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ABSTRACT 

 

Focus of this dissertation was to employ seismic geomorphology in the 

subsurface of the Browse Basin (Australia) and digital outcrop modeling in the Last 

Chance Canyon (New Mexico) outcrops to develop new analytical quantification and 

visualization techniques in the investigation of carbonate clinoform systems in 3D and 

4D to extract information on the interplay of allogenic and autogenic controls that shape 

carbonate system architecture and evolution.  

Integration of seismic geomorphology and trajectory analysis of the Oligo-

Miocene distally steepened carbonate ramp system in the subsurface Browse Basin of 

the Northwest Shelf of Australia introduces a new way to parameterize carbonate slope 

channel systems and their stability. We introduce the cumulative channel cross sectional 

area parameter as the product of number of slope channels, slope channel depth, and 

slope channel width. This parameter quantifies the capability of the slope channel system 

to transport sediment basinward, highlights phases of autogenic slope system re-

organization in response to changes in relative sea level, and can be used as a proxy for 

slope system stability. Introduction of our shelf break rugosity and shelf break trajectory 

rugosity parameters revealed the role of large-scale and intermediate scale controls on 

the system architecture and evolution: allogenic forcing through regional tectonics and 

relative sea level changes serve as main control on basin architecture and large-scale 

progradation and aggradation in the system. The autogenic response of the carbonate 

factory serves as main control on intermediate-scale and small-scale by the incision of 
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channels into the slope and the smoothing effect of carbonate deposition on areas that 

are highly rugose. 

Based on our modeling results, the mixed carbonate-siliciclastic clinoform 

system in Last Chance Canyon, NM represents a paleo-topographic low that served as a 

preferential pathway for siliciclastic sediment during fifth-order relative sea level 

lowstands. In contrast to the traditional model of reciprocal sedimentation that infers a 

basin-wide carbonate factory shut-off during third-order relative sea level lowstand, we 

propose a modification to the reciprocal sedimentation model that integrates our outcrop 

observations and modeling results of the fifth-order parasequences and includes 

uninterrupted carbonate production in a “refugio” position, away from the avenues of 

sand input.  
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I - INTRODUCTION TO DISSERTATION 

 

Clinoforms are a record of the spatial and temporal evolution of sedimentary 

systems. Clinoform evolution is controlled by complex interactions between tectonics, 

eustasy, sediment supply, antecedent topography and climate (Henriksen et al., 2011). 

The resulting sedimentary system architecture physically responds to and preserves the 

combined signal of allogenic and autogenic controlling processes. This complex 

interplay of processes defines sedimentary packaging, and thus where and how much 

sediment is deposited and preserved in the stratigraphic record. It is this direct feedback 

between allogenic and autogenic controls and the system response that enables 

geoscientists to solve the inverse problem of extracting paleoenvironmental conditions 

from the rock record (Dalrymple, 2010). Therefore, quantification of system 

architecture, can provide an improved understanding of the individual signals of 

allogenic and autogenic controls. The sequence stratigraphic method, for example, uses 

seismic reflection terminations, reflection geometries, and stratal stacking to reconstruct 

depositional systems, predict lithologies (Vail et al., 1977), and make inferences on 

relative sea level (Mitchum et al., 1977b).  

Carbonate systems are significant from an economic perspective, as they contain 

an estimated 60% of global oil reserves (Burchette, 2012; Choquette and Roehl, 1985). 

The key challenge in the study and exploitation of carbonate systems is their inherently 

complex porosity-permeability distribution (Burchette, 2012) in three dimensions. 

However, traditional 2D investigations and models yield limited insight into the 
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allogenic and autogenic controls that determine this porosity-permeability distribution in 

carbonate systems. In addition, decades of sequence stratigraphic research in a variety of 

depositional systems led to the development of a nomenclature that mixes observations 

with interpretations, which Catuneanu et al. (2009) eventually reconciled to standardize 

the sequence stratigraphic method. The accommodation succession method (Neal et al., 

2016) and trajectory analysis (Helland-Hansen & Hampson, 2009; Henriksen et al., 

2009) introduce more objectivity in the analysis of clinoform systems by clearly 

separating observation from interpretations in using geometric relationships of strata and 

tracing the 2D vertical and lateral shelf break or clinoform rollover position through time 

to gain insight into sequence boundary formation. Although previous studies recognized 

along-strike variability in stacking (Wehr, 1994) and character of bounding surfaces 

(Martinsen and Helland-Hansen, 1995), 2D dip sections remain the leading method of 

interpretation in trajectory analysis (Henriksen et al., 2009) and few studies quantified 

the effect of along-strike variability on interpreted systems tracts and rollover trajectories 

in 3D (e.g. Gill and Cobban, 1973; Helland-Hansen and Hampson, 2009; Madof et al., 

2016).  

Goal of this dissertation was to gain new insight and understanding of carbonate 

system architecture and paleo-environmental controls by developing improved 

quantification and visualization methods in 3D and 4D for field data in outcrops and for 

seismic data in the subsurface. To this end, we investigated two carbonate systems in the 

subsurface of Western Australia and in outcrops in New Mexico. We chose two study 

areas that would allow us to reveal insight into carbonate clinoform systems in different 
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spatial and temporal scales: In the 3D seismic volume of the Browse Basin (Western 

Australia), we investigated 12 third-order depositional sequences on a large to 

intermediate scale (287 km2) in the Oligo-Miocene interval. In contrast, the outcrops in 

Last Chance Canyon (New Mexico) enabled us to study seven fifth-order parasequences 

on an intermediate to small scale (2 mi2) of Late Paleozoic (Guadalupian) age. 

Developing new 3D and 4D quantification and visualization methods, we met our 

research goal and achieved to: 1) introduce a modification to the reciprocal 

sedimentation model in Last Chance Canyon, NM; 2) develop a new parameter to 

identify stages of autogenic slope system re-organization in the Browse Basin; and 3) 

develop new parameters and a workflow to quantify 3D and 4D lateral shelf break 

variability in clinoform systems. 
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II - QUANTIFICATION OF ARCHITECTURAL VARIABILITY AND CONTROLS 

IN AN UPPER OLIGOCENE TO LOWER MIOCENE CARBONATE RAMP, 

BROWSE BASIN, AUSTRALIA1 

 

II.1 Synopsis  

Integration of seismic geomorphology and trajectory analysis of the Oligocene 

through Lower Miocene distally-steepened carbonate ramp system in the subsurface 

Browse Basin of the Northwest Shelf of Australia introduces a new way to parameterize 

carbonate slope channel systems and their stability, and sheds light on how basinward 

sediment transport is influenced by allogenic and autogenic controls. Seismic 

geomorphologic analysis identified large-scale prograding clinoforms with an extensive 

slope channel system and slope angles of up to 12°. Clinoforms have an average slope 

angle of 8°, a height of ~500 m, and prograded 9 km during the Upper Oligocene 

through the Lower Miocene. Relative sea level changes overprinted the effect of 

intermediate-scale and small-scale antecedent topography, and determined progradation, 

aggradation and slope angles of the system. We introduce cumulative channel cross 

sectional area (CCCSA) as the product of number of slope channels, slope channel 

depth, and slope channel width. CCCSA quantifies the capability of the slope channel 

                                                 

 

1 Published article in the Journal of Marine and Petroleum Geology: Tesch, P., Reece, R., Pope, 

M., Markello, J. 2018. Quantification of Architectural Variability and Controls in an Upper Oligocene to 

Lower Miocene Carbonate Ramp, Browse Basin, Australia. Marine and Petroleum Geology. DOI: 

10.1016/j.marpetgeo.2018.01.022. © 2018 Elsevier 
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system to transport sediment basinward and highlights phases of autogenic slope system 

re-organization in response to changes in relative sea level. Abruptly increasing values 

of CCCSA correlate with slope sediment bypass through the incision of new slope 

channels during system re-organization phases at slope angles of 10°. Thus, we propose 

that CCCSA can be used as a proxy for slope system stability. Incision of new slope 

channels into the ramp margin created strike-parallel variability of the ramp margin 

trajectory. Our seismically-derived relative sea level curve and subsidence rates of 9-30 

m/Myr indicate a good preservation of the subsidence and sea level signal in the data.  

 

II.2 Introduction 

Clinoforms are one type of record of the spatial and temporal evolution of 

sedimentary systems. Their evolution is controlled by a complex interplay between 

tectonics, eustasy, sediment supply, antecedent topography and climate (Henriksen et al., 

2011). The combined signal of allogenic and autogenic controlling processes is 

preserved as a physical response in the sedimentary system architecture. It is this 

complex interplay of processes that defines the sedimentary packaging, and thus where 

and how much sediment is deposited and preserved in the stratigraphic record. This 

direct feedback between controls and the system response enables geoscientists to solve 

the inverse problem of extracting paleoenvironmental conditions from the rock record 

(Dalrymple, 2010). The quantification of system architecture, therefore, can provide a 

better understanding of the individual signals of allogenic and autogenic controls.  
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Geomorphometry is the quantitative description of landforms, their processes, 

geometries and sediments at the Earth’s surface. It is used to derive parameters about 

slope and curvature and to extract information about morphometric features (Pike et al., 

2009; Pike, 2000). In modern depositional environments, geomorphometry is used to 

quantitatively describe and understand sedimentologic feedbacks. Seismic 

geomorphology is the application of this approach to extract geomorphic insights using 

dominantly 3D seismic data. The petroleum industry extensively uses 3D seismic data to 

identify geobodies, such as channels, mounds etc., and to identify prospective drilling 

targets (Posamentier et al., 2007).  

The well imaged subsurface clinoforms of the Oligocene – Miocene carbonate 

ramp system of the Australian North West Shelf (NWS) were previously studied to 

investigate their evolution and controls in the Carnarvon Basin (e.g. Cathro and Austin, 

2001; Cathro et al., 2003). Research on the evolution of the overlying Middle – Late 

Miocene carbonate shelf in the adjacent Browse Basin utilized high-resolution seismic 

geomorphology, lithological information from well logs, sidewall cores, ditch cuttings, 

stable isotope (δ18O, δ13C) data, and Rb/Sr age-dating methods to reconstruct the paleo-

environmental changes in the Browse Basin during the Miocene (Rosleff-Soerensen et 

al., 2012). 

This study presents novel techniques to quantitatively resolve geometries, along-

strike variability, and to delineate paleoenvironmental signals of the Oligocene – Lower 

Miocene carbonate ramp system in the Browse Basin. Use of 3D seismic data allows for 

determination of lateral variability, thereby, reducing the lateral bias and uncertainty of 
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2D studies. Calculated 3D progradation and sedimentation rates are a better 

representation of the actual system behavior than their 2D counterparts. This study 

describes how we reconstructed the signals of tectonics and relative sea level from 3D 

seismic data. We quantify how relative sea level changes influenced progradation and 

aggradation in the system. Furthermore, we delineate the interaction between relative sea 

level and the slope system to show how lateral variability in the ramp margin trajectory 

evolves.  

 

II.3 Geological Setting 

The Browse Basin (Fig. 1) is part of the Westralian Superbasin (Yeates et al., 

1987) that comprises the Carnarvon, Canning, Browse and Bonaparte Basins 

(Stephenson and Cadman, 1994) on the Australian North West Shelf (NWS). A 

significant amount of fluvio-deltaic siliciclastic, passive margin sediments accumulated 

in the Browse Basin (Woodside Energy, 2007, 2008, 2009) during a prolonged period of 

little or no tectonic activity in the Cretaceous (Apthorpe, 1988). Basin sedimentation 

changed from siliciclastic to carbonate-dominated in the Eocene (Apthorpe, 1988; 

Stephenson and Cadman, 1994). During the Paleocene – Eocene (Fig. 2), the NWS of 

Australia migrated north from 40° S to 32° S, into climatic conditions more favorable for 

carbonate systems (McGowran et al., 2004). A non-tropical, heterozoan carbonate ramp 

developed during the Eocene-Oligocene, overlying Paleocene and older siliciclastic 

strata (Reuning et al., 2009; Rosleff-Soerensen et al., 2012). Foreland loading related to 

the collision of the Australian plate with the Banda Arc and development of the Timor 
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Trough caused increased basement subsidence beginning in the late Oligocene, and 

resulting in minor structural deformation in the study area (Baillie et al., 1994; Kennard 

et al., 2003). The Australian NWS shifted farther north from 30°S to 25°S during the 

Oligocene-Miocene (McGowran et al., 2004), and a warm climatic optimum was 

reached by the Middle Miocene (Feary and James, 1995; Savin et al., 1985; Tripati et al., 

2009).  

The transition into a tropical photozoan rimmed shelf occurred at the time of 

transition from Early to Middle Miocene, and is associated with a eustatic sea level fall 

(Reuning et al., 2009). The Browse Basin Middle Miocene barrier reefs, patch reefs and 

atolls drowned during the Early Tortonian relative sea level rise associated with the 

collision of the Australian Plate with the Banda Arc (Baillie et al., 1994; Stephenson and 

Cadman, 1994; Willis, 1988). This drowning event initiated the transition to Late 

Miocene-Recent hemipelagic carbonate sedimentation across the NWS (Rosleff-

Soerensen et al., 2012).  

 

 



 

9 

 

 

Figure 1: Location of Browse Basin on the North West Shelf of Australia after 

Struckmeyer et al. (1998). Note the location of the Brecknock South 3D seismic survey at 

the intersection of the Caswell, Barcoo and Seringapatam sub-basins. Offset wells B#1 

= Brecknock #1 and NSR#1 = North Scott Reef #1 provided well data for stratigraphic 

correlations (Rosleff-Soerensen et al., 2012; Woodside Energy, 2007). Regional 

bathymetric contours (GEBCO_2014) in meters below sea level (mbsl) are displayed on 

an ESRI National Geographic Basemap and indicate the present-day southwest-

northeast strike of the shelf.  
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Figure 2: Geological composite chart of the Cenozoic in the Browse Basin. The 

study interval covers the Oligocene through Lower Miocene. During the Upper Eocene, 

a major change in depositional environments occurred in the study area with a shift 

from siliciclastic-dominated to carbonate-dominated. Extent and duration of the 

Paleocene-Eocene and Eocene-Oligocene unconformities vary throughout the basin and 

are only approximated in the figure. The tectonic regime transitioned from low-rate 

thermal subsidence to increased-rate foreland loading due to the collision of the 

Australian plate with the Banda Arc and development of the Timor Trough in the 

Oligocene. Beginning in the Oligocene, Arctic and Antarctic ice sheets established.  
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Lithologies of Eocene through Early Miocene strata are partly calcisiltic 

grainstone with 95-98 % carbonate content of dominantly low-Mg calcite and no 

aragonite or high-Mg calcite. Planktonic foraminifera were abundant during the Eocene 

and the clay mineral content of lithologies is 5-15 % with trace amounts of chert and 

Gamma Ray (GR) readings between 20-40 API. In the Oligocene through Lower 

Miocene interval, benthic foraminifera were abundant and the clay mineral content 

decreases to less than 5 % and GR readings are less than 20 API. Lithologically, this 

interval is dominated by strongly re-crystallized limestone with up to 25 % carbonate 

mudstone that can have up to 5 % vuggy porosity (Rosleff-Soerensen et al., 2012).   

 

II.4 Data  

II.4.1 3D Seismic Data 

We utilized the Brecknock South 3D Marine Seismic Survey for this study, 

which is available through the Geoscience Australia Western Australian Petroleum and 

Geothermal Information Management System (WAPIMS), a commercial petroleum 

exploration database. Baker Hughes and Western Geophysical acquired the 287.3 km2 

multichannel survey in the southeastern part of the Caswell sub-basin in the Browse 

Basin on the NWS of Australia (Figs. 1 and 3) for Woodside Energy (Western 

Geophysical, 1999). The seismic data are time-migrated, zero-phase and follow SEG 

European polarity (Veritas, 2000). Rosleff-Soerensen et al. (2012) used this dataset in 

combination with the adjacent Brecknock 3D Marine Seismic Survey for the seismic 

geomorphology study of the overlying Miocene rimmed shelf succession. 
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We created synthetic seismograms using DT and GR logs from the Calliance #1, 

#2, and #3 wells to tie the Oligocene – Miocene boundary encountered in the wells to the 

corresponding reflector in the 3D seismic volume. In order to measure slope angles, we 

performed a time-depth conversion of the seismic data. For the time-depth conversion, 

we created a laterally homogeneous velocity model based on the time-depth relationship 

of the Calliance #3 well. The final depth converted seismic volume places the 

Oligocene-Miocene boundary along the Calliance #1 and #2 well paths within +/- 75 m 

of their reported depths (~2,150 m) encountered in the wells (Woodside Energy, 2007, 

2008). We recognize that the laterally homogeneous velocity model introduces 

uncertainty to geometries in the depth domain, affecting calculated dip angles. Slope 

angle measurements vary less than 1° with the use of velocity models based on time-

depth relationships of the Calliance #1 and #2 wells. The limits of vertical and horizontal 

resolution at the Oligocene-Miocene boundary are ~15 m and ~30 m, respectively. 

 

II.4.2 Well Data and Stratigraphy 

Woodside Energy drilled three wells in the area of the Brecknock South 3D 

seismic survey (Figs. 1 and 3): Calliance Well #1 (2005), Well #2 (2007), and Well #3 

(2008). The wells targeted fluvial to deltaic sandstone reservoirs in the Jurassic Plover 

Formation (Woodside Energy, 2007, 2008, 2009). For our seismic well tie and the 

petrophysical characterization of Eocene through Lower Miocene strata, we downloaded 

gamma ray (GR), resistivity (RES) and compressional slowness (DT) well logs of the 

Calliance Wells #1, #2, and #3 from WAPIMS.  
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Figure 3: Overview map of the seismic data displaying a coherency slice through 

the depth-migrated seismic volume at 2200 m with location of Calliance #1, #2, and #3 

wells. Solid yellow lines indicate dip (Fig. 5) and strike (Fig. 7) sections. Stippled line 

marks the shelf edge in SW-NE orientation. Survey location shown in Fig. 1. 
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Previous workers inferred Cenozoic stratigraphic subdivisions using regional 

seismic reflector extrapolation and GR log correlation from the North Scott Reef #1 

well, about 80 km NE of the study area (Woodside Energy, 2007, 2008, 2009) (Fig. 1). 

Rosleff-Soerensen et al. (2012) refined the subsurface stratigraphy in the Browse Basin 

using micropaleontological analyses and 87Sr/86Sr dating of sidewall cores and ditch 

cuttings from the offset Brecknock #1 well, about 10 km NE of this study area (Fig. 1).  

Belde et al. (2017) assigned the Top Paleocene, Top Eocene, Top Oligocene and Top 

Lower Miocene ages to seismic reflectors in the Brecknock survey with an accuracy of 

+/- 1 Myr. We used this updated subsurface stratigraphy to constrain ages of reflectors in 

the Browse Basin seismic data.  

