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ABSTRACT

The effectiveness of law enforcement and public safety is directly dependent on the time taken

by first responders to arrive at the scene of an emergency. The primary objective of this thesis is

to develop techniques and actions of response for an autonomous vehicle in emergency scenar-

ios. This work discusses the methods developed to identify Emergency Vehicles (EV) and use its

localized information to develop response actions for autonomous vehicles in emergency scenar-

ios using an Infrastructure-Enabled Autonomy (IEA) setup. IEA is a new paradigm in autonomous

vehicles research that aims at distributed intelligence architecture by transferring the core function-

alities of sensing and localization to a roadside infrastructure setup. In this work two independent

frameworks were developed to identify Emergency vehicles in a video feed using computer vision

techniques: (1) A one-stage framework where an object detection algorithm is trained on a custom

dataset to detect EVs, (2) A two-stage framework where an object classification is independently

implemented in series with an object detection pipeline to classify vehicles into EVs and non-

EVs. The performance of many popular classification models were compared on a combination

of multi-spectral feature vectors of an image to identify the ideal combination to be used for EV

identification rule. Localized position co-ordinates of an EV are obtained by deploying the clas-

sification routine on IEA. This position information is used as an input in an autonomous vehicle

and an ideal response action is developed.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Emergency response services are crucial and counted upon by people across the world in dan-

gerous and potentially fatal road situations. Emergency responders provide urgent medical at-

tention, manage road disputes, enforce the law or even repair unsafe road conditions. Effective

response times can mean the difference between life and death in some of the worst driving emer-

gencies for those involved in accidents and crashes.

In emergency response situations, safety is critical as response maneuvers by the human op-

erator or even self-driving vehicles, must not present new scenarios resulting in traffic congestion

or vehicle collisions. Studies [4] show that human operators still do not fully trust the automation

control, and prefer to intervene in such scenarios to guarantee safety. However according to [5] a

single autonomous vehicle can control the flow of at least 20 human-controlled vehicles around it,

with substantial reductions in velocity deviations, excessive braking, and fuel consumption. Thus

a study into developing emergency response capabilities for an autonomous vehicle is essential in

reducing emergency response times. This thesis begins with the introduction of a need to develop

Emergency vehicle response actions in Autonomous vehicles

1.2 Organization

In Chaper 1 we discuss the motivation and introduces some of the computer vision techniques

used in this work. Chapter 2 focuses on Infrastructure enabled Autonomy (IEA) and discuss its

advantages and challenges. A simulation-based feasibility study discussing the scalability and dis-

tribution of IEA technology is presented. The implementation of the experimental setup of IEA at

RELLIS campus is discussed in detail. Chapter 3 discusses the different vision-based techniques

that were investigated for developing methods to identify EV from a video scene. A comparative

study involving the effectiveness of different combinations of detection and classification routines

for different multi-spectral feature vectors used in identifying EVs is presented.Chapter 4 discusses

1



the development of a response action for an autonomous vehicle using the EV identification algo-

rithms implemented on IEA.

1.3 Motivation

The time taken by first responders such as police, fire, ambulance or any other public utility

vehicles (commonly known as Emergency response time) is a key measure in evaluating the ef-

fectiveness of law enforcement and public safety in emergency scenarios. Average response times

further vary depending on factors like time of day, traffic conditions, weather, etc. Deploying

autonomous vehicles on roads is one of the avenues to reduce traffic congestion.

The Texas transportation code, as a part of the Texas Constitution and Statutes [6] states several

laws and guidelines for emergency vehicles and operating guidelines for other vehicles in the

presence of EV. Sec. 545.204. defines the scenarios for a streetcar being approached by authorized

emergency vehicle "(a) On the immediate approach of an authorized emergency vehicle using

audible and visual signals that meet the requirements of Sections 547.305 and 547.702, or of a

police vehicle lawfully using only an audible signal, the operator of a streetcar shall immediately

stop the streetcar clear of any intersection and remain there until the authorized emergency vehicle

has passed, unless otherwise directed by a police officer."

An autonomous vehicle can effectively respond to EV only when it can accurately detect, track

and map the EV in its surrounding environment and has a suitable control law to perform a safe

response maneuver. Emergency vehicles in Texas are required to use audio and visual warning

indicators to alert other vehicles of their presence and negotiate traffic as specified in Sections

547.305 and 547.702 of the Texas Transportation Code. There have been several published works

[7], [8], and [9], which deal with exclusively using sound patterns to identify EVs. However,

no concrete work has been published on real-time sensor fusion of sound and vision data, that

can be used to localize the EV and control an autonomous vehicle. A patent [10] by Google

discusses the different avenues they have explored for controlling their autonomous vehicles in

emergency scenarios. However, audio-based techniques have limitations in terms of the accuracy

of localization estimates it can provide. A fusion of vision-based EV detection methods with

2



the audio data aids in enhancing the detection accuracies and provides for improved localization

estimates [11]. In this thesis, the scope of the study is restricted to using computer vision-based

techniques to develop methods for identifying EVs.

1.4 Related Work

Vehicle recognition for Advanced driver-assist system (ADAS) applications has been an ac-

tively researched topic in the field of transportation research. Several works have been carried out

in identifying vehicles in a video feed [12]. Sivaram et al. [13] presents a comprehensive literature

review of the work carried out on on-road vision-based vehicle detection, tracking, and behavior

understanding. However, none of these works specifically discuss methods for detecting, tracking

and localizing EVs.

In recent days, with the advent of machine learning and deep learning applications for com-

puter vision, and the introduction of datasets with many hundred to thousands of labeled examples,

remarkable advancements have been made in developing high-capacity object detection and track-

ing algorithms. We use some of these techniques to develop methods to identify EV and obtain a

stream of localized position co-ordinates. Most object detection algorithms are capable of identify-

ing multiple classes of objects and at the same time obtain excellent detection accuracy. However

these results are highly dependent on the annotated datasets that are available to train them.

1.4.1 Datasets

Datasets and online challenges contribute significantly to developing image understanding

methods. They play a key role in driving computer vision research as they pose specific un-

solved problems, and provide standardized benchmarks for researchers to develop and compare

new algorithms to the state-of-the-art methods. This allows for a quantitative evaluation of the

capacities and limitations of newly developed techniques. Some of the most popular object detec-

tion data-sets include PASCAL VOC (20 object classes) [14], Microsoft COCO (80 object classes)

[15], Imagenet (150,000 photographs with over 1000 classes) [16]. In the context of transportation

and autonomous vehicles research, KITTI dataset by Geiger et al. [17], Cityscapes [18] and more
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recently BDD100K [19] have provided a platform for researchers to develop algorithms for spe-

cific tasks involved in developing self-driving vehicle technologies like object annotation, vehicle

recognition, semantic scene segmentation, vehicle motion estimation, and aid in bridging the gap

between simulation and real-world testing.

Even though several public datasets are available for autonomous driving, none of these datasets

focus on aspects specifically required for identifying and localizing EV, neither do any of the ob-

ject detection datasets list EV as a detection class. Realizing the lack of a dedicated dataset for EV

identification tasks, a dataset was generates to train machine learning and deep learning algorithms,

and develop methods required for identifying and localizing EVs.

1.4.2 Object Detection

Object detection involves using a bounding box to locate and classify the objects-of-interest in

a given image, labeling it, and associating a confidence score to each of the detections. Robust and

real-time object detection is a crucial requirement in applications pertaining to autonomous vehicle

navigation and control. In a high traffic environment, it is essential that the autonomous vehicle

is constantly updated with the map of surrounding objects for accurate path-planning and efficient

navigation. Classical image processing techniques for vision-based object detection techniques

have been extensively investigated in literature for application in vehicular detection [13] using

monocular and stereo cameras. Since Krizhevsky et al. won the Imagenet challenge [20] in 2012

using deep convolutional neural networks, significant progress has been done in developing ob-

ject detection methods using neural networks which perform significantly better than the classical

methods.

