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ABSTRACT 

Incorporation of Honey-Based Phenolic Acids Into Shape Memory Polymer Foams for Use as 
Antimicrobial Hemostat 

 
 

Katharyn Grant 
Department of Biomedical Engineering 

Texas A&M University 
 
 

Research Advisor: Dr. Duncan Maitland 
Department of Biomedical Engineering 

Texas A&M University 
 
 

Polyurethane shape memory polymer (SMP) foams are ultra-low density, “smart” materials that 

transition between a primary and secondary shape when exposed to a thermal stimulus. This 

material has the potential to be used in a new application as a hemostatic wound dressing. 

Honey-based phenolic acids are a class of naturally occurring antimicrobial substances produced 

by bees to protect their hives from harmful microbes in the environment. To tune the properties 

of SMP foams to best serve the proposed application, these honey-based phenolic acids will be 

incorporated into the polymer backbone to impart antimicrobial properties to the foams. An 

esterification reaction involving a phenolic acid and N,N,N,N’-tetrakis(2-hydroxypropyl) 

ethylene diamine (HPED) is carried out to produce a modified HPED molecule where one of the 

alcohol groups is replaced by the phenolic acid.  SMP foams are then synthesized using 

hexamethylene diisocyanate (HDI), HPED, and varied amounts of triethanolamine (TEA) and 

the modified HPED-phenolic acid monomer. The resultant foams are characterized to determine 

their density, pore size, glass transition temperature (Tg), rate of thermal actuation, and 

antimicrobial properties.  
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NOMENCLATURE 

 

SMP  Shape memory polymer 

Tg  Glass transition temperature 

HPED  N,N,N,N’-tetrakis(2-hydroxypropyl) ethylene diamine 

TEA  Triethanolamine 

FTIR  Fourier transform infrared 

HDI  Hexamethylene diisocyanate 

CA  Cinnamic acid 

PAA  Phenylacetic acid 

E. coli  Escherichia coli 

Staph. epi. Staphylococcus epidermis 

HCA  N,N,N,N’-tetrakis(2-hydroxypropyl) ethylene diamine - cinnamic acid 

HPAA  N,N,N,N’-tetrakis(2-hydroxypropyl) ethylene diamine - phenylacetic acid 

DCC  N-N’-Dicyclohexylcarbodiimide 

SEM  Scanning electron microscope 

DSC  Differential scanning calorimeter 

RO  Reverse osmosis 

Nitinol  Nickel titanium 

PBS  Phosphate buffered saline 

LB  Lysogeny broth 

CFU  Colony forming unit 

P/S  Penicillin/Streptomycin 
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CHAPTER I 

INTRODUCTION 

 

Uncontrolled hemorrhage is the leading cause of preventable death on the battlefields in Iraq and 

Afghanistan, causing up to 80% of such deaths [1]. The dire effects of hemorrhage expand to 

include 30-40% of trauma mortality worldwide, with 33-56% occurring prior to the patient’s 

arrival at a healthcare facility [2]. Current treatment options for battlefield injuries include the 

traditional tourniquet, and wound dressings made from a variety of materials, such as chitosan, 

fibrin, and oxidized cellulose [3, 4]. However, of these options, few provide the versatility 

required of a treatment used on the battlefield.  One device garnering media attention is the XStat 

by RevMedx. This device uses oxidized cellulose to achieve hemostasis; however, it is difficult 

for surgeons to remove when the patient finally reaches a formal care center, and frequent 

dressing changes are required to reduce infection risks [4]. Thus, there is a need for a new, fast-

acting treatment that will rapidly occlude the wound without significantly increasing surgical 

time.  

 

Polyurethane shape memory polymer (SMP) foams have previously been used in embolic 

applications [5]. This porous material maintains its primary shape until it is heated above its 

glass transition temperature (Tg) and compressed into a secondary shape and cooled. If the foam 

is reheated to this Tg while in its secondary shape, the foam will thermally actuate and recover its 

primary shape. This material also possesses several other tunable thermal and mechanical 

properties that can be optimized for use as a prolonged field care hemostat.  
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SMP foams begin to actuate when exposed to temperatures equal to or greater than their Tg. The 

Tg of these foams can be tuned between 45-70°C in dry conditions [6]. Common U.S. war zones, 

such as Iraq and Afghanistan, have historically high temperatures, reaching up to 45°C in the 

summer months [7]. To avoid premature actuation of SMP foams in these environments, the dry 

Tg should exceed the average outdoor temperature. SMP foams additionally have a wet Tg that 

predominates after the foams have been plasticized with water. When a foam is exposed to 

blood, the water in the plasma interrupts hydrogen bonds between urethane links in the foam, 

lowering the Tg value. Ideally, the wet Tg will enable actuation of the foam at or below 37°C, or 

body temperature. When a foam begins to actuate, the time it takes to achieve full volume 

expansion can range between two minutes and twenty-four hours [8]. For a wound dressing, a 

more rapid rate of actuation is desired for quick wound occlusion. 