 

II.5 Results 

II.5.1 Seismic Sequences 

We adapted standard sequence stratigraphic analysis methods, including reflector 

geometries, stratal terminations, nomenclature, and hierarchical orders (Catuneanu et al., 

2009; Mitchum et al., 1977a; Mitchum and Van Wagoner, 1991) to identify depositional 

sequences (Fig. 4). We identified thirteen medium to high amplitude, continuous 

reflectors that could be mapped throughout the volume. These reflectors are seismic 

surfaces (Bertram and Milton, 1996), and were used to define and establish relative 

geological age (Hart, 2013). Below each of these thirteen continuous reflectors, other 

reflectors toplap or truncate, and above each of these continuous reflectors, other 

reflectors onlap and/or downlap (Fig. 4). Therefore, the seismic surfaces represent third-
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order depositional sequence boundaries (e.g. Mitchum et al., 1977a), SB1 through SB13 

(Fig. 5).  

These interpreted depositional sequence boundaries bound twelve seismic 

sequences, SS1 through SS12, that we identified in the Eocene through Lower Miocene 

section of the seismic data. Sequence boundary 1 (SB1) marks the base of the study 

interval and SB13 marks the top of the study interval. Seismic sequence 1 (SS1) is 

defined as the oldest and stratigraphically lowest unit, bound at the base by SB1 and at 

the top by SB2, and seismic sequence 12 (SS12) is defined as the youngest and 

stratigraphically highest unit, bound by SB12 at the base and at the top by SB13 (Fig. 5).   

We assigned absolute ages to four seismic surfaces (Fig. 5a) using age 

constraints from previous work (Belde et al., 2017; Rosleff-Soerensen et al., 2012), 

following the chronostratigraphy established by Gradstein et al. (2012): Paleocene-

Eocene boundary (56.0 Ma; SB1), Eocene-Oligocene boundary (33.9 Ma; SB2), 

Oligocene-Miocene boundary (23.0 Ma; SB8), and Lower Miocene-Middle Miocene 

boundary (16.0 Ma; SB13). These four seismic surfaces are described seismically, 

lithologically and petrophysically in more detail below. 

For the nine seismic surfaces in the Oligocene and Lower Miocene sections that 

were not assigned an absolute age, we allocated each seismic sequence a roughly equal 

amount of time within the defined epoch boundaries. The Oligocene spans 10.9 Myr and 

contains 6 seismic sequences, thus we calculate an average time duration of ~1.8 Myr for 

each of seismic sequences SS2 through SS7 in the Oligocene. In the same manner, 

seismic sequences SS8 through SS12 of Lower Miocene age represent ~1.4 Myr for each 
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sequence. In addition to stratal terminations, the time duration of 1.4 – 1.8 Myr per 

seismic sequence conforms with the temporal magnitude of third-order depositional 

sequences of 1 – 10 Myr duration (Van Wagoner, 1988), and serves as another line of 

evidence to treating the seismic sequences as depositional sequences. 

 

 

 

Figure 4: Use of stratal terminations to identify sequence boundaries and seismic 

sequences. Reflectors truncate or toplap below a sequence boundary and onlap or 

downlap above a sequence boundary. Seismic sequence SS7 is bound at the base by 

sequence boundary SB7 and bound at the top by sequence boundary SB8. 
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Figure 5: Depth migrated dip directional cross section DL5 (see Fig. 3 for 

location). A – uninterpreted seismic section. B – interpreted seismic section with the 12 

identified seismic sequences (SS1-12) and 13 sequence boundaries (SB1-13) from the 

Eocene through Lower Miocene in yellow. Triangles = shelf break; circles = toe of 

slope. 3x vertical exaggeration. The study interval comprises the distally steepened 

carbonate ramp phase from the Oligocene through Lower Miocene. The Paleocene-

Eocene unconformity marks the transition from underlying fluvio-deltaic clastic deposits 

to overlying  carbonate dominated deposits. Middle Miocene reef complexes overlie the 

ramp and are capped by Pliocene to Recent hemipelagic carbonate deposits. 
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II.5.2 Seismic Stratigraphy 

Reflector configurations that compose the seismic sequences are parallel, 

divergent, oblique, sigmoidal and chaotic (Fig. 6). Reflectors of the twelve seismic 

sequence boundaries are best expressed between the ramp margin and toe of slope. Each 

seismic sequence has an average of 14 internal reflectors. Along the slope, reflectors 

within sequences onlap the basal sequence boundary, and are truncated by the top 

sequence boundary (Figs. 4 and 5). Reflector amplitudes along the slope are medium to 

high; reflectors are continuous to semi-continuous, and express sigmoidal to divergent 

geometry. In strike directional cross sections of the slope, reflectors are continuous to 

semi-continuous and have regularly spaced “u”-shaped sections. These concave-up 

sections truncate underlying reflectors, are filled with bi-directionally onlapping 

reflectors, and are overlain by more reflectors of the same geometry (Fig. 7). We 

interpret these u-shaped reflectors as stacked slope channels. They range from 19-53 m 

in depth and 240-1,200 m in width. In 3D seismic horizon slices, we identified channels 

as downcutting, sinusoidal features originating at the ramp margin and extending into the 

basin. The extracted seismic variance attribute of the horizon slice, in combination with 

an adjustable artificial light source in the seismic interpretation software, highlighted 

geometries that aided channel identification (Fig. 8).  
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Figure 6: Overview of main seismic reflector geometries in the dataset. A – 

parallel and sub-horizontal reflectors typically occur on the shelf; B – oblique reflectors 

are common along the shelf, truncations by an overlying reflector indicate a sequence 

boundary; C – chaotic reflectors occur in basinal settings, near the toe of slope; D – 

large-scale sigmoidal reflectors are characteristic of prograding clinoforms; E – 

convergent reflectors occur at the transition from shelf to slope. 3x vertical 

exaggeration. 
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Figure 7: Strike directional cross section through the seismic data (see Fig. 3 for 

location). A - uninterpreted section. B - Interpreted section. Reflector geometries are 

determined by their position along the depositional profile: shelf reflectors are sub-

parallel and horizontal; slope reflectors are u-shaped, truncate underlying reflectors 

and are either vertically stacked or filled with onlapping reflectors; basinal reflectors 

are rugose. 3x vertical exaggeration. 
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Figure 8: Depth-converted horizon slices of sequence boundaries SB5 (A) and 

SB6 (B) visualizing the transition from slope system phase I (SB5) to phase II (SB6). 

This transition is characterized by a distinct increase in the total number of slope 

channels from three to fourteen, average slope angles greater than 9°, and a decrease in 

average channel width from 1,100 m to 375 m. Slope channels are readily identifiable 

along the slope and more elusive basinward due to decreased seismic reflector 

continuity. Vertical offset along minor slope faults is few decameters.   
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Along the shelf break, many seismic reflectors abruptly terminate and are 

vertically offset in a downthrown position towards the basin. In a seismic horizon slice 

with the extracted variance attribute, these features are readily identifiable as shelf-

parallel, low-variance features that form a sub-vertical plane or scarp (Fig. 8). We 

interpret these features as small-scale normal faults that are common at the ramp margin. 

Vertical offset of reflectors in the Oligocene through Lower Miocene interval along 

these faults is ~15 m. In general, slope channels originate at the small-scale fault scarps 

along the shelf break.  

Updip, toward the shelf, reflectors onlap onto basal sequence boundaries, and 

decrease in number to an average of two reflectors per seismic sequence (Fig. 5). On the 

shelf, reflectors are high amplitude, continuous and subparallel horizontal. Downdip, 

toward the basin, reflectors downlap onto basal sequence boundaries, are truncated by 

top sequence boundaries, and decrease in number to an average of three reflectors per 

seismic sequence. In the basin, reflectors are medium amplitude, semi-continuous, and 

have wavy to chaotic geometry (Table 1).  
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Table 1: Overview of seismic reflector properties for the twelve seismic 

sequences separated into shelf, slope and basin positions. 

 

 

 

The Paleocene - Eocene (P-E) boundary (SB1; Fig. 5) serves as base of the study 

interval and represents the transition from siliciclastic-dominated shelf deposition to 

carbonate, cool-water, heterozoan carbonate ramp deposition (Apthorpe, 1988; Reuning 

et al., 2009; Rosleff-Soerensen et al., 2012) (Fig. 2). Seismically, the P-E boundary is a 

high amplitude, wavy, continuous trough that truncates reflectors below and is 

downlapped by overlying reflectors. Petrophysically, the youngest underlying Paleocene 

beds exhibit high GR of ~75 API and resistivity of ~4 ohm-m. This contrasts with the 

oldest overlying Eocene beds that have lower GR of ~45 API and lower resistivity of ~1 

Position Property SS1 SS2 SS3 SS4 SS5 SS6

Amplitude - - - high high high

Continuity - - - contiunuous continuous continuous

Amplitude med - high low - med low - high low - med med low - med

Continuity semi-continuous semi-continuous semi-continuous semi-continuous semi-continuous semi-continuous

Amplitude med - high med - med med med

Continuity semi-continuous semi-continuous - continuous discontinuous semi-continuous

Position Property SS7 SS8 SS9 SS10 SS11 SS12

Amplitude med - high med - high low - high low - med high med - high

Continuity continuous continuous semi-continuous semi-continuous continuous semi-continuous

Amplitude med - high med - high med - high med high low - med

Continuity semi-continuous semi-continuous continuous continuous continuous continuous

Amplitude low - med med - high low - med med - high high med - high

Continuity
semi-continuous

to chaotic

semi-continuous semi-continuous semi-continuous semi-continuous semi-continuous

parallel to 

convergent

convergent

sub-parallel

inclined

sub-parallel to

convergent

Slope

Geometry
-

Shelf

sigmoidal to 

slightly chaotic

sub-parallel 

sigmoidal

convergent to

slightly chaotic

- - parallel

sub-horizontal

Geometry

Geometry
sub-parallel to

 slightly chaotic

sub-parallel to

 slightly chaotic

sub-parallel

inclined

parallel to 

convergent

parallel

sub-horizontal

sub-parallel to

convergent

sub-parallel

horizontal

Basin
- rugose

sigmoidal to

convergent

chaotic sub-parallel to

 slightly chaotic

sub-parallel

rugose

sub-parallel

rugose

convergent to

chaotic

sub-parallel to

chaotic

sub-parallel

rugose

sub-parallel to

 slightly chaotic

sigmoidal to

convergent

sigmoidal to

convergent

sigmoidal to

convergent

sigmoidal to 

slightly chaotic

parallel inclined

parallel to 

convergent

parallel

sub-horizontal

Shelf

Geometry

Slope

Geometry

Basin

Geometry
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ohm-m. DT values for this interval were not available. The P-E boundary marks the 

contact between siliciclastic rocks below and carbonate rocks above (Woodside Energy, 

2008). This lithological transition is seismically expressed by the truncation of 

underlying reflectors and the strong impedance contrast between the overlying and 

underlying lithologies resulting in a high amplitude reflector.  

SB2, the top of SS1, represents the Eocene - Oligocene (E-O) boundary and is 

seismically characterized as a high-amplitude, rugose, continuous peak that truncates 

reflectors below and is downlapped by overlying reflectors. The peak represents the 

strong impedance contrast of slower, low density calcisiltic limestone above and the 

faster, higher density re-crystallized limestone below (Woodside, 1980). The E-O 

boundary records an unconformity created by a Middle Oligocene eustatic fall in sea 

level, resulting in basin-wide exposure of the shelf (Blevin, 1997) and concurrent 

erosion of the Upper Eocene and most of the Lower Oligocene strata (Woodside Energy, 

2008). Thus, the seismic sequences SS2 through SS7 are Upper Oligocene strata. In the 

well logs, the underlying youngest Eocene beds exhibit high GR of ~50 API, resistivity 

of ~1 ohm-m, and sonic velocities of ~270 µs/ft. Overlying oldest Upper Oligocene beds 

have lower GR of ~10 API, higher resistivity of ~20 ohm-m, and higher sonic velocities 

of ~200 µs/ft. 

The Oligocene - Miocene (O-M) boundary (SB8) is a high-amplitude, sigmoidal, 

continuous trough that truncates reflectors below and is downlapped by reflectors above. 

The peak represents the strong impedance contrast of slower, less dense calcisiltic 

limestone above and the faster, higher density cherty, re-crystallized limestone below 
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(Woodside, 1980). Petrophysically, the underlying youngest Oligocene beds exhibit low 

GR of ~20 API, resistivity of ~4 ohm-m, and sonic velocities of ~210 µs/ft. This 

contrasts with the overlying oldest Miocene beds that have higher GR of ~55 API, lower 

resistivity of ~2 ohm-m, and slower sonic velocities of ~300 µs/ft. These contrasting 

petrophysical values allow for easy identification of the O-M boundary on well logs. 

Sequence Boundary SB13 represents the Lower - Middle Miocene (LM-MM) 

boundary, and is the surface across which the transition from heterozoan carbonate ramp 

deposition to photozoan rimmed shelf deposition occurs (Rosleff-Soerensen et al., 2012). 

For mapping within the seismic dataset, we utilized the previously defined LM-MM 

boundary as inferred from GR correlations between offset wells and extrapolation from 

regional seismic lines by Woodside Energy (2007, 2008, 2009). The LM-MM boundary 

represents the top of the interval of interest for this study. Seismically, the LM-MM 

boundary is a medium to high-amplitude, sigmoidal, continuous peak that truncates 

underlying reflectors and is onlapped by overlying reflectors. In well logs, the 

underlying youngest Lower Miocene beds exhibit GR of ~20 API, resistivity of ~1 ohm-

m, and sonic velocities of ~260 µs/ft. Overlying oldest Middle Miocene beds that have 

higher GR of ~30 API, higher resistivity of ~2 ohm-m, and equal sonic velocities of 

~260 µs/ft. 

 

II.5.3 Depositional Slope Angles and Slope Channels 

The ramp margin, or shelf break, and toe of slope in the dataset were identified 

by a marked change in reflector dip angle (e.g. Wiseman and Ovey, 1953). Seismic 
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reflectors increase in dip angle from < 2º to > 6º from the shelf towards the basin for the 

ramp margin, and markedly decrease in dip angle from > 6º to < 3º from the slope 

towards the basin at the toe of slope (Fig. 9). Manual identification of shelf break and toe 

of slope, combined with vertical reflector offset along minor faults and areas of more 

gradual change in slope angle, introduced subjectivity and uncertainty in the position of 

the picked shelf break and the subsequent analysis of progradation and aggradation.  

 

 

 

Figure 9: Schematic dip section of clinoforms and their geomorphic parameters 

for calculation of slope angles, progradation, and aggradation. In the dataset, reflectors 

on the shelf are usually inclined less than 2°. The marked increase in reflector dip from 

less than 2° landward to more than 6° along the slope marks the position of the shelf 

break or ramp margin. A transition of reflector dip from more than 6° along the slope to 

less than 3° in the basin marks the toe of slope. Slope angles were measured as the dip 

of a straight line from shelf break to toe of slope. The basinward shift of the ramp 

margin between two sequence boundaries quantifies progradation. The vertical 

difference in ramp margin position between two sequence boundaries quantifies 

aggradation. 
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We calculated slope angles as the inclination of a plane from the shelf break to 

the toe of slope (Fig. 9) and accounted for the effect of differential compaction by 

flattening the seismic volume at the top of the Miocene reefs that are overlain by 

hemipelagic sediments. The flattening decreased reflector dip angles by less than 1º. 

Moreover, we did not correct carbonate clinoform geometries for compaction, 

subsidence and isostasy. Although simple compaction can result in a decrease of slope 

angles, correcting for the complex interplay of rotation induced by differential loading, 

compaction, and thermal subsidence, tends to result in an overall increase in calculated 

clinoform slope angles (Steckler et al., 1993). Thus, calculated slope angles in this study 

represent minimum slope angles.  

A shelf break is not apparent in seismic sequences SS1 and SS2; the dataset 

covers only their foreset and bottomset portions (Fig. 5). Hence, slope angles were 

calculated for only SS3–12 (Fig. 9). Slope angles for each individual sequence were 

calculated using 10 depth-converted, dip directional seismic profiles. The lateral range of 

slope angles for any given seismic sequence did not exceed 3°. Slope angle for each 

seismic sequence is reported as the arithmetic mean of slope angles for the ten dip-

directional seismic profiles. Minimum and maximum slope angles for each seismic 

sequence are visualized as lower and upper error bars, respectively (Fig. 10). 
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Figure 10: Average slope angles for seismic sequences SS3-12 measured on 

depth converted seismic as inclination from shelf edge to toe of slope. Error bars are the 

maximum and minimum slope angles along strike for each sequence, respectively. 

Minimum slope angles for seismic sequences 5 and 11 and maximum slope angles for 

seismic sequences 7 and 9 coincide with average values. Horizontal black line marks a 

critical slope angle of 10 degrees. Average slope angles in excess of 10 degrees occur 

between SS5&6 and SS9&10 (yellow boxes) and coincide with a re-organization in slope 

channel properties (Fig. 11). 

 

 

 

The average slope angles for seismic sequences SS3 through SS12 range from a 

minimum of 6º in SS3 to a maximum of 10º in SS6 and SS10 (Fig. 10). Along the 

individual dip directional seismic profiles, the minimum slope angle is 5º (in DL5 of 

SS3), and the maximum slope angle is 12º (in DL1 of SS6 and in DL2 of SS10). 

Average slope angles initially increased from 6º in SS3 to 10º in SS6. Subsequently, 

average slope angles decreased from 9º in SS7 to 8º in SS9. A marked increase in 
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average slope angles to 10º in SS10 was followed by a decrease in average slope angles 

to 7º in SS12. 

The slope channel properties were measured and/or calculated on a per seismic 

sequence basis and include: average number of channels, average channel depth, average 

channel width, and cumulative channel cross sectional area (CCCSA) (Fig. 11). We 

designed the CCCSA parameter of slope channels as a new measurement to quantify the 

capacity of basinward sediment transport through coeval slope channels during the time 

represented by one seismic sequence. CCCSA approximates the channel cross sectional 

area as a half ellipse: 

Equation 1: 

𝐶𝐶𝐶𝑆𝐴 =  
1

4
∗ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑤𝑖𝑑𝑡ℎ ∗ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑑𝑒𝑝𝑡ℎ ∗  𝜋 

The slope system evolved through three time intervals or phases that we defined 

by distinct changes in slope channel properties: Phase I) Middle – Upper Oligocene (SS3 

– SS5); Phase II) Upper Oligocene – Lower Miocene (SS6 – SS9); and Phase III) Lower 

Miocene (SS10-SS12) (Fig. 11). The boundaries of these three phases correlate with 

peaks in slope angles during SS6 and SS10 (Fig. 10). 
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Figure 11: Compilation of channel properties for seismic sequences SS3-12. Yellow boxes mark the re-organization of 

the slope channel system between phases I, II, and III. Channel properties were identified from multiple strike directional 

seismic cross sections and 3D seismic surfaces. A – Average number of slope channels per seismic sequence. SS6 marks a 

distinct transition in channel properties to an overall increased number of slope channels. B – Average depth and width of 

slope channels per seismic sequence. SS6 marks a distinct drop in average channel width. C - Cumulative channel cross 

sectional area (CCCSA) per seismic sequence. CCCSA is a measure of the average available area of the channel system for 

basinward sediment transport. When CCCSA falls to about 50,000 m2 and subsequently increased drastically (e.g. during 

SS5-SS6 and SS9-SS10; black arrows), the slope system established more channels in the subsequent seismic sequence. 