Object detection algorithms can be broadly divided into two categories: 1) Region-proposal

based object detection frameworks and 2) Regression based frameworks. Region-proposal based

frameworks involve a two-step process of generating region proposals for all objects in an image

first and then classify each of these proposals into specific object categories. Region-proposal

based algorithms achieve higher levels of accuracy in object detection tasks but perform poorly

in terms of time required for predictions. On the contrary, a regression-based framework works
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based on a one-step regression method where the location, classification, and bounding boxes for

the objects are simultaneously proposed, reducing the prediction times required for final object

detection. Some of the most popular region-proposal frameworks include R-CNN [21], Fast R-

CNN [22], Faster R-CNN [23], R-FCN [24], FPN [25] and Mask R-CNN [26]. The popular

regression-based frameworks include YOLO [27], SSD [28], YOLOv2 [29] and YOLOv3 [3].

Table 1.1 compares the speed/accuracy trade-off and performance of some of these algorithms

when trained on COCO dataset [15].

Method mAP-50 time(ms)

YOLOv2 21.6 25

Faster R-CNN 41.5 200

SSD321 45.4 61

DSSD321 46.1 85

R-FCN 51.9 85

SSD513 50.4 125

DSSD513 53.3 156

FPN FRCN 59.1 172

RetinaNet-50-500 50.9 73

RetinaNet-101-500 53.1 90

RetinaNet-101-800 57.5 198

YOLOv3-320 51.5 22

YOLOv3-416 55.3 29

YOLOv3-608 57.9 51

Table 1.1: Speed/accuracy tradeoff chart of mAP at 0.5 IOU metric on COCO test-dev. Table
adopted from [3].

1.4.3 Object Tracking

The goal of object tracking is to estimate the states of the target in the subsequent video frames

given the initialized state (e.g., position and size) of a target object in one of the initial video frames.
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There are three key steps involved in video analysis: detection of interesting moving objects, frame

to frame tracking of these objects, and analysis of object tracks to recognize their behavior [30].

Extensive research has been conducted on developing tracking algorithms using the appearance

features of the objects to be tracked [30]. Due to recent developments in object detection using

machine learning and deep learning models, higher levels of detection accuracy were achievable

which led to a renewed interest in the tracking method of tracking-by-detection. Tracking-by-

detection involves a detection pipeline identifying a certain object-of-interest which are associated

with each other over multiple frames using a tracker over time. In this perspective, object tracking

can be considered as an extension of object detection, since consistent tracking essentially involves

robustly connecting the detected objects between image frames. Hence tracking-by-detection re-

sults are directly dependent on detection errors of the classifier. An additional benefit of using this

method is that the detection architecture itself can be replaced by newer and more potent algorithms

with higher detection performance enabling better tracking performances.

Multiple Object Tracking (MOT) aims at locating multiple targets of interest, inferring their

trajectories and maintaining their identities throughout the video sequence yielding their trajecto-

ries [31] which is a key aspect necessary for identifying and localizing vehicles in a video feed. In

the context of MOT, for the method of tracking-by-detection, adding a tracker on top of an object

detector slows down the overall tracking speeds due to the computational loads required by both

detection and tracking processes. Hence it is impractical to perform multi-object detection in real-

time. For automotive applications achieving lower tracking delays is a critical aspect for a tracker.

Simple Online and Realtime Tracker (SORT) [32] developed by Bewley et al. using a rudimentary

combination of familiar techniques such as the Kalman Filter and Hungarian algorithm for the

tracking components, claims to updates at a rate of 260 Hz which is over 20x faster than the other

algorithms. Since SORT has lower tracking delays and achieves performance comparable to other

state-of-the-art MOT trackers, we choose to use SORT as the tracking algorithm in this work.
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2. VISION-BASED TECHNIQUES FOR IDENTIFYING EMERGENCY VEHICLES 1

The objective was to develop vision-based algorithms that will analyze the video input, identify

and differentiate EV from normal vehicles, and output a continuous stream of pixel coordinates

of tracked EV positions in the video. This chapter discusses in detail the different frameworks

developed for identifying emergency vehicles in a video feed.

2.1 RAVEV Dataset

As discussed in the previous chapter, realizing the lack of a dedicated dataset for EV identifi-

cation tasks, a dataset was developed to train the machine learning and deep learning algorithms

for identifying and localizing EVs. A large set of videos containing sequences of emergency re-

sponders in action, responding to emergencies is collected on YouTube. Random images frames

are extracted from these videos and annotated to locate all the objects-of-interest in the image.

An open-source annotation tool YOLO_mark [33] is used to annotate the images and generate the

label files in Darknet format, i.e. a .txt file with a line for every object ground truth in the image.

Annotation corresponding to each object are formatted as:

< object− class >< x >< y >< width >< height >

where x, y, width, and height are relative to the image’s width and height.

The study is restricted to a binary classification of EV and non-EV and hence all the vehicles

in these images are accordingly labeled into EV and non-EV. The reasoning behind limiting the

evaluation to binary classification is attributed to the fact that our analysis focuses on evaluating

the ability of algorithms in distinguishing between 2 similar looking object classes, rather than the

algorithm’s performance in multi-class object detection. Two separate datasets were developed for

the detection and classification tasks, whose application will be discussed in detail in the following

sections. For the detection dataset, 1070 images were annotated, listing all the EVs and non-EVs

1Reprinted from Nayak, Abhishek, Swaminathan Gopalswamy, and Sivakumar Rathinam. Vision-Based Tech-
niques for Identifying Emergency Vehicles. No. 2019-01-0889. SAE Technical Paper, 2019.
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in the image. For the classification dataset, the images inside the bounding boxes of the annotated

image are extracted and grouped into two parts: (1) a train set containing 1000 images each of EV

and non-EV, (2) a validation set containing 350 images each of EV and non-EV. The train set is

used to train the learning algorithms, while the validation set served as the ground truth to evaluate

the performance of the algorithm. We will refer to these as the RAVEV datasets in the following

discussions.

2.2 FRAMEWORK - A

In Framework A, an object detection framework is selected based on its performance in terms

of detection speeds and prediction accuracy. Detection speed is an important factor in deciding on

what framework is to be used as autonomous vehicles require real-time detections capabilities to

safely avert any possible collisions. The comparison of speed and accuracy trade-offs was made

between several object detection algorithms as tabulated in Table 1.1. Based on the results listed

in Table 1.1, YOLOv3 [3] performs significantly faster while achieving comparable mean Average

Precision (mAP) scores as the other state-of-the-art object detectors. Hence we choose YOLOv3 as

the object detection pipeline in framework A. YOLOv3 uses a variant of Darknet[34] architecture

as the convolutional neural network (CNN) feature extraction layer. Darknet-53 has a 53 layer

network trained on Imagenet. For the task of detection, 53 more layers are stacked onto it, forming

a 106 layer fully convolutional underlying architecture for YOLOv3.

The YOLOv3 object detector is trained on the RAVEV dataset with a learning rate of 0.001,

learning momentum of 0.9 in batches of 64 images to generate testing weights. The training

weights generated by the detection model is subsequently used to detect EV in the input video

feed to generate object region proposals during testing. The region proposals so generated along

with the object class labels are delivered to a tracking-by-detection algorithm to yield trajectories

of object motion in the video feed. The overview of framework A in flow-chart representation can

be seen in Figure 2.1.
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Figure 2.1: Flowchart representation of Framework A

We train the YOLOv3 detector on the RAVEV detection dataset with a learning rate of 0.001

and a learning momentum of 0.9 in batches of 64images. The trained model weights are saved

and subsequently used for testing. During testing, an array of images from a video feed are input

to the trained object detector. The region proposals generated for the objects-of-interest (EV and

non-EV), along with the detection labels are delivered to an MOT tracker with real-time tracking

capabilities.

