high
and was adjusted to below the saturation temperature before flooding occurs, and is

kept constant, at roughly 2°C below the saturation temperature.
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Figure 8: Gas inlet, saturation, and water inlet temperatures of a typical flooding test.
This plot corresponds to test 2017_05_15 test_04.

5.3 Observations of Raw Data
Initial observations showed that a delay would appear from when the differential
pressure transmitter indicates flooding to occur initially and when water carryover

begins. From Figure 7 the time at which the differential pressure shows flooding to
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develop is roughly 120 seconds. Further, Figure 5 shows carryover flow rate doesn’t
appear until after 130 seconds; this is due to a delayed response from the magnetic flow
meter that measures the carryover mass flow rate and the travel time required for the
reversed water to pass into the flow meter.

During testing, it was observed that the gas mass flow rate to initiate flooding
could be reduced by holding the gas inlet mass flow rate below the flow rate initially
believed to cause the onset of flooding. Typically, this would usually occur 1 to 2 gps
below the initially obtained value, doing so also corresponded to an increase in time from
when this new mass inlet flow rate was reached, and when flooding would occur. This is
observed in Figure 7, the differential pressure plot, showing flooding occurring at
approximately 120 seconds when compared to the gas inlet flow rate, in figure 6, which
indicates that the gas and pressure stabilize at roughly 85 seconds. Leaving
approximately 35 seconds that the system was stable before flooding finally occurred.
During this period the differential pressures transmitter begins to become erratic.

Finally, it was observed during testing the carryover mass flow rate followed a
sinusoidal pattern shown, in Figure 9, for the onset of flooding and beyond onset of
flooding. For tests completed well beyond onset, a gas inlet mass flow rate of 15 gps
above the onset inlet mass flow rate was typically chosen, causing the water carryover
mass flow rate average value to be higher. Which is to be expected due to increase
momentum transfer from the higher gas flow rate to the liquid; this would coincide with

an observed decrease in the amplitude of the sinusoidal peaks of the carryover mass flow
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rate, shown in Figure 10. This phenomenon is observed for both steam/water and

air/water testing.
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Figure 9: Test conducted with a water inlet mass flow rate of 6.0 GPM and air flow rate
of 42 gps representative of an onset flooding test.
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Figure 10: Test conducted with a water inlet mass flow rate of 6.0 GPM and air flow rate
of 58 gps representative of a beyond onset test.

5.4 Data Reduction Method
To compare one test to another, the data was plotted using flooding curves, in
terms of the square root of the Kutateladze parameters for gas flow into the test section
and the fluid out the bottom of the test section. To do this each test needed to be
averaged into a single data point over the time interval that flooding was occurring and
completed by using sets of MATLAB® scripts for corresponding gas fluid pairs.
The first script “XXXX_Find_Range”, where XXXX denotes the gas, loads a single
.dat file and plots the gas inlet mass flow rate, test section pressure, carryover mass flow
rate, and the test section differential pressure. These variables are used to identify the

time interval at which flooding appears at a quasi-steady state condition and when it
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ends. The user locates this interval by identifying stable pressure, gas inlet flow rate, test
section differential pressure drop, and carryover flow rate. Typically, this range was a
minimum of 30 seconds. For high gas flow rates tests, this was not always possible and
shorter time ranges were used, with no test allowed under 10 seconds. These values are
then saved in an EXCEL document for later use.

Once a set of data had the flooding interval located a second script, called
“XXXX_Reduced”, takes the user identified ranges and averages all pertinent information
over the time interval of interest for each test and calculated the superficial velocity,
equations 2 and 3, and Kutateladze parameters, equations 4 and 5. Fluid properties were
obtained using “XSteam” a freely available table of steam properties based on IAPWS IF-
97 standards for MATLAB®[18]. This script was designed to loop through .dat files for
batch processing. Pertinent information was output to an array of averaged and
calculated values for all .dat files being processes; this output is saved into a master excel
file for further analysis.

Within this excel file, each test is identified, and qualification criteria are applied.
These criteria are the gas inlet flow rate doesn’t deviate by more than 1 gps, fluid
temperature is no less than 3°C subcooled, and that the pressure did not deviate by more
than 12 psi. Tests that passed these qualifications were then used to create Kutateladze

flooding curves.
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5.5 Observations from Reduced Newly Collected Data

Flooding curves were obtained by using the square root of Kutateladze
parameters to analyze trends within the data set and will be referred to as the
Kutateladze parameter for the respective condition of interest. Parameters used in this
study for generation of flooding curves employed the fluid mass flow rate that exits the
bottom of the test section, Kusg; this value is not directly measured by instrumentation,
it is calculated during post-processing by using the fluid mass flow rate entering the test
section minus the carryover mass flow rate.

Previous work by Garza identified that the water inlet mass flow rate had very
little effect on a data points placement on a flowing curve. Thus the parameter for water
mass flow rate down the test section is used [7]. The second parameters used is the
Kutateladze gas parameter entering the test section, Kug;. Flooding curves presented plot
the square root of Kur on the x-axis, and the square root of Kugi on the y-axis and are
obtained from equations 4 and 5. Interpretation of the flooding curve is intuitive, as the
x-axis approaches zero, the Kutateladze fluid down parameter, a measure of the fluid
forces due to the water going down the test section, decreases signifying less water is
exiting the bottom of the test section. The y-axis is like the x-axis, an increase in the
Kutateladze gas inlet parameter corresponds to an increase in the gas flow rate entering
the test section.

A complete data set from newly collected data for this study is presented in Figure

11. Here each point on the curve represents an individual averaged flooding test and
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different symbols representing different parameters. Groups of tests were identified
based on gas/liquid combination and pressure unless otherwise noted.

Initial observations show similar trends to previous studies performed at the
NHTS laboratory and available literature, with a general data trend that a data point with
a greater Kugj value the less the Kusq value tends to be. Fundamentally this should be the
expected trend, as gas mass flow rate is increased into the test section, a decrease in

water mass flow rate flowing down the pipe walls and out of the test section should

occur.
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Figure 11: Kutateladze flooding diagram for ambient, 15, 30, and 45 psig for new data
collected in this study.
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To further analyze Figure 11, steam/water and air/water flooding curves were
generated separately. Figure 12 presents a breakdown of only the steam data presented
in Figure 11 and is divided into groups based on the target pressure ambient, 15, 30, and
45-psi. However, no 45 psig testing completed for this study passed qualification. A gap
in the data set is observed at roughly 0.45 to 0.5 on the x-axis. This split in data separates
the onset of flooding data from the beyond onset of flooding data during data collection.
Beyond onset flooding was typically 10 to 15 gps above the onset of flooding, as this was
kept close to 10 gps, a distinct separation appeared in the data.

Additionally, Figure 12, just as figure 11, shows the same general trend for the
flooding curves. Garza noticed that pressure of the system appears to have a slight effect
on where a data point is placed on the curve, the same phenomenon appears within the
newly collected data as well [7]. While the slopes of each data set appear equal, higher
pressure increases a datasets placement along the y-axis on the right-hand side of the
curve, the onset of flooding data. However, this is a very slight difference and disappears
when looking at the data on the left-hand side of the curve, the beyond onset of flooding
data. Garza attributed this to error present within the system as the Kutateladze number
inherently accounts for pressure via the density terms during calculations [7]. As this
phenomenon doesn’t appear for data on the left-hand side of the curve the cause of this
phenomena may not be random error, additional insight was gained observing air/water

curves.
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Figure 12: Complete steam/water Kutateladze flooding curve for ambient, 15, 30,
and 45 psig for newly collected data.

Flooding curves for air/water were generated in the same manner as the
steam/water curves, the first is presented in Figure 13, displaying the same general trend
for flooding curves, as the Kugi increases the Kusq decreases. Here pressure is shown to
have very little to no effect on the placement of the onset of flooding data, on the right-
hand side of the curve, leading one to the conclusion that the Kutateladze parameters
adequately account for pressure changes within the system of air/water curves at the
onset of flooding. This insight leads one to dismiss earlier findings that the difference in
placement along the vy-axis is due to pressure effects for steam/water. During

steam/water testing at higher pressures condensation of the steam appears to have a
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higher chance of occurring, this is due to user control of the water inlet temperature
being slightly harder to control as pressure increases subsequently leading to a higher
gas flow rate being required initiate flooding.

A second difference appears in the air/water dataset compared to steam data,
below a Kutateladze fluid down parameter of 0.45 the data flattens out into an almost
horizontal line, seen clearly in Figure 14, which removes ambient pressure tests from the
flooding curve. Previous work by Vallée’s data also showed this leveling off of air data
when using Kutateladze parameters, but no mention of it was discussed, and the test

section was considerably different [19].
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Figure 13: New air/water Kutateladze flooding curve for ambient, 15, 30 psig for data
collected for this study.

43



1.7

1.6
1.5
] 14 = .
= || “-
= SO W
i Il
1.2 ' :
(A0 |
1.1
1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ku, (/2

M Air 15 Psi Air 30 Psi

Figure 14: New air/water data for 15 and 30 psig collected for during this study.

Further investigation into the ambient air/water data set, shown in Figure 15, was
carried out to identify the cause of this phenomena. Figure 15 is broken down by gas flow
rate and appears to follow the expected trend of continuously increasing Kutateladze gas
inlet parameter as Kutateladze gas inlet parameter decreases. However, for 50-55 gps
the Kutateladze gas inlet parameter is roughly identical to one another with
accompanying large changes in the Kutateladze fluid down parameter. If the air flow rate
is increased well beyond 55 gps, as shown in the 65+ gps group, the plateau disappears.
This plateau appeared in all air data, except for 45 psig and did not appear in the
steam/water data sets. Data acquisition instrumentation was checked to identify
possible malfunctioning. However, no issues were identified. The cause of this

phenomena could not be identified in his study. Additional flooding curves for
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steam/water and air/water testing are provided in Appendix B.1 and Appendix C.1 for

steam and air tests respectively and follow the same observations presented here.

1.7
1.6 ‘0
15 '3 A
5%1'4 Nwe o :3 L 3
§ 1.3
1.2
1.1
1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ku, (/2

@ 65+gps  €50-55 gps 40-45 gps

Figure 15: New ambient air/water data collected for this study broken down by gas
flow rate.

5.6 Uncertainty and Repeatability of Newly Collected Data
The error associated with the testing was found to be caused from multiple
sources: accuracy of instruments, the fluctuation due to random error, and error due to

the conversion of an analog signal to digital signal.
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Random error was obtained by repeating air/water and steam/water tests
multiple times under the same conditions at selected pressures to determine the
standard deviation of the Kutateladze parameters. Instrument error occurs from the
accuracy limitations of the instrumentation used, these values are found in Appendix |
and were obtained from the Wynne thesis who collected the values from instrument
manuals [6]. For the Kutateladze parameters, the mass flow rate of the gas and water
were found to be of most concern [6]. The error associated with analog to digital
conversion was quite small and was considered negligible.

The error was calculated using standard error propagation techniques for each

pressure and gas fluid pair and is summarized below in Table 2.

Table 2: Summary error for data collected for this study.

Gas/Fluid Pair Pressure [psig] Kusq Error Kugi Error Percent
Percent
Air/Water 3 2.187 0.529
Air/Water 15 1.618 0.308
Air/Water 30 1.624 0.293
Steam/Water 3 2.546 1.394
Steam/Water 15 1.929 0.508
Steam/Water 30 2.466 0.458

The Figures 16 and 17 show data collected for this study and include the

associated errors in steam/water and air/water tests, respectively.
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Figure 17: Newly collected air/water data with associated error.
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To establish that the data are repeatable, air/water and steam/water tests were
repeated with selected specific conditions. Each repeatability test included ten tests and
post-processed. Averages for significant data were obtained from each set and checked
against data qualification criteria. Table 3 shows the summary of the results. High

repeatability is observed, with a slight decrease in repeatability of steam tests.

Table 3: Summary of repeatability results.

Pressure Inlet Water Gas Inlet Flow Number of
Fluid Pair Range [psig] Flow Rate Rate Range Tests Past
Range [GPM] [gps]

Steam/water 29.48-30.58 44.98-5.04 43.46-45.04 7
Steam/water 15.38-16.01 5.94-6.04 37.11-39.33 9
Steam/water 1.15-1.23 5.98-6.01 24.8-26.22 8
Air/water 30.44-30.21 64.53-65.3 6.00-6.04 10
Air/water 15.80-16.24 56.5-57.63 6.01-6.03 10
Air/water 1.118-1.24 40.85-42.29 6.00-6.04 9

Various other tests at other water inlet mass flow rates, pressures, and gas inlet
flow rates were repeated as checks, but only two to four tests were completed instead
of ten and are not considered repeatability tests.

5.7 Integration of Data Sets

Newly collected data during this study was to expand and enhance flooding
curves previously produced at the NHTS. The newly collected data was to further
complement current onset of flooding data, via pressure and water inlet flow rate

combinations that had not been obtained. Newly collected data was to further expand
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into regimes beyond the onset of flooding so that high carryover or complete flow
reversal was established. While complete flow reversal was not achieved during this
study, degrees of high flow reversal that had not been reached previously were obtained.

Previously collected data by Wynne and Garza as well as the newly collected data
is presented in flooding curve in Figure 18. The newly collected data, triangles, shows
two very distinct locations on the flooding curve. First on the right-hand side at large
Kutateladze fluid down parameters, representing the data collected at the onset of
flooding, and trend very well with previously collected data. This newly collected data
emphasizes new combinations of pressure and water flow rates that had not been
previously collected. Above a Kutateladze fluid down parameter of 0.45 Wynne’s, data
square data points, disappear which is expected as his research focused on the
establishment of the facility and initial onset of flooding data [6]. Garza’s data, diamond
data points, focused on the expansion of onset of flooding and initial beyond onset of
flooding at elevated pressures. While Garza did obtain data at ambient pressures and
beyond onset the data set was sparse leading to a nice trend of data up until a
Kutateladze fluid down parameter of roughly 0.4 [7]. At and beyond this point a spread
of Garza's data along the y-axis appears, much like the newly collected, but it is limited.
The newly collected data, extend far into the lower range of Kutateladze fluid down
parameter, representing data points that have a higher carryover then previously

obtained, and is where the large spread of Kutateladze fluid down parameter appears.
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Figure 18: Data collected by Wynne, Garza, and Livingston at the NHTS flooding facility.

An additional objective of this study was to compare and validate the new data
collected for this study to that of all data obtained using the current facility, the Wynne
and Garzas data sets, and to further validate Garza’s interpolation for the
interchangeability of steam/water and air/water. However, during the analysis in this
study improvement to the post-processing scripts identified an error in the processing of
the previous data. All previous data points were subsequently reprocessed, and new
flooding curves were created. The complete and integrated database is presented in

Figure 19 and is broken down by pressure.

50



16 o R
15 P * HTX
E | w" YL A
3 14 oty 4«;13%
5713
z n ¢
1.2 " ]
11
1
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
Ku, 072

@ Air 3 Psi W Air 15 Psi Air 30 Psi @ Steam 3 Psi
X Steam 15 Psi ® Steam 30 Psi + Air 45 Psi =Steam 45 Psi

Figure 19: Integrated flooding curve constructed from Wynne, Garza, and Livingston
datasets.

The complete database shows the same trend as other flooding literature and the
previously presented flooding curves. However, once air/water tests are separated,
displayed in Figure 20, the 15 and 30 psig data appear to level off, as discussed previously.
Few data points are available for 45 psig air/water data it is unsure if this holds true for

45 psig air tests.
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Figure 20: Integrated air data set collected at the NHTS using the current flooding
facility.

Garza's work was to identify a correlation between steam/water and air/water
data, Garza concluded that if condensation effects were accounted for in the
steam/water tests the two sets of data would overlay onto one another [7]. Figure 21
shows the complete data set for ambient pressure broken down between steam/water
and air/water test, showing only a slight difference between the two data sets, far less
then what was observed by Garza and may be attributed to the issue discovered in post-
processing. This nearly complete overlay of the data sets is attributed to the minimized
subcooling that is achieved during testing which minimizes the condensation that will
occur; this is reflected by the overlap between the steam/water and air/water data sets.

