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ABSTRACT

The electricity power market is well known for its highly volatile nature due to its innate vari-

ability characteristic of demand and the absence of practical bulk storage at reasonable cost. Any

discordance between rapid fluctuation in wholesale prices and near flat retail prices not only incurs

economic inefficiency in terms of social welfare, but also creates price-inelastic wholesale demand

which severely exacerbates the volatility of wholesale electricity prices. While the market has

a fundamental dynamic nature, the behavioral aspect of power consumption in response to price

changes is not well understood. This necessitate to develop a empirical modeling methodology of

demand which can potentially provide practical insights into demand response.

In the former part of this work, we focus on dynamic aspect of demand response in Chapter

2. We first show that (i) demand is well responsive to outlier high price surges, and (ii) demand

response can incur a certain amount of delay. Examining further data, it appears that demand

is responsive to anticipated prices. This is in conformity with our previous observations on the

inertia of demand, and testing the hypothesis that demand actually responds to anticipated prices

rather than actual real time prices is an important next step. While it is impractical to obtain a

particular individual’s own price prediction, We propose to test the hypothesis with day-ahead

electricity prices (DAP). In addition, as an initial step toward the derivation of a quantitative model

of electricity load and price, we propose a model of “appliance” usage as a representative basic

component of electricity load.

In the latter part of this work, we investigate more fundamental aspect of data-centric modeling

in Chapter 3. First, we show the limitation of pure data-centric modeling strategy by proving

that having a perfect knowledge on the joint distribution on price and load does not identify the

load behavior in response to price. As it turns out that the causal structure of the variables of

interest is the central matter that determines load behavior identifiability, we derive a minimal

identifiable causal structure of demand response from the preexisting economic theories. Based

on the discovered causal structure, we propose a minimal Bayesian model representation called
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“stochastic neuron” which connects machine learning technique to demand response modeling. We

show that a stochastic neuron is an explainable tool as expressive as an ordinary neural network,

and well extends the arguments from “appliance” usage model.
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1. INTRODUCTION

Electricity is an example of a real-time commodity, as its production and consumption occur

simultaneously. Such simultaneity originates from the economic infeasibility of storing electricity.

The lack of efficient storage stresses system operators to dispatch and adjust generation to match

the load and generation at every moment. Without such real-time balancing, power systems would

suffer instability. On the other hand, a market is a system to lead supply and demand into a balanced

status of an equilibrium in an efficient fashion. Therefore, real-time operation and the associated

markets are both crucial elements in the electricity industry.

Balancing generation and load is a complicated task due to various generation characteristics.

Load volatility can be caused by weather condition changes, while generation and transmission

volatility can be caused by generator tripping or transmission congestion. These factors can result

in abrupt and drastic changes in electricity price. Singularly, the electricity power market is a

market characterized by innate volatility of demand as well as the absence of inexpensive bulk

storage. In addition, it is expected that the volatility of supply will be more severe if renewable

energy becomes a major part of the energy source mix.

While extreme price fluctuation is a widely observed phenomenon in the restructured electricity

wholesale competitive markets, end-customers in most electricity markets do not face frequent

price changes. Wholesale electricity prices vary from hour to hour, but retail prices do not change

for months in most electricity markets. Such discordance between rapid fluctuation in wholesale

prices and near flat retail price not only incurs economic inefficiency in terms of social welfare, but

also creates price-inelastic wholesale demand which severely exacerbates volatility of wholesale

electricity prices. In practice, wholesale electricity prices sometimes vary by an order of magnitude

in real-time. Moreover, a combination of inelastic demand and the inherent real-time nature of the

market makes electricity markets vulnerable to the exercise of market power [14].

Smart grid refers to a flexible and cost effective power delivery network transferring power

between a diverse set of energy suppliers and informed power consumers. Among many smart

1



grid investments, a major one around the world is the massive deployment of advanced metering

infrastructure. The payback from this major investment in data infrastructure is anticipated to be (a)

enhanced flexibility from demand response participation for smart aggregators; and (b) improved

real-time situational awareness for grid operators. While streaming data in the smart grid provides

unprecedented opportunities to transform grid operation, it appears that most prior research in this

area falls into two categories: (i) Data-driven static analytics tailored for power system domain

applications, which do not capture the underlying coupling between the data and the dynamics in

complex human-physical power systems [24] [25]; and (ii) Model-based system theoretical studies

which are difficult to scale up to permit real-world testing [26] [27].