Figure 2.2: Object detection outputs from YOLOv3 trained on RAVEV dataset
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As observed in Chapter 1, SORT [32] obtains has much lower tracking delays while obtain-

ing comparable performance to other state-of-the-art object trackers. SORT (Simple Online and

Real-time tracking algorithm) developed by Bewley et al. in 2016 uses a combination of Kalman

Filter and Hungarian algorithm for tracking components as compared to image appearance fea-

tures. SORT follows a tracking-by-detection framework for multiple object tracking. The tracker

receives bounding boxes and labels of the detected objects of interest in each frame from the object

detection algorithm. The inter-frame displacements of each object are approximated with a linear

constant velocity model which is independent of other objects and camera motion.

The state of each target is modeled as:

x =

[
u v s r u̇ v̇ ṡ

]T

where,

• u→ horizontal pixel location of the centre of the target

• v→ vertical pixel location of the centre of the target

• s→ scale (area) of the target’s bounding box

• r→ aspect ratio of the target’s bounding box

When a detected bounding box is obtained from the object detector, SORT updates its target

states and computes the velocity components optimally via a Kalman filter framework [35]. If no

detections are associated with the target, then its state is predicted without any error correction

using the linear velocity model. Tracking between frames is achieved by the data association of

bounding boxes between frames. The detections are assigned to existing targets by predicting its

new location in the current frame. The assignment cost matrix was computed as the intersection-

over-union (IOU) distance between each detection and all of the predicted bounding boxes from

the existing targets. The assignment problem is solved optimally using the Hungarian algorithm

[36]. Using these computationally inexpensive methods SORT tracker claims to update at a rate of
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260 Hz which is over 20x faster while achieving accuracy level comparable to other state-of-the-

art online trackers [32]. Hence, SORT is an ideal choice for our applications where it is critical to

achieving lower tracking delays.

The focus of Framework A is to evaluate the performance of a trained object detection frame-

work in detecting EV and its compatibility with the tracking-over-detection object tracking frame-

work. Figure 2.2 shows the detections made by the YOLOv3 algorithms trained on the RAVEV

dataset. The trained YOLOv3 model is tested on 4 different videos which contains about 13429

instances where EVs are present in the image frame. Table 2.1 shows the confusion matrix for

predictions made by the YOLOv3 detector trained on the RAVEV dataset. From Table 2.1 we

compute the performance metrics as defined in Appendix A.

Object Class Predicted

non-EV EV

Actual non-EV 2610 (19%) 460 (4%)

EV 1856 (14%) 8503 (63%)

Table 2.1: Confusion matrix for binary EV classification corresponding to 13429 detections

Accuracy Score = 0.634 Precision Score = 0.949

Recall Score = 0.821 F-Measure = 0.88

2.2.1 Limitation

Since Framework A is based on the tracking-by-detection framework, the tracking performance

is highly dependent on the detection accuracy of the object detector throughout the video sequence
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where the objects need to be tracked. It is necessary to obtain a continuous stream of localization

data to implement a robust way-point control on autonomous vehicles. To achieve this it is essen-

tial that the object detector accurately identifies all the object classes between continuous frames.

SORT tracker works based on assigning an identity(ID) to detections belonging to the same object

class in the consecutive image frames based on the vicinity of predicted pixel position coordinates

in the previous frames(based on the IOU overlap score). Whenever there is a false detection in one

of the intermediate frames, the tracker ID history is reset, and the subsequent detections are as-

signed to a new ID. The major distinguishing visual features between an EV and normal vehicles

are the flashing lights on the EV. In the absence of flashing lights, both EV and non-EV appear

similar and exhibit similar visual features making it harder for the object detector to distinguish

between the two object classes. Thus the possibility of EV being wrongly identified as a normal

vehicle in some of the intermediate frames is considerably higher when the visual features from

the flashing lights of the EV are not pronounced. We can observe from Table 2.1 that there were

2316 (1856+460) false detections out of the total 13429 detections (about 17%) which can lead to

tracker id resets. Thus we explore a new framework to address this limitation.

2.3 FRAMEWORK - B

The disadvantage of Framework A is that the limitations of the object detector leads to the EV

region proposals being wrongly classified as non-EV in some of the intermediate frames which re-

initializes the tracker IDs assigned to the object. The proposed method to overcome this limitation

is to group both EV and non-EV into a single object class named ’Vehicle’ during the detection

step and track each instance belonging to the class ’Vehicle’ by assigning them separate IDs. The

region proposals of all the ’vehicle’ objects in the image frame as proposed by the object detector

are input to the MOT tracker. The tracker makes a frame-to-frame prediction and associates the

stream of region proposals with individual object IDs. A classification layer is implemented after

the tracking step to classify the vehicles into EV and non-EV. The images from inside the bounding

boxes of a particular ID belonging to the class ’vehicle’ are passed onto a feature extractor. The

feature extractor converts these images into feature vector inputs as required by the classification
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models. The image classifier predicts the vehicle class based on a classification model trained on

the RAVEV classification dataset and assigns the label of EV or non-EV to the stream of images

of that particular ID.

The advantage of this approach is that false classifications in some of the intermediate frames

by the image classifier are acceptable, contrary to Framework A. Since all the objects of interest are

grouped under the class ’vehicle’ before the tracking, object ID history is preserved throughout the

tracking phase. Figure 2.3 shows the flowchart depicting the overall architecture of Framework B.

This flowchart is different from Framework A in a manner that vehicles are tracked prior to their

classification into EV and non-EV, whereas in Framework A tracking is done after vehicles are

classified into EV and non-EV which as noted, is inefficient when there is a wrong classification.

Even in Framework B, we use the combination of YOLOv3 as the object detector and SORT

as the object tracker. However, there is no restriction on using a detection algorithm trained on

the RAVEV dataset for object detection in Framework B. Any of the popular datasets that are

used commonly used in transportation research can be used to train the object detector. During

the classification step, the object classifier is restricted to only classes of objects corresponding

to vehicles like car, truck, van and other similar classes. For our analysis, we choose the KITTI

dataset for training the YOLOv3 object detector. The KITTI object detection and object orientation

estimation benchmark consist of 7481 training images and 7518 test images, comprising a total of

80,256 labeled objects belonging to classes of objects normally encountered during daily driving

like car, van, truck, pedestrian, etc. Only the object detections corresponding to the class ’vehicle’

are classified into EV and non-EV using different EV classification models trained on the RAVEV

classification dataset. YOLOv3 produced scores of 84.300% accuracy with a run-time of 0.04s

under moderate difficulty conditions of KITTI dataset[17].

2.4 EV Classification in Framework B

The EV classification pipeline can be divided into 2 stages: 1) Extraction of feature descriptors

or the feature vector from the input image, 2) Classification of the feature vectors into EV and

non-EV using a classification model. The study was restricted to a binary classification of vehicles
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into EV and non-EV. The different feature vectors and classification models explored in this thesis

for EV classification is discussed below. Figure 2.4 illustrates the emergency vehicle classification

routine.

EV
Classifier

Feature
Vector

Extraction
Vehicle ROI Image    is EV?

End

No

Vehicle
control

Figure 2.4: Flowchart representation classification routine

2.4.1 Feature Descriptors

The objective of step 1 in the classification routine is to identify the feature vectors which

perform best towards classification between EV and non-EV. A feature descriptor is a form of

representation of an image that simplifies it by extracting useful information and throwing away

extraneous information. These unique attributes extracted from the images will be used by the

classification models to classify them into EV and non-EV. We explore 3 commonly used fea-

ture descriptors for image classification applications, and also define a new custom-feature vector

consisting of features specifically selected for identifying EV.