Thus, a modified equation to account for condensation may not be needed when
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subcooling is minimized. However, with the flattening of the air curves that occurs

beyond the onset of flooding direct correlation between steam/water and air/water

curves may not yield accurate results. Figures 22 and 23 display the integrated database

for 15 and 30 psig. Figure 22 shows that all low pressures the steam and air data sets lay

directly on top of one another, while Figure 23 shows that the steam/water dataset trend

is slightly higher than the air/water data which is attributed to increasing chances of

subcooling at elevated pressures discussed previously. The 45 psig flooding curves can

be found in Appendix C.1 and D.1 showing the same trend.
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Figure 21: Integrated dataset for ambient pressure for steam/water and air/water tests.
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Figure 23: Integrated data set for 30 psig for steam/water and air/water tests.
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Analysis of newly collected data found that steam/water testing at an elevated
pressure increased a datasets position along the y-axis of a flooding curve for the onset
of flooding data. Leading to the conclusion that this arises due to an increase of
condensation at higher pressures; this is explored in the integrated dataset in Figure 24
and Figure 25. Figure 25 displays the flooding curves for steam/water data at varying
pressures. Apart from 45 psig tests which are limited, the trend holds true that data on
the right-hand side of the flooding curves, the onset of flooding, separate out based on
anincrease in pressure. For comparison, an integrated air/water data set, found in Figure
25, shows little if any separation effects due to pressure, supporting the conclusion that

the separation in the steam/water data sets is due to condensation effects.
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Figure 24: Integrated steam/water data set.
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56

0.8



6. RESULTS OF HYSTERESIS TESTS

Hysteresis effects of flooding were also explored in this study. Very little previous
research was found on the hysteresis of flooding conditions. Govan observed hysteresis
while conducting tests using different exit conditions although little analysis was
performed of the hysteresis, was perform and limited to differences in exit conditions
[20]. Understanding conditions post onset of a flooding event after gas mass flow rate is
reduced beyond the onset condition will yield valuable information on when the flooding
phenomena can be expected to occur in two-phase systems.

6. 1 Range and Parameters of Hysteresis Tests

As little previous research was obtained on flooding hysteresis, no benchmark
could be established. Following the same parameters set forth for flooding tests
presented above, hysteresis testing would be conducted from 1 to 45 psig with water
inlet flow rates ranging from 5.0 to 7.5 GPM. During testing, it was discovered that the
facility could not generate sustained gas flow rates needed for hysteresis testing with
water inlet flow rates above 7.5 GPM and pressures above 30 psig. As no benchmark had
been established, it was decided that 5.0, 6.0, and 7.0 GPM water inlet mass flow rates
at ambient pressure, 15, and 30 psig would be used to conduct hysteresis testing.

6.2 Data Collection and Data Reduction Method of Hysteresis Tests

Hysteresis tests were completed by first determining the gas inlet mass flow rate

required for the onset of flooding for a given pressure and water inlet mass flow rate. A

new test was conducted by establishing the water inlet mass flow rate and injecting gas
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into the test section below the pre-determined gas mass flow rate required to initiate
flooding and was typically a mass flow rate 15 gps below the onset of flooding mass flow
rate. In the case of low-pressure steam/water tests, the gas flow rate to initiate flooding
was low, and this difference was reduced. Once gas flow was established it was held at a
guasi-steady state for a minimum of 30 seconds and then the gas mass flow rate was
increased by 5 gps and again held at a quasi-steady state as before, then increased again;
this repeated until well beyond the gas mass flow rate required to initial flooding,
typically 15 gps above the onset of flooding gas mass flow rate. Once this maximum was
reached the process was reversed, and gas mass flow was decreased in the same manner
until flooding ceased.

Due to a limited supply of air, tests were completed in a piece-wise manner, of at
least two data points per single test run. If a test only included one established data point
and gas mass flow rate could not be sustained for a second point, the test was considered
invalid for hysteresis consideration. The data allowed for a reconstruction of a full
hysteresis diagram from these tests. Testing for hysteresis was performed at ambient
pressure, 15, and 30 psig, 45-psig tests were attempted, but due to lack of adequate gas
supply, these tests were not completed. Water flow rates were 5.0, 6.0, and 7.0 GPM.

Table 4, below, list parameters for hysteresis testing.
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Table 4: Parameters used for hysteresis tests.

Parameters Steam/Water Range Air/Water Range
Test Section Pressure [psig] 3-30 3-30

Gas Inlet Flow rate [g/s] 20-66 25-75
Gas Inlet Temperature [°C] 103 -149 15
Water Inlet Flow Rate [GPM] 5-8 5-8
Water Inlet Temperature [°C] 100 -144 25

6.3 Observations from Hysteresis Data

After initial data collection, manual identification of steady state time intervals
using a given pressure and water inlet mass flow rate were identified at each gas inlet
mass flow rate step and recorded. Data sets were further processed to obtain averaged
data points for the intervals of interest in the same manner as was done for the standard
flooding tests. Each averaged data point was then compiled with data points containing
the same pressure and water mass inlet flow rate to produce a hysteresis flooding curve
for further analysis.

Hysteresis curves were constructed using the square root of the Kutateladze
parameter for gas mass inlet flow rate, Kug;, allowing for representation of gas mass flow
rate into the test section. The second parameter used was the carryover fraction, a
unitless description of the liquid carryover, obtained by dividing the carryover mass flow
rate by the water inlet mass flow rate.

Figure 26 shows a compiled steam hysteresis flooding curve for a water inlet mass

flow rate at 5.0 GPM and ambient pressure. Diamond data points represent data
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collected as the gas flow rate was increasing and squares represent the data collected
for decreasing gas flow rates, Interpretation of the hysteresis graph starts from the left
and proceeds to the right and then reverses at the rightmost data point. Therefore,
starting with the far-left diamond data point and moving right, the Kutateladze gas inlet
parameter is increased, x-axis, a corresponding increase in the carryover fraction, the y-
axis, should appear if flooding is occurring. Once the rightmost data point is reached the
processes is reversed, and the gas flow is decreased and should correspond to a decrease
in the carryover fraction.

The arrows in Figure 26 represent the increase and subsequent decrease in the
data and the directions they are plotted. The lower arrow represents the data with
increasing gas flow, diamond data points, and the upper arrow for data with decreasing
gas flow rate, square data points. This convention is used on all following hysteresis plots.

The first two diamond data points in Figure 26 show zero to little carryover, so
little that flooding is not considered to occut. Natural fluctuations in carryover mass flow
rate are present in the system when both gas and water are both being allowed into the
system. To verify the second point was not a flooding data point, analysis of the raw data
showed that the second point is in fact not flooding, as no anlysis of the appearance of
differential pressure drop occurred. The carryover is most likely occurring due to
entrained droplets of water leaving the test section and being separated out. As the gas
inlet Kutateladze parameter increases, flooding finally initiates at point 1, and water

carryover fraction increases dramatically. Additional increases in the gas inlet
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Kutateladze parameter beyond initial flooding point are accompanied with a higher

carryover fraction.
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Figure 26: Compiled hysteresis graph for steam with a water flow rate of 5.0 GPM at
ambient pressure. The bottom arrow represents increasing carryover as gas flow rate
increases, and the upper arrow represents decreasing carryover as gas flow rate is
decreased.

Once the final diamond point is reached, the procedure reverses to decrease the
gas mass inlet flow rate. Beginning with the upper right square data point, the gas inlet
Kutateladze parameter is incrementally decreased until flooding no longer occurs within
the system, the same method for increasing mass inlet flow rate is used. The last square
data point, point 3, shows a small hysteresis effect, implying that flooding is still occurring

after the gas inlet Kutateladze parameter is reduced below the gas inlet Kutateladze
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parameter required to initiate flooding. Point 2 shows another effect of hysteresis,
increased amounts of carryover when compared to the data point collected for flooding
initiation, point 1. This general trend appears for steam/water tests at 5.0 GPM water
flow rates and 15 and 30 psig, and for steam/water tests of 6.0 GPM and 7.0 GPM at
ambient pressure.

As pressure and water inlet flow rate are increased hysteresis effects became
more apparent corresponding to greater carryover when the gas inlet Kutateladze
parameter is reduced below the initial flooding gas inlet Kutateladze parameter; this is
shown in Figures 27and Figure 28. In both figures point 1 indicates the point where
flooding is initiated while increasing the gas inlet Kutateladze parameter. With point 2
indicating a high degree of flooding occurring after the gas inlet Kutateladze parameter
has been reduced below require gas inlet Kutateladze parameter to initiate flooding. For
steam/water tests, increases in pressure and water inlet flow rate induced larger

hysteresis effects in the system.
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Figure 27: Hysteresis curve for steam/water testing with a flow rate of 6.0 GPM at 30
psig.
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Figure 28: Hysteresis curve for steam/water testing with a flow rate of 7.0 GPM at 30
psig.
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Hysteresis graphs for air/water test were constructed following the same
procedure and followed the same progression as steam/water hysteresis testing. Tests
conducted with air/water showed a greater extent of hysteresis than the steam/water
tests throughout the entire pressure and water inlet mass flow rate ranges and is
observed in Figure 29, for ambient pressure and 6.0 GPM water inlet mass flow rate.
Point 1 indicates the location that flooding is first initiated at and point 2 indicates a high
degree of flooding after the gas inlet Kutateladze parameter was raised beyond the initial
flooding point and subsequently reduced to the same gas inlet Kutateladze parameter
that initiated flooding. Once the gas inlet Kutateladze parameter is reduced to below
what is required to initiate flooding, flooding continues to occur in the test section at

points 3 and 4.
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Figure 29: Hysteresis curve for air/water testing with a flow rate of 6.0 GPM at ambient
pressure.

At elevated pressures and water inlet flow rates, hysteresis is sustained for much
lower gas inlet Kutateladze parameters in air/water mixtures; this is demonstrated in
Figure 30. Flooding first occurs at point 1, yet continues to occur through points 2-4, to

a point well below the gas inlet Kutateladze parameter required to initiate flooding.
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Figure 30: Hysteresis curve for air/water testing with a flow rate of 7.0 GPM at 15 psig.

The appearance of hysteresis in the data suggests that once the point of initial
flooding is reached, the required momentum transfer to continue flooding is reduced.
Therefore, a corresponding decrease in gas mass flow rate, lowering the Kutateladze gas
inlet parameter, will sustain flooding within a tube at a velocity below that require
initiating flooding. Data beyond the onset of flooding suggests that a higher carryover
fraction appears after a gas velocity decrease occurs. Data at higher pressures suggests
larger hysteresis effects.

6.4 Uncertainty within Hysteresis Data
Error analysis presented for flooding tests was also applied to the hysteresis tests.

The error was propagated in the same manner; however, the error was also calculated
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for carryover fraction, error for each pressure and gas fluid combination is summarized

below in Table 5.

Table 5: Error associated with hysteresis testing.

Gas/Fluid Pair Pressure [psig] Carryover Fraction Kugi Error Percent
Percent
Air/Water 3 3.188 0.529
Air/Water 15 0.179 0.308
Air/Water 30 0.136 0.293
Steam/Water 3 8.291 1.394
Steam/Water 15 7.881 0.508
Steam/Water 30 1.721 0.458

Figures 31 and 32 displays associated error in 5.0 GPM steam/water and

air/water tests at ambient pressure, respectively.
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Figure 31: Hysteresis of steam/water at 5 GPM at ambient pressure with an associated
error.
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Figure 32: Hysteresis of air/water at 5 GPM at ambient pressure with an associated
error.
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7. CONCLUSIONS AND FUTURE WORK
7.1 Conclusions

The flooding facility at the Nuclear Heat Transfer Systems Laboratory was
employed for the current testing. An experimental investigation was conducted to
expand the flooding database at elevated pressures using steam/water and air/water gas
as the gas/liquid pairs. An experimental investigation into hysteresis inside a large
diameter vertical tube was completed under the same parameters.

Flooding data were acquired from 5 to 8 GPM water inlet flow rates in 0.5 GPM
increments, with incremental gas inlet mass flow rate increases at ambient pressure, 15,
30, and 45 psig for steam/water and air/water mixtures. The onset of flooding was
obtained for each water flow rate and pressure, for both fluid pairs; additional data were
collected beyond onset, of at least 10 gps above the gas flow rate to induce the onset of
flooding. Conditions were held constant for at least 30 seconds to produce a quasi-steady
state environment in the test section. Data were post-processed to reduce each test into
a single data point, and non-dimensional Kutateladze parameters were calculated.

Kutateladze flooding curves were constructed using the parameters for water
exiting the bottom of the test section and for gas entering the test section. Data collected
for this study matched results from previous studies showing slight dependencies on
pressure [3][6][7]. However, a flattening of the air/water curve at lower Kutateladze fluid
down parameters was observed. The source of this flattening has not been identified.

Data acquisition equipment was checked, and no issues were found. Steam/water and
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air/water datasets appear to compare and trend well to each other, with data sets laying
nearly on top of each other and is attributed to low subcooling obtained while collecting
data. This comparison is an important benchmark of air to steam data, and it suggests
that the air data may be used when steam data are unavailable.

During steam/water data analysis, the pressure seemed to slightly affect where
an onset of flooding data point would fall on the y-axis of a flooding curve; this was not
seen in air/water data and is attributed to effects condensation will have at higher
pressures, requiring a slightly higher gas inlet flow rate to initiate the onset of flooding.
The same trend was observed in the integrated dataset.

The new data was compared to the earlier data sets collected by Garza and used
to verify previous flooding correlation. Improvements to the post-processing scripts were
made, and all data by Wynne and Garza were reprocessed. All data using the current
NHTS flooding facility were combined into a single database, and flooding curves were
generated. The integrated flooding curves were confirmed to follow the same trends as
seen for data collected for this study.

This plateauing of the air data currently limits the direct comparisons of steam
data to air data beyond the onset of flooding. Thus, further data at elevated gas flow
rates for steam/water and air/water should be collected to establish a greater
understanding of the phenomena that is occurring.

Data were collected to understand hysteresis within a large diameter vertical

tube under flooding conditions at various pressures and water flow rates. Water flow
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rates obtained during hysteresis testing were 5.0, 6.0, and 7.0 GPM at pressures of
ambient, 15, and 30 psig for steam/water and air/water.

Data was processed, and hysteresis curves were obtained using the Kutateladze
parameter for the gas at the inlet and the water carryover mass fraction. Hysteresis was
observed appearing as higher carryover fractions and flooding occurring at gas inlet flow
rates far lower than those required to induce flooding for the incrementally increasing
gas flow rate tests. Hysteresis appears in both steam/water and air/water combinations.
Data at higher pressure and higher water inlet flow rates exhibited greater hysteresis
effects, allowing flooding to continue after the gas flow has dropped below the rate
needed to initiate flooding. Effects of hysteresis appear to be more severe for air tests
than for steam tests.

Work presented here enhances the understanding of the phenomena within two-
phase countercurrent flow known as flooding. This work can be implemented to improve
and validate reactor safety codes for PWRs and BWRs.

7.2 Future Work

While this study did succeed in expanding the flooding database as well as
enhancing our understanding of the flooding phenomena, many issues about flooding
remain and are discussed below.

The number of steam/water and air/water data points at 45 psig is small.
Expanding the data set of this pressure would provide for better comparisons of air to

steam data. The current data set at 45-psig while does show some differences due to the
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different fluids, but it could be enhanced to allow for further investigation of the effects
due to liquid and gas parameters.

Due to the flattening out of the air at high air mass flow rates further, steam
testing is necessary to determine whether this trend happens for steam tests. Expansion
of the steam/water data set at high gas flow rates to identify if the Kutateladze
parameter for fluid in flattens out like air/water data should also be investigated.

Identification of the location of flooding within the test section remains elusive.
For the acrylic air/water test section Solmos hypothesized that flooding occurs within the
lower third of the test section [12]. However, this has not been confirmed in the stainless-
steel test section. If the location of flow reversal could be identified, the conditions upon
flooding occurrence could be more accurately identified.