 

The lack of sanitation in these high-risk war zones presents an additional challenge for treatment 

of open wounds [10]. The most common cause of infection in these environments is organisms 

such as gram-positive staphylococci and gram-negative rods [10]. To further enhance the utility 

of SMP foams for a wound application, honey-based phenolic acids are incorporated into the 

matrix to impart antimicrobial properties to the foams. Honey-based phenolic acids are known 

for their ability to inhibit bacterial and fungal growth [9]. For this study, cinnamic acid (CA) and 

phenylacetic acid (PAA) were selected due to their demonstrated antimicrobial activity and 

potential for incorporation into a polyurethane matrix. Both phenolic acids have been shown to 

inhibit growth of gram-positive Staphylococcus aureus and gram-negative Escherichia coli (E. 

coli), in addition to other strains of bacteria [11, 12]. Additionally, both acids have shown 
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efficacy in inhibiting the growth of fungi and biofilms [13]. Incorporating phenolic acids into 

polyurethane SMP foams could potentially produce foams that exhibit antimicrobial properties.  
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CHAPTER II 

METHODS 

 

Synthesis of Phenolic Acid Modified HPED Monomer  

An esterification reaction was carried out by reacting the carboxylic acid group on the phenolic 

acids with an alcohol group on HPED. The reactions of CA and PAA with HPED produced 

N,N,N,N’-tetrakis(2-hydroxypropyl) ethylene diamine - cinnamic acid (HCA) and N,N,N,N’-

tetrakis(2-hydroxypropyl) ethylene diamine - phenylacetic acid (HPAA), respectively. The 

expected chemical structures of these compounds can be seen in Figure 1. 

 

Figure 1. Esterification reactions of phenolic acids with HPED to form modified HPED 

monomers. 

 



8 

For each reaction, the respective phenolic acid (1 molar eq.) was added to a round bottom flask 

and dissolved in chloroform. 4-Dimethylaminopyradine (0.1 molar eq.) was then dissolved in the 

flask. HPED (1 molar eq.) was weighed in a separate container, dissolved in chloroform, and 

added dropwise to the solution. Similarly, N-N’-Dicyclohexylcarbodiimide (DCC) (1.1 molar 

eq.) was weighed, dissolved in chloroform, and added dropwise to the flask. The round bottom 

flask was then sealed with a rubber stopper and allowed to react at room temperature and under 

nitrogen flow for 3 hours.  

 

When the reaction was complete, dicyclohexyl urea was precipitated by leaving the flask at 0°C 

for 30 minutes. Vacuum filtration was used to separate the dicyclohexyl urea from the reaction 

solution. The reaction solution was placed in a separatory funnel and washed with 0.1M 

hydrogen chloride (1 molar eq.) to remove the aqueous layer. The solution was then washed with 

a saturated sodium bicarbonate solution. The organic layer was dried in a magnesium sulfate 

solution. The magnesium sulfate was filtered via vacuum filtration and the remaining chloroform 

was removed using rotary evaporation. The solution was placed under vacuum overnight to dry.  

 

Fourier Transform Infrared (FTIR) Spectroscopy  

FTIR spectroscopy was used to confirm the synthesis of the HPED-phenolic acid monomers. A 

microliter pipette was used to spread the monomer over the surface of a potassium bromide disk. 

The disk was then dried in a bell jar for 10 minutes. The dried disk was placed in a Bruker Optics 

FTIR Spectrometer ALPHA (Bruker, Billerica, MA) where 32 background scans and 32 sample 

scans were performed in transmission mode with a 4 cm-1 resolution. OPUS software (Bruker, 
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Billerica, MA) was used to conduct a baseline correction and atmospheric compensation, and 

remove background scans.  