2.4.1.1 Image Pixel Array

Image pixel array as a feature vector refers to using the raw image of the object as input for

classification. Here the pixel information is extracted from the array of bounding boxes identified

under the class of ’Vehicles’ during the detection step. The extracted image reshaped into a 128×

128 size image to maintain parity of dimensions between different region proposals. The reshaped

image is then flattened by re-sizing it into a (1282 × 1) feature vector which will be used as input

to the classification model. Part (a) of Figure 2.5 and 2.6 shows the images extracted respectively
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for an EV and non-EV.

2.4.1.2 HOG (Histogram of Oriented Gradients)

HOG is a feature descriptor commonly used in computer vision for object detection tasks [37].

HOG features have also been extensively used for vehicle detection tasks [38]. The HOG de-

scriptor essentially counts occurrences of gradient orientation in localized portions of an image -

detection window, or region of interest (ROI). The gradient orientation of the pixel intensities is

extracted from the image inside the bounding boxes obtained from the detection algorithm. These

orientations are then discretized and binned into a histogram of orientations with the channels

evenly spread over 0 to 360 degrees. The histogram is then flattened into a linear array and used

as the feature vector for classification. In our analysis, we discretize the gradients into 8 discrete

orientations.

Part (b) of Figure 2.5 and 2.6 plots the HOG features extracted from each of their respective

images in part (a). 2D image of a vehicle can be approximated to be a combination of rectangular

sections. Thus consisting of straight-line edges on its boundaries. The gradient of pixel intensi-

ties across these edges thus orients mainly along 4 directions (2 along each edge) approximately.

However, in an EV, the presence of bright spots due to the flashing lights introduce several gradient

orientations across pixels on the boundary edges of the light spots. Thus HOG array of an EV is

expected to have a more distributed orientation of pixel intensity gradients. This is reflected in

the HOG feature image of EV as compared to that of non-EV where the gradient directions are

observed to be restricted to only a few orientations.

2.4.1.3 Color Histograms

Color Histogram of an image is a plot of the range of pixel intensities vs the number of pixels at

that intensity in each of the Red-Green-Blue (RGB) color space. Color Histograms are widely used

in image classification tasks as they have been found to perform better on classification models that

perform poorly on high dimensional feature vectors [39]. For our application, a 3D color histogram

was extracted from an image by dividing the RGB pixel values (range: [0 → 255]) into 32 bins
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[40]. The number of pixels belonging to each of those bins was plotted against the color intensity

bins as shown in Part (c) of Figure 2.5 and 2.6.

cv2.calcHist() function from OpenCV [40] was used for this implementation to obtain the 3D

histogram. The 3D (RGB) histogram array so obtained was flattened into a linear vector of size

(323× 1) and used as input to the classification pipeline. It was observed that reducing the number

of bins deteriorates the accuracy levels of classification models, whereas an increase in the number

of bins above 32 has no significant improvement. Hence we maintain 32 bins for our evaluation.

As observed in Figure 2.5(c) the levels of blue and red pixel count in the color histogram plot

of an EV are overall higher as compared to the histogram plot on a non-EV. This feature can be

attributed to the red and blue color regions in the image of an EV due to the presence of red and

blue flashing lights which is absent in a non-EV. This overall trend is expected to generate better

results in classification between EV and non-EV on a classification model using Color Histograms

as the feature vector. Figure 2.5 and Figure 2.6 illustrates the 3 different feature vectors that are

discussed above.

2.4.1.4 Custom Feature Array

The distinguishing visual features between an EV and non-EV are the flashing neon lights

mounted on the EV. We propose features from the EV image that captures information of these

lights and serves as the feature vector for classification. Assuming that the flashing lights on the

EV are a combination of red and blue, the following 8× 1 feature vector was identified to be used

for classification.

F T =

[
f1 f2 f3 f4 f5 f6 f7 f8

]
where:

• f1→HSVblue
2Area (Total area in the image corresponding to blue in the HSV Color space,

• f2→ HSVredArea (Total area in the image corresponding to red in the HSV Color space)

2HSV: hue, saturation, value
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• f3→Max contour blue (Area of the largest blue contour)

• f4→Max contour red (Area of the largest red contour)

• f5→ xblue centroid (X-coordinate of f3 center position as a fraction to image width)

• f6→ yblue centroid (Y-coordinate of f3 center position as a fraction to image height)

• f7→ xred centroid (X-coordinate of f4 center position as a fraction to image width)

• f8→ yred centroid (Y-coordinate of f4 center position as a fraction to image height)

The above features are extracted from all the images in the RAVEV train dataset and used as

an 8× 1 feature vector (F) to train the classification models.

2.4.2 Classification Models

The feature vectors obtained by processing the images of vehicles are used as input to the

classification models trained on the RAVEV dataset. We compare the performances of some of

the most commonly used classifiers like SVM, K-Nearest neighbors, Adaboost, etc. for binary

classification of EV from different feature vectors. We also develop a neural network-based EV

classifier and test out the performance of the XGBoost package for EV classification tasks. The

stream of objects classified as EV can be further processed for tasks like EV localization, vehicle

motion planning, etc.

2.4.2.1 scikit-learn Classification Models

scikit-learn [41] is a free library for Python consists of a wide range of machine learning al-

gorithm implementations for solving supervised and unsupervised problems. It contains various

classification, regression and clustering algorithms designed to operate with the Python numerical

and scientific libraries NumPy and SciPy. Classification models from scikit-learn were selected

and trained on the RAVEV train set. The trained model was then tested out on the RAVEV valida-

tion set and the classification performance results were listed in Table 2.2. The object classification

models from scikit-learn evaluated by us during this study include hyperplane based methods like
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(a) EV image (b) HOG descriptor
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Figure 2.5: Feature descriptors visualized for an EV
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(a) non-EV image (b) HOG descriptor
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(c) Color histogram

Figure 2.6: Feature descriptors visualized for a non-EV

20



Support Vector Machines (SVM)[42], instance-based learning algorithms like k-Nearest Neigh-

bours (k-NN)[43], ensemble learning methods like Random Forrests[44] and Gradient Boosting,

and boosting based learning algorithms like Adaboost [45]. The hyper-parameters used for training

the classification models are specified in the APPENDIX section.

2.4.2.2 XGBoost Classifier

XGBoost [46] is an optimized python implementation of gradient boosted decision tree algo-

rithms, designed for high efficiency and performance. XGBoost is a popular tool among online-

challenge competitors and data scientists as it performs extremely well on most regression and

classification tasks. Hence XGBoost is evaluated for its performance towards EV classification in

this work.

Feature Score SVM Adaboost Rand. Forrest Gradient Boosting XGBoost k-NN(k=3)

HOG

Accuracy 58.02 99.51 95.06 95.31 97.53 76.79

Precision 53.3 99.48 96.77 93.10 97.42 67.48

Recall 100 99.48 92.78 97.42 97.42 99.48

Color Histogram

Accuracy 47.90 99.51 98.52 97.28 99.75 92.84

Precision 47.90 99.48 98.96 96.92 100 89.10

Recall 100 99.48 97.94 97.42 99.48 96.91

Pixel Array

Accuracy 85.19 96.54 95.56 94.32 98.27 94.32

Precision 100 96.88 97.83 93.85 99.47 100

Recall 69.07 95.88 92.78 94.33 96.91 88.14

Custom Array

Accuracy 83.98 93.20 92.62 92.23 94.82 89.71

Precision 95.50 86.36 85.71 85.55 90.78 82.74

Recall 53.00 93.25 92.02 90.80 93.5 85.28

Table 2.2: Results of classification models to different feature vector input
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As observed in Table 2.2, the overall performance of Adaboost and XGBoost perform better

than other classification models on the RAVEV dataset. This can be attributed to the fact that

unlike SVM, k-NN and decision trees, boosting algorithms combine relatively weak learners to

create a highly accurate prediction rule during training. They also do not suffer from the curse

of dimensionality [47] when subjected to higher-order feature vectors, as is the case with SVM.