Therefore, we consider CCCSA a measure of slope system stability. D - Cross-plot of average channel width and depth 

against total number of channels. The falling trendline with an R2 value of 0.74 indicates an inverse relationship between total 

number of channels and channel width. Channel depth correlates poorly with number of channels (R2 = 0.12). Note the 

separation between the cluster of deep and wide channels (left half) vs shallower and narrower channels (right half).
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During slope channel phase I, the average number of channels decreases from six 

in SS3 to three in SS5, with channel widths increasing from 650 m in SS3 to 1,100 m in 

SS5 and channel depths decreasing from 47 m in SS3 to 19 m in SS5, while CCCSA 

decreased from 144,000 m2 in SS3 to 49,000 m2 in SS5 (Fig. 11). Slope channel phase II 

is characterized by a distinct increase in number of slope channels per seismic sequence 

compared to phase one. Within phase II, the number of slope channels decreases from 14 

in SS6 to 11 in SS9, but are more than double the average number of channels in phase 

one. Slope channel average widths in phase II distinctly decrease relative to those in 

phase I, and range from 275 m to 450 m (Fig. 11). Phase II slope channel average depths 

exhibit a slight decrease from 32 m in SS6 to 25 m in SS9, with a minimum average 

slope channel depth of 23 m in SS7. CCCSA decreases from 121,000 m2 in SS6 to 

59,000 m2 in SS9. In slope channel phase III, the average number of slope channels 

increases from 14 in SS10 to 19 in SS12. Average channel widths decrease from about 

450 m in SS10 to 350 m in both SS11 and SS12, while average channel depths similarly 

decrease from 41 m in SS10 to 30 m and 31 m in SS11 and SS12, respectively (Fig. 11). 

Lastly, the CCCSA values for seismic sequences of phase III are greater than those in 

phases I and II. However, as with the average slope channel widths and depths in phase 

III, the CCCSA decreases from 204,000 m2 in SS10 and to 150,00 m2 and 167,000 m2 in 

SS11 and SS12, respectively. 

In general, slope channel width inversely correlates with number of channels 

(Fig. 11d; R2 = 0.74) and slope channel depth poorly correlates with number of slope 

channels (Fig. 11d; R2 = 0.12) for any given seismic sequence. Slope channel width is an 
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order of magnitude higher than slope channel depths (Fig. 11b). Cumulative channel 

cross sectional area (CCCSA) is therefore more sensitive to changes in slope channel 

width than to changes in slope channel depth. The main control on CCCSA is the inverse 

relationship between channel width and number of channels. 

It is important to note that there is a large increase in average number of channels 

and slope channel depth between SS5 and SS6 (3 vs. 14 channels; 19 m vs. 32 m channel 

depth), as well between SS9 and SS10 (11 vs. 14 channels; 25 m vs. 41 m channel 

depth). These significant changes mark the boundaries between slope channel phases I 

and II and phases II and III. The distinct increase in CCCSA between SS5 and SS6 

(49,000 m2 vs. 121,000 m2), as well as between SS9 and SS10 (55,000 m2 vs. 204,000 

m2) also marks the boundary between phases I, II, and III (Fig. 11).  

 

II.5.4 Progradation and Aggradation 

Aggradation and progradation are measured on profiles perpendicular to strike 

and calculated as the vertical and horizontal components, respectively, of the ramp 

margin trajectory between two seismic sequence boundaries (Fig. 9). We used ten dip-

directional, depth-converted seismic profiles (dip lines: DL1 through DL10) with a 

spacing of 900 m to quantify along-strike variability of ramp margin trajectories in the 

system. We differentiate between progradation and aggradation across the entire system 

as a whole and along individual dip lines. Individual dip line progradation (IDP) and 

aggradation (IDA) capture lateral variability of ramp margin evolution on an 

intermediate scale of 100s m. System average progradation (SAP) and system average 
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aggradation (SAA) are derived parameters, calculated as arithmetic mean of IDP and 

IDA of the ten dip-directional seismic profiles. SAP and SAA capture the ramp margin 

evolution of the system through time as a whole on a larger scale of kilometers. 

Amplitude of IDP and IDA is a measure of the direction and intensity of ramp margin 

progradation, aggradation, retrogradation and degradation (down-stepping) along each of 

the ten dip-directional seismic profiles. We define lateral variability as along-strike 

differences in progradation and aggradation of the ramp margin trajectory. To 

parameterize lateral variability, we considered four derivative parameters: 1. IDA 

trajectory, 2. IDP trajectory, 3. Internal IDA amplitude variation, and 4. Internal IDP 

amplitude variation.  

IDA and IDP trajectories describe whether or not the system, within a given 

seismic sequence, is uniformly prograding or aggrading relative to the previous seismic 

sequence. For example, if individual dip line aggradation (IDA) trajectories for all 10 

seismic profiles of seismic sequence SS7 do not follow the same trend of aggradation or 

downstepping, then they are considered out of phase with each other. These are termed 

“non-uniform” IDA trajectories, and their occurrence means that the system aggrades 

along some dip lines, whereas it downsteps along other dip lines. The same applies to 

IDP trajectories. If IDP trajectories for all 10 dip profiles do not follow the same trend of 

progradation or retrogradation, they are considered out of phase and non-uniform, 

meaning that the system progrades along some dip lines, whereas it retrogrades along 

other dip lines.  
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Internal IDA and IDP amplitude variation quantify how strongly the system 

progrades, aggrades, retrogrades or degrades within a given seismic sequence:  

 

Equation 2: 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐼𝐷𝐴 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑆𝑆𝑛

=   𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝐷𝐴 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑆𝑆𝑛 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐼𝐷𝐴 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑆𝑆𝑛 

 

Equation 3: 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐼𝐷𝑃 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑆𝑆𝑛

=   𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝐷𝑃 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑆𝑆𝑛 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐼𝐷𝑃 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑆𝑆𝑛 

𝑤ℎ𝑒𝑟𝑒 𝑆𝑆 =  𝑆𝑒𝑖𝑠𝑚𝑖𝑐 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑎𝑛𝑑 𝑛 = 3 → 12  

 

When internal IDA and IDP amplitude variation are low, the system geometries 

evolve uniformly along strike. When internal IDA and IDP amplitude variation are high, 

the system experiences greater aggradation and/or progradation along some dip lines, 

and lesser aggradation and/or progradation along other dip lines. Lateral variability in 

the system, for any given seismic sequence, is low when IDA and IDP trajectories are 

uniform, and internal IDA and IDP amplitude variations are low. However, if IDA and 

IDP trajectories are out of phase and IDA and IDP amplitude variations are high for a 

given seismic sequence, then the lateral variability within that seismic sequence is 

deemed to be high. 

The cumulative system average progradation (SAP) for the Oligocene - Lower 

Miocene interval is ~9 km during 20 million years, or about 450 m/Myr. SAP per 
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seismic sequence for the Oligocene - Lower Miocene strata (Fig. 12) ranges from a 

minimum of 199 m during SS11 to a maximum of 1,809 m during SS5. Individual dip 

line progradation (IDP) per seismic sequence varied from a minimum of -190 m 

(retrogradation in DL1 of SS11) to a maximum of 2,400 m (progradation in DL1 of 

SS5). Plotting IDA amplitude per seismic sequences (Fig. 12), individual dip line 

seismic profiles are in phase with the exception of SS5-6 and SS9-10. Internal IDA 

amplitude variation peaks between SS5-6, SS7-8, and SS9-10. IDP amplitude along the 

dip lines is out of phase during SS5-6, and SS7-10. Internal IDP amplitude variation 

peaks between SS5-6, SS7-8, and SS9-10 (Fig.12). 

In general, progradation is an order of magnitude higher than aggradation in the 

studied succession and there is an inverse relationship between progradation and 

aggradation (Fig. 12e; R2 = 0.54). When progradation rates are high, aggradation rates 

are low and vice versa. Cumulative system average aggradation (SAA) rate for the 

Oligocene - Lower Miocene interval amounts to ~320 m during 20 Million years or 

about 16 m/Myr. SAA per seismic sequence ranged from 74 m for SS6 and -12 m for 

SS5. Individual dip line aggradation (IDA) ranged from a minimum of -50 m (down-

stepping in DL 1 of SS8) to a maximum of 100 m (in DL7 of SS6).  
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Figure 12: Progradation and aggradation behavior of the shelf edge during seismic sequences SS4-12 derived from 

depth converted seismic volume. A – Individual dip line aggradation (IDA) amplitude of vertical component of shelf edge 

trajectory for all ten dip lines DL1-10 (colored curves) and their system average aggradation (SAA; bold black curve). Values 

above 0 represent aggradation, values below 0 represent downstepping. B – Individual dip line progradation (IDP) amplitude 

of lateral component of shelf edge trajectory for all ten dip lines DL1-10 (colored curves) and their system average 

progradation (SAP; bold black curve). Values above 0 represent progradation, values below 0 represent retrogradation. 

C&D – internal IDA and IDP amplitude variation is a measure of how uniformly the shelf edge aggrades and progrades 

along strike. Note that the system experienced high lateral variability between SS5-6 and SS9-10, as denoted by coincident out 

of phase behavior of IDA and IDP amplitude and high internal IDA and IDP amplitude variation (yellow boxes). E - System 

average aggradation (SAA) plotted against system average progradation (SAP). The falling trendline with an R2 value of 0.54 

indicates an inverse relationship between progradation and aggradation. 
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II.5.5. Seismically-Derived Subsidence Rates 

The cumulative aggradation plot (Fig. 13) displays the cumulative aggradation of 

the ten individual dip lines DL1 through DL10 and SAA for seismic sequences SS4 

through SS12. We used cumulative aggradation, in combination with relative sea level 

changes, as a proxy for subsidence, under the assumption that the carbonate system can 

fill accommodation faster than sea level can rise eustatically. This assumption is 

supported by previous work on cool-water carbonate-ramp growth potential, with 

calculated growth rates of 25 – 50 m/Myr or higher (e.g. James and Bone, 2010; 

Schlager, 2000). For our analyses, the allogenic input of siliciclastic material into the 

system is considered negligible. Accommodation is the space for potential sediment 

accumulation, and is a combination of subsidence, eustasy, sedimentation, and 

compaction (Jervey, 1988), and changes in accommodation are expressed as changes in 

relative sea level. Carbonate systems react to accommodation increase by aggradational 

growth (Sarg, 1988). If an accommodation increase is related to subsidence increase, and 

the carbonate system fills that new accommodation via aggradation, then the cumulative 

aggradation height can be used as a proxy for the amount of subsidence (Kendall and 

Schlager, 1981). In this study, we relate deviations from a constant slope in the 

cumulative aggradation plot to changes in subsidence. These deviations are not ascribed 

to changes in climate-driven eustasy, since eustasy during the Upper Oligocene through 

Lower Miocene averages 100 m +/- 50 m above present sea level, with no drastic long-

term increase or decrease over more than 3 Myr (Haq et al., 1987; Miller et al., 2005).  
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Figure 13: Cumulative aggradation for seismic sequences SS4-12 along dip lines 

DL1-10 from vertical component of shelf edge trajectory as proxy for basement 

subsidence. DL 1-10 = values for dip directional cross sections; AVG = average of all 

ten dip directional cross sections. Vertical black line marks the transition from time 

period 1 with lower cumulative aggradation of 19 m/Myr during SS2-8 to time period 2 

with increased cumulative aggradation of 30 m/Myr during SS8-12. This corresponds to 

the transition from Early Tertiary thermal subsidence to Late Tertiary foreland loading 

(Fig. 17). 

 

 

Based on the cumulative aggradation rates, age constraints and estimated 

absolute ages for the seismic sequences, we calculated subsidence rates for the system 

during the Upper Oligocene through Lower Miocene. In the cumulative aggradation plot 

(Fig. 13), a transition in derived subsidence occurs after seismic sequence SS8. During 

SS4 through SS8, cumulative aggradation is 64 m over 7.3 Myr, resulting in an average 

subsidence rate of ~9 m/Myr. During SS9 through SS12, cumulative aggradation is 212 

m over 7.1 Myr, resulting in an average subsidence rate of ~30 m/Myr.  
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II.5.6. Seismically-Derived Relative Sea Level  

The shelf edge trajectory of a sedimentary system describes the vertical and 

lateral migration of the shelf edge through time, and can be used as proxy of relative sea 

level (Helland-Hansen and Hampson, 2009; Henriksen et al., 2009; Johannessen and 

Steel, 2005; Mellere et al., 2002; Steel and Olsen, 2002). For this study, we translated 

changes in the vertical component of the distally-steepened ramp margin trajectory in the 

Oligocene-Lower Miocene section (SS3-12; Figs. 5 and 9) into changes in relative sea 

level under simplified boundary conditions. These boundary conditions are: 1) 

Clinoform shelf breaks develop at a constant depth below sea level, and thus, are 

indicative of changes in relative sea level when compared to overlying or underlying 

seismic sequences and their corresponding clinoform shelf breaks; 2) Carbonate 

sediment production rates were constant and allogenic siliciclastic influx was negligible 

across the shelf during the Upper Oligocene through Lower Miocene; 3) Changes in 

aggradation and progradation through time are caused by the response of the carbonate 

factory growth to accommodation (as described above); and 4) Non-deposition/erosion 

account for lost time but are not represented in the seismic. In order to compensate for 

basement subsidence in the calculation of the seismically-derived relative sea level 

curve, we subtracted subsidence rates for the Browse Basin of 10 m/Myr for the 

Oligocene and 25 m/Myr for the Miocene (Kennard et al., 2003) from the aggradational 

component of the ramp margin trajectory. For example, the average ramp margin 

position of SS5 was 74 m below the average ramp margin position of SS6. Accounting 
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for Oligocene subsidence with 10 m/Myr during the 1.8 Myr between SS5 and SS6, we 

infer a seismically derived relative sea rise of 56 m between SS5 and SS6 (Fig. 14). 

Ten relative sea level curves were derived from the ten dip-directional seismic 

profiles DL1 to DL10 (Fig. 14). A new, local Upper Oligocene and Lower Miocene 

relative sea level curve for the study area was derived by averaging the ten dip-

directional seismic profile-derived relative sea level curves (Fig. 14). For the study, this 

new curve is termed “System Average Relative Sea Level Curve”. The System Average 

Relative Sea Level Curve ranges from a minimum of –84 m between seismic sequence 

SS4 through SS5 to a maximum of 72 m in SS11. A marked increase in relative sea level 

occurred during SS5 through SS6 with relative sea level increase by 91 m, and from SS 

9 through SS11 relative sea level increased by 115 m, whereas relative sea level fell by 

20 m during SS6-9. Note that relative sea level along the dip profiles can vary 

significantly. For example, relative sea level during SS9 can vary laterally from a 

maximum of ~100 m for dip line DL4 (yellow curve) to a minimum of ~-75 m for 

adjacent DL5 (blue curve). 
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Figure 14: Seismically-derived relative sea level curve for seismic sequences SS4 through SS12. The seismically-

derived sea level curve is derived from the aggradational component of the ramp margin trajectory (Fig. 12) under 

consideration of basement subsidence for the Oligocene and Lower Miocene (Fig. 2). Phases of sea level rise during SS5 

through SS6 and SS8 through SS11 are highlighted by the yellow boxes. 
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II.5.7. Depositional Geometries  

The prograding carbonate clinoforms of the Upper Oligocene through Lower 

Miocene are identified as large-scale sigmoidal reflectors between 1,700 – 3,200 m 

depth (Fig. 5). Vertical thickness of a typical clinoform, from topset to bottomset for the 

sigmoidal reflectors, is on the order of 500 m in our depth-converted volume. The 

average lateral extent from shelf break to toe of slope of a typical clinoform is 6 km, and 

average slope angle is 8º. No carbonate boundstone rim or barrier was identified in the 

ten individual dip-directional seismic profiles (DL1 to DL10) at the shelf break positions 

for any of the 12 seismic sequences or boundaries (Fig. 5). We calculated isopach maps 

for each of the 12 seismic sequences to identify main depocenters with thick sediment 

deposition, and slope bypass channels with thin sediment deposition (Fig. 15). 

Furthermore, we created a thickness profile for SS3-SS12 from DL5 to visualize the 

thickness distribution from shelf to basin within the seismic sequences (Fig. 16). 
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Figure 15: Isopach maps for seismic sequences SS5 and SS6. Low slope angles during SS5 coincide with thick, more 

laterally continuous slope deposits. Subsequent steepening of slope angles beyond 9° during SS6 (Fig. 10) initiates slope 

channel incision. Slope channel incision during SS6 partitioned the line source and decreased the amount of sediment 

deposited along the slope due to erosion and basinward sediment transport.  
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Figure 16: Thickness profile, not a Wheeler diagram, of seismic sequences SS3-

12, illustrating sediment thickness variability for each sequence from the shelf into the 

basin. Profile is derived from reflector geometries in dip sectional profile DL5 (Fig. 5). 

Note that the lower boundary of the overlying sequence is the same as the upper 

boundary of the underlying sequence, e.g. base of SS12 = SB12 = top of SS11. Shelfal 

deposits are relatively thin compared to deposits along the slope and the basin. The 

northwest shift of facies in the seismic sequences indicates the progradation of the 

carbonate ramp through time.   

 

 

The thickest sediment volumes that are represented by numerous reflectors are 

preserved along the slope (Figs. 5 and 16). Contrastingly, the number of reflectors 

decreases by lapout shelfward and basinward, and fewer reflectors represent thinner 

sediment accumulations. Generally, shelf deposits within the seismic sequences are 

relatively thin (~50 m) compared to slope deposits (~150-350 m) and basinal deposits 

(~50-150 m) (Figs. 15 and 16). Maximum isopach thicknesses for seismic sequences 

SS1 to SS12 ranges from 160 m (in SS11) to 450 m (in SS12). The depocenters of SS3 

to SS12 are oriented parallel to the ramp margin, which for each of these seismic 

sequences, strikes southwest-northeast. Basinal sediment lobes are relatively 

symmetrical and elongated perpendicular to the ramp margin. SS5 and SS9 have thick 
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(up to 350 m), laterally continuous slope deposits. However, SS6 ,SS10 , and SS11 have 

relatively thin (~150-250 m) and laterally discontinuous slope deposits. Coincident with 

slope angles greater than 9°, SS6, SS10, and SS11 are also relatively thin across the 

entire shelf to basin profile. 

 

II.6. Discussion 

II.6.1. Ramp Geometry Evolution 

The Oligocene through Lower Miocene carbonate system of the Browse Basin is 

a distally-steepened heterozoan carbonate ramp with steep slopes and slope channels that 

display a distinctly different morphology from that of the underlying Paleocene and 

overlying Middle and Late Miocene deposits. The underlying Paleocene and older 

fluvial-deltaic clastic deposits display a rugose, low-angle (<1º) ramp seismic 

geomorphology (Fig. 5). By Late Oligocene, the depositional profile had changed into a 

distally-steepened (6-9º) carbonate ramp with three to six slope channels of ~500 – 1,100 

m width. During the Latest Oligocene through Early Miocene, the depositional profile 

remained a distally-steepened (7-10º) ramp, but slope channels markedly increased in 

abundance to 11-19 and decreased in width to ~350 m (Fig. 11). Based on seismic 

geomorphology, no carbonate boundstone barrier or rim could be identified that would 

have formed during the carbonate ramp phase of the system (Figs. 5 and 8). During 

Middle and Late Miocene, the carbonate system prograded and aggraded basinward 

towards the northwest and evolved into a carbonate rimmed-shelf with seismically-

identifiable geomorphic boundstone barriers (Fig. 5).  
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Within the context of a carbonate ramp, the outer ramp environment lacks a 

pronounced slope break, and submarine gravity-driven mass wasting deposits are 

assumed to be absent (Ahr, 2011). However, distally-steepened ramps exhibit easily 

recognizable and seismically-definable breaks-in-slope that define a “ramp-margin”. 