 

Foam Synthesis 

A pre-polymer mixture was prepared in a glove box by reacting an excess of diisocyanate groups 

in the form of hexamethylene diisocyanate (HDI) with 42 mol% of the total hydroxyl groups. 

The hydroxyl content was composed of 70wt% HPED and varying ratios of TEA and an HPED-

phenolic acid monomer.  These ratios are listed in Table 1 and Table 2. An additional foam was 

synthesized by directly incorporating CA into the pre-polymer mixture. The composition of this 

foam can be found in Table 1. 

 

The pre-polymer mixture was cured under a heat cycle for 48 hours. The cured pre-polymer was 

then mixed with surfactants in a speedmixer. A second mixture was prepared by combining the 

remaining hydroxyl groups with deionized water and catalysts. The pre-polymer, hydroxyl 

mixture, and Enovate, a physical blowing agent, were then combined, mixed, and allowed to 

cure at 90°C for 5 minutes. The resultant foam was then cooled to room temperature for analysis. 

 

Table 1. Foam compositions for CA series. 

Sample Name HDI (wt%) HPED (wt%) TEA (wt%) HCA (wt%) CA (wt%) 

Control 100 70 30 0 0 
HCA10 100 70 20 10 0 

HCA20 100 70 10 20 0 

HCA30 100 70 0 30 0 

CA10 100 70 20 0 10 
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Table 2. Foam compositions for PAA series. 

Sample Name HDI (wt%) HPED (wt%) TEA (wt%) HPAA (wt%) PAA (wt%) 
HPAA10 100 70 20 10 0 
HPAA20 100 70 10 20 0 

HPAA30 100 70 0 30 0 

 

 

Densities 

Foam densities were measured according to ASTM D3574-16. A resistive hot wire cutter was 

used to cut foam cubes (n=3) off sections of the main foam block free from defects. The length, 

width, and height of each piece were measured using a digital caliper. Densities were determined 

in terms of g•cm-3. 

 

Pore Sizes 

Thin slices of foam were taken from the axial and transverse axes of the main foam block. The 

slices were then mounted to a Scanning Electron Microscope (SEM) stub using carbon tape. The 

stub was placed inside a Cressington Sputter Coater (Ted Pella, Inc., Redding, CA) to undergo a 

gold sputter coating cycle with a current of 20mA for 60 seconds. The sample was then placed 

inside a Joel Neoscope JCM-5000 SEM (Nikon Instruments, Inc., Melville, NY) and imaged at 

40X magnification. The resultant images were analyzed using ImageJ software (National 

Institutes of Health, Bethesda, MD). Pores (n=15) were measured along their major axis.  

 

Thermal Transitions 

To determine the dry Tg of each foam composition, dry foam samples (n=5, 5-10mg) were 

placed in Tzero Aluminum Hermetic Pans and sealed. The sealed pans were then placed in the 
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test well of a Q200 Differential Scanning Calorimeter (DSC) (TA Instruments, New Castle, DE) 

at room temperature. The samples were cooled to -40°C before being heated to 120°C at a rate of 

10°C per minute. The temperature was held constant for 2 minutes and then lowered by 10°C per 

minute to -40°C. Again, the temperature was maintained for 2 minutes before returning to 120°C 

at a rate of 10°C per minute. The Tg was determined using TA Universal Software (TA 

Instruments, New Castle, DE) as the inflection point on the heat flow curve from the third cycle. 

 

The wet Tg was determined by placing foam samples (n=5, 5-10mg) in 40°C reverse osmosis 

(RO) water for 10 minutes. The wet samples were set in the fold of a Kim Wipe (Kimberly-

Clark, Roswell, GA) and placed in a Carver Press (Carver, Inc., Wabash, IN) to remove excess 

water. The mass of each wet sample was measured and the samples were sealed in Tzero pans. 

Each pan was vented and placed inside the test well of the DSC at room temperature. The 

samples were initially cooled to -40°C and held at this temperature for 5 minutes before being 

heated to 120°C at a rate of 5°C per minute. The wet Tg was found as the inflection point on the 

heat flow curve.   

 

Volume Recovery 

A 4mm biopsy punch was used to remove foam cylinders (n=3) from the main foam. A 254-

micron nickel-titanium (nitinol) wire was threaded through the axial center of each foam 

cylinder. The wire was then placed inside an SC150-42 Stent Crimper (MSI, Flagstaff, AZ) 

heated to 100°C.  The foam samples were heated for 15 minutes before they were crimped to 

2mm at 50psi. The crimper was cooled, and the crimped foams were removed when the 
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apparatus reached room temperature. The samples were then stored in a dry environment for 24 

hours. 