Thus, SVM classifiers are expected to perform poorly on HOG and color histogram feature vec-

tors, which is reflected in Table 2.2. XGBoost, due to its optimized implementation of gradient

boosting, performs better than the scikit-learn implementation of gradient boosting for EV classifi-

cation on the RAVEV dataset. Color Histogram and Image Pixel feature descriptors perform better

with XGBoost, while HOG descriptors work better with Adaboost. Though the custom feature

vector showed better results on SVM, its performance on other classification models is signifi-

cantly lower. Among all the combinations, XGBoost classifier with Color Histogram feature array

as input generated the best EV classification.

2.4.2.3 Neural-network Classifier

Neural networks have time and again proven to produce best-in-class results in computer vision

tasks. Keras API [48] was used to construct a binary neural network classifier for EV classification.

Feature descriptors are not specifically defined as an input here, as the convolutional neural network

generates its own set of feature maps. For generating the feature maps, a 3-layer stack was used,

each made of a 2D convolution layer with Rectified Linear Unit (ReLU) activation followed by a

max-pooling layer. On top, a fully connected ReLU activation layer was implemented. A single

unit sigmoid activation function is used as the final layer for binary classification of EV and non-

EV. The neural network architecture is depicted in Figure 2.8.
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Figure 2.7: Learning curves for neural network EV classifier training on RAVEV dataset

Plots of Accuracy and Loss against training epochs of the neural network during training on

the RAVEV dataset are shown in figure 2.7. The training accuracy was observed to be about

98.88% and Loss was 4.07% over the last 20 training epochs. Neural network based classifiers are

significantly faster as no image pre-processing is required for classification. Also neural-network

classifiers are easily to implement in conjunction with the object detection algorithms. Considering

the benefits of real-time classification and ease-of-implementation we choose to use this classifier

for our analysis.
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3. INFRASTRUCTURE-ENABLED AUTONOMY

The current work focuses on developing vision-based methods for identifying Emergency ve-

hicles during daytime and developing response actions in Infrastructure Enabled Autonomy (IEA)

enabled corridors. This work can further be extended to develop an emergency response in non-

IEA type scenarios when the vehicle is completely autonomous and all the processing of the

car takes place within the autonomous vehicles. The accuracy and performance of the proposed

method during night time and off-nominal weather conditions have not been tested in this work.

A vehicle can drive autonomously if it can achieve the following aspects, 1) Sense surround-

ing environment using the available sensors, termed as Direct Perception [49], 2) Localize itself

with respect to the environment, 3) Make driving decisions according to received perceptions and

situation awareness, 4) Control the actuators. The generalized autonomous vehicle architecture is

visualized the block Figure 3.1

Driving	Decision
Making

Path	Planning

Drive-By-Wire
(DBW)

Actuators

GPS/IMU

LIDAR

Radar

Wheel
Encoders Camera

Sensor
Fusion Vision

Localization

Perception ControlPlanning

Figure 3.1: Architecture of an autonomous vehicle
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Despite great efforts and research, the penetration of autonomous vehicles into roads has been

very slow. This is mainly because the current prototypes demand the automobile manufacturers to

bear the responsibility and liability in providing perception and situation awareness capabilities to

the vehicle. As described in [50], driving functionality can be decomposed into three parts:

1. Situation Awareness (SA) synthesis using one or more sensors to develop a contextual and

self-awareness for the vehicle and driver

2. Driving Decision Making (DDM), which defines the desired motion based on the self-

awareness information

3. Drive-by-Wire (DBW), which generates control signals for the actual motion of the vehicle.

The penetration of autonomous vehicles is proposed to move faster if these responsibilities can be

redistributed among automobile manufacturers, third party ADAS systems in the car and infras-

tructure [51].

Infrastructure Enabled Autonomy (IEA) is a new paradigm of transportation for autonomous

vehicle driving. In this model, OEMs shall take responsibility for core functionalities relating to

DBW and vehicle-level-sensing. The situational awareness capabilities will be the responsibility

of infrastructure operators who generate this data through sensors embedded in the infrastructure.

Driving Decision Making (DDM) can be set up to be provided by yet another third party that com-

bines the situational awareness information coming from the infrastructure operators through a

technology-agnostic communication protocol, and use standardized Application Programming In-

terfaces (APIs) to interface with the DBW functionalities in the cars to drive them autonomously.

Through this distributed setup IEA provides a solution of shared liabilities by transferring the

primary responsibility of localization from vehicle to infrastructure [51] which in-turn enables

of greater situational awareness of the area under the purview of IEA. In other words, sensors

embedded on the infrastructure (smart sensor pack) can provide improved localization and SA in-

formation to drive the traffic in that roadways as compared to what would be possible in a scenario

with sensors installed on the autonomous vehicle.
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IEA architecture is deployed on specific sections of roads or special traffic corridors by in-

stalling Road-Side Units (RSU) on either side of the road. These RSUs are fitted with multi-sensor

smart packs (MSSP) containing sensors required for localizing vehicles. These MSSPs constantly

monitor the vehicles in the section of the roads under the purview of IEA and aid in generating

the situational awareness which can be transmitted to the vehicles subscribing to this informa-

tion. MSSP includes several sensors that carry-out specific individual tasks and as a whole aid

in generating the localization information. For example, cameras installed on the RSUs as a part

of the MSSP are used to monitor traffic by identifying and locating all the objects of interest in

the traffic corridor. MSSPs are installed with special SmartConnect devices, whose function is

to establish wireless connectivity between MSSPs and the vehicles subscribing to its information

and thus enabling transmission of information necessary for its localization. The SmartConnect

devices are communication medium agnostic and modular so that they can be easily substituted by

newer technologies.

Driving Decision Making (DDM) is locally implemented in the vehicle which uses the SA

information received from the MSSP and used for DBW functionalities. Figure 3.2 depicts a

typical functional schematic of a IEA enabled traffic corridor. The liabilities between different

infra-solution providers can be re-distributed which in turn is expected to accelerate the deployment

of self-driving cars on roads. However, there remain many challenges in the realization of IEA in

terms of scale, distribution, cost and complexity that need to be addressed.

3.1 IEA Simulation Architecture

To address the challenges involved in developing the concept of IEA, a simulation environment

imitating IEA needs to be developed to evaluate the architecture before the real-time testing on the

vehicle. Developing such a simulation environment that incorporates all the functional components

of IEA is challenging due to its complexity and scale. As the number of RSUs increase, the compu-

tational requirements of simulations increases significantly. Besides, the communication protocols

involved are computationally intensive to simulate and are highly dependent on the hardware char-

acteristics. Thus a hybrid and distributed Hardware-in-the-Loop (HIL) simulation architecture was
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Figure 3.2: Functional schematic of an IEA corridor

28



Figure 3.3: Full hardware setup of hybrid simulation

developed and is explained briefly below. A simulation environment was deveoped using Robot

Operating System (ROS) and Gazebo simulator [52] which makes it possible to rapidly test al-

gorithms, design robots, perform regression testing, and train AI system using realistic scenarios.

The simulation setup is shown in Figure 3.3.