Among the smart grid technologies, demand response (DR) provides a key mechanism to ex-

tract flexibility from informed consumers. It is supposed that introducing DR will provide a wide

range of benefits, especially with respect to system operability and market efficiency. In terms of

market efficiency, one main objective of DR is to manage consumption of power in response to the

supply condition. Concerning that, traditional economic theory provides a simple and insightful

static model of optimal pricing for a given supply and demand condition through the concept of

demand elasticity. There is extensive literature on DR design based on this traditional model [31].

However, because of its static setting, the traditional model has an innate limitation in explain-

ing the time-varying characteristic that a market typically exhibits. The time-evolving behavior

pattern of an economic agent is commonly observed in many economic activities; in fact, the

evolutionary process of economical behavior is an inevitable consequence of the inherent inertia

involved. Specifically, a sudden change of price or demand may impact supply, but most produc-

tion processes necessarily require a certain amount of time to alter their production speed, and

demand also is slow to change its consumption pattern in response to a price change. Such delays

in making decisions and acting in response to the price changes necessarily results in a dynamic

system.

From the perspective of dynamic systems, the market clearing price in a static traditional model

can be interpreted as the stable price after market equilibrium. In this regard, the instantaneous

2



fluctuation of price caused by the change of supply conditions may not impact real time demand

instantaneously, but rather impacts it slowly due to the composition of the inertia of demand and

the effects of past price changes. However, such a mechanism may not be clearly captured by

the traditional model. While the traditional model provides an eventual asymptote after which the

market stabilizes into an equilibrium state, there is specific interest in understanding the transient

period resulting from the dynamical interactions between price and demand. The market mech-

anism based on the traditional model has a fundamental limitation when explaining demand in a

market with high volatility and rapid price variation. For this reason, it is necessary to seek and

develop an alternative model of demand elasticity for understanding the dynamic characteristic of

DR. This is the primary goal of the Chapter 2.

On the other hand, we are concerned with the fundamental limitation of a naive data-driven ap-

proaches and applications in the latter part of this work. As it is natural that data-driven approaches

for power economics domain applications gaining greater popularity along with powerful analytic

tools in the big data era, there is an increasing belief among scientists that the data will do all of

the speaking, and that theory will become obsolete [2]. However, we discover that it is necessary

to posit a certain untested presumption to model demand response as a decision maker’s behavior

in general in chapter 3. In this chapter, we study the identifiability of the generic data-centric mod-

eling of a price responsive demand from given data by addressing two core problems in modeling:

1. How to establish an identifiable demand response model y = g(x) from given a joint dis-

tribution P (X,Y ) in the presence of unknown confounders, where x denotes price and y

denotes demand.

2. How to find an irreducible representation of the acquired posterior P (w) of the parameters

with the model g(⋅), from data.

The main contributions made in chater 3 are:

1. To present a holistic methodology for modeling and analysis of price-responsive electricity

demand.
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2. To construct necessary postulates taking account of domain specific characteristics of price-

responsive electricity demand that intrinsically limit consistent modeling.

3. To propose a new model representation that effectively displays the causal mapping between

stochastic input factors and the corresponding output features.

Overall, this work addresses a complete methodology to incorporate what is now called “ma-

chine learning techniques” for the coherent modeling of an economic decision maker from non-

experimental records of her response. It is our hope that this work provides a standardized approach

for addressing such problems of obtaining models from data.
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2. DYNAMIC MODELING OF PRICE RESPONSIVE LOADS1

From the viewpoint of demand response as the output of a dynamical system, this chapter

shows that (i) demand is well-responsive to high price events, and (ii) demand response incurs a

certain period of delay in its manifestation. As an initial step towards the derivation of a quan-

titative model of electricity load and price, we propose a model of “appliance" usage as a repre-

sentative basic component of electricity loads. We propose to further develop a methodology for

the identification from empirical data of the demand response system as an aggregated form of the

proposed appliance usage model, expecting that this can lead to a greater analytic understanding

of the economic efficiency of electricity markets in terms of their volatility.

This chapter is structured as follows. In the first half of Chapter 2.1, the market structure of the

Electric Reliability Council of Texas (ERCOT) after its restructuring is introduced as background.