Typically, well defined depositional clinoforms form at these distally-steepened ramp-

margins. When such clinoforms exceed 100 m in height, they are deemed to be 

“continental-scale” clinoforms (Helland-Hansen and Hampson, 2009). Due to the ~500 

m vertical height of the Browse Basin Oligo-Miocene clinoforms of this study, they are 

classified as continental scale clinoforms (i.e., Helland-Hansen and Hampson, 2009). 

Furthermore, fine-grained foramol carbonate ramp systems, such as the study system, 

tend to build distally steepened ramps (Kenter, 1990; Pomar, 2001). The Oligocene to 

Lower Miocene carbonate system in the Browse Basin clearly exceeds the usual 1º ramp 

inclination, and there is no seismically-identifiable geomorphic barrier or reef complex. 

Lastly, we identified a clear change in seismic reflector geometry at the ramp-margin. 

Shelfward sub-horizontal, parallel reflectors transition into basinward dipping and 

sigmoidal channelized slope reflectors, back to basinal sub-horizontal rugose reflectors. 

This distinct change in reflector geometries demonstrates that the depositional profile for 

the Browse Basin Late Oligocene to Early Miocene carbonate system is a distally-

steepened ramp. The fact that most of the sediment volume in the clinoforms is 

preserved along the slope indicates that this Late Oligocene to Early Miocene margin in 

the Browse Basin, was not a bypass margin (e.g., Read, 1985) where all sediment 
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bypassed the slope through slope channels and canyons from the shelf, where it was 

produced, and into the basin where it was deposited.  

Previous research regarding the effect of ocean currents on the evolution of 

Neogene carbonates of the Maldives and Holocene carbonates of the Great Bahama 

Bank reveals that ocean currents can significantly influence the geometry of carbonate 

deposits by causing asymmetrical drift deposits, sediment wedges or sediment waves 

(Betzler et al., 2013; Betzler et al., 2014), thus causing lateral variability in depositional 

geometries. The Leeuwin Current is a moderately strong ocean current that was 

established by Early Oligocene time (Wyrwoll et al., 2009), and today, transports warm, 

low salinity, tropical water from Indonesia southward along the northwestern and 

western margin of Australia (Cresswell, 1991).   

Lateral variability in the ramp margin trajectory along the ten individual dip-

directional seismic profiles indicates that the carbonate depositional system does not 

uniformly record progradation and aggradation over time. However, in seismic horizon 

slices and strike directional seismic profiles, we did not identify asymmetrical drift 

deposits, sediment wedges or sediment waves. Slope channel geometries are of low 

sinuosity and basinal sediment lobes are not asymmetrically redirected in a preferred 

orientation.  

While the Leeuwin Current was established during the time of Late Oligocene to 

Early Miocene deposition in the Browse Basin carbonate ramp system (Wyrwoll et al., 

2009), we did not interpret any depositional products resultant of Leeuwin geostrophic 

current. We suggest that lateral variability in the ramp margin trajectory parameters for 
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SS1 to SS12 and the stratigraphic architecture were neither caused by nor significantly 

affected by lateral geometric modifications to depositional bodies by geostrophic 

currents.  

 

II.6.2. Seismically Derived Parameters 

II.6.2.1. Subsidence 

 Kennard et al. (2003) identified two distinct phases of tectonic subsidence 

for the Browse Basin from Cretaceous through Recent times. The first phase ranged 

from 141 Ma (Early Cretaceous, Berriasian) to 28 Ma (Early Oligocene), and is 

characterized by progressively slower subsidence of ~10 m/Myr due to thermal cooling 

of the Browse Basin after Late Jurassic volcanism and seafloor spreading in the adjacent 

Argo Abyssal Plain. The second phase ranged from 28 Ma (Middle Oligocene) to 0 Ma 

(Present), and is characterized by accelerated subsidence of ~25 m/Myr that is associated 

with foreland loading due to collision of the Australian plate with the Banda Arc (Baillie 

et al., 1994; Kennard et al., 2003). Subsidence rates for the Browse Basin tectonic phases 

were  modeled from multiple pseudo-wells, which demonstrated that the first subsidence 

phase of relative tectonic quiescence allowed the basin to be effectively decoupled from 

older fault systems (Kennard et al., 2003).  

Our seismically-derived subsidence rates for seismic sequences SS3 through 

SS12 of ~9-30 m/Myr (Fig. 13) are in general agreement with the modeled tectonic 

subsidence rates by Kennard et al. (2003). While previous work by Kennard et al. (2003) 

calculated this shift from lower tectonic subsidence to higher tectonic subsidence to start 
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at the Early – Late Oligocene boundary (28 Ma), the subsidence curve from our study 

has a marked change in derived tectonic subsidence starting somewhat later in SS8 

(Lower Miocene, ~23 Ma). This delay in signal could be attributed to the relative 

inboard/outboard position of our study area to the pseudo-well locations that Kennard et 

al. (2003) used for their subsidence model.  

The reasonable match between our seismically derived Browse Basin subsidence 

rates and subsidence rates modeled by Kennard et al. (2003) indicates that 1) The signal 

of subsidence is preserved in the dataset; and 2) Our application of trajectory analysis 

and cumulative aggradation analysis was a suitable way to reconstruct subsidence 

information from seismic data.  

 

II.6.2.2. Relative Sea Level  

We relate the observed inverse relationship between aggradation and 

progradation in SS1 through SS12 (Figure 12e) of R2 = 0.54 to relative sea level 

changes. At constant subsidence and sediment production rate, a rise of relative sea level 

creates accommodation, resulting in increased aggradational carbonate system growth, 

whereas a decrease in accommodation results in increased progradation of the system 

(Sarg, 1988; Schlager, 2000; Van Wagoner, 1988). During phases of high relative sea 

level, most sediment is used for the vertical growth of the system, as is visible in the 

high cumulative aggradation parameter values. During phases of low sea level, 

accommodation is limited, and excess sediment that cannot aggrade is transported 

basinward and contributes to system progradation.  
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Browse Basin regional (Woodside Energy, 2007) and global (Haq et al., 1987) 

sea level curves were compared to the seismically-derived System Average Relative Sea 

Level Curve (Fig. 17) in order to see how well the paleo sea level signal is preserved in 

the data. The comparison between the seismically-derived System Average Relative Sea 

Level Curve and the reference curves is considered a good match when both curves are 

synchronized in phase and have equal amplitude. We used maximum and minimum 

values from the ten individual dip-directional seismic profile-derived relative sea level 

curves to create an uncertainty envelope around the System Average Relative Sea Level 

Curve to visually account for lateral variability.  

Plotting the seismically-derived relative sea level curve against the regional 

reference curve of Woodside Energy (2007) yields a correlation coefficient of 0.81 (Fig. 

17) and provides three key insights: 1) The resolution of the seismically-derived sea 

level curve is slightly coarser and does not capture the higher frequency signals of the 

Woodside reference curve. This is because we based the seismically-derived sea level 

curve on 19 data points of the average ramp margin position during SS4-12, which 

corresponds to one data point every 0.9 Myr and 0.7 Myr for the Oligocene and Lower 

Miocene, respectively. A higher sampling rate of the ramp margin position could resolve 

higher frequency signals in the seismically-derived sea level curve and converge to a 

similar frequency content as the reference curve.
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Figure 17: Composite results of seismically derived sea level and subsidence signals compared to reference data from 

the literature for the Upper Oligocene through Lower Miocene. A – seismically derived sea level curve in black with stippled 

gray uncertainty envelope (this study), regional reference curve in red (Woodside Energy, 2007) and eustatic sea level curve 

in blue (Haq et al., 1987). The correlation coefficient between our seismically-derived relative sea level curve and the 

regional reference curve is 0.81. The seismically derived sea level curve has a lower frequency and amplitude than the 

reference curves but captures the major sea level rise and fall trends of the regional reference curve. Uncertainty envelope is 

derived from strike directional variability of the seismically derived sea level curve. B – Browse Basin subsidence with 28 Ma 

marking the transition from Early Tertiary thermal subsidence to Late Tertiary foreland loading, modified from Kennard et 

al. (2003). Grey curve = basement subsidence after Kennard et al. (2003); black curve = inferred basement subsidence from 

cumulative aggradation (this study). TS = thermal subsidence, FL = foreland loading. Good match between inferred 

subsidence from seismic and the reference curve indicates a good preservation of the subsidence signal in the data and a 

strong impact of the basement subsidence signal on the system geometries. 
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2) The amplitude of our seismically-derived sea level curve is lower (~35 m) 

than the amplitude of the reference curve (~50 m) in the Oligocene through Lower 

Miocene interval. The muted amplitude signal of the seismically-derived sea level curve 

can be explained by averaging the ten relative sea level curves from dip-directional 

seismic profiles DL1-DL10 into a System Average Relative Sea Level Curve (Fig. 14). 

Averaging the values results in a smoothing of the extreme ups and downs in the 

identified ramp margin positions. 3) The seismically derived sea level curve captures 

each up and down trend of the reference curve throughout the Oligocene and Lower 

Miocene interval. The correlation coefficient of 0.81 between our seismically derived 

relative sea level curve and reference data from Woodside Energy (2007) indicates that 

the signal of relative sea level is preserved in the dataset.   

 

II.6.3. External Controls and Internal Response 

II.6.3.1 Slope Angles and Slope Channels 

With few exceptions, slope channels do not commonly develop in carbonate 

ramp systems due to their low angle depositional profiles (Gómez-Pérez et al., 1998; 

Rankey, 2003). However, in the Browse Basin dataset, slope channels are prominent 

features throughout the depositional history of the Late Oligocene to Early Miocene 

distally-steepened ramp (cf. Figs. 8 and 11). The steep slope angles (5-12º) of the 

Browse Basin ramp favorably compare to an Upper Miocene, distally steepened ramp in 

Menorca, with ramp slope angles up to 20º (Pomar et al., 2002). The distally steepened 

Menorca ramp contains large-scale troughs trending basinward within the slope. These 
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troughs have widths of up to 1 km and thicknesses of up to 60 m, making them 

comparable in size to the slope channels identified in seismic sequences SS3 to SS5 of 

the Browse Basin Oligo-Lower Miocene distally-steepened ramp.  

We suggest that lateral variability of the ramp margin in the system was 

determined by the erosional process of slope channel incision, which, in turn, was 

controlled by relative sea level changes. The relative sea level rise during seismic 

sequences SS5 through SS6 and during SS8 through SS11 increased accommodation, 

resulting in increased vertical growth and decreased progradation of the ramp margin 

during these times. This caused a steepening of slope angles to a maximum of 10° during 

SS6 and SS10 (Fig. 10). Coincident with average slope angles in excess of 9°, the slope 

system re-organized and transitioned from phase I-II between SS5-SS6 and from phase 

II-III between SS9-SS10 (Fig. 11). Moreover, lateral variability of the ramp margin 

trajectory was high during transitions between phases I, II, and II, as indicated by 

simultaneous out of phase behavior of IDA and IDP amplitude and high internal IDA 

and IDP amplitude variation (Fig. 12).  

New slope channel incision during a re-organization of the slope system creates 

lateral ramp margin variability by affecting individual dip line aggradation (IDA) and 

individual dip line progradation (IDP) amplitude, as well as internal IDA and IDP 

amplitude variability. Channel incision causes a localized decrease in progradation and 

aggradation of the ramp margin, relative to areas that prograde and aggrade without 

geometrical modification of the ramp margin from slope channel incision. The localized 

geometrical modification of the ramp margin increases internal IDA and IDP amplitude 
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variability and creates a non-uniform IDA and IDP amplitude response. Thus, lateral 

variability of the ramp margin is high. Once the slope system re-organized, the newly 

established channel pathways caused subsequent slope channels to be stacked on older 

channels. This stable position of channel pathways along the slope resulted in decreased 

geometrical modification of the ramp margin and thus low lateral variability. 

Furthermore, we attribute the transition from thick and laterally continuous slope 

deposits in SS5 and SS9 to relatively thin and laterally discontinuous slope deposits in 

SS6 and SS10, respectively, to slope channel incision into the shelf at slope angles 

greater than 9°. Slope channel incision partitioned the line source and decreased the 

amount of sediment deposited along the slope due to erosion and sediment bypass into 

the basin. 

Maximum average slope angles of 10° in this study conform with maximum 

slope angles in the Oligocene through Lower Miocene carbonate ramp of the Carnarvon 

Basin (~500 km southwest of the Browse Basin) range from 5-15° (Cathro et al., 2003). 

Generally, fine-grained foramol carbonate systems form distally-steepened ramps with 

slope angles of ~10-15° (Kenter, 1990; Pomar, 2001; Read, 1985). Once the carbonate 

system approaches the angle of repose, the slope system becomes unstable, initiating 

mass flow (Kenter, 1990; Lee et al., 2007), and thus increased basinward sediment flux 

along the slope. We argue that CCCSA captures the re-organization of the slope system 

in response to increased basinward sediment flux along the slope in excess of the angle 

of repose. 
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We consider the CCCSA parameter to be an indicator of slope system stability, 

similar to the fluvial avulsion threshold parameter in fluvial systems (Slingerland and 

Smith, 2004). When the fluvial avulsion threshold is reached, a fluvial system reaches a 

disequilibrium state at low slope angles. Equilibrium is re-established by a shift of the 

old fluvial pathway from the avulsion node into a new pathway on the floodplain. 

CCCSA is an expression of the equilibrium between basinward sediment flux and 

available flux capacity of the channel system. The slope system can be stable at low 

CCCSA values if the basinward sediment flux is low. A subsequent increase in sediment 

flux will de-stabilize the slope system. At this disequilibrium state, the slope system re-

organizes to increase CCCSA through the incision of more slope channels to reach a 

new equilibrium state. The slope system will be in equilibrium during increased 

basinward sediment flux if CCCSA is sufficiently high to accommodate the high flux. 

The amalgamation of slope channels decreased the total number of slope 

channels during SS3 through SS5 from 6 to 3, and during SS7 through SS9 from 14 to 

11 (Fig. 11a). This channel amalgamation decreased the CCCSA through a decrease in 

channel number and channel depth (Fig. 11b, c). Amalgamation also changed the slope 

morphology from more localized, abundant and narrow pathways to fewer channels that 

are shallower and wider. Basinward sediment flux during SS3 through SS5 and SS7 

through SS9 was relatively low due to vertical growth of the ramp, and was sufficiently 

accommodated by the low CCCSA. Once aggradational growth of the system raised 

average slope angles beyond 9° during SS6 and SS10 (Fig. 10), the angle of repose was 

reached, causing mass flow with increased basinward sediment flux bypassing the slope. 
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At this point, however, CCCSA was insufficient to accommodate the increased 

basinward sediment flux. The slope system reacted to this disequilibrium between 

increased sediment flux and low CCCSA by creating more slope channels and thus 

increasing CCCSA to accommodate for the increased sediment flux. In both instances, 

CCCSA is very low at 50,000 m2 for SS5 and 55,000 m2 for SS9, and subsequently 

increases to 120,000 m2 in SS6 and to 200,000 m2 in SS10 (Fig. 11). An abrupt increase 

in CCCSA is therefore indicative of an unstable slope channel system that undergoes re-

organization.  

CCCSA analysis highlights phases of major re-organization of the Browse Basin 

slope system, which are ultimately caused by sea level variations and characterized by a 

drastic change in the number, width and/or depth of slope channels. This technique can 

be easily applied in other channelized carbonate slope systems throughout geological 

time to identify stages of autogenic re-organization. Further research is required to test if 

CCCSA analysis can highlight significant changes in the signal of allogenic controls in 

other carbonate ramp and rimmed shelf systems.  

 

II.6.3.2. Ramp Morphology 

For the Browse Basin Late Oligocene to Early Miocene carbonate system, large-

scale antecedent topography of the distally-steepened ramp profile was determined by 

regional Australian North West Shelf Mesozoic and Tertiary tectonic events, and the 

consequences of these events defined the location and SW to NE strike of the ramp 

margin. We attribute subsequent basinward (northwest) progradation of the carbonate 
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system, and the development of slope channels parallel to dip, to the large-scale basin 

geometry. An example of intermediate-scale basin geometry is the antecedent 

depositional profile of the Paleocene and older fluvial-deltaic strata that exhibit seismic 

reflector dips from 0º to 3º, with an average of 2º. Regardless of the antecedent 

topography, reflector inclinations of the overlying distally-steepened carbonate ramp 

consistently range from 5º to 12º for the slope, and less than 2º along the shelf. While 

Gischler and Lomando (2000) argued that localized antecedent topography can be as 

important in shaping younger, overlying system architecture as relative sea level 

changes, we did not interpret any barrier island, lagoon or other intermediate-scale 

Paleocene topographic features that were inherited by the overlying Late Oligocene to 

Early Miocene strata in the study area.  

Antecedent topography influences localized deposition (Bergman et al., 2010), 

and thus, the resulting depositional geometries. On the finest seismically resolvable scale 

of individual channels (10s m), pre-existing topography visibly affected the system. 

Slope channels are stacked throughout the study interval where the pre-existing 

topography of a channel is the seed point for the next generation of channels at the same 

location in x-y space (Fig. 7). We argue that a larger-scale control, such as a change in 

slope angles, is necessary to overcome the influence of existing sediment avenues and 

induce abandonment of stacked channel pathways. Low slope angles during SS5 and 

SS9 correlates with a stable position of vertically stacked channels. Subsequent sea level 

induced steepening of slope angles beyond 9° during SS6 and SS10 initiated the incision 

of new slope channels and a shift in the position of sediment avenues (Fig. 15).  
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Overall, our findings conform to work by Bosence (2005), indicating that both 

tectonic setting and relative sea level changes are key controls on passive margin 

carbonate system development. While tectonically-controlled large-scale antecedent 

topography determines the basin geometry, the signal of relative sea level overprints the 

effect of intermediate-scale and small-scale antecedent topography in the study area. 

This is in agreement with work by Hine and Mullins (1983), who attributed major shape 

and orientation of large-scale features, such as the shelf relief, to tectonism, whereas 

geometries of smaller scale features, such as channel pathways, were attributed to be 

mainly controlled by relative sea level changes.  

 

II.7. Summary and Conclusions 

The Upper Oligocene through Lower Miocene carbonate system in the Browse 

Basin is a distally steepened carbonate ramp with steep slopes of up to 12º containing 

abundant slope channels. The succession of continental-scale clinoforms exhibits thick, 

laterally continuous slope deposits, which are only bypassed during phases slope system 

re-organization due to slope channel incision at average slope angles greater than 10º. 