The simulation setup consists of multiple MSSP computers, each representing an RSU. A real-

world like environment was developed on Gazebo to simulate an equivalent span of road covered

by MSSP units. One computer is dedicated per MSSP system with an accompanying camera that

simulates the camera streaming and represents the MSSPs mounted on Road-side units. Each of

these computers is connected to a DSRC unit to establish communication between the MSSP com-

puter and the vehicle computer. Dedicated short-range communication (DSRC) is the technology

used to establish a vehicle to vehicle communication. It is a dedicated spectrum of 75 MHz in 5.9

GHz frequency band used for Intelligent Transportation Systems application which was established

in 1998 after Congress passed the Transportation Equity Act for the 21st Century ("TEA-21") [53],

in consultation with the Department of Transportation (DOT) after a petition by ITS America in
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Figure 3.4: Detailed setup of MSSP computer processes

1997 . In this simulation setup, DSRC devices are used as SmartConnect devices to establish

a connection between MSSPs and vehicle computers. As mentioned earlier DSRC can also be

replaced by other viable communication technologies like 5G, Li-Fi, etc. A dedicated computer

acts as the vehicle’s on-board computer and is used to simulate the vehicle DBW functionalities.

The schematic of process distribution between an MSSP computer and a vehicle computer can be

seen in Figure 3.4 and Figure 3.5. An elaborate description of the simulation setup and the results

obtained can be found in [50]

3.2 IEA Experimental Setup

In order to test IEA, four RSUs were setup about 50mts apart on a stretch of road at the REL-

LIS Campus of Texas A&M University. The RSUs were mounted with MSSPs which consist of

a monocular vision camera, DSRC communicator and a computer to perform all the necessary

computations. The camera was mounted at a height of around 35ft with a field of view of nearly

100 meters. The cameras used on the MSSPs were the Blackfly PoE GigE Color Camera (BFLY-

PGE-20E4C-CS 1/1.8") which is an ethernet-based camera with 2MP resolution. As discussed
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Figure 3.5: Detailed setup of vehicle computer processes

previously DSRC units are used as the SmartConnect devices to establish a connection between

MSSP and vehicle computer. A high accuracy differential GPS was used for position calibration

as well as for generating a ground truth reference to compare with the localization estimates. Real-

time kinematic (RTK) positioning is a satellite navigation technique used to enhance the precision

of position data derived from satellite-based positioning systems. PIKSI Multi GNSS Module

was used as the high accuracy differential GPS unit for RTK measurements and positioning. The

test vehicle with DBW capabilities is set up with a computer, DSRC communicator unit and low-

resolution GPS/IMU sensors. An image of the experimental setup with the test vehicle and an RSU

installed with MSSPs on a runway at RELLIS campus can be seen in Figure 3.6.

3.3 Vision Processing

The goal of vision processing in IEA is to detect and track the car in the IEA corridor and

publish the image coordinates of a bounding box that tightly encloses the car as a ROS topic

message. Vehicle detection is accomplished using the YOLOv3 algorithm [3] which has the best

Speed/Accuracy trade-off performance ideal for IEA type applications. YOLOv3 processes the
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Figure 3.6: Experiment setup at RELLIS campus

images identifies the presence of a vehicle and draws a bounding box around the detected vehicle

in the frame of the camera. The bounding box details are input to SORT which performs tracking

to generate a stream of image position localization in the 2D image frame. Fig. 3.7 shows the view

from one of the cameras along with the car detected in the frame.

The vehicle requires location data in-terms of Latitude-Longitude to perform way-point follow-

ing navigation from the start point to the desired end-point. Image-to-world localization methods

are used to achieve the conversion between 2D image pixel co-ordinates to 3D world co-ordinates

of Latitude-longitude. Two different localization methods evaluated in this thesis work are elabo-

rated in Appendix B. A novel location-reference based localization technique was used to obtain

localization estimates in this work.
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Figure 3.7: View from MSSP
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4. EMERGENCY RESPONSE ACTION AND CONCLUSIONS

4.1 Desired Trajectory Generation

Vehicle navigation or path planning involves finding a geometric path from an initial point to

a desired final point on global co-ordinates so that each configuration and state on the calculated

path is feasible. Performing local planning and safe trajectory is central to the lateral control task

for autonomous vehicles. If there are no turn maneuvers involved and the vehicle maintains the

desired trajectory in the center of the lane, this driving behaviour is commonly referred to as lane-

keeping. In emergency scenarios when an emergency vehicle is in the vicinity of the autonomous

vehicle, an emergency lane change trajectory needs to be planned in real-time by the autonomous

vehicle as a response action in order to evade any obstacle and make way for an emergency vehicle

that has been detected.

The trajectory generation needs to involve real-time planning of a vehicle’s maneuvers from

one state to the next, satisfying the car’s kinematic limits based on its dynamics. This thesis pro-

poses a 1-lane change maneuver from the reference path for the controller. Here the lane change

maneuver is not generated by a real-time planner on the autonomous vehicle, but a pre-recorded

lane change maneuver is engaged to make the vehicle change lanes.The reference lane path co-

ordinates are pre-recorded using Piksi Multi, a multi-constellation RTK GNSS receiver that pro-

vides centimeter-level accurate positioning. The MSSP actively scans the video feed to detect the

presence of an emergency vehicle utilizing the Framework B classification routine as described in

Chapter 2. On sensing the presence of an emergency vehicle in the IEA corridor, the MSSP triggers

a lane change mode. The trigger is transmitted to the autonomous vehicle over the Smart-connect

device. On receiving the lane change trigger, the new reference path to be followed is engaged on

the autonomous vehicle and is safely maneuvered to make way for the emergency vehicle using a

lateral controller. Figure 4.1 shows the overall flowchart of the respone action during emergencies.
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4.2 Lateral Controller for Autonomous Vehicle

We choose a lateral controller as proposed in [2] to accomplish the lane change maneuver.

The controller involves 2 parts: 1) Feed-forward controller and 2) Feedback controller. The feed-

forward controller estimates the steering command based on vehicle speed (vx), and the reference

path radius of curvature (R). Under conditions of zero initial errors (lateral error(e_lat), yaw error

(θ̃), and yaw rate error ( ˙̃θ)), no model uncertainties and assuming zero disturbances, the vehicle

should be able to follow the curve generated by the controller without any deviations. However,

these conditions are too ideal to be true in real-life applications. Thus a feedback controller is

required to compensate for the errors between the vehicle current state and the desired states. The

state errors that are considered in this application are the lateral error (e_lat), yaw error (θ̃), and

yaw rate error ( ˙̃θ).

4.2.1 Curve Fitting and Error Calculation

When the emergency vehicle enters the IEA corridor the MSSP detects its presence and triggers

the lane change. The vehicle engages the lane change maneuver and follows the pre-recorded data.

To accomplish this task, the radius of curvature of the path that the vehicle has to track is calculated

using a curve-fitting algorithm. The error signals used in the feed-forward and feedback controller

design are also separately calculated.

Let (x1, y1), (x2, y2),...., (xN , yN) be the N most recent localization data as collected by the

GPS unit. All the localization data received will be separated into two categories: a line segment or

a curve segment. The data is classified into a straight line segment if the deviation of (xi, yi) from

the line joining (x1, y1) to (xN , yN) is within a predefined threshold. Otherwise, if the deviation is

outside the limits we find the center (xc, yc), and compute radius R of the ’least square fit’ circular

arc through these points using [54].

Then we determine the feedback signals: e_lat, θ̃ and ˙̃θ. The essential task of this algorithm is

to fit the reference data into a circular arc. Based on the circular arc fit, the lateral deviation from

the center of the road to the vehicle’s position is calculated. The least-square fitting algorithm
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employed is specified below:

• Given (x1, y1), (x2, y2), ..., (xN , yN) the neared N data samples

• Find a ’least squares fit’ of a circular arc, i.e., find the center (xc, yc) and radius R so that the

error

J =
N∑
i=1

(R2 − (xi − xc)2 − (yi − yc)2) (4.1)

is minimized.