Testing with subcooled water at elevated pressures should be performed. Cullum
presented work with large degrees of subcooling. However, this was only obtained at
atmospheric pressure. Furthermore, concerns of vacuum and condensation affect due to
an open system shed doubt on the accuracy of the results. Producing a reliable subcooled
dataset at elevated pressure would further enhance the understanding of flooding
phenomena.

Currently, all air/water testing done at the NHTS has assumed that the no mass
transfer occurs due to condensation, unlike steam tests in which steam condenses for a
water temperature below saturation. However, to build a more accurate model and be

able to accurately compare steam/water tests and air/water data, air/water testing
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should be performed with the inlet water temperature at or near saturation
temperatures for a given pressure and the air also heated. Whether or not mass transfer
appears may yield insightful information about the differences between steam/water
and air/water testing due to differences in fluid parameters at saturation temperatures.

Previous and current work at the NHTS has not been able to produce full flow
reversal of the liquid adequately. While flooding correlations and graphs have been
produced, obtaining full flow reversal within the current test section would enable
exploration of the two-phase configuration that is expected to be less turbulent or
chaotic than that at the onset of flooding.

Regarding the hysteresis tests, an important disadvantage of the Texas A&M
flooding system is that the air compressor does not have enough capacity to obtain all
the data points for a flooding test in a single test run. To confirm data presented here
and to obtain a more accurate understanding of flooding hysteresis in a vertical test
section, testing should be conducted so that all data points can be collected on a single
test. This may be possible if the lab can secure an air storage tank large enough for the

said purpose.
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APPENDIX A
REDUCED STEAM/WATER FLOODING DATA
The proceeding section presents qualified reduced steam/water data collected in
this study for flooding and hysteresis.
A.1 Reduced Steam/Water Flooding Data
The proceeding section presents qualified reduced steam/water flooding data;

tests are listed by test name.
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A.2 Reduced Steam/Water Hysteresis Data
Below is the reduced data for steam/water hysteresis tests. The tests are
displayed according to name and start with the first point associated with raising gas the
gas mass flow rate up to a maximum and then back down. The column labeled direction
signifies up (U) for increasing gas mass flow rate and down (D) for decreasing the mass

flow rate.
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APPENDIX B
REDUCED AIR/WATER DATA
The proceeding section presents qualified reduced air/water data collected in this
study for flooding and hysteresis.
B.1 Reduced Air/Water Flooding Data
The proceeding section presents qualified reduced air/water flooding data; tests

are listed by test name.
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B.2 Reduced Air/Water Hysteresis Data
Below is the reduced data for air/water hysteresis tests. The tests are displayed
according to name and start with the first point associated with raising gas the gas mass
flow rate up to a maximum and then back down. The column labeled direction signifies

up (U) for increasing gas mass flow rate and down (D) for decreasing the mass flow rate.
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APPENDIX C
KUTATELADZE FLOODING CURVES

C.1 Kutateladze Curves for Data Collected in this Study
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Figure C1: Complete flooding curve for data collected during this study.
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Figure C2: Complete steam data flooding curve for data collected for this study.
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Figure C3: Complete air data flooding curve for data collected for this study.
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Figure C4: Ambient pressure steam and air flooding curve for data collected in this
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Figure C5: Ambient air flooding curve for data collected in this study.
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Figure C6: Ambient steam flooding curve for data collected in this study.
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Figure C7: Air and steam flooding curves for 15 psig for data collected in this study.
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Figure C8: Air flooding curves for 15 psig for data collected in this study.
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Figure C9: Steam flooding curves for 15 psig for data collected in this study.
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Figure C10: Air and steam flooding curves for 30 psig for data collected in this study.
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Figure C11: Air flooding curves for 30 psig for data collected in this study.

116



1.7

1.6

1.5

Figure C12: Steam flooding curves for 30 psig for data collected in this study.
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C.2 Integrated Kutateladze Curves: Includes Wynne and Garza Data

0.1 0.2 0.3 0.4 0.5 0.6 0.7
1/2
Kufd( /2)

@ Air 3 Psi BAir15Psi  AAir30Psi  Steam 3 Psi
X Steam 15 Psi ® Steam 30 Psi + Air 45 Psi =Steam 45 Psi

Figure C13: Complete integrated flooding curve.
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Figure C14: Integrated flooding dataset for steam.
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Figure C15: Integrated flooding dataset for air.
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Figure C16: Integrated air and steam flooding curve for ambient pressure.
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Figure C17: Integrated air flooding curve for ambient pressure.
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Figure C21: Integrated steam flooding curve for 15 psig.
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Figure C23: Integrated air flooding curve for 30 psig.
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Figure C24: Integrated steam flooding curve for 30 psig.
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Figure C25: Integrated air and steam flooding curve for 45 psig.
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APPENDIX D
FLOODING HYSTERESIS CURVES

D.1 Air/Water Hysteresis Curves
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Figure D33: Hysteresis curve for air/water testing with a flow rate of 5.0 GPM at
ambient pressure.
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Figure D34: Hysteresis curve for air/water testing with a flow rate of 6.0 GPM at
ambient pressure
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Figure D35: Hysteresis curve for air/water testing with a flow rate of 7.0 GPM at
ambient pressure.
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Figure D36: Hysteresis curve for air/water testing with a flow rate of 5.0 GPM at 15
psig.
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Figure D37: Hysteresis curve for air/water testing with a flow rate of 6.0 GPM at 15
psig.
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Figure D38: Hysteresis curve for air/water testing with a flow rate of 7.0 GPM at 15
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Figure D39: Hysteresis curve for air/water testing with a flow rate of 5.0 GPM at 30

psig
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Figure D40: Hysteresis curve for air/water testing with a flow rate of 6.0 GPM at 30
psig.
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Figure D41: Hysteresis curve for air/water testing with a flow rate of 7.0 GPM at 30
psig.
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D.2 Steam/Water Hysteresis Curves
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Figure D42: Hysteresis curve for steam/water testing with a flow rate of 5.0 GPM at
ambient pressure.
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Figure D43: Hysteresis curve for steam/water testing with a flow rate of 6.0 GPM at
ambient pressure.
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Figure D44: Hysteresis curve for steam/water testing with a flow rate of 7.0 GPM at
ambient pressure.
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Figure D45: Hysteresis curve for steam/water testing with a flow rate of 5.0 GPM at 15
psig.
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Figure D46: Hysteresis curve for steam/water testing with a flow rate of 6.0 GPM at 15
psig.
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Figure D47: Hysteresis curve for steam/water testing with a flow rate of 7.0 GPM at 15
psig.
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Figure D48: Hysteresis curve for steam/water testing with a flow rate of 5.0 GPM at 30
psig.
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Figure D49: Hysteresis curve for steam/water testing with a flow rate of 6.0 GPM at 30
psig.

133



0.9
0.8
0.7
0.6
0.5
0.4 =
0.3
0.2
0.1

me

Carryover Fration

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
1/2
Ku,(1/2)

#® Increasing Gas Flow Rate H Dereasing Gas Flow Rate

Figure D50: Hysteresis curve for steam/water testing with a flow rate of 7.0 GPM at 30
psig.
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APPENDIX E
OPERATIONAL PROCEDURE
E.1 Data Acquisition System
The data acquisition system is used to record data and monitor facility conditions,
while data may not be recorded the data acquisition system should always be operating
if the facility is being operated.
1. Startup and/or login to data acquisition computer.*
2. Power ON the remote monitor near the throttle valve.*
3. Power ON the remote monitor near water flow control valve. *
4. Open D:\...\SteamFlooding_Version5.vi for steam/water tests. *
Open D:\...\AirFlooding_Version4.vi for air/water tests. *
5. Turn ON the DC power supply, verify that the voltage displays 24.0 V.
6. Turn ON the National Instruments SCXI chassis. *
7. Click “Run” button in LabVIEW’s top ribbon bar to start actively monitoring
the facility. *
8. Verify that the instruments are reporting expected values if irregularities are
present identify and correct the error. *
a. The test section differential pressure transmitter should output 55.75

inches H,0 with + 5% while no gas or water is flowing. * If the
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displayed output is outside this range purging of the lines will be
necessary, refer to section E.13 for instructions.

b. The outlet gas vortex flow meter needs to be set for the appropriate
gas being used f the meter is not set for the appropriate gas the
density, temperature, and viscosity must be changed directly on the
flow meter panel. * The appropriate fluid parameters for steam and
air and instructions are marked in the Foxboro user manual. *

9. Fillin the filename with the appropriate date and test number for the data to
be recorded. *
a. The naming scheme used for this work follows that presented by
Garza and is “YYYY MM _DD Test ##.dat”.
10. Turn the Write Data toggle switch on the LabVIEW front panel to “YES”. *
11. Select the “START” button on the LabVIEW front panel to begin writing data
to the file. *
12. After completing a test select the “End Execution” button on the front panel
to end data recording, this will stop/freeze the LabVIEW front panel.*
13. Select the “Run” button on the top ribbon to allow monitoring of the facility.

14. Repeat steps 9-14 for subsequent testing.

“Obtained from Wynne thesis [6].
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E.2 Air Supply Operation
An air compressor is used to supply air flow for air/water testing. To increase the
volume of air available, the steam generator should be drained of most of the water,
refer to Section E.11 for the procedure on how to properly drain the steam generator.
When pressurizing the steam generator with air, slow pressurization should occur and
best done together with pressurization of the air compressor.
1. Turnthe refrigeration dryer switch to ON at least 5 minutes before turning on the
air compressor to ensure that the piping is free of condensate. *
e Dryer must always be ON when the compressor is in use. *
2. Plugin the electric drain valve. *
e The condensate filter of the auto drain must be inspected and cleaned once
a month. For periods of heavy use double, the maintenance frequency. *
e Condenser fins must be inspected and cleaned once a month. *
3. Inspect the air compressor for any visual obstructions and issues. Verify that all
guards and shields are locked in place. *
4. Visually inspect the drive belt checking to see that it is free of cracks, frays, and
tears. *
e Every 160 hours’ tension of the belts must be checked; a belt tension gauge
is supplied. *
5. Verify that the isolation valves leading up to the pressure regulator are open.

6. Verify that the air hose valve, V-89, is closed. *
137



10.

11.

12.

13.

14.

Open the steam generator isolation valve, V-90. *

Verify that the throttle valve, V-1, is closed.

Verify that the steam generator vent, V-16, is closed.

Close the vacuum breaker valve, V-13. *

Turn on the 30A breaker in the 480 VAC electrical panel to ON to start the

compressor. *

Before pressurizing ensure that the regulator is set to less than 110 psig. The

steam generators pressure release valves will activate at 135 psig. *

Monitor the air compressor and steam generator pressure during initial

pressurization.

e The air compressor is set to turn off at 175 psig automatically. *

e After initial pressurization, it is common to hear air hissing out of the air
compressor for a short time. This is due to air exiting the regulating valve and
usually lasts a few minutes. *

e The electronic drain valve will vent condensate every 45 minutes. *

After initial pressurization has finished check that the lubricant level is within the

high/ low-level marks on the dipstick.

e [Iflubricantis below the low-level mark drain and replace, refer to user manual
for replacement oil instructions, capacity, and viscosity. *

e Additionally, the lubricant should be replaced every 500 hours of operation.*

The air supply system is now pressurized and ready to use.
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E.3 Steam Generator Operation
The steam generator is used to generate steam for steam/water tests. The steam
is also used to heat the supply/RCIC tank water so that the water entering the test section
is at or close to saturation conditions. To operate the steam generator at least two people
must be present in the lab.

1. Verify that the steam generator level is at 60 cm on the magnetic level
indicator.* If it does not, follow the procedures in section E.11 fill the steam
generator with water.

2. lIsolate the steam generator by verifying that valves V-1, V-2, V-9, V-13, V-16,
and V-90 are closed.*

3. Unlock the steam generator control padlock.*

4. Turn the steam generator breaker to ON in the 480 VAC electrical panel.*

5. Switch the steam generator control switch to ON.*

6. Turnonthe appropriate number of heaters depending on the operation being
performed.*

7. Monitor the steam generator pressure and temperatures in the LabVIEW VI.

a. Duringinitial heat up, at 30 psia open the steam generator vent valve,
V-16, for 30 seconds. This will evacuate the non-condensable gases in
the steam generator and promote mixing in the steam generator
lower the temperature differentials that will appear in the steam

generator.*

139



b. This may need to be repeated multiple times until the temperature
gradient is no longer seen before initiating a test. *
8. Continue monitoring the steam generator during heat up.
9. Turn off the steam generator heaters when the desired pressure is reached.*
a. Do not let the steam generator pressurize above 130 psia.*
E.4 Water Supply Heat Up for Steam/Water Testing
For steam/water flooding tests the water supply inside the supply/RCIC tank
needs to be heated by using steam from the steam generator so that the water inlet is
raised close to saturation conditions. If conducting air/water tests this will not need to
be accomplished and skip to sections E.5.
1. Purge water from the common pipeline:
a. Close the throttle valve, V-1.*
b. Close the common pipeline valve, V-5.*
c. Close the water re-circulation valve, V-84.*
d. Close the RCIC sparger valve, V-34.*
e. Verify that the SRV sparger valve, V-36, is closed.*
f. Open the airspace sparger valve, V-35.*
g. Isolate the test section by closing the test section gas inlet valve, V-6.*
h. Drain the condensate from valve V-7b, close once complete.*
i. Setthe air regulator to 50 psig.*

j. Slowly open the air purge valve, V-7c to 50%.*
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k.

Slowly open the common pipeline valve, V-5.*
Close the air purge valve, V-7c, when the supply/RCIC tank pressure

increases 0.5 psi.*

2. Water supply heat up:

a.

Always complete the water purge before conducting water supply
heat up.*

Start up the steam generator by following section E.3.

Confirm that the common pipeline valve, V-5, is closed.*

Confirm that the test section isolation valve, V-6, is closed.*

Confirm that the airspace sparger valve, V-35, is open.*

Confirm that the water supply return valve is closed, V-84.

Open the SRV sparger valve, V-36.*

If the water supply/ RCIC tank is at ambient conditions open the water
supply tank vent valve, V-86.* If reheating the supply/RCIC tank, verify
that the valve is closed.*

Open the gas throttle valve, V-1, to initiate steam flow. Limit this
steam flow to 7-10 gps.*

Open the test section condensate trap valve, V-7b, to remove
condensed steam, close when water is evacuated.*

Close the airspace sparger valve, V-35, when:

i. The water supply/RCIC tank pressure increases.*
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ii. The water supply tank airspace temperatures begin to
increase.*
iii. Audible popping occurs from the water supply/RCIC tank.*

l. Increase the steam flow rate by adjusting the gas throttle valve, V-1.
The maximum steam flow rate is 65 gps with all heater turned on.*
The typical heating flow rate is 40 gps. Refill the steam generator when
necessary by following the steps in section E.10.

m. Close the water supply tank vent valve, V-86, when the average water
supply/RCIC tank temperature reaches 94 °C.* This has been found to
allow for the water supply/RCIC tank to pressure up to approximately
5 psig above saturation pressures.*

n. Continue heating water to saturation conditions for testing that will
be conducted, closing the gas throttle valve, V-1, when reached.