We reconstructed the signals of subsidence and relative sea level from 3D seismic data 

by applying seismic geomorphology and ramp margin trajectory analyses. The match 

between reference data and our seismically derived signals indicates a good preservation 

of the subsidence and relative sea level signals in the data. 

Relative sea level changes ultimately determined the character of basinward 

sediment transport and lateral variability of the ramp margin of the Upper Oligocene 
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through Lower Miocene carbonate ramp in the Browse Basin. Progradation, aggradation, 

and slope angles were controlled by changes in relative sea level. Slope angles greater 

than the angle of repose initiated the incision of new slope channels, which created 

lateral variability in the ramp margin trajectory.  

We designed the cumulative channel cross sectional area (CCCSA) as a 

quantitative seismically-derived parameter and interpret it to be a proxy for the 

equilibrium between basinward sediment flux and available flux capacity of the channel 

system. CCCSA analysis offers a novel way of parameterizing carbonate slope systems 

and their stability. Moreover, CCCSA analysis sheds light on how basinward sediment 

transport reacts to allogenic and autogenic controls by highlighting phases of autogenic 

slope system re-organization in response to changes in relative sea level.  

Large-scale antecedent topography of the basin geometry determined the 

northwest progradation of the Browse Basin ramp. However, relative sea level 

overprinted the effect of intermediate-scale and small-scale antecedent topography. 

Paleocene topographic features were not inherited by the system and the influence of 

small-scale antecedent topography of the slope channels was ultimately overcome by the 

effect of relative sea level changes on slope angle.   

 

 



 

60 

 

III - MODIFICATION OF THE RECIPROCAL SEDIMENTATION MODEL IN 

PERMIAN UPPER SAN ANDRES MIXED CLASTIC-CARBONATE CLINOFORMS, 

LAST CHANCE CANYON, NM 

 

III.1 Synopsis 

Integration of field-based geological data and drone-based photogrammetry 

produced a 3D digital model of the mixed carbonate-siliciclastic clinoforms of the Upper 

San Andres Formation (Upper Permian), Last Chance Canyon (LCC), Guadalupe 

Mountains, NM.  

We introduce a modification to the traditional reciprocal sedimentation model in 

the Permian Basin based on outcrop observations and modeling results with. As opposed 

to the traditional lowstand siliciclastic and highstand carbonate dichotomy, our 

modification proposes uninterrupted sediment production of the carbonate factory in a 

“refugio” position, away from the avenues of sand input during fifth-order relative sea 

level drops. Our modeling results reveal a locally persistent, large-scale (~2 km wide) 

paleo-topographic low, the “Wilson Canyon Chute”, in Last Chance Canyon that created 

mixed siliciclastic-carbonate clinoforms whereas coeval carbonates outside the chute 

entirely lack siliciclastic facies. The Wilson Canyon Chute most likely served as 

preferred avenue for basinward siliciclastic sediment bypass and deposition during fifth-

order relative sea level lowstands.   

Clinoform progradational extent was as great as 800 m, and slope angles were as 

great as 18˚. Our investigation of slope angles, progradation, and aggradation in 3D 
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reveals, for the first time, the significant along-strike variability in LCC clinoform 

geometries. Intermediate-scale (~300 m wide, ~25 m deep) slope channels within the 

lower slope and bottomset portion of the clinoforms served as possible basinward 

sediment transport pathways for siliciclastic sediment within the fifth-order LST and 

TST. Clinoform-internal facies partitioning between siliciclastic bottomset and carbonate 

topset facies was dominantly controlled by low-amplitude (~10 m), fifth-order relative 

sea level variations, antecedent topography, and slope channel incision.  

 

III.2 Introduction 

A key challenge of geological field work is to capture the three-dimensionality of 

stratigraphic units. Outcrop topography oftentimes presents geometries that are artifacts 

of the projection of three-dimensional stratigraphic relationships into a two-dimensional 

cross section. Digital outcrop modeling is a valuable method to visualize complex 3D 

stratigraphic relationships, which are not apparent in traditional 2D representations 

(McCormick et al., 2000). Last Chance Canyon (LCC) comprises multiple canyons that 

expose 2D sections through the prograding mixed carbonate-siliciclastic clinoforms of 

the Late Permian Upper San Andres Formation (Sonnenfeld, 1991a). The complex 

geometry of dip-parallel, strike-parallel, and oblique canyon walls in LCC can lead to a 

distortion in the perceived clinoform geometries in the field. By creating a geological 

model, we removed this geometrical distortion and reconstructed the 3D geometries of 

seven clinoforms in LCC.  
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Since the 1940’s, LCC served as a prominent study area in the focus of changing 

sedimentological and stratigraphic research focus from lithostratigraphic analysis to 

sequence stratigraphy to digital outcrop analysis. Lithostratigraphic studies with focus on 

fossil content and age correlation of strata exposed in LCC were conducted by Boyd 

(1958); Darton and Reeside Jr (1926); Hayes (1959); King (1942); Skinner (1946).  

Subsequent studies by Harrison (1966); Jacka et al. (1968); McDermott (1983); Naiman 

(1982); Williams (1969) focused on interpreting depositional environments of the 

lithologies in LCC. With the rise of the sequence stratigraphic method in the late 1970’s, 

research emphasis shifted towards depositional facies, large-scale stratal geometries and 

the seismic-scale sequence stratigraphic framework of LCC strata (Sarg and Lehmann, 

1986a, b). Sonnenfeld (1991b) provided the foundation of the current understanding of 

high-resolution sequence stratigraphy, volumetric partitioning, and facies differentiation 

of the San Andres strata exposed in LCC. Subsequent work modified basic 2D 

geometries and lithological facies (Sonnenfeld and Cross, 1993), and demonstrated that 

LCC can serve as analogue for San Andres reservoirs in the Permian Basin (Dutton et 

al., 2005; Galloway et al., 1983; Kerans et al., 1994). Phelps and Kerans (2007) and 

Phelps et al. (2008) used LIDAR-based digital outcrop analyses in LCC to study channel 

levee complexes and lateral facies continuity in the carbonate clinoforms, while 

geophysical studies investigated the link between depositional geometries and 

petrophysical properties on seismic response (He et al., 2016; Kenter et al., 2001; Kenter 

et al., 1997; Stafleu and Sonnenfeld, 1994). 
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So far, the comprehensive body of research in LCC collapsed field measurements 

from throughout the study area into 2D profiles that do not capture the along-strike 

variability of the Upper San Andres mixed siliciclastic-carbonate clinoforms (e.g. Kenter 

et al., 2001; Sonnenfeld, 1993; Stafleu and Sonnenfeld, 1994). Moreover, previous 

studies invoke the traditional model of reciprocal sedimentation (carbonate-dominated 

highstand and siliciclastic-dominated lowstand) in the Permian Basin (Van Siclen and 

Merriam, 1964; Wilson, 1975) to ascribe the volumetric partitioning between carbonate 

topsets and siliciclastic foresets and bottomsets in the LCC clinoforms to changes in 

relative sea level (e.g. Sonnenfeld, 1993; Sonnenfeld and Cross, 1993). However, these 

approaches do not explain the contemporaneous existence of mixed siliciclastic-

carbonate clinoforms and pure carbonate clinoforms in LCC, nor do they capture the 3D 

complexity of clinoform geometries and facies partitioning.  

The objective of this study is to address these shortcomings and augment 

previous research in LCC to answer two key questions: 1) How did relative sea level 

changes and antecedent topography affect the 3D geometrical variability and carbonate 

vs. siliciclastic facies distribution in LCC? 2) How can we reconcile the presence of 

mixed siliciclastic-carbonate clinoforms in the eastern part of LCC (Wilson Wall) with 

the presence of coeval, pure carbonate clinoforms in the western part of LCC 

(Whiteoaks Canyon)? This study integrates traditional geological field work (e.g. rock 

samples, measured sections, thin sections, hand-held GR profiles, 2D photomosaics) 

with drone-based photogrammetry to create a 3D geological model of LCC that honors 

outcrop descriptions and extrapolates realistic 3D clinoform geometries and siliciclastic 
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vs. carbonate facies distributions. By doing so, we reconciled the existence of coeval 

mixed siliciclastic-carbonate and pure carbonate clinoforms by introducing a 

modification to the reciprocal sedimentation model in the Permian Basin. This 

modification integrates outcrop observations and modeling results of fifth-order 

parasequences and includes uninterrupted carbonate production in a “refugio” position, 

away from the avenues of sand input. 

 

III.3 Geological Setting 

Last Chance Canyon is located in Eddy County, ~50 km southwest of Carlsbad, 

NM (Fig. 18). Paleogeographically, the study area represents the shallow marine shelf to 

slope transition on the Permian Basin Northwest Shelf (Fig. 19). During the 

Guadalupian, the shelves of the Permian Basin were dominated by autogenic highstand 

carbonate rocks, whereas the basin fill comprised lowstand siliciclastic rocks that were 

likely sourced from the ancestral Rocky Mountains (Fischer and Sarnthein, 1988; 

Gardner, 1992; Kerans and Fitchen, 1995; Kocurek and Kirkland, 1998). The 

Guadalupian San Andres Formation was deposited on the Northwest Shelf in an arid, 

subtropical climate within +/- 5° north of the paleo-equator (Fischer and Sarnthein, 

1988; Golonka et al., 1994; Kerans and Fitchen, 1995; Meissner, 1972). Time-equivalent 

basinal siliciclastic deposits in the Delaware Basin (Fig. 20) are the Cherry Canyon and 

Brushy Canyon sandstones (Gardner, 1992; Harms and Williamson, 1988; Sarg et al., 

1997; Sonnenfeld and Cross, 1993).  
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Figure 18: Base map of the Last Chance Canyon study area in southeast New 

Mexico with outline of photogrammetry data coverage, location of strike and dip profiles 

(yellow lines), measured sections from Sonnenfeld (1991), and measured sections from 

this study as ground truth for the reconstruction of 3D clinoform geometries. 
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Figure 19: Paleogeographic map of the Permian Basin (modified from Sarg et 

al., 1999). The study area of Last Chance Canyon is located on the Northwest Shelf of 

the Delaware Basin in a shallow marine depositional environment. 
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Figure 20: Stratigraphic framework of the Upper San Andres Formation in the 

Permian Basin (after Sonnenfeld and Cross, 1993; Kerans and Kempter, 2002). Note 

that the San Andres Fm age boundaries are approximated due to a lack of high-

resolution age constraints. 

 

 

The main structural feature in the study area is the Pennsylvanian Huapache 

Fault Zone and surface monocline. During the Ouachita-Marathon orogeny, wrench-

related compression caused reverse faulting at the Huapache Fault Zone, creating a zone 

of structural weakness and shaping the paleo-topography (McKnight, 1986). The 

resulting topography influenced Permian sedimentation patterns and resulted in the east-

southeast progradation of the San Andres shelf margin during the Leonardian and 

Guadalupian (Sonnenfeld and Cross, 1993). Following the Laramide orogeny, Neogene 

Basin and Range-related normal faulting reactivated the structurally weak Pennsylvanian 

Huapache Thrust Zone, which formed to the Huapache Monocline but resulted in 

minimal structural deformation in the easternmost extent of the study area (McKnight, 

1983; Phelps and Kerans, 2007).  
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III.4 Data and Methods 

III.4.1 Stratigraphic Framework and Clinoform Definition 

We use standard sequence stratigraphic methodology and nomenclature for 

stratal geometries, stratal terminations, and hierarchical order (Catuneanu et al., 2009; 

Mitchum et al., 1977a; Mitchum and Van Wagoner, 1991) in our analysis of the mixed 

siliciclastic-carbonate clinoforms of the Permian San Andres Formation in LCC. Kerans 

and Kempter (2002) subdivided the Upper Leonardian and Guadalupian strata in the 

Permian Basin into six “composite sequences” (CS-9 to CS14), which are equivalent to 

third-order depositional sequences. The Guadalupian Upper San Andres Formation in 

LCC is of Lower Wordian age (Fig. 20) and represents the carbonate-dominated, fourth-

order Guadalupian 8 (G-8) transgressive systems tract (TST) and mixed siliciclastic-

carbonate Guadalupian 9 (G-9) highstand systems tract (HST) of CS-10 (Kerans and 

Fitchen, 1995; Kerans and Kempter, 2002; Sonnenfeld and Cross, 1993). CS-10 marks 

the transitional stage in the evolution of the Guadalupian Permian Basin carbonate 

platform from low angle ramp to rimmed shelf geometry. Focuses of this study are six 

5th-order G-9 HST parasequences (C1-C6) that form mixed siliciclastic-carbonate 

clinoforms in LCC (Fig. 21). Our six reconstructed clinoforms are the equivalent of 

high-frequency cycles 5-10 of Sonnenfeld and Cross (1993). The HST clinoforms are 

bounded at the base by the third-order CS-10 MFS and are capped by the unconformity 

(third-order sequence boundary) between the San Andres and overlying Grayburg 

formations (Kerans and Kempter, 2002). The “Hayes Sandstone” is a prominent white 

sandstone marker bed near the base of the Grayburg Formation that is considered an 
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originally near horizontal surface (Sonnenfeld and Cross, 1993) and is thus used as 

datum for our reconstructed clinoform geometries.  

Our field observations are captured in seven measured sections and ten annotated 

photomosaics that contain stratigraphically relevant information, such as lateral and 

vertical clinoform boundaries, and major facies contacts. Sonnenfeld (1991b) and Phelps 

et al. (2008) gave detailed descriptions of the carbonate and siliciclastic facies, facies 

contacts, and stratal terminations of the LCC clinoforms, which are broadly summarized 

here:  

Fifth-order lowstand systems tract (LST) deposits comprise primarily siliciclastic 

sediment and carbonate skeletal fragments from channel lag deposits towards the base of 

the clinoforms that onlap against the lower slope.  

Clinoform bottomsets and lower foresets are characterized by sand-on-sand 

contacts of siltstone to fine sandstone.  

Fifth-order TST deposits consist of siliciclastic sediment onlapping against the 

slope of the clinoforms.  

Along the clinoform upper foresets and topsets, the fifth-order maximum 

flooding surface (MFS) separates siliciclastic sediment below from carbonate sediment 

above. In the lower slope and bottomset part of the clinoforms, the MFS is challenging 

to identify due to alluvium and subtle sand-on-sand contacts.  
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Figure 21: Simplified dip profile through the prograding mixed carbonate-siliciclastic clinoforms in Last Chance Canyon (modified from Sarg et al., 1997; original cross section by Sonnenfeld, 1991). The 

individual clinoforms represent 5th-order parasequences of the Upper San Andres Formation. 
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Fifth-order highstand systems tract (HST) deposits comprise primarily subtidal 

carbonate facies (e.g. fusulinid peloidal packstone, cherty brachiopod-fusulinid 

wackestone) downlapping onto the fifth-order siliciclastic LST and TST facies.  

It is important to note that the mixed siliciclastic-carbonate HST clinoforms are 

considered fifth-order parasequences (Phelps et al., 2008; Sonnenfeld and Cross, 1993), 

which are separated by fifth-order sequence boundaries (Sonnenfeld and Cross, 1993). 

Clinoform geometries are mainly controlled by fifth-order relative sea level variations 

(Phelps et al., 2008) that tend to have a lower amplitude than third-order sea level 

variations (Kerans and Tinker, 1997). Since there are no indicators of subaerial exposure 

in the Upper San Andres Fm strata in the study area (Sonnenfeld and Cross, 1993), we 

estimate the amplitude of fifth-order relative sea level variation during deposition of the 

clinoforms to be ~10 m. Furthermore, we argue in this study that clinoform-internal 

facies partitioning between siliciclastic bottomset and carbonate topset facies is 

dominantly controlled by fifth-order sea level variations and antecedent topography.  

 

III.4.2 Photogrammetry 

We acquired 3,100 drone-based photographs of LCC using a DJI Phantom IV 

Pro drone and followed a digital outcrop modeling workflow similar to previous studies 

(e.g. Amour et al., 2013; Hodgetts, 2013; Rarity et al., 2014). The drone-integrated GPS 

system marked latitude, longitude and elevation of each photograph (lateral accuracy of 

2 m and a vertical accuracy of less than 10 m). Camera orientation during photograph 

acquisition was vertical with a resulting resolution of 5.5 x 5.5 cm per pixel. 
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Photographs were taken with an overlap of 80 – 90 % to ensure a good stitching result 

during the photogrammetry processing. We acquired 40 ground control points with a 

hand-held GPS unit in the field and identified 182 additional ground control points in 

Google Earth Pro to quality control the accuracy of the resulting photogrammetry-based 

digital elevation model (DEM). We imported the photographs into the Agisoft 

photogrammetry software package and generated a DEM of the study area with an 

overall accuracy of < 0.5 m laterally and < 3 m vertically, relative to Google Earth Pro. 

The high resolution DEM consists of ~800 million points with x, y, z (latitude, 

longitude, elevation), and RGB values. In the next stage, we transferred a point cloud of 

the Agisoft DEM with ~3.5 million points into Petrel to create the digital outcrop model 

(DOM) that contains geological ground truth from field observations and serves as base 

for the 3D surface modeling and geometric analysis of the clinoforms. In the final stage 

of the photogrammetry workflow, we draped a satellite image over the Petrel point cloud 

to display the present day topography of the DOM in color.  

 

III.4.3 3D Surface Modeling and Geometric Analysis of Clinoforms 

In the initial stage of the surface modeling workflow, we transferred the 

geological ground truth of stratigraphically significant surfaces (e.g. major facies 

contacts, lateral and vertical clinoform boundaries) from our measured sections, 

annotated photomosaics, and further 16 measured sections from Sonnenfeld (1991b) into 

the LCC DOM. Subsequently, we mapped the clinoform boundaries (fifth-order 

parasequence boundaries) along the canyon walls throughout the area covered by the 
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DOM as input for the 3D clinoform reconstruction. In addition, we mapped the 

siliciclastic-carbonate facies contacts in the DOM to reconstruct the volumetric 

distribution of carbonate and siliciclastic strata in the study area, and to calculate the 

carbonate/clastic volume ratio for individual clinoforms. All modeling results are based 

on and limited to outcrop measurements and observations acquired during this project 

and previous studies, as specified above.   

As base surface for the clinoform reconstruction, we created the Upper San 

Andres third-order maximum flooding surface (MFS) and used it as a trend surface to 

build the subsequent clinoforms. By using a base surface as trend surface for 

reconstructing the overlying clinoform surface, we mimicked natural sedimentation that 

deposits sediment onto antecedent topography. Clinoform break points or rollovers 

represent the increase in slope angle at the transition from shelf topset to slope foreset 

and were used to calculate progradation and aggradation of the reconstructed clinoforms. 

Clinoform rollovers were recognized in the fusulinid peloidal packstone facies of each 

parasequence (Phelps et al., 2008). The fusulinid peloidal packstone facies served as a 

proxy for a paleo-water depth of 10-20 m (Ross, 1983; Sonnenfeld and Cross, 1993). To 

compensate for compaction since deposition of the Hayes Sandstone and minor Tertiary 

Huapache Fault Zone structural deformation in the eastern part of the study area, we 

flattened the reconstructed clinoforms on the base of the Hayes Sandstone as datum.  