Setting the optimization constraints

∂J

∂R
= 0,

∂J

∂xc
= 0,

∂J

∂yc
= 0 (4.2)

and solving. Using this form of least square error reduces the error to zero when the point is

exactly on the circular arc. Also, this form is much easier to perform partial differential respect to

the center (xc, yc) and radius R. If the partial differentiation is too complicated to solve, there may

some delay between each computation loop. Since autonomous vehicle control needs real-time

implementations the curve fitting needs to happen in real-time. hence we choose the least square

fitting method as discussed above.

As per [2] the lateral error when the data is fitted into the curve segment is defined as

elat = R−
√

(Xv −Xc)2 + (Yv − Yc)2 (4.3)

The lateral error on the curve segment is illustrated in Figure 4.2.

The lateral error when the data is fitted into a line segment is defined as

elat =
(yv −mxv − c)√

(1 +m2)
(4.4)

where,

y = mx+ c (4.5)
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Figure 4.2: Illustration of lateral error on the curve. Modified from (Liu, 2019) [2]

is the straight-line function from given data. The lateral error on a straight line segment is illus-

trated in Figure 4.3.

The yaw error and yaw rate error can be computed as

θ̃ = θ − θR (4.6)

˙̃θ = θ̇ − vx
R

(4.7)

Once all the error signals and radius of curvature for the path are computed, these parameters

serve as input to the feed-forward and feed-back controller for the autonomous vehicle.
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Figure 4.3: Illustration of lateral error on line

4.2.2 Vehicle Model and Controller Design

For developing the vehicle lateral controller, the vehicle is modeled as a kinematic bicycle

model. Figure 4.4 illustrates the Bicycle model representation the vehicle. The non-linear terms in

the vehicle model are linearized by making the following assumptions in developing the kinematic

vehicle model:

• The turn radius of the vehicle (R) is far larger than the wheelbase (L).

• The left and right steer angles are assumed to be approximately the same.

• The sideslip angle of front wheels αf is equal, so is the rear wheels side slip angle αr.

• Both the side slip angles are assumed to be small:

αf ≈ δf −
((vy + adθ

dt
)

vx

)
(4.8)

αr ≈ −
((vy − bdθdt )

vx

)
(4.9)
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• Linear model is assumed for cornering forces:

Fr = CrαrFf = Cfαf (4.10)

As per [2] the equation of motion can be simplified as

m(
dvy
dt

+ vxθ̇) = Cfδf −
(Cf + Cr)

vx
vy −

(aCf − bCr)
vx

θ̇ (4.11)

Iθ̈ = aCfδf −
(aCf − bCr)

vx
vy −

(a2Cf + b2Cr)

vx
θ̇ (4.12)

where,

• m→ Vehicle Mass

• I → Vehicle Inertia

• a→ Distance of the center of mass to vehicle front tire axis

• b→ Distance of the center of mass to vehicle rear tire axis

• αf , αr → Side slip angles of the front and rear tires respectively

• Cf , Cr → Cornering stiffness of front and rear tires respectively

There are two parts to the lateral controller used: a feed-forward part and a feedback part. The

feed-forward control input (δff ) provides the steering input of the vehicle based on vehicle speed

and previewed path’s curvature. At lower speeds, with no initial error and no disturbances/model

uncertainties, the vehicle should track the circular arc without any error. However, assuming no

errors is too ideal of a condition to assume, and errors inevitably must be accounted for in the

design. The feedback part compensates for the errors and disturbances in the model. The feed-

back controller provides the feedback control input (δfb), based on lateral error (elat), yaw error

(θ), and yaw rate error (θ̇). The summation of feed-back and feed-forward signal serves as the final
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Figure 4.4: Illustration of the bicycle model

control input to the vehicle. The feed-forward, feedback and final control command, δf ,as per [2]

are defined as:

δff =
L

R
+
m

L

( b
Cf
− a

Cr

)v2x
R

(4.13)

δfb = −keelat − kθθ̃ = kω
˙̃θ (4.14)

δf = δff + δfb (4.15)

4.3 Response Action

The sensing and control algorithms were implemented and tested on the IEA corridors installed

at the RELLIS campus of Texas A&M University. The results from a single test of lane changing

and parking when an emergency vehicle has been detected are discussed below.

The test vehicle equipped with DBW functionalities was autonomously driven at 30mph (13.4

ms−1) using the MSSP based localization along a straight line. An emergency vehicle is manually
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Figure 4.5: Illustration of lane change response by the emergency vehicle

driven behind the autonomous vehicle at a safe distance of about 50m without turning on the

emergency lights. After a brief period, the lights on the emergency vehicle are turned on. The EV

identification algorithms on MSSP which monitors the video feed, on identifying the EV, triggers

the emergency maneuver and sends the lane change path co-ordinates over to the autonomous

vehicle through the SmartConnect device. The controller on receiving the new path co-ordinates

engages the emergency response mode, slows down and follows the new lane changing the path.

The autonomous vehicle is made to stop one lane over to the right of the previous lane path. All the

tests are performed by neglecting the delay involved in data processing and communication lags

between the sensing and control algorithms. The original path and emergency response path are

shown in Figure 4.5.
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4.4 Further Scope

Developing emergency response capabilities during the night and off-nominal weather con-

ditions are challenging and as essential as response during normal weather conditions. Hence

research into this is essential for a complete EV identification system. Since the shape of the

vehicle is hardly visible in the night, the predominant features that can be used for vision-based

identification are the flashing lights on the emergency vehicle. Thus an extension of this work

can also aim at developing algorithms to identify EVs during nighttime by capturing these flash-

ing light features. This work has mainly focused on developing emergency vehicle identification

using vision-based techniques. Emergency vehicles also output sound features that can act as a

rich source of information. In crowded traffic scenarios, sound features are captured much before

when the emergency vehicles are in the line of sight. Thus sound-based features when fused with

vision-based techniques can also lead to more robust emergency vehicle detections.

43



REFERENCES

[1] A. Nayak, S. Gopalswamy, and S. Rathinam, “Vision-based techniques for identifying emer-

gency vehicles,” tech. rep., SAE Technical Paper, 2019.

[2] M. Liu, S. Rathinam, and S. Darbha, “Lateral control of an autonomous car with limited

preview information,” in 2019 18th European Control Conference (ECC), pp. 3192–3197,

June 2019.

[3] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv, 2018.

[4] C. Lv, D. Cao, Y. Zhao, D. J. Auger, M. Sullman, H. Wang, L. M. Dutka, L. Skrypchuk, and

A. Mouzakitis, “Analysis of autopilot disengagements occurring during autonomous vehicle

testing,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 1, pp. 58–68, 2018.

[5] R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamil-

ton, H. Pohlmann, F. Wu, B. Piccoli, et al., “Dissipation of stop-and-go waves via control of

autonomous vehicles: Field experiments,” Transportation Research Part C: Emerging Tech-

nologies, vol. 89, pp. 205–221, 2018.

[6] “Texas Constitution and Statutes.” https://statutes.capitol.texas.gov/

?link=TN.

[7] B. Fazenda, H. Atmoko, F. Gu, L. Guan, and A. Ball, “Acoustic based safety emergency

vehicle detection for intelligent transport systems,” in ICCAS-SICE, 2009, pp. 4250–4255,

IEEE, 2009.

[8] F. Meucci, L. Pierucci, E. Del Re, L. Lastrucci, and P. Desii, “A real-time siren detector to

improve safety of guide in traffic environment,” in Signal Processing Conference, 2008 16th

European, pp. 1–5, IEEE, 2008.

[9] O. Karpis, “System for vehicles classification and emergency vehicles detection,” IFAC Pro-

ceedings Volumes, vol. 45, no. 7, pp. 186–190, 2012.