0. Shut off steam generator heaters.

3. Purge steam from the common pipeline:

a. Ensure that valves V-1, V-5, V-6, V-34, and V-36 are closed.*

b. Open the air sparger valve, V-35.*

c. Set the air regulator to 50 psig.*

d. Slowly open the air purge valve, V-7c to 50%.*

e. Slowly open the common pipeline valve, V-5.*
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f. Close the air purge valve, V-7c, when the supply/RCIC tank pressure
increases 0.5 psi.*
g. Close the common pipeline valve, V-5.*
h. Open the test section condensate trap valve, V-7b, to evacuate the
remaining air from the piping, close when complete.*
E.5 Setting Test Section Pressure
During all elevated pressure testing the test section and water supply/RCIC
pressures must be appropriately set. For the test section, the back-pressure regulator set
point determines the pressure. This must be initially set before a test can be started. This
is done by allowing gas to pass through the regulator at roughly the same flow rate for
the test to be conducted and adjusting the regulator until the target pressure is acquired.
The test section will begin depressurizing once the flow rate is stopped leading to a
higher pressure in the water supply/RCIC tank. This may lead to higher water flow rates
in the test section if water is still flowing into or not being able to return water from the
holdup tank to the water supply/RCIC tank. Air/water and steam/water test section
pressure procedure differ slightly and will be covered separately. The preceding section
will cover how to set the water supply/RCIC pressure
1. Setting the test section pressure for air/water tests:
a. Verify that valves V-5, V-7b, V-7c, V-91, and V-96 are closed.*
b. If the water supply/RCIC tank is not pressurized close the water re-

circulation isolation valve, V-85.*
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c. Open the test section isolation valve, V-6.*

d. Open the air exhaust vent valve, V-97.*

e. If the air exhaust vent hose is stowed, direct it outside through the
overhead door.*

f. Inject are into the test section by opening the gas throttle valve, V-1,
and adjust to desired mass flow rate.*

g. Adjust the back-pressure regulator with a half inch wrench until the
desired pressure is approximately reached.* During a test, this may
need to be adjusted slightly.

h. Close the gas throttle valve, V-1.*

i. If conducting low-pressure tests open the exhaust condensation trap
valve, V-91.* Attach an additional vent hose and direct the exhaust to
the outside. Ensure that the back-pressure regulator is fully backed
out.

2. Setting the test section pressure for steam/water tests:

a. Verify that the common pipeline valve, V-5, is closed.*

b. Open the test section condensation trap. V-7b.*

c. Open the exhaust condensation trap, V-91.*

d. Verify that the air purge valve, V-7, is closed.*

e. Verify that the air exhaust valve, V-97, is closed.*

f. Open the steam exhaust valve, V-96.*
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g. Heat up the primary steam flow path:
i. Open the gas throttle valve, V-1, allowing 10-15 gps of steam
to flow.*
ii. When steam exits the test section condensation trap close
valve V-7b.*
iii. When steam exits the exhaust condensation trap close valve
V-91.*

h. Adjust the gas throttle valve, V-1, to the desired flow rate.*

i. Adjust the back-pressure regulator with a half inch wrench until the
desired pressure is approximately reached. During an actual test, this
may need to be adjusted slightly.*

j. Close the gas throttle valve, V-1.*

k. Adjust the back pressure of the water inlet heat exchanger.

i. Verify that the hygrometer isolation valve, V-19, is closed."
ii. If steam flows through the hygrometer, it can damage the
instrument.” It is best practice to close this valve unless in use.

iii. Open the water inlet heat exchanger isolation valve, V-20."
iv. Open the secondary side throttle valve, V-2 to an appropriate

level to send steam to the water inlet heat exchanger. *

T Obtained from Garza thesis [7].
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v. Adjust the secondary side back pressure regulator with a 5/8-
inch wrench to adjust above the pressure for the remainder of
the test. During the first use of the day of the secondary side
pressure regulator, large popping noises may be generated
inside the regulator. This is normal and is due to condensate
being created and traveling through the back-pressure
regulator, once heated the noise will cease.’

E.6 Setting the Water Supply/RCIC Tank Pressure

Before running a test, and ideally, before setting the test section pressure, the
water supply/RCIC pressure must be set allowing for a lower pressure differential
between the water supply source and the test section. This, in turn, allows for more
precise control of the water flow rate and reduces the chances of cavitation in the supply
and RCIC pumps. As the supply and RCIC pumps are run the pressure will be reduced in
the supply/RCIC tank, reducing the ability to control the water flow rate and increase the
pressure difference between the test section and the water supply/RCIC tank, therefore
throughout testing the procedure may need to be completed when the pressure in the
water supply/RCIC tank.

1. Close both water inlet valves, V-83a and V83b.*

2. Connect the 0.75-inch red air house from the quick connect air tap to the

water supply tank quick connect.*

3. Verify that the air hose vent valve, V-86, is closed.*
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4. Verify that the supply tank vent valve, V-86, is closed.*

5. Slightly open the air hose fill valve, V-89, and set the pressure regulator to a
pressure above the desired operating pressure.*

6. Slightly open the water supply/RCIC tank fill valve, V-87. Air will now be
entering the water supply/RCIC tank.*

7. Close the water supply/RCIC tank fill valve, V-87, when the desired pressure
is reached. This has been observed that 5 psi above the test section operating
pressure works well to reduce cavitation and allows for an extended testing
period.*

8. When done close the air hose fill valve, V-89, and vent the air hose by slowly
opening V-88. The 0.75-inch red air house is now ready to be disconnected if
desired.*

9. Repeat steps 5-8 as needed.

During steam testing air pressurization to the water supply/RCIC tank may not be

needed, as the pressurization of the RCIC tank can be completed by heater the

water inside the supply/RCIC tank. When the pressure gets too low, this is
accompanied by a lowering of the water temperature and will usually need to be
reheated, where you can also re-pressurize via heating, refer to section E.4 for

water supply/RCIC tank heat up operations.
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E.7 Water Supply Operation

The water supply is sent to the test section by either the water supply pump or
the RCIC pump. For flooding testing it is customary to use the water supply pump, this
section will cover its proper operation. The water flow rate is controlled via the water
flow control valve, V63, and the water bypass valve, V-61. During operation it is best to
run a preliminary test to set up the valves so that during recording only slight
adjustments of the valves are needed, allowing for a consistent water inlet flow rate. The
water inlet flow rate is highly dependent on the pressure difference between the test
section pressure and the water supply/RCIC tank pressure refer to sections E.6 directions
on supply/RCIC pressurizing the water supply/RCIC tank for steam/water testing and for
air/water testing.

1. Verify that that the test section pressure and water supply/RCIC tank

pressures are set. Refer to section E.5 and E.6 as needed.

2. Open the water supply pump suction valve, V-81.*

3. Verify that the RCIC pump suction valve, V-82, is closed. *

4. Open the water supply discharge valve, V-80. *

5. Verify that the water bypass isolation valve, V-53 is open. *

6. Turn on the water supply pump. *

7. Slowly open the water inlet valve:

a. Valve V-83A for steam/water tests. *

b. Valve V-83B for air/water tests. *
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8. Adjust the water inlet control valves, V63 and V-61 to obtain the desired
water inlet flow rate. *

a. During testing adjust may need to be made to the gas inlet flow rate,
water inlet flow rate, and back pressure regulator as a test
progresses.*

E.8 Re-circulation Pump Operations
During normal operations when water is sent to the test sections water is
collected in the water hold up tank below the test section, and it is necessary to send this
collected water back to the water supply/RCIC tank and that the water hold up tank is
maintained to appropriate levels. During steam/water testing it is also necessary to
maintain an appropriate water temperature going into the re-circulation pump, so that
cavitation and failure of the pump do not occur, this is accomplished by adjusting the
water flow rate entering the water re-circulation heat exchanger.
1. Verify that the common pipeline has been evacuated of steam, follow part 3 of
section E.4.
2. Verify that the re-circulation valve, V-84, is open. *
3. Verify that the common pipeline valve, V-5, is closed. *
4. Verify the SRV sparger valve, V-36 is closed. *
5. Verify the airspace sparger valve, V-35, is closed. *
6. Verify the RCIC sparger valve, V-34, is open. *

7. Turn on the re-circulation pump. *
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8. Monitor the re-circulation flow rate through the rotameter, adjust the re-
circulation throttle valve, V85, if necessary. *

a. If no flow is visible through the rotameter the pressure difference
between the test section and the water supply/RCIC tank may be too
great.* This normally caused by a higher pressure in the water
supply/RCIC tank, which will need to be depressurized by opening the
water supply/RCIC vent valve, V-86. *

b. During air/water testing air may escape into the pump and lead to no
water flow through the rotameter. * To resolve this, a valve has been
installed at the top of the pump. Run the pump for 2 seconds, open the
valve to let air escape, repeat until continuous stream of water is
observed.*

9. For steam/water tests cavitation may occur in the re-circulation pump, and the
heat exchanger will need to be employed.* To operate the heat exchanger:

a. Verify the cold side heat exchanger exhaust is vented outside of the lab or
to a water drain.*

b. Connect the domestic water fill line to the blowdown drum.*

c. Open the auxiliary domestic water supply valve, V-95.*

d. Open the primary domestic water supply valve, V-92.*

e. Close the auxiliary domestic water supply valve, V-95.*
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f. When water is observed to enter the blowdown drum close the auxiliary
domestic water supply valve, V-95.* The auxiliary domestic water supply
allows for water to easily exit the water supply piping reducing
hammering that will occur in the piping.*

g. Openthe heat exchanger domestic water supply valve, V-94 to send water
into the re-circulation heat exchanger.* Adjust V-94 as necessary to
adequately cool water entering the re-circulation pump.*

10. Monitor the holdup tank level in the LabVIEW VI, keeping the water level
between 20% and 80%*

11. Shut off the re-circulation pump when complete.*

E.9 Flooding Procedure

1. Determine the type of testing to be conducted either steam/water or air/water
test at ambient pressure or elevated pressure.

2. Follow sections E.1 through E.8, using the appropriate sections when necessary,
to properly set up the facility for tests being completed.

3. If air/water tests are to be conducted:

a. Close the water inlet heat exchanger isolation valve, V-20.*

b. Open the hygrometer isolation valve, V-19.*

c. Purge to hygrometer opening the secondary side isolation valve, V-2.*

4. |f steam/water tests conducted:

a. Verify that the hygrometer isolation valve, V-19, is closed.*
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b. Verify that the water inlet heat exchanger valve, V-20, is open.*
c. Turn on the domestic water supply, by following the instructions in
section 4.8.*
i. Open steam condenser isolation valve, V-93. This allows domestic
cold water into the steam condenser heat exchanger.* Adjust V-
93 as necessary to condense steam from the test section.*
ii. Verify the secondary side exhaust hose to the steam condenser
heat exchanger is directed in the water drain."
5. Verify the LabVIEW VI is recording data.*
6. Follow section E.7 to begin sending water into the test section.*
7. Open the gas throttle valve, V-2.*
a. For steam, tests turn on the appropriate number of heaters for testing.*
8. Slowly increase the gas flow rate by continuing to open the gas throttle valve V-
2 to the desired amount.*
a. If onset of flooding testing is to be performed monitor the LabVIEW VI's
“Test Section DP”. When flooding occurs, a large differential will appear.
The gas flow rate this occurs at will need to be kept steady.
9. Once the appropriate gas flow rate is reached minor adjustments will be made
to the gas throttle valve, back pressure regulator, and water inlet flow rate for

the remainder of the test.
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a. For steam testing the water inlet temperature is to be kept within 3°C of
the saturation temperature, this is accomplished by adjusting the
secondary side throttle valve, V-2, and will need to be adjusted
throughout a test.*

10. If the water level in the holdup tank is to great turn on the water re-circulation
pump and turn off as needed.*

11. When the system is no longer able to be kept in a steady state condition, close
the gas throttle valve, V-1.*

a. If steam/water tests are being performed close the secondary side
throttle valve, V-2.*

b. If steam/water tests are being performed turn off all the steam generator
heaters.*

c. A typical test will be recorded at steady state for a minimum of 30
seconds.*

d. Close the water inlet valve, V-83a/b.*

e. Shut off the water supply pump.*

12. Stop data collection and prepare the facility for the next test or begin facility shut
down.*
E.10 Facility Shutdown
Once testing is completed the facility must be depressurized, all vessels must be

subcooled if steam testing was conducted, and all electronics shut off before the user
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can leave the facility. The shutdown procedure for steam/water and air/water is the
same, air/water shutdown will not need to reduce temperature and will not need the
steam generator to be shut down.
1. Turn OFF the 30A breaker in the 480 VAC electrical panel OFF to secure the
air compressor.*
2. Shut down the steam generator.
a. Turn OFF power to all steam generator heaters.*
b. Turn the heater power switch to OFF, lockout the switch using the
padlock.*
c. Turn OFF the 200A breaker in the 480 VAC electrical panel.*
d. Open the steam generator vent valve, V-16, to blow down the steam
generator. Steam generator thermocouples must be below 100°C.*
e. Blown down the air compressor by slowly opening the air compressor
isolation valve, V-90.*
f. Blow down the test section by opening the throttle valve, V-1.*
g. When blowdown is complete, and the steam generators bulk
temperature is below 100 °C close the steam generator vent valve,
V-16.*
h. Open the vacuum breaker valve, V-13; the steam generator is now
secured.*

3. Close the RCIC sparger valve, V-34.*
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Open the airspace valve, V-35.*

Operate the water supply and re-circulation pumps until the bulk water
supply temperatures in the holdup tank are below 100°C.*

Once complete secure both pumps.*

Depressurize the test section by opening the condensate traps, V-7b and V-
91.*

Depressurize the supply/RCIC tank by opening the water supply tank vent, V-
86.*

Secure the heat exchanger and steam condenser by closing valves, V-93 and
V-94.*

Close the domestic water supply valve, V-92.*

Verify that both pressure regulators have been backed out.*

Turn OFF and unplug the magnetic flow meters.*

Power OFF the remote monitor near the throttle valve V-1.*

Power OFF the remote monitor near water flow control valve V-63.*

Verify that all pressures are at atmospheric conditions.*

Verify that temperatures at below saturation conditions.*

Close the condensate valves, V-7b and V-91.*

Close LabVIEW.*

Turn OFF the National Instruments SCXI chassis.*

Turn OFF the DC power supply.*
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21. Log out of the data acquisition PC.*
E.11 Filling the Steam Generator

Before producing steam in the steam generator, the water level inside the steam
generator must be filled to a minimum level to ensure that the immersion heaters are
covered with water preventing damage to the generator. There are two main reasons
why you may need to fill the steam generator first during steam generator operation.
During steam generator operation the level of the water in the steam generator will
decrease from use, a reed switch was placed at roughly 35 cm on the magnetic level
indicator. When the water drops below this level, the reed switch opens the circuit
turning off the heaters, ensuring that the level of water is sufficient to cover the heaters.
The second reason is that the steam generator has been evacuated of water for various
reasons such as maintenance of the steam generator or air testing and must be filled.

Filling the steam generator can be accomplished one of two ways and are
dependent on the amount of water that is needed in the water supply/RCIC tank. If this
level is low, it is best to fill the steam generator with fresh water from the deionization
system. However, during normal operation or if the water supply/RCIC tank level is
sufficient, it is best to use water from the water supply/RCIC tank.

1. Verify that the supply/RCIC tank level is adequate.

2. If the water level is low:

a. open the valve leading from the DI system to the water hold up tank.

b. Open the DI water supply valve, V-28.*
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Fill the steam generator until the magnetic level meter is registering
roughly 60 cm.

Close the DI water supply valve, V-28. *

Close the DI system valve.*

The steam generator is now ready to use.

3. If the water level is adequate or during testing:

a.

Verify that the steam generator is below 90 psia. This is the maximum
pressure that the steam generator can be filled.*

i. If the pressure inside the steam generator is above 90 psia
open the steam generator vent valve, V-16, to decrease the
pressure to an appropriate level.

Close the supply pump discharge valve, V-80.

Open the RCIC pump suction valve, V-82.*

Confirm that the re-circulation valve, V-53, is open.*

Open the bypass valve, V-61.*

Open the water flow control valve, V-63.* It is best practice to crack
this valve such that slight positive flow of water is permitted into the
steam generator. However, this is based on the water supply/RCIC
tank pressure and the steam generator pressure.

Turn on the RCIC pump fan.