 

After 24 hours, an RO water bath was heated to 37°C. The foam samples crimped on the nitinol 

wire were immersed in the water to begin thermal expansion. A digital camera was used to take 

images of the foams every 30 seconds for 7 minutes. An additional image was taken of the dry 

foams prior to thermal expansion for reference purposes. ImageJ software was used to take 

measurements (n=5) of the diameter of each cylinder at every time point. 

 

Antimicrobial Properties 

Polymeric films with compositions matching those of the foams outlined in Table 1 were cut 

using a 6 mm biopsy punch (n=3). The samples were soaked in phosphate buffered saline (PBS) 

at 37°C for 0, 10, 20, and 30 days. The films were sterilized overnight with 70% ethanol, and 

then washed with PBS 3 times to remove residual ethanol.  

 

To begin preparation of the bacteria solution, E. coli and Staph. epi. were added to 5mL of 

lysogeny broth (LB) using an inoculation loop. The solution was then left overnight at 37°C. To 

obtain the desired log phase growth, 500µL of the solution were added to 10mL of sterile LB. 

The bacteria were allowed to grow until the desired optical density of 0.6 was reached. The 

optical density was confirmed using a Tecan Infinite M200 Pro Microplate Reader (Tecan Group 

Ltd., Mannedorf, Switzerland).  
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The polymeric film samples were each placed in a well of a sterile 96 well plate. 100µL of the 

bacteria solution was pipetted into each sample well. The samples were then kept at 37°C for 1 

hour. The well plate was vortexed to ensure bacterial suspension. The solution was diluted by 

106  using fresh LB and plated on sterile LB agar plates using an inoculation loop. The agar 

plates were then placed at 37°C overnight. Images of each plate were taken to determine the 

colony forming unit density. Densities were determined by counting the number of colonies and 

dividing by the area of the plate. 
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CHAPTER III 

RESULTS 

 

FTIR Spectroscopy 

To confirm the synthesis of the HPED-phenolic acid monomers, the reaction products of the 

esterification reactions were analyzed using FTIR spectroscopy. Figure 2 shows the FTIR spectra 

for HCA, along with CA and HPED for comparison. Figure 3 provides a similar comparison for 

HPAA, PAA, and HPED.  

 

Figure 2. FTIR spectra comparing absorbance values for CA, HCA, and HPED. 
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Figure 3. FTIR spectra comparing absorbance values for PAA, HPAA, and HPED. 
 

In Figure 1, a carboxylic acid group can be observed on both CA and PAA. Peaks representative 

of these functional groups are present in the spectra of both CA and PAA between 1680 - 

1700cm-1 (Figure 2 and Figure 3). During the esterification reactions, these carboxylic acids are 

converted to esters. This ester formation is confirmed by the shift of the carboxylic acid peak to 

an ester peak located around 1705 - 1735cm-1 in the spectra of both HCA and HPAA.  

 

Additional confirmation can be found by comparing the alcohol peaks of HCA and HPAA with 

that of HPED. HPED is a compound containing 4 alcohol groups. During the esterification 

reaction shown in Figure 1, one of the alcohol groups on HPED was reacted with the carboxylic 

acid group from the phenolic acids. This resulted in reaction products containing 3 alcohol 

groups. This decrease in alcohol groups can be observed in the FTIR spectra as a reduction in the 

alcohol peak at approximately 3400cm-1 going from HPED to HCA and HPAA. The formation 

of ester peaks and reductions in the sizes of the alcohol peaks in both HCA and HPAA confirm 
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successful esterification reactions and synthesis of the modified HPED monomers, HCA and 

HPAA.  

  
Densities 

Densities for the CA and PAA series are reported in Table 3 and Table 4, respectively. For both 

series, the foams maintained the ultra-low densities found in the control and similar polyurethane 

SMP foams [6]. Among the foams containing HCA and HPAA, densities decreased with 

increased amounts of modified monomer.  

 
Table 3. Densities for the CA series (n=3). 

Sample Name ρ (g•cm-3) 

Control 0.0194 ± 0.0007 
HCA10 0.0582 ± 0.0157 

HCA20 0.0378 ± 0.0015 

HCA30 0.0221 ± 0.011 

CA10 0.0312 ± 0.0035 

 
 
Table 4. Densities for the PAA series (n=3). 