We performed all geometrical calculations (dip angles, dip directions, 

progradation, aggradation) on the clinoforms after flattening on the overlying Hayes 

Sandstone datum. Using trajectory analysis (e.g. Helland-Hansen and Hampson, 2009; 
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Henriksen et al., 2009), we translated the vertical component of the clinoform rollover 

trajectory as aggradation or downstepping, and the horizontal component of clinoform 

rollover as progradation or retrogradation. To capture along-strike variability in the 

clinoform rollover trajectory and clinoform geometries, we measured clinoform 

progradation and aggradation along 10 dip parallel profiles (DL1- DL10; with a 50-m 

spacing) that are located between Wilson Wall and Panorama Point.  

 

III.5 Results and Discussion 

III.5.1 Clinoform Geometries  

Clinoforms C1 to C6 have a height of up to 140 m and exhibit sigmoidal 

geometry (Fig. 22a). Modeled clinoforms are thickest near the clinoform rollover, with 

maximum thicknesses ranging from 36 m in C2 to 68 m in C5. Clinoform isopachs thin 

shelfward to the northwest and basinward to the southeast. Siliciclastic facies onlap 

against the clinoform foresets. Along strike, our modeling results indicate stacked, large-

scale trough geometries of clinoforms C1-C6 with wavelengths of up to 2 km in strike 

direction and depths as great as 75 m (Fig. 22b). Siliciclastic facies are thickest in the 

axis of the trough and thin towards the flanks. The axis of the large-scale trough is 

oriented along Wilson Canyon and dips east-southeast from the northeast end of 

Whiteoaks Canyon, toward the confluence of Sitting Bull Canyon and Wilson Canyon 

(Fig. 22c). Average clinoform dip direction changes slightly from ~125˚ in C1-C3 to 

~105˚ in C4-C6. Clinoform slope angles for C1-C6 range from a minimum of 4˚ to a 

maximum of 18˚, with a trend of progressively increasing average slope angles of 
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subsequent clinoforms from 7˚ in C1 to 12˚ in C6 (Fig. 23). Slope angles for each 

modeled clinoform vary significantly along strike; for example, the slope angle of C6 

varies laterally between 8˚ and 18˚. In strike-oriented outcrops, we identified multiple 

siliciclastic slope channels that have a maximum width of 370 m and depths of up to 25 

m (e.g. Fig. 25). These dimensions are comparable to those identified by (Sonnenfeld, 

1991b; his Fig. 7.24) and (Phelps et al., 2008; their Fig. 24). 

Extracted clinoform slope angles from this study (Fig. 23) are systematically 

higher in our analysis (by 1-3˚) compared to Sonnenfeld and Cross (1993). We attribute 

this result to the fact that we extracted true dip angles from interrogating the entire 3D 

clinoform surface, as opposed to averaging dip angles from outcrops that are mainly 

oblique to true dip. While maximum clinoforms slope angles in this study are 18˚, Scott 

(2007) reported clinoform slope angles of up to 20˚ based on outcrop measurements. 

This discrepancy can be explained by our flattening of clinoforms on the Hayes 

sandstone (regional dip of ~5˚ towards east-northeast) to compensate for post-

depositional compaction and deformation, and reconstruct depositional slope angles.
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Figure 22: Reconstructed clinoform geometries indicate a large-scale paleo-topographic low that served as 

preferential sediment pathway for siliciclastic units during fifth-order relative sea level lowstands in the study area. A) Dip 

profile through LCC hung on the base of the Hayes sandstone as datum and showing the facies partitioning between 

carbonate topsets and siliciclastic bottomsets with sand-on-sand contacts in our model. 5x vertical exaggeration. B) Strike 

section through LCC with the Hayes sandstone as datum, showing the trough geometry of clinoforms with siliciclastic fill 

onlapping the flanks of the chute in our model. 5x vertical exaggeration. C) 3D reconstruction of top Clinoform 3 with a 

scoop-shaped geometry; clinoform height contour interval = 10 m; present day surface elevation contour interval = 20 m. 
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Figure 23: Comparison of clinoform slope angles from this study (black) and 

Sonnenfeld & Cross (1993; gray). The range of the upper (max) and lower (min) 

horizontal bars indicates the along-strike variability of slope angles within the 

individual clinoforms. Note the systematically increasing slope angles from the MFS to 

Top Clinoform C6. 

 

 

The flattening tends to decrease resulting clinoform slope angles by ~2˚ 

compared to field measurements. We interpret the stacked large-scale trough geometries 

and the distribution of siliciclastic facies as indicators of a locally persistent, large-scale 

paleo-topographic low in the study area that likely served as chute for basinward 

siliciclastic sediment bypass during fifth-order relative sea level lowstands.   
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III.5.2 Progradation and Aggradation  

Clinoform progradation and aggradation values were derived from the ten dip 

profiles DL1 to DL10 after the clinoforms were flattened on the base of the overlying 

Hayes Sandstone (Fig. 24). Clinoform C1 displays intermediate progradation of ~200 m 

and strong aggradation of ~ 12 m. Subsequent progradation of Clinoforms C2 and C3 

was high (500+ m), whereas the clinoform rollover recorded downstepping of ~3 m. 

Clinoform C3 has opposing directions of aggradation from 9 m of downstepping to 2 m 

of aggradation. Clinoforms C4, C5, and C6 prograded ~100 m each and aggraded 

slightly (~6 m). Overall, our calculated progradation and aggradation ranges match the 

trend of Sonnenfeld and Cross (1993), although absolute values differ slightly in most 

cases.  

Our results demonstrate up to ~300 m of progradational lateral variability and up 

to 10 m in aggradational lateral variability of the clinoforms. We attribute the concurrent 

aggradation and downstepping in the clinoform rollover along strike of Clinoform C3 

(Fig. 24b) to the filling of varying accommodation along strike. Clinoform sections that 

exhibit slope channel incision gain accommodation by losing strata and thus decrease in 

elevation. Along strike of the same clinoform, areas that are not affected by slope 

channel incision experience progradation and aggradation as controlled by their 

antecedent topography, without interruption by channelized erosion. 
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Figure 24: Clinoform progradation and aggradation from this study (in black) 

calculated along ten dip profiles to visualize the lateral variability. Sonnenfeld & Cross 

(1993) progradation and aggradation rates (in gray) were derived from their projected 

2D dip profile.   
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Figure 25: Strike-parallel view of Panorama Point location in the 

photogrammetry-derived high-resolution digital elevation model. A) Uninterpreted view. 

B) Interpreted channel geometries and clinoform contacts on the canyon wall. These 

intermediate-scale channels are located on the upper slope, just below the clinoform 

rollover. Strike-oriented outcrop cuts of the slope channels have a width of up to 370 m 

and a depth of up to 25 m. 

 

 

 

The derived amplitude of vertical movement of the seven clinoform rollover 

positions is less than 15 m (Fig. 24b). This amplitude compares favorably to the 

previously described absence of signs of subaerial exposure of the shallow water 

carbonate facies (Phelps et al., 2008) and our initial assumption of fifth-order relative sea 

level variation during the deposition of the HST parasequences to be in the range of ~10 
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m. In addition, the low absolute aggradational variation and subtle clinoform rollover 

geometries magnify minor variations in manually picking the rollover position. 

Considering the subjective nature of clinoform rollover interpretation, this effect can 

lead to discrepancies in the results of different interpreters. Third-order HSTs generally 

are characterized by an aggrading-prograding-downstepping stacking pattern (e.g. Neal 

et al., 2016). The initial high aggradation in Clinoform C1 and subsequent intermediate 

progradation and low aggradation support the notion that Clinoforms C1 to C6 represent 

the aggradational to progradational stacking pattern seen in the third-order HST of the 

Upper San Andres Formation. The intermediate-scale channels within the fifth-order 

LST and TST siliciclastic deposits represent a second scale of basinward sand transport 

avenue.  

 

III.5.3 Modification to the Reciprocal Sedimentation Model 

The standard model of reciprocal sedimentation in the Permian Basin describes a 

“carbonate stage” with broad, shelf-rimming carbonate sedimentation and a sediment-

starved basin during high relative sea levels (TST and HST), and a “clastic stage” with 

siliciclastic sediment bypass into the basin during low relative sea levels (LST) 

(Meissner, 1972; Van Siclen, 1958; Wilson, 1975), without inference on hierarchical 

order. Kerans and Kempter (2002) adapted the facies partitioning of lowstand 

siliciclastic and highstand carbonate facies to third-order and fourth-order hierarchy in 

the large-scale setting of the Permian Basin. In their reciprocal sedimentation model, 

Meissner (1972), Wilson (1975), and Kerans and Kempter (2002) de facto imply a basin-
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wide carbonate factory shut-off during third-order relative sea level lowstands. This 

discussion focuses on the local fifth-order cyclicity and facies partitioning of strata in 

Last Chance Canyon, as controlled by relative sea level. 

Our modeled clinoform geometries and resulting isopachs indicate a large-scale 

(~ 2 km wide) paleo-topographic low that dips east-southeast, parallel to clinoform 

progradation; its axis is in present-day Wilson Canyon (Fig. 22c). The “Lower Gray 

Sand” below the third-order MFS is an east-southeast trending sand body in the vicinity 

of the confluence of Wilson Canyon and Sitting Bull Canyon (Fig. 26a), indicating the 

existence of a paleo-topographic low in LCC prior to the development of the third-order 

HST clinoforms. The sand thickness map of Clinoform C6 mimics the thickness 

distribution of the “Lower Gray Sand” with a scoop-shaped geometry and maximum 

sand thickness of 40 m near Panorama Point (Fig. 26b). In addition, measured sections 

from previous work indicate that the thick basinal siliciclastic facies of the third-order 

HST clinoforms in Last Chance Canyon thin southwestward and pinch out into coeval 

carbonate-dominated clinoforms between Sonnenfeld measured section 25 and 28 (Figs. 

18 and 27) (Phelps et al., 2008, Fig. 24; Sarg et al., 1997, Fig. 3-IV-3; Sonnenfeld, 

1991b). These carbonate-dominated clinoforms prograde eastward towards the canyon 

axis and downlap onto older upper-slope siliciclastic foresets, or laterally transition into 

and downlap onto lower slope and basinal siliciclastic units (Fig. 11).  
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Figure 26: Example of inherited topography and evidence of the large-scale 

chute in Last Chance Canyon being a paleo-topographic low for preferred siliciclastic 

bypass. A) Thickness map of the “Lower Gray Sand” below the third-order maximum 

flooding surface (re-drawn from Sarg et al., 1997). CI = 1 m. B) Clinoform 5 sand 

thickness. CI = 3 m. The axes of both sand bodies are parallel to depositional dip 

(WNW-ESE) as indicator for inherited topography. 
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Figure 27: Strike section of LCC indicating thinning and pinch-out of siliciclastic facies towards west-southwest (modified from Sarg et al., 1997, Fig. 3-IV-3). 
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Based on the above analysis, we argue that internal clinoform facies partitioning 

between siliciclastic bottomset and carbonate topset facies is dominantly controlled by 

fifth-order relative sea level variations and antecedent topography. We propose that the 

Wilson Canyon area of Last Chance Canyon was a large-scale paleo-topographic low or 

“chute” that served as a preferential pathway for basinward siliciclastic sediment flux 

during fifth-order relative sea level lowstands. Furthermore, we suggest that the 

reciprocal sedimentation model for the Upper San Andres clinoforms in LCC, as 

previously described by Sonnenfeld and Cross (1993), is an artifact of the intermediate-

scale 3D sedimentation patterns. Thus, we introduce a modification to the reciprocal 

sedimentation model that integrates our observations of the fifth-order parasequences 

and includes uninterrupted sediment production of the carbonate factory in a “refugio” 

position, away from the avenues of sand input (Fig. 28).  

The carbonate factory produced ramp-crest and outer ramp sediment in the form 

of autochthonous subtidal peloidal grain-dominated packstone, massive peloidal 

sandstone, fusulinid peloidal dolopackstone, and cherty fusulinid dolowackestone in a 

paleo-water depth of 0-40 m (Phelps et al., 2008) throughout the LCC area during the 

fifth-order HST (Fig. 28a). Wilson Canyon region was in a topographically low position 

and was flanked by promontories towards the southwest and northeast. Shelfal topset 

carbonate facies prograded and downlapped onto slope and basinal siliciclastic 

sediments. In the fifth-order LST (Fig. 28b), facies patterns shifted basinward and 

siliciclastic sediment input from the north was funneled through the large-scale paleo-

topographic low in the “Wilson Canyon Chute”, disrupting the carbonate factory in the 
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direct path of sediment flow. Basinal siliciclastic sediments onlapped the clinoform 

foresets and were themselves channelized by intermediate-scale slope channels. At the 

same time, the carbonate factory does not shut off laterally, in the paleo-topographically 

higher promontories southwest of Wilson Canyon. During 5th-order lowstands, we 

interpret that the carbonate factory retreated laterally out from the Wilson Canyon area 

and occupied topographically lower positions along strike on older, underlying slope 

facies, and maintained its normal habitat below sea level. Throughout the fifth-order 

TST (Fig. 28c), facies patterns shifted landward to a topographically higher position and 

the carbonate factory moved laterally from the flanks of the promontories back into the 

Wilson Canyon Chute. Carbonate sediment downlapped the previous LST slope and 

basinal siliciclastic units toward the chute axis, until a laterally continuous, highstand 

carbonate factory was re-established. 

 Previous studies described carbonate factories with significant lateral variability 

of stratal stacking patterns in carbonate factories of the Maldives and the Australian 

North West Shelf due to high-amplitude sea level fluctuations (Belopolsky and Droxler, 

2004; Betzler et al., 2013; Harper et al., 2015; Tesch et al., 2018). The Great Barrier 

Reef may serve as a good analogue for the modified reciprocal sedimentation model in 

Last Chance Canyon. 
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Figure 28: Proposed depositional model of the greater Last Chance Canyon area in oblique view and with dip profile 

through the axis of the large-scale LCC chute. A) Carbonate-dominated shelf with laterally continuous carbonate factory 

during HST with antecedent topography of LCC in the axis of a reentrant. B) Incision of siliciclastics into the carbonate 

factory and preferred basinward sand transport through the large-scale LCC chute with development of basinal siliciclastic 

lobes during LST, and lateral and downward migration of the carbonate factory into "refugio" position. C) Backfill and 

onlapping of siliciclastic deposits during TST, lateral and upward migration of the carbonate factory filling the paleo-

topographic low of LCC from the chute flanks. 
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Harper et al. (2015) investigated the response of the mixed carbonate-siliciclastic 

depositional system in the Great Barrier Reef to high-amplitude, fourth-order relative sea 

level changes that created lateral variability through channel incision into the reef during 

the last 150 – 75 kyr. Through the fourth-order relative sea level minimum of MIS-6, the 

reef was exposed while fringing reefs prevailed in a topographically lower refuge 

position. During this time, basinward sediment transport consisted of siliciclastic units 

being funneled through topographic lows between reef mounds (Harper et al., 2015; 

their Fig. 13a). 

 

III.6 Summary and Conclusion 

The objective of this study was to augment previous research in LCC to answer 

two key questions: 1) How did relative sea level changes and antecedent topography 

affect the 3D geometrical variability and carbonate vs. siliciclastic facies distribution in 

LCC? 2) How can we reconcile the presence of mixed siliciclastic-carbonate clinoforms 

in the eastern part of LCC (Wilson Wall) with the presence of coeval, pure carbonate 

clinoforms in the western part of LCC (Whiteoaks Canyon)? We integrated traditional 

geological field work and drone-based photogrammetry in the mixed clastic-carbonate 

clinoform system of Last Chance Canyon, Guadalupe Mountains, New Mexico, to 

reconstruct the 3D clinoform geometries and reveal significant lateral variability in 

progradation, aggradation, and slope angles.  

We reconciled our outcrop observations and modeling results with a modification 

to the traditional reciprocal sedimentation model in the Permian Basin. As opposed to 
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the traditional lowstand siliciclastic and highstand carbonate dichotomy, our 

modification proposes uninterrupted sediment production of the carbonate factory in a 

“refugio” position, away from the avenues of sand input during fifth-order relative sea 

level drops. Our modeling results reveal a locally persistent, large-scale (~2 km wide) 

paleo-topographic low, the “Wilson Canyon Chute”, in Last Chance Canyon that created 

mixed siliciclastic-carbonate clinoforms whereas coeval carbonates outside the chute 

entirely lack siliciclastic facies. The Wilson Canyon Chute most likely served as 

preferred avenue for basinward siliciclastic sediment bypass and deposition during fifth-

order relative sea level lowstands.   

Clinoform progradational extent was as great as 800 m, and slope angles were as 

great as 18˚. Our investigation of slope angles, progradation, and aggradation in 3D 

reveals, for the first time, the significant along-strike variability in LCC clinoform 

geometries. Intermediate-scale (~300 m wide, ~25 m deep) slope channels within the 

lower slope and bottomset portion of the clinoforms served as possible basinward 

sediment transport pathways for siliciclastic sediment within the fifth-order LST and 

TST. Clinoform-internal facies partitioning between siliciclastic bottomset and carbonate 

topset facies was dominantly controlled by low-amplitude (~10 m), fifth-order relative 

sea level variations, antecedent topography, and slope channel incision.  
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IV - ADDING THE MISSING THIRD AND FOURTH DIMENSIONS TO 

TRAJECTORY ANALYSIS IN CARBONATE SYSTEMS 

 

IV.1 Synopsis 

We developed a seismic geomorphology-based analysis to enhance traditional 

trajectory analysis with the ability to visualize and quantify lateral variability along 

carbonate prograding-margin types (ramps and rimmed shelves) in 3D and 4D. This 

analysis revealed the effect of far-field tectonic forcing on the large-scale shelf break 

evolution of the Oligo-Miocene carbonate clinoform system in the Browse Basin and 

identified the feedback between antecedent topography and carbonate system response 

as controlling factor on shelf break rugosity.  

Our geometrical analysis identified a systematic shift in the large-scale average 

shelf break strike direction over a transect of 10 km from 62° to 55° in the Oligo-

Miocene interval of the Browse Basin, which is likely controlled by far-field allogenic 

forcing from the Timor Trough collision zone. Plotting of 3D shelf break trajectories 

represents a convenient way to visualize the lateral variability in shelf break evolution. 

Shelf break trajectories that indicate contemporaneous progradation and retrogradation 

correlate with phases of autogenic slope system re-organization and may be a proxy for 

morphological stability of the shelf break. Ramp margin geometries are neither straight 

nor uniform through time. Shelf break rugosity and shelf break trajectory rugosity are 

not inherited, but instead controlled by the intermediate-scale autogenic feedback 

between antecedent topography and carbonate system response. The autogenic carbonate 
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system response smooths high-rugosity areas by filling accommodation and maintains a 

relatively constant rugosity of ~ 150 m. Color-coding of the vertical component in the 

shelf break trajectory captures the creation and filling of accommodation, and highlights 

areas of the transect that are likely to yield inconsistent 2D sequence stratigraphic 

interpretations. 