Turn on the RCIC pump.*
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i. Slowly open the steam generator fill valve, V-9, allowing water to flow
into the steam generator.

j-  Quickly verify that water is being transferred to the steam generator,
adjust the water flow control valves, V-61 and V-63, as necessary.

k. Fill the steam generator to roughly 60 cm on the magnetic level
indicator.

i. If the steam generator is being used for testing the water
entering the steam generator may be cooler than that in the
steam generator. This will most likely cause a temperature
gradient to occur in the steam generator. Thus, throughout
filling the steam generator it is best to open the steam
generator vent valve, V-16 once or twice to promote mixing
and reduce the temperature gradient.

|. Close the steam generator fill valve, V-9.*
m. Turn off the RCIC pump and the RCIC pump fan.*

During the normal operation, the supply/RCIC tank may contain heated water;
this may cause issues with the RCIC pump as the thermal limits on the pump may be
reached. This is accompanied by a “whining” coming from the pump, due to cavitation
occurring within the pump. This effect may damage the pump, the pump must be shut
off quickly, however filling may still need to occur in the steam generator and switching

to the water supply pump will be necessary. The water supply pump has a lower head;

158



thus, the steam generator must have a lower pressure and may not be turned on during
the process.
1. If “whining” occurs close the steam generator fill valve, V-9.*
2. Turn off the RCIC pump. *
3. Depressurize the steam generator such that the supply/RCIC tank and the
steam generator pressures are roughly equal by opening steam generator
vent valve, V-16.*
4. Open the supply-discharge valve, V-80.*
5. Close the RCIC pump suction valve, V-82.*
6. Turn on the water supply pump.*
7. Slowly open the steam generator fill valve, V-9.
8. Quickly verify that water is being transferred to the steam generator.
9. If the water is not being transferred to the steam generator close the steam
generator fill valve and reduce the pressure of the steam generator.
10. Fill the steam generator to roughly 60 cm on the magnetic level indicator.
11. Close the steam generator supply valve, V-9.
12. Turn of the water supply pump.*
E.12 Draining the Steam Generator
During water testing, it is best to drain the steam generator of most water so that
available air supply is maximized by using the steam generator as a pressure vessel for

air, or if the supply/RCIC tank is low on water.
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1. Complete the air supply operation procedure section E.2, pressuring the
steam generator to 40 psig.
2. Close the pump supply and discharge valves, V80 and V-82.*
3. Completely open valve V-63.*
4. Completely open the bypass valve, V-61.*
5. Verify that the re-circulation valve, V-53, is open.
6. Slowly open the steam generator supply valve, V-9.*
7. Monitor the LabVIEW VI and close the steam generator supply valve, V-9,
when the VI displays less than 24 inches.
8. Isolate the air compressor from the steam generator by closing the steam
generator isolation valve, V-90.*
9. Depressurize the steam generator by opening the steam generator vent valve,
V-16.*
E.13 Purging Differential Pressure Transmitters
On occasion, the impulse tubing of the differential pressure transmitters may
need to be purged. Caution must be taken during the procedure so that damage to
detectors diaphragm do not occur. Below, in Figure 40 a reference of the valves used in

the process is provided.
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Figure E1: Rudimentary tubing and valve design for a differential pressure transmitter
[6].*

1. Full the pump sprayer with deionized water from the deionized water
source.*

2. Verify that the fill valve in Figure 40, this is attached to the pump sprayer is
closed.*

3. Pump sprayer up to a reasonable pressure, if over pressurized a relief valve
will engage. This may need to be done multiple times while purging.

4. Attach fill valve to compression fitting impulse tubing located near the

isolation valve.*
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Close the high side valve.*

Verify that the equalization valve is closed.*

Verify the low side valve is open.*

Open the isolation valve.*

Open the fill valve allowing water to purge any air out of the low side of the
differential pressure transmitter.

Open the low side drain, located underneath the transmitter, do not let water
to contact transmitter electronics as this may damage them.

Close the low side drain when a continuous stream of water is exiting the
drain.

Close the fill valve.*

Close the low side valve.*

Open the high side valve.*

Open the equalizing valve.*

Open the fill valve to allow water to purge air out of high side and equalizer
tubing. After a few seconds, audible dripping should be heard from inside the
test section.

Open the high side drain, do not let water contact transmitter electronics as
this may damage them.

Close the fill valve.*

Close the Equalizing valve.*
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20. Open the low side valve.*

21. Close the isolation valve.*

22. Verify in LabVIEW that the transmitter is outputting an adequate reading, if
not repeat steps 5-21.*

23. Disconnect the compression fitting from the impulse tubing.*
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APPENDIX F
RAW STEAM/WATER DATA
This appendix contains the raw data images for all qualified steam/water tests

performed for this study, presented in Appendix A.1.
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Figure F114: Pressure and gas inlet and outlet mass flow rate for test
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Figure F210: Pressure and gas inlet and outlet mass flow rate for test
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Figure F218: Pressure and gas inlet and outlet mass flow rate for test
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Figure F222: Pressure and gas inlet and outlet mass flow rate for test
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Figure F224: Test section differential pressure for test 2017_04_24 test_04.
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Figure F226: Pressure and gas inlet and outlet mass flow rate for test
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Figure F232: Test section differential pressure for test 2017_05_11 test_02.

255



7 p———— - ——

—— Waler Inlet
—8— Water Carryover

o
T

1

e o

Flow Rate [GPM]

0 10 20 30 40 50 60 70
Time (s)
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Figure F234: Pressure and gas inlet and outlet mass flow rate for test
2017_05_11_test_03.
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Figure F237: Water flow rates for 2017_05_11 test_03.
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Figure F246: Pressure and gas inlet and outlet mass flow rate for test
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Figure F248: Test section differential pressure for test 2017_05_15_test_01.
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Figure F266: Pressure and gas inlet and outlet mass flow rate for test
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Figure F268: Test section differential pressure for test 2017_05_16_test_01.
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Figure F270: Pressure and gas inlet and outlet mass flow rate for test
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Figure F273: Water flow rates for 2017_05_16_test_02.
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Figure F282: Pressure and gas inlet and outlet mass flow rate for test
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Figure F288: Test section differential pressure for test 2017_05_16_test_06.
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Figure F290: Pressure and gas inlet and outlet mass flow rate for test
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Figure F291: Temperature Profiles for test 2017_05_16_test_10.
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Figure F293: Water flow rates for 2017_05_16_test_10.
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Figure F294: Pressure and gas inlet and outlet mass flow rate for test
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Figure F296: Test section differential pressure for test 2017_05_16_test_11.
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Figure F297: Water flow rates for 2017_05_16_test_11.
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Figure F298: Pressure and gas inlet and outlet mass flow rate for test
2017_05_16_test_12.
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Figure F300: Test section differential pressure for test 2017_05_16_test_12.
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Figure F301: Water flow rates for 2017_05_16_test_12.
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Figure F302: Pressure and gas inlet and outlet mass flow rate for test
2017_05_16_test_13.
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Figure F306: Pressure and gas inlet and outlet mass flow rate for test
2017_05_16_test_14.
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Figure F307: Temperature Profiles for test 2017_05_16_test_14.
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Figure F308: Test section differential pressure for test 2017_05_16_test_14.
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Figure F309: Water flow rates for 2017_05_16_test_14.
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Figure F312: Test section differential pressure for test 2017_05_16_test_15.

10 20

30

40 50 60
Time(s)

70

295

80



- il

LE e >—— g ~—
—— Waler Inlet
5F —8— Water Carryover |

Flow Rate [GPM]

) . : . . . :
0 10 20 30 40 50 60 70 80

Time (s)
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Figure F314: Pressure and gas inlet and outlet mass flow rate for test
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Figure F318: Pressure and gas inlet and outlet mass flow rate for test
2017_05_16_test_17.
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Figure F322: Pressure and gas inlet and outlet mass flow rate for test
2017_05_16_test_18.
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Figure F323: Temperature Profiles for test 2017_05_16_test_18.
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Figure F324: Test section differential pressure for test 2017_05_16_test_18.
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Figure F325: Water flow rates for 2017_05_16_test_18.
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Figure F326: Pressure and gas inlet and outlet mass flow rate for test
2017_05_16_test_19.

302



123

_.
-

[N
N o

C)

N
a R
- o
i

T

Temperature (
g g B
w (=] o

-
s
F=)

= Liquid Inlet Temp,
1185 ~E—TS Saturation Temp.
——Gas Inlet Temp

118 n . .
0 20 40 60 80 100

Time(s)

Figure F327: Temperature Profiles for test 2017_05_16_test_19.
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Figure F329: Water flow rates for 2017_05_16_test_19.
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Figure F330: Pressure and gas inlet and outlet mass flow rate for test
2017_05_16_test_20.
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Figure F332: Test section differential pressure for test 2017_05_16_test_20.
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Figure F334: Pressure and gas inlet and outlet mass flow rate for test
2017_05_16_test_21.
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Figure F335: Temperature Profiles for test 2017_05_16_test_21.
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Figure F336: Test section differential pressure for test 2017_05_16_test_21.
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Figure F337: Water flow rates for 2017_05_16_test_21.
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Figure F338: Pressure and gas inlet and outlet mass flow rate for test
2017_05_16_test_22.
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Figure F339: Temperature Profiles for test 2017_05_16_test_22.

&

3

O ".,- ’ 1 ' “ | |"v

I Y e A A
‘,” ”JQ, I’ ”l | “ .1 \ ]\"fl\’f’\lllllq
I

b3

lu||||\|‘\|‘ |

& 8 R
I

&

o
T
P

K
B

20 40 60 80 100
Time(s)

Test Section Differential Pressure [inH20]

Figure F340: Test section differential pressure for test 2017_05_16_test_22.
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Figure F341: Water flow rates for 2017_05_16_test_22.
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Figure F342: Pressure and gas inlet and outlet mass flow rate for test
2017_05_16_test_23.
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Figure F344: Test section differential pressure for test 2017_05_16_test_23.
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Figure F345: Water flow rates for 2017_05_16_test_23.
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Figure F346: Pressure and gas inlet and outlet mass flow rate for test
2017_05_16_test_24.
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Figure F347: Temperature Profiles for test 2017_05_16_test_24.
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Figure F348: Test section differential pressure for test 2017_05_16_test_24.
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Figure F349: Water flow rates for 2017_05_16_test_24.
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Figure F350: Pressure and gas inlet and outlet mass flow rate for test
2017_05_16_test_26.
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Figure F351: Temperature Profiles for test 2017_05_16_test_26.
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Figure F352: Test section differential pressure for test 2017_05_16_test_26.
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Figure F356: Test section differential pressure for test 2017_05_16_test_27.

317



10 T T T ur T
1 —+— Water Inlat

~&— Water Carryover
8 - B
i R
6 -

Flow Rate [GPM]

0 20 40 60 80 100 120
Time (s)
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Figure F397: Pressure and gas inlet and outlet mass flow rate for test
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8

| s Liquid Inlet Temp.

Temperature (C)

—©—TS Saturaton Temp.
| == Gas Inlet Temp
126
124 |- 4
122
120 . . . .
0 20 40 60 80 100
Time(s)

Figure F398: Temperature Profiles for test 2017_05_18 test_03.
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Figure F402: Temperature Profiles for test 2017_05_18 test_06.

340



8 2 8

w
o

Test Section Differential Pressure [inH20]

46
]
44 /
42
- . : ; :
0 10 20 30 40 50 60 70
Time(s)
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Figure F404: Water flow rates for 2017_05_18_test_06.
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APPENDIX G
RAW AIR/WATER DATA
This appendix contains the raw data images for all qualified air/water tests performed

for this study, presented in Appendix B.1.
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Figure G405: Pressure and gas inlet and outlet mass flow rates for test
2016_06_14 test_06.
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Figure G407: Water flow rates for test 2016_06_14 test_06.
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Figure G409: Test section differential pressure for test 2016_06_14 test_07.
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Figure G410: Water flow rates for test 2016_06_14 test_07.
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Figure G413: Water flow rates for test 2016_06_14 test_08.
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Figure G415: Test section differential pressure for test 2016_06_14 test_09.
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Figure G416: Water flow rates for test 2016_06_14 test_09.
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Figure G419: Water flow rates for test 2016_06_14 test_10.
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Figure G420: Pressure and gas inlet and outlet mass flow rates for test
2016_06_14 test_11.
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Figure G421: Test section differential pressure for test 2016_06_14_test_11.
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Figure G422: Water flow rates for test 2016_06_14 test_11.
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Figure G423: Pressure and gas inlet and outlet mass flow rates for test
2016_06_14 test_12.
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Figure G425: Water flow rates for test 2016_06_14 test_12.
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Figure G426: Pressure and gas inlet and outlet mass flow rates for test
2016_06_14 test_13.
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Figure G427: Test section differential pressure for test 2016_06_14 test_13.
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Figure G428: Water flow rates for test 2016_06_14 test_13.
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Figure G429: Pressure and gas inlet and outlet mass flow rates for test
2016_06_14 test_14.
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Figure G430: Test section differential pressure for test 2016_06_14_test_14.
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Figure G431: Water flow rates for test 2016_06_14 test_14.
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Figure G432: Pressure and gas inlet and outlet mass flow rates for test
2016_06_14 test_15.
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Figure G434: Water flow rates for test 2016_06_14 test_15.
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Figure G435: Pressure and gas inlet and outlet mass flow rates for test
2016_06_14 test_16.
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Figure G436: Test section differential pressure for test 2016
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Figure G437: Water flow rates for test 2016
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Figure G438: Pressure and gas inlet and outlet mass flow rates for test
2016_06_14 test_17.
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Figure G439: Test section differential pressure for test 2016_06_14 test_17.
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Figure G440: Water flow rates for test 2016_06_14 test_17.
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Figure G441: Pressure and gas inlet and outlet mass flow rates for test
2016_06_14 test_18.

360



H
20 30 40 60 70 80
Time(s)

10

.~—__-.—>r0
&g & § 8 % ¢ 3 9 8 B§

[OzZHul] ainssaid |enualayiq uonoas 1sa |

06_14_test_18.

Figure G442: Test section differential pressure for test 2016

e
0.
A ad
| &
-o._
1 e )
- 2
3 /0-||o
I e
“®
..... o
S - o
.
nnnnnn O
> 3
EE RS
B o
Ml 1 - =
8| o -
B T CF i
£ Q| (¢ gty
I R o-nnuy
# s
L1 o] ke - %
' A | m
© ~ ©w o -T [ ] o~
[Wdo] e1ey mo|4

20 30 40 60 70 80
Time (s)

10

06_14 test_18.

Figure G443: Water flow rates for test 2016
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Figure G444: Pressure and gas inlet and outlet mass flow rates for test
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Figure G445: Test section differential pressure for test 2016_06_15_test_01.
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Figure G448: Test section differential pressure for test 2016_06_15 test _02.
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Figure G449: Water flow rates for test 2016_06_15_test_02.
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Figure G450: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_test_03.
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Figure G451: Test section differential pressure for test 2016_06_15_test_03.
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Figure G452: Water flow rates for test 2016_06_15_test_03.
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Figure G453: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_test_04.
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Figure G454: Test section differential pressure for test 2016_06_15_test_04.
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Figure G455: Water flow rates for test 2016_06_15_test_04.
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Figure G456: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_test_05.
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Figure G457: Test section differential pressure for test 2016_06_15_test_05.
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Figure G458: Water flow rates for test 2016_06_15_test_05.
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Figure G459: Pressure and gas inlet and outlet mass flow rates for test

2016_06_15_test_06.
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Figure G460: Test section differential pressure for test 2016
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Figure G461: Water flow rates for test 2016
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Figure G462: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_test_07.
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Figure G463: Test section differential pressure for test 2016_06_15_test_07.
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Figure G464: Water flow rates for test 2016_06_15_test_07.
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Figure G465: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_test_08.
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Figure G468: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_test_09.
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Figure G469: Test section differential pressure for test 2016_06_15_test_09.
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Figure G472: Test section differential pressure for test 2016_06_15_test 13.
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Figure G473: Water flow rates for test 2016_06_15_test_13.
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Figure G474: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_ test_14.

o
o

o
o
y,l

g

o

o
T
—

w
w
T

1 1 1 1 1 ' 1 I

10 20 30 40 50 60 70 80 90
Time(s)

Test Section Differential Pressure [inH20]
g &

<

Figure G475: Test section differential pressure for test 2016_06_15_test_14.