Sample Name ρ (g•cm-3) 

HPAA10 0.0419 ± 0.0015 

HPAA20 0.0347 ± 0.0010 

HPAA30 0.0293 ± 0.0040 

 
 

Pore Sizes  

As shown in Figure 4 and Figure 5, pore sizes in both the axial and transverse axes increased 

with increased amounts of modified monomer. This result follows the trend seen previously with 

foam densities. Larger pore sizes correspond to lower densities. 
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Figure 4. Axial and transverse pore sizes for CA series (n=15). 
 

 
Figure 5. Axial and transverse pore sizes for PAA series (n=15). 
 
 

The axial pores of HPAA10 and HPAA20 are an exception to this trend. It is possible the 

HPAA20 composition had less successful foam blowing compared to the other foam 

compositions, resulting in smaller pores in the axial direction. However, all foams exhibited 

good pore interconnectivity (Figure 6) confirming foam synthesis. 
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Figure 6. SEM images of axial and transverse pores for the PAA series. 

 

Thermal Transitions 

Polyurethane SMP foams are known to have different Tg’s in dry and wet conditions. Figure 7 

and Figure 8 show both dry and wet Tg’s for the CA and PAA series, respectively.  

 

 

Figure 7. Dry and wet Tg’s for HCA series (n=5). 
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Figure 8. Dry and wet Tg’s for HPAA series (n=5). 

 

For the CA series, the dry Tg’s increased with increased amounts of HCA. The chemical 

structure of HCA (Figure 1) is large and bulky. By increasing the concentration of this 

compound, more energy, and thus a higher temperature, must be applied to the polymer before it 

can rotate about its backbone. A similar trend was observed in the HPAA foams (Figure 8).  

 

A wet Tg can be found after exposing a foam to an aqueous environment. When a polyurethane 

foam is exposed to water, the material is plasticized. Plasticization occurs when water molecules 

interrupt the hydrogen bonds in the material to weaken the foam matrix. A weaker matrix 

requires less energy to reach the Tg. Therefore, the wet Tg of a foam is lower than its respective 

dry Tg.  

 

For both the CA and PAA foam series, the wet Tg’s of the foams increased with increased 

amounts of HCA and HPAA. The addition of CA and PAA to HPED resulted in a hydrophobic 
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product. When this hydrophobic product was incorporated into the polyurethane foam, the ability 

of the material to be plasticized was reduced. This results in a higher wet Tg. 

 

For this material to serve as a wound dressing and fully occlude a wound, it must expand when 

placed in the body. Due to the high concentration of water in the blood, the wet Tg will be the 

dominant thermal transition. Therefore, the wet Tg must be equal to or less than 37°C. As 

demonstrated in Figure 7 and Figure 8, the wet Tg’s of all foams in both the CA and PAA series 

meet this requirement.  

 

The environment in which this material will be used poses additional challenges. Current U.S. 

war zones include Iraq and Afghanistan. Both locations experience high temperatures that may 

cause premature foam actuation, thereby reducing the efficacy of the material. According to the 

World Meteorological Society, the mean daily maximum temperature in July in Baghdad, Iraq is 

44.0°C [14]. Ideally, the dry Tg’s of the foams would be above this value. However, only HCA30 

and HPAA20 achieved this goal. Additionally, a foam may begin to expand at any temperature 

within about 5°C of the Tg value. This presents a risk of early expansion even for those foams 

that met the first requirement. Therefore, it would be necessary to identify a means for 

preventing foam actuation until device deployment. Humidity is another environmental 

challenge. As previously described, SMP foams become plasticized in aqueous environments 

and exhibit a decrease in their Tg. If these foams are used in humid environments, such as 

Vietnam, the foams may enter a rubbery state and expand prior to use. These considerations 

suggest that other methods, such as packaging should be designed to prevent premature actuation 

and plasticization of the foams. 
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Volume Recovery 

All foams were placed in a 37°C water bath to simulate placement of the foam in the body. The 

expansion profiles shown in Figure 9 and Figure 10 demonstrate the rate at which the foams 

expanded under these conditions. 

 

 
Figure 9. Expansion profiles for CA foam series (n=15). 
 