 

IV.2 Introduction 

The use of seismic data in stratigraphic analysis gave rise to seismic stratigraphy, 

which assigns seismic reflections to timelines and places seismic reflections in a 

chronostratigraphic framework (Mitchum et al., 1977b). The resulting sequence 

stratigraphic method uses seismic reflection terminations and seismic reflection 

geometries to reconstruct depositional systems, predict lithologies (Vail et al., 1977), and 

make inferences on relative sea level (Mitchum et al., 1977b). Decades of sequence 

stratigraphic research in a variety of depositional systems led to the development of a 

nomenclature that mixes observations with interpretations, which Catuneanu et al. 

(2009) eventually reconciled to standardize the sequence stratigraphic method.  

In contrast, the accommodation succession method aims to clearly separate 

observation from interpretations as an observation-driven approach to sequence 

stratigraphy, based entirely on geometric relationships of strata to gain insight into 

sequence boundary formation (Neal et al., 2016). Similar to the accommodation 

succession method, trajectory analysis is observation driven and traces the 2D vertical 

and lateral shelf break or clinoform rollover position through time (Helland-Hansen & 
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Hampson, 2009; Henriksen et al., 2009). Trajectory analysis and the accommodation 

succession method represent valuable conceptual variants of the sequence stratigraphic 

method that do not aim to account for the entire 3D volume of the depositional record, or 

for along-strike variability in stratal architecture of depositional systems (Madof et al., 

2016). 

Although previous studies recognized along-strike variability in stacking (Wehr, 

1994) and character of bounding surfaces (Martinsen and Helland-Hansen, 1995), 2D 

dip sections remain the leading method of interpretation in trajectory analysis (Henriksen 

et al., 2009). Sanchez et al. (2012) highlighted an important limitation of shelf edge 

trajectory analysis in deltaic systems, namely that only sections near the siliciclastic 

delta receive sufficient sediment input to record changes in relative sea level. However, 

this is not the case in carbonate systems, as sediment is produced in place by the 

carbonate factory, although the amount of produced sediment varies by facies (Schlager, 

2005). While there is a solid body of research on the topography of the slope profile (e.g. 

Adams et al., 2013; Adams and Schlager, 2000; Puga-Bernabéu et al., 2013; Schlager 

and Adams, 2001), few studies quantified the effect of along-strike variability on 

interpreted systems tracts and rollover trajectories in 3D (e.g. Gill and Cobban, 1973; 

Helland-Hansen and Hampson, 2009; Madof et al., 2016). Notably, work by Madof et al. 

(2016) focused on developing the concept of geometrical hinges to describe a 

mechanism for along-strike variability in the clinoform rollover trajectory. Differential 

progradation (sensu Madof et al., 2016) is a morphological approach to describing lateral 

variability in nearshore settings that conceptualizes the simultaneous progradation and 
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retrogradation of depositional systems rollover position around a geometrical hinge in 

map view.  

In this study, we introduce a descriptive and observationally-driven workflow to 

quantify along-strike variability in the clinoform rollover trajectory. Traditional 

trajectory analysis and the sequence stratigraphic method lack the nomenclature and 

parameters to account for lateral variability. Therefore, such analysis yields simplified 

sequence stratigraphic and depositional models that show “straight-line” strike 

geometry, which are exceptionally rare in reality. More common are prograding 

carbonate ramp and shelf margins with significant along-strike variability. Given this, 

traditional trajectory analysis can result in conflicting sequence stratigraphic 

interpretations of a prograding carbonate system when analyzed in three dimensions. We 

introduce three parameters to address this shortcoming in the hope of raising more 

attention to the 3D / 4D complexity of depositional systems in sequence stratigraphic 

analyses, which can alleviate an interpreter’s urge to force-fit data to a pre-conceived 

simplified model.  

Abbreviations: 

SB – Shelf break 

SBT – Shelf break trajectory 

RSB – Shelf break rugosity 

RSBT – Shelf break trajectory rugosity 
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IV.3 Data and Methods 

IV.3.1 Browse Basin Seismic Data 

The study area (Fig. 29) is located in the Browse Basin on the Australian North 

West Shelf (NWS). Our study focus was the Brecknock South 3D multichannel seismic 

volume that covers an area of 287.3 km2 in the central Browse Basin, at the intersection 

of the Seringapatam, Barcoo, and Caswell Sub-basins. The original seismic data are 

time-migrated, zero phase, and follow European polarity (Veritas, 2000). Previous work 

depth-converted the Brecknock South 3D seismic volume and identified twelve 

depositional sequences (SS1 through S12) with thirteen sequence boundaries (SB1 

through SB13) in the Oligo-Miocene section of the Browse Basin (Tesch et al., 2018), 

using seismic reflection terminations and seismic reflection geometries (Catuneanu et 

al., 2009; Mitchum et al., 1977a; Mitchum and Van Wagoner, 1991) to study the 

architectural evolution of the strongly prograding carbonate clinoforms. Resulting limits 

of vertical and horizontal resolution in the seismic data at the Oligocene-Miocene 

boundary are ~15 m and ~30 m, respectively (Tesch et al., 2018). During the Oligocene 

to Lower Miocene, a distally-steepened, strongly channelized heterozoan carbonate ramp 

developed in the Browse Basin (Reuning et al., 2009; Rosleff-Soerensen et al., 2012; 

Tesch et al., 2018). Age constraints from previous studies place the time duration for the 

thirteen depositional sequences at ~1.4 – 1.8 Myr/sequence (Belde et al., 2017; Rosleff-

Soerensen et al., 2012; Tesch et al., 2018). Accommodation fill in the study area was 

dominated by autogenic sediment production of the cool-water carbonate factory with 
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negligible amounts of siliciclastic sediment during the Oligo-Miocene (Rosleff-

Soerensen et al., 2012; Tesch et al., 2018). 

 

 

 

Figure 29: Location of Browse Basin on the North West Shelf of Australia with 

location of the Brecknock South 3D Seismic Survey in red (from Tesch et al., 2018).  
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IV.3.2 Shelf Break Parameterization 

Shelf breaks and shelf break trajectories are the two key morphological features 

that form the building blocks of our analysis (Fig. 30). The shelf break or clinoform 

rollover in the dataset is identified by a marked increase in seismic reflection dip angle 

(e.g. Wiseman and Ovey, 1953) from gently dipping shelfal reflections of < 2˚ to steeper 

slope reflections at a dip angle of > 4˚. The shelf break trajectory describes the lateral 

and vertical movement of the shelf break in a sedimentary system through time (e.g. 

Helland-Hansen and Hampson, 2009; Henriksen et al., 2009).  

This study introduces three parameters and a workflow to quantify shelf break 

lateral variability through time. In the initial stage of the parameterization workflow, we 

interpreted the shelf breaks of sequence boundaries SB3 to SB12 manually on 3D 

clinoform surfaces. To aid the manual interpretation of the shelf breaks in 3D, we color-

coded the surfaces with the dip angle attribute, highlighting the transition from gently 

dipping shelfal reflections to steeper slope reflections at a dip angle of ~4˚. Each 3D 

shelf break for the ten studied clinoforms consists of approximately 2,000 points along a 

transect of ~10 km (Fig. 31a).  
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Figure 30: Block diagram illustrating the three-dimensionality of clinoform shelf 

breaks and shelf break trajectories (SBT). X vs. Y map view visualizes the shelf break 

evolution through time and along strike. Shelf break trajectories are calculated as the 

difference in Y values between two successive shelf breaks to quantify the rugosity or 

along-strike variability in progradation and aggradation of the margin between 

consecutive time intervals A and B. Y vs. Z side view represents a dip profile and depicts 

the s- or z-shaped geometry of clinoforms. We collapsed 3D shelf breaks onto the Y vs. Z 

plane (e.g. Fig. 6) as another way to visualize lateral and vertical variability in the shelf 

break. This provides a detailed insight into 3D shelf break complexity, unlike traditional 

2D profiles. 
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Figure 31: Map view of interpreted shelf break SB3. A – original shelf break orientation with average strike direction 

of 31.7 degrees. B – shelf break rotated by 58.3 degrees to align mean strike line in a horizontal direction. This rotation 

simplifies the calculation of progradation relative to a previous position in x/y space. C – shelf break binned laterally into 200 

bins of 50 m size covering the full 10 km transect to ensure a normalized sampling rate along the profile. 
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The first parameter is the slope of the shelf break mean-line (MSB), denoting the 

average strike direction of the shelf break. 

Equation 4: 

𝑀𝑆𝐵 = 𝑎𝑟𝑐𝑡𝑎𝑛 
∑(𝑥 − 𝑥̅)(𝑦 − 𝑦̅)

∑(𝑥 − 𝑥̅)2
 

Where x and y are the x, y values of each map view data point for the shelf 

break. Fluctuations in MSB through time highlight changes in the large-scale 

progradation direction of the depositional system as controlled by allogenic and/or 

autogenic parameters. 

To simplify the calculation of shelf break progradation perpendicular to strike, 

we rotated all shelf break points in Petrel to a 90° strike direction of the oldest shelf 

break (Fig. 31b) and clipped the data laterally to ensure all shelf breaks have the same 

lateral extent. A subsequent stage of the workflow compensates for varying point density 

from manual shelf break interpretation and ensures an equal lateral sampling rate by 

averaging the shelf break measurements laterally into 50 m bins (Fig. 31c). This 

methodology allows for an efficient analysis of the shelf edge trajectory along 200 dip 

directional profiles. Ultimately, the bin size determines the lateral resolution of the 

analysis and needs to be sized appropriately to capture the geomorphological features of 

interest. This study employed a lateral bin size of 50 m to capture the prominent slope 

channels that created lateral shelf edge variability by incising into the shelf edge with a 

width of ~300 – 1,100 m (Tesch et al., 2018).  

We adapted a parameter that is used in materials science for measuring surface 

roughness (e.g. Black and Kohser, 2017) to design the shelf break rugosity parameter 
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(RSB).  RSB quantifies the along-strike variability of a given shelf break as the deviation 

of shelf break geometry from an idealized line source in all three spatial dimensions 

(Fig. 32a).  

Equation 5: 

𝑅𝑆𝐵 =
1

𝑛
∗ ∑|𝑌̅ − 𝑌𝑖|

𝑛

𝑖=1

 

Where n = number of lateral bins = 200; 𝑌̅ = average y value of the shelf break; Yi = 

distance between ith data point perpendicular to the average line. RSB yields the average 

distance (in meters) of the interpreted shelf break points away from the shelf break mean 

line. In effect, RSB quantifies the average amplitude of shelf break rugosity, or the 

dissimilarity of the shelf break from a line source. A perfectly straight line has an RSB = 

0.  

The third parameter is shelf break trajectory rugosity (RSBT). We calculate the 

shelf break trajectory as the difference between the y values of a given shelf break and 

the y values of the subsequent shelf break perpendicular to strike. RSBT quantifies the 

rugosity or along-strike variability in progradation and aggradation of the margin 

between consecutive time intervals A and B, or between successive stratigraphic 

sequences (3D evolution through time = 4D). The rugosity of the resulting trajectory is 

compared to uniform progradation along a dip profile. 

Equation 6: 

𝑅𝑆𝐵𝑇 =
1

𝑛
∗ ∑|𝑌̅𝐴−𝐵 − (𝑌𝑖𝐵

− 𝑌𝑖𝐴
)|

𝑛

𝑖=1
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Where n = number of lateral bins = 200; 𝑌̅𝐴−𝐵 = average y value of shelf break 

trajectory A-B; YiA = y value of ith data point on shelf break A; YiB = y value of ith data 

point on shelf break B; (Fig. 32b) 

All three parameters and our workflow were applied to a passive-margin 

carbonate clinoform system to capture and quantify along-strike changes in progradation 

and aggradation of the stratigraphic sequences, allowing for more realistic, accurate 

spatio-temporal characterization of the clinoform margin evolution, geometries, and 

sequence stratigraphic models. We recognize the potential scale-dependence of the 

average strike direction, shelf break rugosity, and shelf break trajectory rugosity 

parameters. Future research needs to investigate the effect of increasing or decreasing 

the bin size on the resulting values in the calculation of our parameters. Depending on 

the self-similarity of the shelf breaks, the resulting values may change in a predictable 

way, similar to fractal patterns described in the coastline paradox (Mandelbrot, 1983; 

Plotnick et al., 1996). 
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Figure 32: A) Map view of two successive shelf breaks (shelf break A and Shelf break B). B) Shelf break B with visualized mean Y value (𝑌̅) and shelf break rugosity (RSB) as average deviation from the mean 

line. C) Map view of shelf break trajectory between shelf break A and shelf break B. D) Shelf break trajectory A-B with visualized mean Y value and shelf break trajectory rugosity (RSBT).  
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IV.4 Results 

The average strike direction of shelf breaks SB3 to SB12 ranges from 55° to 62° 

with a trend of decreasing strike angle through time from 62° in SB4 to 55° in SB12 

(Fig. 33). We collapsed the 3D shelf breaks and shelf break trajectories onto the Y vs. Z 

axis to visualize both lateral and vertical variability (Fig. 34). Average y and z values for 

shelf breaks and shelf break trajectories in this display are shown as circle, vertical and 

lateral minimum and maximum values are indicated by error bars. Longer error bars 

correspond to higher variability in shelf break and shelf break trajectory rugosity. In side 

view, the average shelf break position for SB3 to SB12 has a step-wise evolution (Fig. 

34a). In the first step, SB3 to SB5 are strongly progradational (1,400 m – 1,700 m) at a 

relatively constant depth of ~2,450 m. During the second step, SB6 to SB9 prograde 

slightly less (800 m – 1,300 m) at a lower depth of ~2,350 m. In the last step, SB10 and 

SB12 aggrade (100 m and 54 m) and prograde (~750 m and ~1,500 m), whereas SB11 

aggrades ~90 m and retrogrades ~70 m. We plotted shelf break trajectories in four 

quadrants (I-IV) around the coordinate origin (= zero progradation, zero aggradation 

relative to the previous shelf break position) in order to better visualize the variability in 

progradation and aggradation of the SBTs: I – progradation and aggradation; II – 

retrogradation and aggradation; III – retrogradation and downstepping; IV – 

progradation and downstepping (Fig. 34b). Generally, SBTs that experience high 

progradation exhibit low aggradation or downstepping, whereas sections of the profile 

that experience the least progradation (or retrogradation) exhibit the strongest 

aggradation. Shelf break trajectories are mostly progradational with a minor 
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aggradational or downstepping component and plot in quadrants I and IV. SBT 5-6, SBT 

8-9, and SBT 10-11 have stronger aggradation and less progradation than the other 

SBTs. Only SBT 10-11 and part of SBT 5-6 plot in quadrant II, showing a major 

aggradational and minor retrogradational component. SBT 3-4, SBT 6-7, SBT 7-8, and 

SBT 8-9 cross over between quadrants I and IV, designating contemporaneous 

aggradation and downstepping along strike. 

 

 

 

Figure 33: Average strike direction of shelf breaks SB3 to SB12 progressively 

decreased from ~60° to ~55°. We attribute the progressive shift in average strike 

direction to allogenic tectonic forcing from the collision of Australia with the Timor 

Plate and resulting differential subsidence in the Browse Basin during the Oligo-

Miocene.  
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Figure 34: SB and SBT diagrams with error bars indicate basinward and vertical minimum and maximum values. 

Shorter error bars indicate lower rugosity. A) Side-view (Y vs Z) of the ten shelf break positions SB3 to SB 12 through time. B) 

Side-view (Y vs Z) of the nine shelf break trajectories SBT 3-4 to SBT 11-12. The 0, 0 coordinate origin designates the 

position of the previous shelf break for each of the shelf break trajectories. Quadrant designate: I – progradation and 

aggradation; II –  retrogradation and aggradation; III – retrogradation and downstepping; IV – progradation and 

downstepping. If the error bars are crossing sector boundaries, contradictory along-strike stratal stacking patterns can be 

expected.
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We color-coded vertical movement of the SBTs (red = downstepping, blue = 

aggradation) to highlight the vertical component of differential progradation in the data 

set (Fig. 35). Parts of the shelf break trajectories undergo a reversal in progradation 

amplitude through time: sections of the profile that are characterized by strong 

progradation record low progradation in the subsequent SBT. For example, Bin 135 

exhibits the highest progradation of SBT 4-5 (~1,660 m), but the lowest progradation (~-

135 m) in the subsequent SBT 5-6. In addition, parts of the SBT indicate a reversal in 

aggradation amplitude through time. For example, bins 40-70 of SBT 6-7 have strong 

progradation (~1,600 m) and mild downstepping (~-30 m). In the subsequent SBT 7-8, 

bins 40-70 have low progradation (~120 m) and high aggradation (~90 m). These 

progradation and aggradation reversals are common but not a strict rule. Moreover, a 

general divide between aggradational (blue) and downstepping (red) data points in the 

SBTs occurs at progradation values of ~900 - 1,500 m. SBTs with a progradation of less 

than ~1,200 m tend to exhibit no downstepping component, with the exception of SBT 

4-5 and SBT 11-12. Shelf break rugosity (RSB)  values range from 113 m in SB8 to 256 

m in SB3 and average 146 m. Shelf break trajectory rugosity (RSBT) values are slightly 

higher than shelf break rugosity values, ranging from 115 m in SBT4-5 to 260 m in 

SBT3-4 with an average of 198 m (Fig. 36a). In order to test the effect of a given shelf 

break rugosity on the subsequent shelf break rugosity and shelf break trajectory rugosity, 

we plotted RSB n vs. RSB n+1 (Fig. 36b) and RSB n vs. RSBT n+1 (Fig. 36c). There is a 

poor correlation between RSB n vs. RSB n+1 (R2 = 0.11) and between RSB n vs. RSBT n+1 

(R2 = 0.24). 
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Figure 35: Map view of shelf break trajectories color coded by aggradation (blue) and downstepping (red). Dashed horizontal lines mark the approximate progradation distance at which the shelf break 

trajectory transitions from aggrading to downstepping. Solid horizontal line marks the zero progradation line. Shelf break trajectories with relatively low progradation tend to be almost entirely aggradational (e.g. B, 

G, I); some shelf break trajectories display concurrent progradation and retrogradation (e.g. C and G); in general, a divide between aggradational (blue) and downstepping (red) data points in the shelf break 

trajectories  occurs at progradation values of ~900 - 1,500 (e.g. A, D, E, F).  
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Figure 36: The rugosity value of all shelf breaks and shelf break trajectories 

ranges between 250 – 100m. 
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IV.5 Discussion 

Our observed shift in average shelf break strike direction along a 10 km wide 

transect captures large-scale changes in the geometric evolution of the Browse Basin 

depositional system and could be indicative of a geometrical hinge sensu Madof et al. 