377



9 —

: — . r r T T
| —*— Water Inlet
8 L= ©= Water Carryover
7 - -4
E 6"."‘\& P S - SRR g el
O,
5 - -
3
o 4f -
; n‘ :I‘ "Q ,b‘
_9 3r I‘ |‘ ?0' p‘ '. ¢ ‘u ‘Ql ’
= 28T SN LS Vel
2 AN X Vop Q\d © % b > S
Py % W P ooy
1+ ' ¢ 4
o]
606600 , : ' * ' '
0 10 20 30 40 50 60 70 80 90
Time (s)

Figure G476: Water flow rates for test 2016_06_15_test_14.
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Figure G477: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_test_15.
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Figure G478: Test section differential pressure for test 2016_06_15 test_15.
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Figure G479: Water flow rates for test 2016_06_15_test_15.
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Figure G481: Test section differential pressure for test 2016_06_15_test_16.
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Figure G482: Water flow rates for test 2016_06_15 test_16.
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Figure G483: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_test_17.
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Figure G485: Water flow rates for test 2016_06_15_test_17.
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Figure G486: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_ test_19.
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Figure G487: Test section differential pressure for test 2016_06_15_test_19.
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Figure G488: Water flow rates for test 2016_06_15 test _19.
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Figure G489: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_test_21.
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Figure G490: Test section differential pressure for test 2016_06_15_test_21.
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Figure G491: Water flow rates for test 2016_06_15_test_21.
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Figure G492: Pressure and gas inlet and outlet mass flow rates for test
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Figure G496: Test section differential pressure for test 2016_06_15_test_23.
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Figure G497: Water flow rates for test 2016_06_15_test_23.
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Figure G499: Test section differential pressure for test 2016_06_15_test_25.
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Figure G501: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_test_26.
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Figure G504: Pressure and gas inlet and outlet mass flow rates for test
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Figure G505: Test section differential pressure for test 2016_06_15_test_27.
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Figure G506: Water flow rates for test 2016_06_15_test_27.
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Figure G507: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_test_28.
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Figure G508: Test section differential pressure for test 2016_06_15_test_28.
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Figure G509: Water flow rates for test 2016_06_15_test_28.
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Figure G510: Pressure and gas inlet and outlet mass flow rates for test
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Figure G511: Test section differential pressure for test 2016_06_15_test_29.
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Figure G512: Water flow rates for test 2016_06_15_test_29.
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Figure G513: Pressure and gas inlet and outlet mass flow rates for test
2016_06_15_test_30.
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Figure G515: Water flow rates for test 2016_06_15_test_30.
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Figure G516: Pressure and gas inlet and outlet mass flow rates for test
2016_06_16_test_01.
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Figure G517: Test section differential pressure for test 2016_06_16_test_01.
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Figure G518: Water flow rates for test 2016_06_16_test_01.
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Figure G519: Pressure and gas inlet and outlet mass flow rates for test
2016_06_16_test_02.
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Figure G521: Water flow rates for test 2016_06_16_test_02.
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Figure G522: Pressure and gas inlet and outlet mass flow rates for test
2016_06_16_test_03.
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Figure G523: Test section differential pressure for test 2016_06_16_test_03.

401



7Mw
j—*—Wamlnlel
. 6 |~ ©- Water Carryover | |
=
oSy .
. R A s
. | - o 6 & O o
<) fv, W 0y e B @R
© % g Wi s MR
@ 3f TEESE . BREVE T
0 ! ’ b‘ " \
= ' O¢ v Lo] < i
o 2} o8 9 v e
[T i
I .'
)
01000000000 R

1 Il I Il 1 Il I I I

0 10 20 30 40 50 60 70 80 90
Time (s)

Figure G524: Water flow rates for test 2016_06_16_test_03.
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Figure G525: Pressure and gas inlet and outlet mass flow rates for test
2016_06_16_test_04.
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Figure G526: Test section differential pressure for test 2016_06_16_test_04.
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Figure G527: Water flow rates for test 2016_06_16_test_04.
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Figure G528: Pressure and gas inlet and outlet mass flow rates for test
2016_06_16_test_05.
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Figure G531: Pressure and gas inlet and outlet mass flow rates for test
2016_06_16_test_06.
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154
52
@
=3 | 2
-~ %08
2 3
= 2
P 148 B
2 (T
o { 146 =
I ‘ <
134 {44
|
125 A A 4 A A 4 A L 4“2
0 10 20 30 4 S0 60 70 80 90

Time (s)

—+— TS Pressure —— Gas Inlet —=— Gas Outlet |

Figure G549: Pressure and gas inlet and outlet mass flow rates for test
2016_06_16_test_12.
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Figure G551: Water flow rates for test 2016_06_16_test_12.
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Figure G553: Test section differential pressure for test 2016_06_16_test_13.
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2016_06_16_test_14.
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Figure G557: Water flow rates for test 2016_06_16_test_14.
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&

55.5 hy

o
o
T

54.5 || 1 ‘ ‘ "

535 | [ l

(4]
w

[ | !
525

Test Section Differential Pressure [inH20]

<

10 20 30 40 50 60 70
Time(s)
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Figure G566: Water flow rates for test 2016_06_16_test_17.
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2016_06_16_test_18.
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Figure G569: Water flow rates for test 2016_06_16_test_18.
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Figure G575: Water flow rates for test 2016_06_16_test_20.
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Figure G576: Pressure and gas inlet and outlet mass flow rates for test
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Figure G577: Test section differential pressure for test 2016_06_16_test_21.
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Figure G580: Test section differential pressure for test 2016_06_16_test_22.
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Figure G581: Water flow rates for test 2016_06_16_test_22.
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Figure G590: Water flow rates for test 2016_06_16_test_25.
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Figure G591: Pressure and gas inlet and outlet mass flow rates for test
2016_06_16_test_26.
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Figure G592: Test section differential pressure for test 2016_06_16_test_26.
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Figure G593: Water flow rates for test 2016_06_16_test_26.
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Figure G594: Pressure and gas inlet and outlet mass flow rates for test
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Figure G595: Test section differential pressure for test 2016_06_22_test_08.
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Figure G596: Water flow rates for test 2016_06_22 test_08.
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Figure G597: Pressure and gas inlet and outlet mass flow rates for test
2016_06_22_test_10.
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Figure G599: Water flow rates for test 2016_06_22_test_10.
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Figure G600: Pressure and gas inlet and outlet mass flow rates for test
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Figure G601: Test section differential pressure for test 2016_06_22_test_11.
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Figure G602: Water flow rates for test 2016_06_22 test 11.
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Figure G603: Pressure and gas inlet and outlet mass flow rates for test
2016_06_22_test_12.
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Figure G604: Test section differential pressure for test 2016_06_22 test 12.
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Figure G605: Water flow rates for test 2016_06_22_test_12.
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Figure G606: Pressure and gas inlet and outlet mass flow rates for test
2016_06_22 test_13.
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Figure G607: Test section differential pressure for test 2016_06_22_test_13.
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Figure G608: Water flow rates for test 2016_06_22 test 13.
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Figure G609: Pressure and gas inlet and outlet mass flow rates for test
2016_06_22_test_14.
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Figure G610: Test section differential pressure for test 2016_06_22 test 14.
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Figure G611: Water flow rates for test 2016_06_22_test_14.
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Figure G612: Pressure and gas inlet and outlet mass flow rates for test
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Figure G613: Test section differential pressure for test 2016_06_22_test_15.
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Figure G615: Pressure and gas inlet and outlet mass flow rates for test
2016_06_22_test_16.
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Figure G616: Test section differential pressure for test 2016_06_22 test 16.
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Figure G617: Water flow rates for test 2016_06_22_test_16.
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Figure G618: Pressure and gas inlet and outlet mass flow rates for test
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Figure G619: Test section differential pressure for test 2016_06_22_test_17.
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Figure G620: Water flow rates for test 2016_06_22 test 17.
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Figure G621: Pressure and gas inlet and outlet mass flow rates for test
2016_06_22_test_18.

450



—
O
N 555 : .
:E A
I“

‘;‘ | fl |'w f\

\ | ‘ f\
:?-) 55” A ‘\N.\‘ | |
w [ l A A ‘ \|‘ ’ f
= 55t M|V N L' ] | | N
‘g :‘i ‘ J‘ \ [ 1 | | 1 i }“1“'
§ l ‘[ MH '..1 ; .‘ ‘ ‘ ’/“‘! \!
3 s 10 1
o “ \\ ' | |
S RA " |
8 535 I ‘
3] ! !
@ |
w
o % 10 20 30 40 50
-

Time(s)

Figure G622: Test section differential pressure for test 2016_06 22 test 18.
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Figure G623: Water flow rates for test 2016_06_22_test_18.
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Figure G624: Pressure and gas inlet and outlet mass flow rates for test
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Figure G625: Test section differential pressure for test 2016_06_22_test_19.
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Figure G626: Water flow rates for test 2016_06_22 test_19.
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Figure G627: Pressure and gas inlet and outlet mass flow rates for test
2016_06_22_test_20.
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Figure G629: Water flow rates for test 2016
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Figure G630: Pressure and gas inlet and outlet mass flow rates for test
2016_06_22 test_21.
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Figure G631: Test section differential pressure for test 2016_06_22_test_21.
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Figure G635: Water flow rates for test 2016_06_22_test_22.
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Figure G637: Test section differential pressure for test 2016_06_22 test_23.
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Figure G638: Water flow rates for test 2016_06_22 test 23.
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Figure G639: Pressure and gas inlet and outlet mass flow rates for test
2016_06_22_test_24.
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Figure G641: Water flow rates for test 2016_06_22_test_24.
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Figure G642: Pressure and gas inlet and outlet mass flow rates for test
2016_06_22 test_25.
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Figure G643: Test section differential pressure for test 2016_06_22_test_25.
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Figure G645: Pressure and gas inlet and outlet mass flow rates for test
2016_06_22_test_26.
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Figure G647: Water flow rates for test 2016_06_22_test_26.
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Figure G649: Test section differential pressure for test 2016_06_22_test_27.
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Figure G650: Water flow rates for test 2016_06_22 test 27.
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Figure G651: Pressure and gas inlet and outlet mass flow rates for test
2016_06_23_test_01.
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Figure G652: Test section differential pressure for test 2016_06_23 test 01.
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Figure G653: Water flow rates for test 2016_06_23_test_01.
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Figure G654: Pressure and gas inlet and outlet mass flow rates for test
2016_06_23 test_02.
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Figure G655: Test section differential pressure for test 2016_06_23_test_02.
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Figure G656: Water flow rates for test 2016_06_23 test_02.
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Figure G657: Pressure and gas inlet and outlet mass flow rates for test
2016_06_23_test_03.
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Figure G658: Test section differential pressure for test 2016_06_23 test_03.
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Figure G659: Water flow rates for test 2016_06_23_test_03.
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Figure G660: Pressure and gas inlet and outlet mass flow rates for test
2016_06_23 test_07.
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Figure G661: Test section differential pressure for test 2016_06_23_test_07.
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Figure G662: Water flow rates for test 2016_06_23 test 07.
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Figure G663: Pressure and gas inlet and outlet mass flow rates for test
2016_06_23_test_08.
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Figure G664: Test section differential pressure for test 2016_06_23 test_08.
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Figure G665: Water flow rates for test 2016_06_23_test_08.
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Figure G666: Pressure and gas inlet and outlet mass flow rates for test
2016_06_23 test_09.
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Figure G667: Test section differential pressure for test 2016_06_23_test_09.
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Figure G668: Water flow rates for test 2016_06_23 test_09.
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Figure G669: Pressure and gas inlet and outlet mass flow rates for test
2016_06_23_test_10.
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Figure G670: Test section differential pressure for test 2016_06_23 test_10.
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Figure G671: Water flow rates for test 2016_06_23_test_10.
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Figure G672: Pressure and gas inlet and outlet mass flow rates for test
2016_06_23 test_11.
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Figure G673: Test section differential pressure for test 2016_06_23_test_11.
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Figure G674: Water flow rates for test 2016_06_23 test 11.
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Figure G675: Pressure and gas inlet and outlet mass flow rates for test
2016_06_23_test_12.
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Figure G676: Test section differential pressure for test 2016_06_23 test 12.

10 T T T T
9 w
81
— 7 ‘
E 5—*—Walef Inlet
O st | = ©= Water Carryover |
CK dl| ¢ p‘ ‘
> 4 o o & Q‘ ,'G'Q'dob o
(@] i b¢' I‘ p’ Q@ o
—_ ' \ -
(TR g Rs
'
‘£ ¢
‘
1t b
0(?—90‘900@-9&¢ : B B
0 10 20 30 40 50 60 70 80
Time (s)

Figure G677: Water flow rates for test 2016_06_23 test_12.
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Figure G678: Pressure and gas inlet and outlet mass flow rates for test
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Figure G679: Test section differential pressure for test 2016_06_23_test_14.
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Figure G681: Pressure and gas inlet and outlet mass flow rates for test
2016_06_23_test_15.
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Figure G682: Test section differential pressure for test 2016_06 23 test_15.
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Figure G683: Water flow rates for test 2016_06_23_test_15.
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Figure G684: Pressure and gas inlet and outlet mass flow rates for test
2016_06_23 test_16.
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Figure G685: Test section differential pressure for test 2016_06_23_test_16.
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Figure G686: Water flow rates for test 2016_06_23 test_16.
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Figure G687: Pressure and gas inlet and outlet mass flow rates for test
2016_06_23_test_17.
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Figure G688: Test section differential pressure for test 2016_06_23 test 17.
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Figure G689: Water flow rates for test 2016_06_23 test_17.
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Figure G690: Pressure and gas inlet and outlet mass flow rates for test
2016_06_24 test_01.
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Figure G691: Test section differential pressure for test 2016_06_24 test_01.
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Figure G692: Water flow rates for test 2016_06_24 test_01.
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Figure G693: Pressure and gas inlet and outlet mass flow rates for test
2016_06_24 test_02.

486



&

b3

(<]
N
T

P
@
T

&
>
T

Il I I

10 20 30 40 50 60
Time(s)

Test Section Differential Pressure [inH20]
2 b=

o

Figure G694: Test section differential pressure for test 2016_06_24 test_02.
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Figure G695: Water flow rates for test 2016_06_24 test_02.
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Figure G696: Pressure and gas inlet and outlet mass flow rates for test
2016_06_24 test_03.
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Figure G697: Test section differential pressure for test 2016_06_24_test_03.
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Figure G699: Pressure and gas inlet and outlet mass flow rates for test
2016_06_24 test_04.
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Figure G700: Test section differential pressure for test 2016_06_24 test_04.
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Figure G701: Water flow rates for test 2016_06_24 test_04.
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Figure G702: Pressure and gas inlet and outlet mass flow rates for test
2016_06_24 test_06.
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Figure G703: Test section differential pressure for test 2016_06_24 test_06.
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Figure G704: Water flow rates for test 2016_06_24 test_06.
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Figure G705: Pressure and gas inlet and outlet mass flow rates for test
2016_07_13_test_24.

492



£ o, &
wn (2] w
T

£

5351 '

&
=
=

525 ! “'k i .'i‘ T \"‘[ (|

w
N
T

w
~=
w
T
—

w
-t

10 20 30 40 50 60 70 80
Time(s)

Test Section Differential Pressure [inH20]

Figure G706: Test section differential pressure for test 2016_07_13_test_24.
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Figure G707: Water flow rates for test 2016_07_13_test_24.
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Figure G708: Pressure and gas inlet and outlet mass flow rates for test
2016_07_13 test_25.

&

o
o
P2

£

o

N

—
1

L%
-
s

1 i i

20 30 40 50 60 70 80
Time(s)

Test Section Differential Pressure [inH20]
3 a

<
(=

Figure G709: Test section differential pressure for test 2016_07_13_test_25.
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Figure G710: Water flow rates for test 2016_07 13 test_25.
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Figure G711: Pressure and gas inlet and outlet mass flow rates for test
2016_07_13_test_26.
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Figure G712: Test section differential pressure for test 2016_07_13_test_26.