 
Figure 10. Expansion profiles for PAA foam series (n=15). 
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For both sets of foams, the rate at which the foams achieved full volume recovery was highest 

for foams with decreased amounts of modified monomer.  This trend may be linked to the wet 

Tg’s found in the previous section. As the amount of modified monomer increased, the wet Tg’s 

of the foams also increased. A foam with a higher wet Tg is expected to expand at a slower rate 

than a foam with a lower wet Tg if both foams are exposed to the same thermal stimulus. 

 

XStat by RevMedX is a current wound dressing treatment that injects several expandable 

cellulose sponges into a wound cavity to apply even pressure on all parts of the wound [4]. These 

sponges have been shown to fill the wound cavity within 20 seconds of application [15]. The 

polyurethane SMP foams studied here have a slower expansion rate. However, all of the foams 

achieve near complete volume recovery within minutes. The 10 and 20% modified monomer 

compositions show particular promise by fully expanding in less than 2 minutes, satisfying the 

need for rapid wound occlusion. 

 
Antimicrobial Properties 

The antimicrobial properties of the films were quantified in colony forming units (CFU) /cm2. 

The results were compared to a negative control film with a composition matching the control 

foam found in Table 1 and a positive control of Penicillin/Streptomycin (P/S). 
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Figure 11. Antimicrobial effectiveness of CA series films against Staph. epi (n=3). 

 

Figure 12. Antimicrobial effectiveness of CA series films against E. coli (n=3). 

 

HCA30 was the most effective antimicrobial agent (Figure 11 and Figure 12). This result is 

likely due to the increased amount of modified monomer present in the film. CA10 also showed 

strong reductions in the CFU density. The direct incorporation of CA into the foam may have 

enabled more effective incorporation of the phenolic acid, leading to improved antimicrobial 

properties. All films had CFU densities less than that of the negative control. Additionally, all 

films except for HCA10 had CFU densities similar to or less than that of the positive control. 
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This indicates that the antimicrobial properties of CA were retained after the esterification 

reaction. 

 

 

Figure 13. Antimicrobial effectiveness of CA series films against Staph. epi. after exposure to 

PBS over 0, 10, 20, and 30 days. 
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Figure 14. Antimicrobial effectiveness of CA series films against E. coli. after exposure to PBS 

over 0, 10, 20, and 30 days. 

 

All film compositions were soaked in PBS solution for 0, 10, 20, and 30 days to identify how 

their antimicrobial properties might change after long term exposure to the body. Figure 13 and 

Figure 14 display the results. After 30 days, the HCA30 films remained the most effective 

among films containing HCA. However, all HCA films saw decreased antimicrobial 

effectiveness over the 30 days. During synthesis of HCA, an ester bond was formed to link 

HPED to CA. When placed in a PBS solution, this ester bond is susceptible to hydrolysis. Film 

degradation via hydrolysis would have resulted in films with lower HCA concentrations, which 

would be expected to show lower antimicrobial effectiveness.  

 

To further evidence this hypothesis, the CA10 film, which did not contain an ester bond, 

remained effective after 30 days. When CA was incorporated into the polyurethane SMP film, a 
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urethane bond was formed. This bond is biostable. Therefore, it did not undergo the same 

degradation seen with the HCA films. Even after 30 days, all films were more effective at 

reducing the CFU density than the negative control. 
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CHAPTER IV 

CONCLUSION 

 

Honey-based phenolic acids, CA and PAA, were successfully incorporated into polyurethane 

SMP foams. An esterification reaction was carried out to modify a HPED compound. The 

resultant product was then incorporated into polyurethane SMP foams in varying amounts. 

Successful foam blowing was achieved and the foams maintained their characteristic ultra-low 

densities. The thermal transitions of the foams were analyzed. All of the foams exhibited wet 

Tg’s below body temperature, enabling foam actuation when placed in a wound. The dry Tg’s of 

the foams do not exceed all potential outdoor temperatures. While extreme heat poses a risk of 

premature foam actuation, specialized packaging may be developed to mitigate these risks. All of 

the foams achieved near complete volume recovery within minutes, suggesting a high potential 

for rapid wound occlusion. The incorporation of honey-based phenolic acids additionally 

imparted antimicrobial properties to the polyurethane foams. The foams were more effective 

than the positive control, Penicillin/Streptomycin, and could reduce the risk of infection for 

patients. In the future, antimicrobial testing will be performed on the PAA series to compare the 

antimicrobial properties of the foams to that of the CA series and the positive and negative 

controls.  
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