(2016). A significant far-field tectonic forcing factor in the vicinity of the study area was 

inversion tectonics related to the Miocene-Pliocene Timor Trough collision zone (Hall, 

2011; Kennard et al., 2003), ~500 km north of the Browse Basin. This far-field tectonic 

activity could have triggered northward-increasing differential subsidence in the Browse 

Basin (Rosleff‐Soerensen et al., 2016), causing decreased progradation in the NW of our 

profile and a resulting shift in average shelf break strike direction from 62° in SB4 to 55° 

in SB12. Similarly, Rosleff‐Soerensen et al. (2016) analyzed the variability of 

progradation and retrogradation of the Miocene reef complexes in the Browse Basin 

along a 180 km transect and attributed differential progradation to antecedent 

topography and local inversion tectonics related to the collision of Australia with the 

Timor plate. Another example of large-scale tectonic forcing as cause for a geometrical 

hinge comes from the Santos Basin; Madof et al. (2016) identified a geometrical hinge 

that caused a shift in the average shelf break strike direction of the Marambaia 

Formation (from 32° to 28°, and then back to 35° within ~6 Myr during the Ypresian) 

and attributed the shift to differential tectonic deformation related to hinterland uplift.  

SBT 5-6 and SBT 10-11 aggrade strongly along the entire profile and their error 

bars cross the boundaries between sectors I/II, which records contemporaneous 

progradation and retrogradation (Fig. 35). SBT 5-6 and SBT 10-11 occur during 
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autogenic slope system re-organization phases and support the interpretation of Tesch et 

al. (2018) that the re-organization phases occurred during high relative sea level, since a 

rise in sea level would increase accommodation and provide space for the carbonate 

factory to aggrade. During constant relative sea level or a drop in relative sea level, 

topographic lows may still be filled and aggrade. However, the surrounding 

topographically higher areas would fill to the bottom of the wave base and then prograde 

into the basin. The correlation between the SBT 5-6 and SBT 10-11 crossing of the 

sector I/II boundaries with slope channel re-organization phases might indicate that the 

sector I/II crossing could be another proxy for morphological stability of the shelf break, 

as controlled by allogenic and autogenic controls. Further research will need to test this 

hypothesis in other depositional settings. Overall, the magnitude of the error bars 

provides a quantification and visualization of along-strike variability and can help 

interpreters better understand uncertainty in their sequence stratigraphic interpretations. 

Shorter error bars that do not cross sector boundaries indicate low lateral variability and 

a more robust the sequence stratigraphic interpretations along strike. Whenever the SBT 

error bars are crossing sector boundaries, contradictory along-strike stratal stacking 

patterns can be expected.  

Ramp margin geometries are neither straight nor uniform through time. The poor 

correlation between RSB n vs. RSB n+1 (R2 = 0.11) and between RSB n vs. RSBT n+1 (R2 = 

0.24) indicates that the effect of a given shelf break rugosity on the subsequent shelf 

break rugosity and shelf break trajectory rugosity is negligible. This shows that RSB and 

RSBT are not inherited parameters in the Browse Basin clinoforms, and that antecedent 
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topography does not dictate long-term differential movement of the shelf margin through 

successive depositional sequences. The geometrical reversals in progradation and 

aggradation capture the creation and filling of accommodation and visualize the 

autogenic negative feedback between antecedent topography and the carbonate factory 

(sediment production, delivery and accumulation): areas of high rugosity and/or high 

accommodation (reentrants) due to slope channelization or minor faulting near the ramp 

margin are preferentially filled, whereas areas of low rugosity and/or low 

accommodation (promontories) experience less sedimentation. This interplay acts as 

high-pass filter to smooth out areas of very high rugosity to maintain the relatively 

constant shelf break rugosity around 150 m. RSBT can therefore be considered a measure 

of the smoothing amplitude that is required to maintain the RSB.  

When the shelf break trajectory is used as a proxy for changes in relative sea 

level, along-strike differences in shelf break trajectories can lead to contradictory 2D 

interpretations (Fig. 37).  Red-blue (downstepping-aggrading) color-coding of the 

vertical component in the SBT captures the creation and filling of accommodation, and 

highlights areas of the transect that are likely to yield inconsistent along-strike results in 

the derived sea level curve.  
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Figure 37: Map view and seismic dip lines visualizing differential progradation of SBT7-8 along bin 60 and bin 100 

(= 2 km lateral separation). A) Map view of SB7 and SB8. B) Map view of SBT 7-8 color-coded for aggradation (blue) and 

downstepping (red). C) Uninterpreted depth-converted seismic dip line along bin 60. Vertical exaggeration = 3x. D) 

Uninterpreted depth-converted seismic dip line along bin 100. E) Interpreted depth-converted seismic dip line along bin 60 

with shelf breaks SB7 and SB8, indicating an aggrading shelf break trajectory with minor progradation. F) Interpreted depth-

converted seismic dip line along bin 100 with shelf breaks SB7 and SB8, indicating a prograding shelf break trajectory with 

minor aggradation.  
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For example, y values in bin 60 aggraded more than 50 m and prograded less 

than 200 m between SB7 and SB8. In the same time interval, and only 2 km laterally 

separated, y values in bin 100 aggraded ~10 m and prograded more than 800 m. The 

resulting 2D shelf break trajectory of bin 60 would indicate a rise in relative sea level, 

whereas the 2D shelf break trajectory of bin 100 would indicate a relative sea level still 

stand. This example illustrates a shortcoming of relying on 2D dip sections in trajectory 

analysis and, in extension, of using 2D profiles for sequence stratigraphic interpretations. 

Since lateral variability in sequence stratigraphic interpretations has an impact on the 

resulting reservoir model, an important industry application of our method could be in 

the reconstruction of reservoir architecture, with potential applications in risk analysis of 

reservoir presence and well placement in the field development stage. Moreover, our 

workflow could provide valuable guidance for subsurface well-to-well correlations when 

reconstructing subsurface reservoir architecture. By not accounting for lateral variability, 

resulting sequence stratigraphic and reservoir models may suffer significant inaccuracies 

in reservoir presence and reservoir continuity. 

 

IV.6 Summary and Conclusion 

Our new workflow introduces a descriptive and observationally-driven approach 

to quantify and visualize along-strike variability in clinoform rollover trajectory analysis 

by providing the nomenclature and parameters that traditional trajectory analysis and the 

sequence stratigraphic method lack. This methodology adds the missing third spatial and 

fourth temporal dimension to trajectory analysis and should be applicable to carbonate 
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systems with an identifiable shelf or ramp margin, across multiple scales of stratigraphy 

to analyze strike variability within systems tracts, sequences, and supersequences. 

Key findings of this study are:  

1) Our geometrical analysis identified a systematic shift in the large-scale 

average shelf break strike direction in the Oligo-Miocene interval of the Browse Basin 

over a transect of 10 km. This shift resembles a geometrical hinge, which records large-

scale differential progradation of the ramp margin and is likely controlled by far-field 

allogenic forcing from the Timor Trough collision zone.  

2) The plotting of 3D shelf break trajectories represents a convenient way to 

visualize the lateral variability in shelf break evolution. Shelf break trajectories that plot 

in both sectors I (progradation and aggradation) and II (retrogradation and aggradation) 

correlate with phases of autogenic slope system re-organization and may be a proxy for 

morphological stability of the shelf break. The amplitude of error bars in this display 

indicates lateral and vertical shelf break variability and the potential robustness of 

resulting sequence stratigraphic interpretations. Whenever the SBT error bars are 

crossing sector boundaries, contradictory along-strike stratal stacking patterns can be 

expected.  

3)  Ramp margin geometries are neither straight nor uniform through time. Shelf 

break rugosity and shelf break trajectory rugosity are not inherited, but instead controlled 

by the intermediate-scale autogenic feedback between antecedent topography and 

carbonate system response. The autogenic carbonate system response in the Browse 
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Basin smooths high-rugosity areas by filling accommodation and maintains a relatively 

constant rugosity of ~ 150 m.  

4) Color-coding of the vertical component in the shelf break trajectory captures 

the creation and filling of accommodation, and highlights areas of the transect that are 

likely to yield inconsistent along-strike sea level reconstructions derived from the shelf 

break trajectory. By not accounting for lateral variability, resulting sequence 

stratigraphic and reservoir models may be oversimplified. 
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V – DISSERTATION SUMMARY 

 

The objective of this dissertation was to employ seismic geomorphology in the 

subsurface of the Browse Basin (Australia) and digital outcrop modeling in the Last 

Chance Canyon (New Mexico) outcrops to develop new analytical quantification and 

visualization techniques in the investigation of carbonate clinoform systems in 3D and 

4D to extract information on the interplay of allogenic and autogenic controls that shape 

carbonate system architecture and evolution.  

In Section II, we introduced cumulative channel cross sectional area (CCCSA) as 

the product of number of slope channels, slope channel depth, and slope channel width. 

CCCSA is a seismically-derived parameter that can highlight phases of autogenic slope 

system re-organization in response to changes in relative sea level. We interpret CCCSA 

to be a proxy for the equilibrium between basinward sediment flux and available flux 

capacity of the channel system. CCCSA analysis offers a novel way of parameterizing 

carbonate slope channel systems and their morphologic stability. Our analysis of 3D 

clinoform geometries and lateral variability yields new insight into sediment transport 

that is not apparent from 2D analyses: An increase in relative sea level created 

accommodation, resulting in increased aggradation of the carbonate system. The 

aggradation increase steepened slope angles beyond 10º, which, in turn, increased 

basinward sediment flux beyond the flux capacity of the slope system. This 

disequilibrium was mitigated by the incision of new slope channels, that increased the 

slope system flux capacity and created lateral variability in the ramp margin trajectory. 
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The northwest progradation of the Browse Basin ramp was determined by large-scale 

antecedent topography, whereas the effect of intermediate-scale and small-scale 

antecedent topography is overprinted by relative sea level changes.  

In Section III, we successfully integrated field observations, drone-based 

photogrammetry, and digital outcrop analysis to gain new insight into the significant 

lateral variability of 3D geometries in the Upper San Andres mixed clastic-carbonate 

clinoforms of Last Chance Canyon, NM. We reconciled our outcrop observations and 

modeling results in a modification to the traditional reciprocal sedimentation model in 

the Permian Basin to explain the presence of mixed siliciclastic-carbonate clinoforms in 

the eastern part of LCC and coeval pure carbonate clinoforms in the western part of 

LCC. Unlike the lowstand siliciclastic and highstand carbonate dichotomy of the 

traditional reciprocal sedimentation model, our modification proposes uninterrupted 

sediment production of the carbonate factory in a “refugio” position, away from the 

avenues of sand input during fifth-order relative sea level lowstands. Our modeling 

results indicate a locally and temporally persistent, large-scale (~2 km wide) paleo-

topographic low, the “Wilson Canyon Chute”, in Last Chance Canyon that created 

mixed siliciclastic-carbonate clinoforms whereas coeval carbonates outside the chute 

entirely lack siliciclastic facies. During fifth-order relative sea level lowstands, the 

Wilson Canyon Chute most likely served as preferred avenue for basinward siliciclastic 

sediment bypass and deposition. Our 3D geometrical analysis, for the first time, revealed 

the significant along-strike variability in LCC clinoform geometries. Clinoform 

progradational extent was as great as 800 m, with up to ~300 m of progradational lateral 
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variability and up to 10 m in aggradational lateral variability. Slope angles were as great 

as 18˚ and varied up to 10˚ along strike within the individual clinoforms.  

In Section IV, we introduced our new descriptive and observationally-driven 

shelf break rugosity analysis methodology that adds the missing third spatial and fourth 

temporal dimension to trajectory analysis. Our methodology presents an approach to 

quantify and visualize 4D along-strike variability in clinoform rollover trajectory 

analysis by providing the nomenclature and parameters that traditional trajectory 

analysis and the sequence stratigraphic method lack. We believe that the application of 

our methodology has the capability to improve the accuracy of sequence stratigraphic 

interpretations and reduce operator error from force-fitting data to pre-conceived / 

oversimplified depositional models. This study identified allogenic forcing from regional 

tectonics as main control on large-scale shelf geometries, and autogenic forcing from the 

carbonate factory growth as main control on intermediate-scale shelf break rugosity. Our 

analysis revealed a systematic shift in the large-scale average shelf break strike direction 

in the Oligo-Miocene interval of the Browse Basin over a transect of 10 km, which we 

attribute to far-field allogenic forcing from the Timor Trough collision zone. 

Furthermore, the ramp margin geometries in the Browse Basin are neither straight nor 

uniform through time. Shelf break rugosity and shelf break trajectory rugosity are not 

inherited parameters but are instead controlled by the intermediate-scale feedback 

between antecedent topography and carbonate system response. High-rugosity sections 

of the shelf break are smoothed by the autogenic carbonate system response in the 

Browse Basin by filling accommodation, resulting in a relatively constant rugosity of 
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~150 m. Visualizing 3D shelf breaks and shelf break trajectories in side view revealed 

that shelf break trajectories that plot in both sectors I (progradation and aggradation) and 

II (retrogradation and aggradation) correlate with phases of autogenic slope system re-

organization and may be a proxy for morphological stability of the shelf break. 

Furthermore, map view and side view visualization of the shelf break trajectories 

highlighted intervals along the Browse Basin transect that are likely to yield inconsistent 

along-strike sea level reconstructions and sequence stratigraphic interpretations due to 

significant variability in stratal stacking patterns along strike. 
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APPENDIX A 

 

Figure AII.1: Location of the ten dip directional cross sections DL1-10 and the 

six strike directional cross sections SL1-6 as yellow lines and the map view area of 

seismic surfaces (black rectangle) on a coherency slice through the depth-converted 

seismic data at 2200 m. 
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Table AII.1: Slope angle table. 

 

 

Table AII.2: Progradation table. 

 
 

 

Table AII.3: Aggradation table 

 
 

 

 

Slope Angle [°]

Seq # DL1 DL2 DL3 DL4 DL5 DL6 DL7 DL8 DL9 DL10 AVG

3 6 6 6 6 5 7 6 7 8 7 6

4 6 7 8 7 6 7 8 8 8 8 7

5 9 9 9 9 10 9 10 10 9 10 9

6 12 11 11 10 10 9 10 10 9 10 10

7 8 9 9 9 8 8 9 9 8 9 9

8 11 9 8 8 8 8 8 8 7 8 8

9 8 8 8 7 8 8 8 8 8 8 8

10 11 12 11 10 10 10 9 10 9 9 10

11 9 10 10 10 9 10 9 10 9 9 9

12 7 8 7 8 8 6 8 8 7 8 7

Progradation [m]

Seq # DL1 DL2 DL3 DL4 DL5 DL6 DL7 DL8 DL9 DL10 AVG

3 0 0 0 0 0 0 0 0 0 0 0

4 410 1590 1375 1275 2380 1030 1220 740 910 870 1180

5 2400 1360 1900 1760 1590 1970 2015 1800 1825 1470 1809

6 730 560 730 1110 1040 520 190 560 475 300 622

7 190 410 1300 1020 530 840 1230 510 630 1490 815

8 1600 1425 120 520 610 1235 610 580 730 410 784

9 275 650 100 930 830 125 860 950 1050 500 627

10 1750 1080 2100 1330 1690 1170 1490 1010 870 1220 1371

11 -190 100 75 150 330 630 80 460 70 280 199

12 1650 1600 1000 1090 1470 1660 1615 1850 2100 1525 1556

Aggradation [m]

Seq # DL1 DL2 DL3 DL4 DL5 DL6 DL7 DL8 DL9 DL10 AVG

4 75 15 14 25 -25 50 25 50 25 35 29

5 -40 40 -10 -5 20 -30 -35 -35 -30 10 -12

6 85 90 75 45 50 70 100 75 75 70 74

7 70 50 5 0 30 10 -15 40 50 -15 23

8 -50 -30 80 70 30 -20 45 35 15 45 22

9 80 55 80 35 45 90 20 25 25 75 53

10 20 80 5 35 15 35 30 70 75 30 40

11 100 55 75 65 50 25 70 50 70 45 61

12 35 30 45 55 50 20 30 10 -15 35 30
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Figure AII.2: Seismically-derived relative sea level curve from this study 

compared to the reference curve from Woodside Energy (2007). The correlation 

coefficient between the two curves is 0.81. 
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Figure AII.3: Coherency attribute on horizon slices of sequence boundaries SB1-12 

visualizing the geomorphological evolution of the ramp system from the Top Eocene (SB1) to 

Top Lower Miocene (SB12). The slope system switches from few channels during seismic 

sequences SS1-5 to many channels from seismic sequences SS6-12. Contour interval for SB8-

SB13 is 20 m; contour interval for SB2-SB7 is 10 m. Note that SB4 marks the first occurrence of 

a shelf break. Note that slope channels originate at the shelf break.  
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Figure AII.4: Isopach maps of seismic sequences SS1-12. Maximum thickness of 

deposits (magenta) is oriented north-south for the Eocene and Lower Oligocene deposits 

in SS1 and 2. Dominant orientation of maximum thickness for the Oligocene through 

Lower Miocene deposits is southwest-northeast, along the slope. Slope channels are 

identified as sub-linear features, cutting through the thick slope deposits from the 

landward shelf edge in the southeast to the basin in the northwest are identified as sub-

linear features, cutting through the thick slope deposits from the landward shelf edge in 

the southeast to the basin in the northwest 
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APPENDIX B 

 

Figure AIII.1: Base map of the study area with the ten dip profiles for the 

measurement of lateral variability in clinoform progradation and aggradation. 

 

 

 

 

Table AIII.1: Clinoform progradation. 

 

 

Clinoform S&C DL 1 DL 2 DL 3 DL 4 DL 5 DL 6 DL 7 DL 8 DL 9 DL 10 Average Max Min

C1 30 231 254 244 222 203 175 146 131 136 147 189 254 131

C2 600 806 743 695 644 590 576 578 585 603 609 643 806 576

C3 420 395 407 393 404 407 398 484 636 680 681 488 681 393

C4 305 92 81 122 181 234 297 250 100 51 42 145 297 42

C5 355 16 12 5 10 15 23 113 193 244 278 91 278 5

C6 385 71 96 88 59 36 45 2 11 58 72 54 96 2
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Table AIII.2: Clinoform aggradation. 

 

 

Clinoform S&C DL 1 DL 2 DL 3 DL 4 DL 5 DL 6 DL 7 DL 8 DL 9 DL 10 Average Max Min

C1 10.0 9.6 9.8 10.9 12.3 12.7 13.0 13.2 13.2 13.6 14.5 12 14 10

C2 -3.0 -1.6 -1.8 -3.2 -3.6 -3.3 -3.1 -3.6 -3.4 -3.5 -3.1 -3 -2 -4

C3 2.7 1.7 0.2 -0.5 -2.2 -3.5 -4.1 -5.9 -8.6 -9.1 -9.0 -4 2 -9

C4 7.5 5.4 7.5 8.3 8.8 9.0 8.3 9.1 12.0 12.4 11.9 9 12 5

C5 -6.7 4.6 4.6 4.5 5.2 5.8 7.0 5.2 2.7 2.0 1.0 4 7 1

C6 2.0 1.0 1.3 2.3 2.9 3.2 3.1 6.0 7.3 5.5 4.7 4 7 1
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APPENDIX C 

 

Figure AIV.1: Map view of shelf breaks SB3 to SB12. 
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Figure AIV2: Rugosity of all shelf breaks and shelf break trajectories. 
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Figure AIV.3: Effect of RSB and RSBT on subsequent shelf breaks. 
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Figure AIV.4: Major changes in average shelf break orientation occur from SB5-6 and 

from SB9-10. This coincides with the slope channel re-organization phases of Tesch et 

al. (2018).  

 