10

20

30 40
Time(s)

50

60

5

Flow Rate [GPM]

<
v
T

Figure G713: Water flow rates for test 2016_07_13_test_26.

45 F\M“'

10

20

; —+— Waler Inlet

|

| = ©= Water Carryover | |

Time (s)

496




®
= gz 2
Q0 2
w c
o {60 &
=3
® o
2 P
£ 4
S 2
28 \ .:
<t
27.5
27 A A A A "
0 10 20 30 40 50
Time (s)
—%— TS Pressura —=— Gas Inlet —= Gas QOutlet |

Figure G714: Pressure and gas inlet and outlet mass flow rates for test
2016_07_13 test_27.
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Figure G715: Test section differential pressure for test 2016_07_13_test_27.

497



b PSP ar O PR epde (
6_
| Water Inlet
=5 | = ©- Water Carryover
st |
a
)
bt 4 -
fy pu
% 9‘ ',9" "|0 é‘e' ¢'Q|
'
O.’.s— ,'." pO’ Iu ?I‘ : l'. ' ‘.'
3 d;"'.‘o'\'\.""'-
' L) [
i 2t ; 'bé N o% ¥ 3
' ’
L
L 154
1 -
‘I
'
06-0-6-0-60-0-0-0' ; : ;
0 10 20 30 40 50 60 70
Time (s)

Pressure (PSIG)
Air Mass Flow Rate (g/s)

25 i - - A A A . -
0 10 20 30 40 50 60 70
Time (s)
—+— TS Pressure —=— Gas Inlat —=— Gas Outlet >1

Figure G717: Pressure and gas inlet and outlet mass flow rates for test
2016_07_13_test_28.
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Figure G718: Test section differential pressure for test 2016_07_13_test_28.
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Figure G719: Water flow rates for test 2016_07_13_test_28.
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Figure G720: Pressure and gas inlet and outlet mass flow rates for test
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Figure G721: Test section differential pressure for test 2016_07_13_test_29.
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Figure G722: Water flow rates for test 2016_07 13 test_29.
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Figure G723: Pressure and gas inlet and outlet mass flow rates for test
2017_02_20_test_08.
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Figure G725: Water flow rates for test 2017_02_20_test_08.
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Figure G726: Pressure and gas inlet and outlet mass flow rates for test
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Figure G727: Test section differential pressure for test 2017_02_23_test_01.
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Figure G728: Water flow rates for test 2017_02_23 test_01.
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Figure G729: Pressure and gas inlet and outlet mass flow rates for test
2017_02_23_test_02.
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Figure G730: Test section differential pressure for test 2017 _02_23 test_02.
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Figure G731: Water flow rates for test 2017_02_23_test_02.
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Figure G732: Pressure and gas inlet and outlet mass flow rates for test
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Figure G733: Test section differential pressure for test 2017_02_23_test_03.

506



9 T
7i\.\~““‘ S SO ot
E 6 i—‘—-Waletlnlal
0) f-O-WawtCan)om
o’ b
@ of abfds onfas
B IR IR
3a 1 Rt iR e
i g% & IR
2" é © “ﬁ
' o)
1" '
(Goseaooesaeaac?: : : .
0 20 40 60 80 100 120 140
Time (s)

Figure G734: Water flow rates for test 2017_02_23 test 03.
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Figure G735: Pressure and gas inlet and outlet mass flow rates for test
2017_02_23_test_04.
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Figure G736: Test section differential pressure for test 2017 _02_23 test_04.
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Figure G737: Water flow rates for test 2017_02_23_test_04.
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Figure G738: Pressure and gas inlet and outlet mass flow rates for test
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Figure G739: Test section differential pressure for test 2017_02_27_test_01.
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Figure G740: Water flow rates for test 2017_02_27 test_01.
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Figure G741: Pressure and gas inlet and outlet mass flow rates for test
2017_02_27_test_11.
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Figure G742: Test section differential pressure for test 2017 _02_27 test_11.
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Figure G743: Water flow rates for test 2017_02_27_test_11.
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Figure G744: Pressure and gas inlet and outlet mass flow rates for test
2017_02_27 test_12.

B

o

(=]
T
2

o

o

n
T
:

o
w
7

545+ ‘ | " 4

b4

535 "\ [ \‘ .

(3.3
(=)
T

525+ |¥ -

Test Section Differential Pressure [inH20)]

10 20 30 40 50
Time(s)

<

Figure G745: Test section differential pressure for test 2017_02_27_test_12.
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Figure G746: Water flow rates for test 2017_02_27 test_12.
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Figure G747: Pressure and gas inlet and outlet mass flow rates for test
2017_02_27_test_12b.
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Figure G749: Water flow rates for test 2017_02_27_test_12b.
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Figure G750: Pressure and gas inlet and outlet mass flow rates for test
2017_02_27 test_13.
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Figure G752: Water flow rates for test 2017_02_27 test_13.
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Figure G753: Pressure and gas inlet and outlet mass flow rates for test
2017_02_27_test_13b.
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Figure G754: Test section differential pressure for test 2017_02_27 test_13b.

7.5 T T T -
7 W’\M
85 2%
8.4 ©o%eveo o%0%.
< P
z " '
Ll
O,55} :
@ 5| P f—’—Watsr Inlet |
& ! | = ©~ Water Carryover
45 - YOO
2 P g
g () M I
™ 4 : :‘ v
W '
35 “ '
9
I
3 ‘Q"
2.5 ol ' A 1
0 10 20 30 40 50 60 70

Time (s)

Figure G755: Water flow rates for test 2017_02_27_test_13b.
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Figure G758: Water flow rates for test 2017_03_03_test_Ola.

27 T r T 150

OSSO NS 55 5DEBESE S ES

140

®
- =)
(_._'J 2
@ 130 ¥
S 2
8 1 B
2 'y
v |
@ {20 &
2 l ‘ &
S =
0.5 | 5
{10 <
W”
0 A i A Leeeese—
0 20 40 60 80 100

Time (s)

—+— TS Pressure —— Gas Inlet —= GasAO\xtlet‘{

Figure G759: Pressure and gas inlet and outlet mass flow rates for test
2017_03_03_test_02a.
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Figure G760: Test section differential pressure for test 2017_03_03_test_02a.
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Figure G761: Water flow rates for test 2017_03_03_test_02a.
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Figure G762: Pressure and gas inlet and outlet mass flow rates for test
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Figure G763: Test section differential pressure for test 2017_03_03_test_03a.
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Figure G765: Pressure and gas inlet and outlet mass flow rates for test
2017_03_03_test_04a.
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Figure G767: Water flow rates for test 2017_03_03_test_04a.
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Figure G769: Test section differential pressure for test 2017_03_03_test_05a.
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Figure G770: Water flow rates for test 2017_03_03_test_05a.
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Figure G772: Test section differential pressure for test 2017_03_03_test_06a.
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Figure G773: Water flow rates for test 2017_03_03_test_06a.
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Figure G795: Pressure and gas inlet and outlet mass flow rates for test
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Figure G827: Water flow rates for test 2017_03_13_test_06.

553



1.5+ 140 ~
w
s o
& 1 130 &
— -
5 2
§ 05 20 t
B | =
o L =
o {\”‘ 6 <

0.5 A A A A L A L ,‘.*m )

0 10 20 30 40 50 60 70 80 20

Time (s)
—%— TS Pressure —=— Gas Inlat —=— Gas Outlet >1

Figure G828: Pressure and gas inlet and outlet mass flow rates for test
2017_03_13_test_09.

&

o
o
T

H}, [N

{ v
‘J \'\|W\I‘.

( |l\ "
|(| IR »hl

£

o
N
I

o
vy
T

i 1 1 1 1 1 I

20 30 40 50 60 70 80 90
Time(s)

&

Test Section Differential Pressure [inH20]
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Figure G849: Pressure and gas inlet and outlet mass flow rates for test
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Figure G854: Water flow rates for test 2017_03 24 test_07.

25 T T T T 180

@
o =)
9 x‘dc’_u o
& z
® {30 &
2 w
g 2
il | - [0
o 05 20 =
{ <
0 ' 10
\\
05 4 " A A 4 LS} a
0 10 20 30 40 50 60 70

Time (s)

—+— TS Pressure —— Gas Inlet —=— Gas Outlet |

Figure G855: Pressure and gas inlet and outlet mass flow rates for test
2017_03_24 test_08.
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Figure G861: Pressure and gas inlet and outlet mass flow rates for test
2017_03_24 test_10.
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Figure G863: Water flow rates for test 2017_03_24 test_10.
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Figure G869: Water flow rates for test 2017_03_24 test_12.
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Figure G873: Pressure and gas inlet and outlet mass flow rates for test
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Figure G875: Water flow rates for test 2017_03_24 test_14.
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Figure G881: Water flow rates for test 2017_03_24 test_16.
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Figure G882: Pressure and gas inlet and outlet mass flow rates for test
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Figure G883: Test section differential pressure for test 2017_04_03_test_01.
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Figure G884: Water flow rates for test 2017_04 03 test_01.
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Figure G885: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_02.
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Figure G887: Water flow rates for test 2017
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Figure G888: Pressure and gas inlet and outlet mass flow rates for test
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Figure G890: Water flow rates for test 2017_04 03 _test_03.
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Figure G893: Water flow rates for test 2017
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Figure G894: Pressure and gas inlet and outlet mass flow rates for test
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Figure G895: Test section differential pressure for test 2017_04_03_test_05.
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Figure G896: Water flow rates for test 2017_04 03 _test_05.
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Figure G897: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_06.
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Figure G900: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_07.
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Figure G901: Test section differential pressure for test 2017_04_03_test_07.
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Figure G902: Water flow rates for test 2017_04 03 _test_07.
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2017_04_03_test_08.

591



w
w
w

" - u - o = “ ~
b p a o <a
u .a ..,

[OZHUI] 2inssaid [enURIBYIQ UONDSS 1581

W
5

’;0

60

50

Time(s)

10

20

«

0

o

04_03_test_08.
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Figure G905: Water flow rates for test 2017
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Figure G912: Pressure and gas inlet and outlet mass flow rates for test
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Figure G917: Water flow rates for test 2017
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Figure G921: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_14.
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Figure G923: Water flow rates for test 2017
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Figure G924: Pressure and gas inlet and outlet mass flow rates for test
2017 04 03 test 15.
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Figure G926: Water flow rates for test 2017_04 03 test_15.
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Figure G929: Water flow rates for test 2017_04_03_test_16.
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Figure G930: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_17.
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Figure G931: Test section differential pressure for test 2017 _04_03_test_17.
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Figure G935: Water flow rates for test 2017_04_03_test_18.
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Figure G936: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_109.
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Figure G937: Test section differential pressure for test 2017_04 03 _test_19.
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18 T
i S S B M e S
16 gt e Sl O —D
14
3 =
v =
2 19 5
& 3 g
\ i
13
B
-
A A " " i T — )|
0 10 20 30 40 50 60
Time {5}

*— 1S Pressurs —o— Gos Fimt G Oustlet |

Figure G939: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_20.
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Figure G941: Water flow rates for test 2017_04_03_test_20.
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Figure G942: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_21.
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Figure G943: Test section differential pressure for test 2017 _04_03_test_21.
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Figure G944: Water flow rates for test 2017_04 03 test_21.

‘
> \
4]
|
A
Cy |
\

14 o A A ‘ — )}
] 10 20 30 40 50 60 0 a0
Time (5}

* TS Prassum —— Gas ki —~—— G Outlet |

Figure G945: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_22.
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Figure G947: Water flow rates for test 2017_04_03_test_22.
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Figure G948: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_23.
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Figure G949: Test section differential pressure for test 2017 _04_03_test_23.
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Figure G950: Water flow rates for test 2017_04 03 test_23.
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Figure G951: Pressure and gas inlet and outlet mass flow rates for test
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615



3

o
&

& = i @ o
o~ =1 = (-3 "N

[
e

Test Section Differential Pressure [inH20]

a L . .
g 0 20 20 40 50 (4] 7
Time(s)

Figure G952: Test section differential pressure for test 2017_04_03_test_24.
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Figure G953: Water flow rates for test 2017_04_03_test_24.
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Figure G954: Pressure and gas inlet and outlet mass flow rates for test
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Figure G955: Test section differential pressure for test 2017 _04_03_test_25.
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Figure G956: Water flow rates for test 2017_04 03 test_25.
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Figure G957: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_26.
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Figure G958: Test section differential pressure for test 2017 _04_03_test_26.
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Figure G959: Water flow rates for test 2017_04_03_test_26.
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Figure G960: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_27.
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Figure G961: Test section differential pressure for test 2017 _04_03_test_27.
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Figure G962: Water flow rates for test 2017_04_03_test_27.
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Figure G963: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_28.
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Figure G964: Test section differential pressure for test 2017 _04_03_test_28.
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Figure G965: Water flow rates for test 2017_04_03_test_28.
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Figure G966: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_29.
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Figure G967: Test section differential pressure for test 2017_04 03 _test_29.
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Figure G968: Water flow rates for test 2017_04 03 _test_29.
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Figure G969: Pressure and gas inlet and outlet mass flow rates for test
2017_04_03_test_30.
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Figure G970: Test section differential pressure for test 2017_04_03_test_30.
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Figure G971: Water flow rates for test 2017_04_03_test_30.
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APPENDIX H
MATLAB® SCRIPTS
This appendix includes the MATLAB® scripts used to locate the time defendant

raw flooding data, average the raw time-dependent data, and plot the raw data. The

®

MATLAB® scripts are modified from those created and used by Garza. The MATLAB
scripts used for steam/water and air/water are nearly identical, except select column
numbers in the data matrices as water some information is not needed, only the steam
scripts are only presented for steam/water.

H.1 Find Range Script

Below, is the script used to obtain and identify the times where flooding occurs.

%% %% %% % %% % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % % % % % % % % % % % %
%%%%% Find Test Range and Field of Study STEAM%%%%
%% %% %% % %% % % % % % % % % % % %% %% % % % % % % % % % % % % % % % %% % % % % % % % % % %

%The purpose of this script is to load steam
%test data and plot certain parameters as
%needed to be able to determine the test
%range and the field of study range

clc;
%clf(1);clf(2); %This will guarantee that the graphs will clear if present, if not comment out
%to produce the first set of graphs

cvin=load('C:\Users\”filename”.dat');

gasflowin=cvin(:,84)*1073;  %Steam is 84 for [kg/s, for air this is 83 for [g/s]
gasflowout=cvin(:,92); %[g/s]

tsdp=cvin(:,111); %[in H20]
tsabsp=cvin(:,101); %[psia]
carryover=cvin(:,77); %[GPM]

tsgp=tsabsp-14.6959494; %|[psig]
timeend=0.1*(length(gasflowout)-1);
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time=0:0.1:timeend;
time=time';
input =0; %places input matrix for next set of code

figure(1)

yyaxis left

plot(gasflowin)%plot one of the above parameters and manually manipulate
ylabel('Gas Flow In")

yyaxis right

plot(tsgp)

ylabel('TS P")

figure(2)

yyaxis left
plot(carryover)
ylabel('Carryover')
yyaxis right
plot(tsdp)
ylabel('TSDP')

H.2 Reducing Script
Below is the script used to batch process the time dependent flooding data into

a single data point per test, by averaging the data over the time interval of flooding.