44

https://statutes.capitol.texas.gov/?link=TN
https://statutes.capitol.texas.gov/?link=TN


[10] Y. Tian, W.-Y. Lo, and D. I. F. Ferguson, “Real-time active emergency vehicle detection,”

Sept. 1 2016. US Patent App. 14/471,640.

[11] P. Arabi and S. Zaky, “Integrated vision and sound localization,” in Proceedings of the third

international conference on information fusion, vol. 2, pp. THB3–21, IEEE, 2000.

[12] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: A review,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp. 694–711, 2006.

[13] S. Sivaraman and M. M. Trivedi, “Looking at vehicles on the road: A survey of vision-

based vehicle detection, tracking, and behavior analysis,” IEEE Transactions on Intelligent

Transportation Systems, vol. 14, no. 4, pp. 1773–1795, 2013.

[14] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual

object classes (VOC) challenge,” International Journal of Computer Vision, vol. 88, no. 2,

pp. 303–338, 2010.

[15] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick,

“Microsoft COCO: Common objects in context,” in European conference on computer vision,

pp. 740–755, Springer, 2014.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hi-

erarchical image database,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009.

IEEE Conference on, pp. 248–255, IEEE, 2009.

[17] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision

benchmark suite,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[18] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,

and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223,

2016.

45



[19] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell, “BDD100K:

A Diverse Driving Video Database with Scalable Annotation Tooling,” arXiv preprint

arXiv:1805.04687, 2018.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” in Advances in Neural Information Processing Systems, pp. 1097–

1105, 2012.

[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object

detection and semantic segmentation,” in Computer Vision and Pattern Recognition, 2014.

[22] R. Girshick, “Fast R-CNN,” in The IEEE International Conference on Computer Vision

(ICCV), December 2015.

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection

with region proposal networks,” in Advances in Neural Information Processing Systems 28

(C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, eds.), pp. 91–99,

Curran Associates, Inc., 2015.

[24] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via region-based fully convolu-

tional networks,” in Advances in neural information processing systems, pp. 379–387, 2016.

[25] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, “Feature pyra-

mid networks for object detection,” 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 936–944, 2017.

[26] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, pp. 1–1, 2018.

[27] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-

Time Object Detection,” in The IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2016.

46



[28] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single

shot multibox detector,” in European conference on computer vision, pp. 21–37, Springer,

2016.

[29] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” arXiv preprint, 2017.

[30] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Computing Surveys

(CSUR), vol. 38, no. 4, p. 13, 2006.

[31] C. Huang, Y. Li, and R. Nevatia, “Multiple target tracking by learning-based hierarchical

association of detection responses,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 35, pp. 898–910, April 2013.

[32] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,”

in 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468, 2016.

[33] “Yolo_mark: GUI for marking bounded boxes of objects in images for training neural net-

work Yolo v3 and v2.” https://github.com/AlexeyAB/Yolo_mark.

[34] J. Redmon, “Darknet: Open Source Neural Networks in C.” http://pjreddie.com/

darknet/, 2013–2016.

[35] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of basic

Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[36] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Research Logistics

Quarterly, vol. 2, no. 12, pp. 83–97, 1955.

[37] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Computer

Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on,

vol. 1, pp. 886–893, IEEE, 2005.

[38] P. E. Rybski, D. Huber, D. D. Morris, and R. Hoffman, “Visual classification of coarse vehicle

orientation using histogram of oriented gradients features,” in Intelligent Vehicles Symposium

(IV), 2010 IEEE, pp. 921–928, IEEE, 2010.

47

https://github.com/AlexeyAB/Yolo_mark
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/


[39] O. Chapelle, P. Haffner, and V. N. Vapnik, “Support vector machines for histogram-based

image classification,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1055–1064,

1999.

[40] G. Bradski and A. Kaehler, “OpenCV,” Dr. Dobbś Journal of Software Tools, vol. 3, 2000.
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APPENDIX A

LIST OF PERFORMANCE METRICS

A.1 Performance Metrics

Accuracy Score =
TP

TP + TN + FP + FN
=

True Positives
Total number of Detections

(A.1)

Precision Score =
TP

TP + FP
=

True Positives
Total Positive Detections

(A.2)

Recall Score =
TP

TP + FN
=

True Positives
Total Actual Positives

(A.3)

F-Measure =
2× P ×R
P +R

(A.4)
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APPENDIX B

LOCALIZATION METHODS

B.1 Transformation-based Localization

This approach uilizes the intrinsic and extrinsic matrix calibration parameters of a the cam-

era and lens setup to perform localization. The center of the vehicle bounding box as output

by the vision processing is used as input for transforming the vision estimates to global position

coordinates. Let [x, y, 1] be the homogeneous image coordinates of a pixel and [X, Y, Z, 1] be cor-

responding vehicle position on the road relative to the MSSP in homogeneous coordinates. The

mapping between the two is given by,


x

y

1

 = K

[
R T

]
×



X

Y

Z

1


(B.1)

where K is the intrinsic camera matrix, R is the derived rotation matrix from camera’s orientation

with respect to X, Y, Z axes of the world and T is the translation vector derived from camera’s

known orientation and position. Using the back projection [55], world location of the car is ob-

tained and is used by the controller for navigation towards the destination.
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Figure B.1: Representation of vehicle localization error in IEA

This approach is not ideal for localizing objects with a small height as compared to the height

of the camera because the line of sight may not match with the true position of the vehicle. Figure

B.1 shows how the true position of the vehicle would always be closer to the MSSP than the

estimated position. An alternative approach is followed to compensate for this error. The approach

is to calibrate each camera with real position data of the vehicle and use this calibration data as a

reference to estimate the true position of the vehicle.

B.2 Location-reference based Localization

Vision processing generates a bounding box around the detected vehicle. This bounding box

information can be used to extract the exact pixel coordinates in image frame. Assuming the

camera is relatively stationary, the camera is assumed to return approximately the same position

coordinates every time the vehicle returns to the same position on the road at a future time. Under

these conditions, a one-to-one map is generated between the pixel coordinates of the vehicle and to

world coordinates using Real-time kinematic (RTK) positioning measurements obtained using the

Piksi Multi GNSS module. Using the mapped coordinates a real-world position estimate can be
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obtained for any given pixel coordinates through multivariate interpolation. An illustration of the

localization mapping from image frame to world frame can be seen in B.2. The position estimate

accuracy depends on the number of measurements obtained, the accuracy of the measurements and

the density of the calibration points.

(a) Localization points in image coordinates (b) Localization points in world coordinates

Figure B.2: Location-reference based Localization’s mapped between image and world co-
ordinates

53



APPENDIX C

LIST OF PARAMETERS USED BY THE CLASSIFICATION MODELS AND FUNCTIONS

C.1 scikit_image Package Hyper-parameters

C.1.1 HOG Feature Descriptor

• Orientation→ 8 (Number of orientation bins),

• pixels_per_cell→ (10, 10) (Size (in pixels) of a cell)

• transform_sqrt→ True (Number of cells in each block)

• block_norm→ L1 (Block normalization method: Normalization using L1-norm)

C.2 scikit_learn Package Hyper-parameters

C.2.1 SVM

• kernal→ poly,

• max_iter→ 50000,

C.2.2 Random Forrest

• n_estimators→ 10,

• max_depth→ none,

• min_samples_split→ 2,

• random_state→ 0,

C.2.3 Adaboost

• n_estimators→ 100,
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C.2.4 Gradient Boosting

• n_estimators→ 100,

• learning_rate→ 1.0,

• max_depth→ 1

• random_state→ 0

C.2.5 XGBoost

• default XGBClassifier()

C.2.6 k-NN

• n_neighbours→ 3,

• weights→ uniform,

• algorithm→ auto

• leaf_size→ 30

• p→ 2

• metric→minkowski

• metric_params→ None

• n_jobs→ 1
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