%This file takes the pertinent information in the .dat files for a given
%folder and reduces (averages) the variables into a single data point over
%the beginning and ending times selected from the previous script

%Basic constants for test section

ts_d=0.0762; %Test Section Diameter [m]
ts_area=((ts_d/2)"2)*pi; %Test Section Flow Area [m”2]
g=9.81; %Constant for gravity [m/s"2]

%lInitialize array, use the directory where your .dat files are located
my_files = dir('C:\Users\.....\*.dat');

[numoffiles, one] = size(my_files);
Final = zeros(numoffiles,36);

%Pull start and end times from input array! need to create

BFOS = input(:,1);

EFOS = input(:,2);

%loop iterating through each file in the folder. This will not skip files
%and need to be in consecutive order starting with 01,
%02,...,10,11,12,...,n
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for k=1:numoffil
disp(k);
cvin = load(my_files(k).name); %loads .dat file
currentfile = my_files(k).name;
%load specific columns for calculations
TSDP=cvin(:,111); %need to verify this had 110 [which is listed at sigma]/although not used in the
script
T_fi=cvin(:,56);
T_gi=cvin(:,28);
T_go=cvin(:,50);
T_satTS=cvin(:,102);
T_wall=cvin(:,40);
Q_fmagmi=cvin(:,72);
Q_fc=cvin(:,77);
mdot_gi=cvin(:,84);
mdot_go=(cvin(:,92))*107(-3);
P_TSpsia=cvin(:,101);
P_TSpsig=cvin(:,101)-14.6959494;
rho_gi=cvin(:,82);
rho_go=cvin(:,91);
rho_fmagmi=cvin(:,73);

SSP=BFOS(k);
ESP=EFOS(k);

%average variables to obtain single data points

AvgT_fi=mean(T_fi(SSP:ESP)); %Temp of Water In [C]
AvgT_gi=mean(T_gi(SSP:ESP)); %Temp of Gas In [C]
AvgT_go=mean(T_go(SSP:ESP)); %Temp of Gas Out [C]
AvgT_satTS=mean(T_satTS(SSP:ESP)); %Saturation Temp in TS [C]
AvgT_wall=mean(T_wall(SSP:ESP)); %Temp of wall [C]
AvgQ_fmagmi=mean(Q_fmagmi(SSP:ESP)); %Water In Flow Rate at Mag Meter[GPM]
AvgQ_fc=mean(Q_fc(SSP:ESP)); %Water carryover flow rate [GPM]
Avgmdot_gi=mean(mdot_gi(SSP:ESP)); %Mass flow rate of gas in [kg/s]
Avgmdot_go=mean(mdot_go(SSP:ESP)); %Mass flow rate of gas out [kg/s]

AvgP_TSpsia=mean(P_TSpsia(SSP:ESP)); %Pressure in TS [psia]
AvgP_TSpsig=mean(P_TSpsig(SSP:ESP)); %Pressure in TS [psig]
Avgrho_gi=mean(rho_gi(SSP:ESP)); %Density of gas in [kg/mA3]
Avgrho_go=mean(rho_go(SSP:ESP)); %Density of gas out [kg/m”3]
Avgrho_fmagmi=mean(rho_fmagmi(SSP:ESP)); %Density of water in at mag flow meter [kg/m”3]

AvgP_TSbar=(AvgP_TSpsia)/(14.5037738007); %Average Pressure of TS in bar

%Use XSteam to look up necessary gas and liquid parameters

Avgsigma_f=XSteam('st_T',AvgT_fi); %Average surface tension of water in TS [N/m]
Cp=XSteam('Cp_pT',AvgP_TSbar,AvgT_fi); %Specific isobaric heat capacity of water in TS [kJ/(kg C)]
h_sti=XSteam('h_pT',AvgP_TSbar,AvgT_gi); %Enthalpy of steam entering TS [kJ/kg]
h_sto=XSteam('h_pT',AvgP_TSbar,AvgT_go); %Enthalpy of steam exiting TS [kl/kg]
h_f=XSteam('h_pt',AvgP_TSbar,AvgT_fi); %Enthalpy of water entering TS [kJ/kg]
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%Changed this to AvgQ_fmagmi: Ideally this should not change as the only
%exit for this is through the test section (ie mass conservation)

%The issue that is causing the large AvgQ_fi is from Avgrho

Avgrho_f= Avgrho_fmagmi; %Changes rho to that at mag meter

%Calculates the actual volumetric flow rate of water going into the test

%section accounting for the density change from the water going through

%the inlet water heater.

AvgQ_fi=(AvgQ_fmagmi*Avgrho_fmagmi)/(Avgrho_f); %Average Water In flow rate [GPM]

%Calculates the volumetric flow rate of the water going down the tube by
%subtracting the avg water carryover from the average water in. This
%assumes that the density of the water doesn't change much from entering
%and exiting the test section.

AvgQ_fd=AvgQ_fi-AvgQ_fc; %Average water down flow rate [GPM]

%Calculate the superficial velocities for the inlet gas outlet gas and
%water falling down the test section.

Avgj_gi=(Avgmdot_gi)/(Avgrho_gi*ts_area); %Superficial Velocity of gas entering TS [m/s]

Avgj_go=(Avgmdot_go)/(Avgrho_go*ts_area); %Superficial Velocity of gas leaving TS [m/s]

Avgj_fd=(AvgQ_fd*(0.00006309))/(ts_area); %Superficial Velocity of water falling down test section
[m/s]

Avgj_fi=(AvgQ_fi*(0.00006309))/(ts_area);

Avgj_fc=(AvgQ_fc*(0.00006309))/(ts_area);

%Calculate the kutateladze parameter for gas in, gas out, and water down.

%Kutateladze Parameter of Gas In to test section [unitless]

K_gi=(((Avgrho_gi)*(1/2))*(Avgj_gi))/(g*Avgsigma_f*(Avgrho_f-Avgrho_gi))*(1/4);

%Kutateladze Parameter of Gas Out of test section [unitless]

K_go=(((Avgrho_go)*(1/2))*(Avgj_go))/(g*Avgsigma_f*(Avgrho_f-Avgrho_go))*(1/4);

%Kutateladze Parameter of water down test section [unitless]

K_fd=(((Avgrho_f)*(1/2))*(Avgj_fd))/(g*Avgsigma_f*(Avgrho_f-Avgrho_gi))*(1/4);

K_fi=(((Avgrho_f)A(1/2))*(Avgj_fi))/(g*Avgsigma_f*(Avgrho_f-Avgrho_gi))*(1/4);
K_fc=(((Avgrho_f)A(1/2))*(Avgj_fc))/(g*Avgsigma_f*(Avgrho_f-Avgrho_gi))*(1/4);
%Calculate the square root of the Kutateladze parameters as that is how

%they will be plotted.

K_gisqr=sqrt(K_gi);

K_gosqgr=sqrt(K_go);

K_fdsqr=sqrt(K_fd);

K_fisqr=sqrt(K_fi);

K_fcsqr=sqrt(K_fc);

k_fc_over_k_fi=(K_fcsqr)/(K_fisqr);
k_fi_over_k_fc=(K_fisqr)/(K_fcsqr);

%Set the values in a final array that can be used for plotting
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%
%
%
%
%
%

%or recording
Final(k,1)=AvgP_TSpsig;
Final(k,2)=AvgT_fi;
Final(k,3)=AvgT_gi;
Final(k,4)=AvgT_go;
Final(k,5)=AvgT_satTS;
Final(k,8)=K_gisqr;
Final(k,9)=K_fdsqr;
Final(k,10)=AvgT_wall;
Final(k,11)=AvgQ_fmagmi;
Final(k,12)=AvgQ_fi;
Final(k,13)=AvgQ_fc;
Final(k,14)=AvgQ_fd;
Final(k,16)=Avgmdot_gi;
Final(k,17)=Avgmdot_go;
Final(k,18)=Avgrho_f;
Final(k,19)=Avgrho_fmagmi;
Final(k,20)=Avgrho_gi;
Final(k,21)=Avgrho_go;
Final(k,22)=Avgsigma_f;
Final(k,23)=Avgj_gi;
Final(k,24)=Avgj_go;
Final(k,25)=Avgj_fd;
Final(k,26)=Cp;
Final(k,27)=h_sti;
Final(k,28)=h_sto;
Final(k,29)=h_f;
Final(k,30)=K_gi;
Final(k,31)=K_go;
Final(k,32)=K_fd;
Final(k,33)=K_gosqr;
Final(k,31)=f_i_williams;
Final(k,32)=f_o_williams;
Final(k,33)=K_ge_i;
Final(k,34)=K_ge_isqr;
(k,35)=
(

Pl

Final(k,35)=K_ge_o;
Final(k,36)=K_ge_osqr;
Final(k,52)=K_fi;
Final(k,53)=K_fc;
Final(k,54)=K_fisqr;
Final(k,55)=K_fcsqr;
Final(k,56)=k_fc_over_k_fi;
Final(k,57)=k_fi_over_k_fc;
(
(
(

Final(k,58)=std(P_TSpsig(SSP:ESP));
Final(k,59)=std(mdot_gi(SSP:ESP));
Final(k,61)=std(Q_fmagmi(SSP:ESP));

end
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H.3 Graphing Script

Below is the script used to graph the raw data.

% initialize the cell array

my_files = dir('C:\...\*.dat'); % structure containing your *.dat files

[numoffiles one]=size(my_files);

Final=zeros(numoffiles,36);

numoffiles

TS_D=0.0762; %Test Section Diameter [m]

TS_Area=((TS_D/2)"2)*pi; %Test Section Flow Area [m”2]

g=9.81; %Constant for gravity [m/s"2]

%Loop to load data and make calculations

fontsize=16;

legendfontsize=12;

for k=1:numoffiles
k
cvin=load(my_files(k).name); % load .dat file recursively
CurrentFile=my_files(k).name
testdateandname=regexp(my_files(k) .name, "\w*test\w*', 'match');
fileID=testdateandname(1);

%Pull specific parameters that need to be plotted from the dat files.
TSDP=cvin(:,111);
TSDPfulltest=TSDP(SOT(k):EOT(k));
TSDPtrimmedplot=TSDP(BFOS(k):EFOS(k));
T_fi=cvin(:,56);
T fi_ft=T_fi(SOT(k):EOT(K));
T fi_tp=T_fi(BFOS(k):EFOS(K));
T_gi=cvin(:,28);
T_gi_ft=T_gi(SOT(k):EOT(k));
T gi_tp=T_gi(BFOS(k):EFOS(k));
T_go=cvin(:,50);
T go_ft=T_go(SOT(k):EOT(k));
T_go_tp=T_go(BFOS(k):EFOS(k));
T_satTS=cvin(:,102);
T_satTS_ft=T_satTS(SOT(k):EOT(k));
T_satTS_tp=T_satTS(BFOS(k):EFOS(k));
Q_fmagmi=cvin(:,72);
Q_fmagmi_ft=Q_fmagmi(SOT(k):EOQT(k));
Q_fmagmi_tp=Q_fmagmi(BFOS(k):EFOS(k));
Q_fc=cvin(:,77);
Q_fc_ft=Q_fc(SOT(k):EOT(k));
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Q_fc_tp=Q_fc(BFOS(k):EFOS(k));
mdot_gi=cvin(:,84)*10"3;
mdot_gi_ft=mdot_gi(SOT(k):EOT(k));
mdot_gi_tp=mdot_gi(BFOS(k):EFOS(k));
mdot_go=(cvin(:,92));
mdot_go_ft=mdot_go(SOT(k):EOT(k));
mdot_go_tp=mdot_go(BFOS(k):EFOS(k));
P_TSpsig=cvin(:,101)-14.6959494;
P_TSpsig_ft=P_TSpsig(SOT(k):EOT(k));
P_TSpsig_tp=P_TSpsig(BFOS(k):EFOS(k));
Q_fd=Q_fmagmi-Q_fc;

Q_fd_ft=Q_fd(SOT(k):EOT(k));
Q_fd_tp=Q_fd(BFOS(k):EFOS(k));

SOTtime=S0OT(k)/10;

EOTtime=EOT(k)/10;

BFOStime=BFOS(k)/10;

EFOStime=EFOS(k)/10;

time=0:0.1:EOTtime-SOTtime;
trimmedtime=BFOStime-SOTtime:0.1:(EFOStime-SOTtime);
time=time';

trimmedtime=trimmedtime’;

%Set the name for the specific plots to change with each test.
nameTSDP=char(strcat(fileID, '_TSDP.jpg'));
nameTemps=char(strcat(fileID, ' _Temps.jpg'));
nameWaterFlow=char(strcat(filelD, ' _waterflow.jpg"));
namePandGasln=char(strcat(filelD, '_PandGaslIn.jpg'));

%TSDP Plots

TSDPplot=plot(time, TSDPfulltest);

xlabel('Time(s)', 'fontsize', fontsize);

ylabel('Test Section Differential Pressure [inH20]', 'fontsize', fontsize);
print('-djpeg', nameTSDP);

clf('reset’); %clears figure of all data

%Temps Plots

plot(time, T _fi_ft,'r','LineWidth’,1);

hold on;
plot(time(1:25:end),T_fi_ft(1:25:end),'r*','LineWidth',1);
pl=plot(time(1),T_fi_ft(1),'-r*','LineWidth’,1);
plot(time,T_satTS_ft,'b’,'LineWidth',1);
plot(time(1:25:end),T_satTS_ft(1:25:end),'bo’,'LineWidth',1);
p2=plot(time(1),T_satTS_ft(1),"-bo’,'LineWidth',1);
plot(time, T _gi_ft,'m','LineWidth',1);
plot(time(1:25:end),T_gi_ft(1:25:end),'mx’,'LineWidth',1);
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p3=plot(time(1),T_gi_ft(1),'-mx’,'LineWidth',1);

legend([p1,p2,p3], 'Liquid Inlet Temp.', 'TS Saturation Temp.','Gas Inlet Temp','Location’,'Best');
xlabel('Time(s)','fontsize',fontsize);

ylabel('Temperature (C)','fontsize’,fontsize);

hold off;

print('-djpeg', nameTemps);

clf('reset'); %clears figure of all data

%Water Flow Rate Plots
plot(time,Q_fmagmi_ft,'r','LineWidth',1);

hold on;
plot(time(1:25:end),Q_fmagmi_ft(1:25:end),'r*','LineWidth',1);
pl=plot(time(1),Q_fmagmi_ft(1),'-r*','LineWidth’,1);
plot(time,Q_fc_ft,'b’,'LineWidth',1);
plot(time(1:25:end),Q_fc_ft(1:25:end),'bo’,'LineWidth',1);
p2=plot(time(1),Q_fc_ft(1),"-bo’,'LineWidth',1);
hold off;
xlabel('Time (s)','fontsize',fontsize);
ylabel('Flow Rate [GPM]','fontsize', fontsize);
legend([p1,p2],'Water Inlet','"Water Carryover','Location’,'Best');
print('-djpeg',nameWaterFlow);

clf('reset'); %clears figure of all data

% Pressure and Gas Flow Rate Plots

yyaxis left
plot (time, P_TSpsig_ft,'r');
hold on;
plot (time(1:25:end), P_TSpsig_ft(1:25:end),'r*");
pl=plot (time(1), P_TSpsig_ft(1),-r*');
xlabel('Time (s)')
ylabel('Pressure (PSIG)")

yyaxis right
plot (time, mdot_gi_ft, 'b");
plot (time(1:25:end), mdot_gi_ft(1:25:end), 'bo")
p2=plot (time(1), mdot_gi_ft(1), -bo")
plot (time, mdot_go_ft, 'm')
plot (time(1:25:end), mdot_go_ft(1:25:end), 'mx')
p3=plot (time(1), mdot_go_ft(1), '-mx')
ylabel('Air Mass Flow Rate (g/s)')
legend([p1,p2,p3],'TS Pressure','Gas Inlet','Gas Outlet')
legend([p1,p2,p3],'location’,'southoutside’,'Orientation’,'horizontal’)
hold off;
print('-djpeg', namePandGaslIn);

clf('reset');
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end
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APPENDIX |
EXPERIMENTAL INSTRUMENTATION
Below, in Table 6, location, manufacturer, model, range, and accuracy of the
instrumentation used for this study. As no new instruments were used all information contained
in the table was collected by Wynne and originally presented in the Wynne thesis ranges and
accuracy information were obtained from manufacture manuals [6]. The table has been updated

to address formatting, visual issues, and update all units to a unified format.
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