The latter half of the chapter covers previous efforts by economists to address the high volatility

found in electricity markets. The first half of Chapter 2.2 describes our preliminary work on the

dynamic characteristic of loads in response to real time prices (RTP) [1] as well as day-ahead prices

(DAP). In the latter part of the chapter, a model is proposed to explain the characteristics of load

based on the empirical study. Chapter 2.3 contains concluding remarks along with a description of

potential future works.

2.1 Background and Related Works

A wave of electricity restructuring from the early 2000s aimed at introducing competition

ended the era of vertically integrated monopolies in many states including Texas. The major

purpose of such restructuring was to improve efficiency and lower consumer costs through the

incentives provided by competition. In the first half of this chapter, the market structure of the

Electric Reliability Council of Texas (ERCOT) after its restructuring is introduced.

1© 2015 IEEE. Reprinted, with permission, from J. An, P. R. Kumar, and L. Xie, On transfer function modeling
of price responsive demand: an empirical study, Proc. of IEEE Power & Energy Society General Meeting (PESGM
2015), July 2015 [1].
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While the primary goal of electricity markets is to maintain system reliability at least cost

in a stable manner, the intense real-time balancing requirement of electricity systems combined

with inelastic demand keep markets unstable, manifested as volatile prices. The latter part of this

chapter covers previous efforts by economists to address the high volatility found in electricity

markets.

2.1.1 Electric Reliability Council of Texas (ERCOT) Electricity Market

The objective of this section is to provide background concerning the empirical data I use in

this study. The Electric Reliability Council of Texas (ERCOT) is an Independent System Operator

(ISO) serving about 85% of the electricity load in Texas under regulation by Public Utility Com-

mission of Texas (PUCT). The major responsibilities assigned to ERCOT by the restructuring in

1999 are as follows [4] [5]:

• Maintain system reliability in terms of planning and operations,

• Ensure open access to transmission system,

• Facilitate retail switching process for customer choice, 2 and

• Wholesale market settlement for electricity production and delivery.

It should be emphasized that ERCOT implemented the current ERCOT Nodal Market in De-

cember 2010. The current ERCOT electricity market is composed of the following markets [4]:

• Day-Ahead Market (DAM), a day-ahead forward energy market,

• Real-time Energy Market with locational marginal prices (LMPs),

• Congestion Revenue Right (CRR) Markets, the markets for CRR trade, 3 and

• Reliability Unit Commitment (RUC) market for ancillary service (AS).
2ERCOT maintains a registration system about the association between every customer and a retailer to properly

share the meter consumption data between retailers and transmission providers.
3CRR is a financial instrument that entitles the CRR owner to be charged or receive compensation when the ERCOT

transmission grid is congested.

6



Figure 2.1: The boundaries of four zones in ERCOT in 2008 [6].

In this section, I describe the ERCOT market structure called the Zonal Market previously

existing in 2008, rather than the currently existing Nodal Market structure, since the data used

throughout this document is the price and consumption history of a commercial or industrial (C/I)

customer in the ERCOT area from 2008. The boundaries of four zones are depicted in Figure 2.1.

The ERCOT electiricity market in 2008 was composed of following markets [4]:

• Real-time Energy Market with zonal prices,

• Ancillary Service (AS) Market running one day-ahead,

• Transmission Congestion Right (TCR) Market on the financial instruments associated with

zonal congestion.

In this dissertation, I use a variety of customers from the ERCOT area in 2008. In this docu-

ment, I use the data of the year 2008 from an anonymous commercial/industrial (C/I) customer in

the Houston zone.
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2.1.1.1 Real Time Energy Wholesale Market

The energy transaction wholesale market in ERCOT is the real-time market in which the price

varies by every 15 minutes in each zone. The market is a bid-based, least-cost auction in which

clearing prices are determined by security constrained unit commitment dispatch [8]. The zonal

model is based on the transfer capability of the 345kV transmission system. These major trans-

mission paths form the basis of the commercially significant constraints (CSCs). [7]

2.1.1.2 Competitive Retail Market

The ERCOT electricity retail market is a competitive market based on bilateral transactions

between retail customers and the competitive retailers (CRs) [7]. CRs purchase power in the

wholesale market to provide it to retail customers typically at fixed rates. Due to this structure,

most retail customers are unexposed to real time electricity prices.

2.1.1.3 Ancillary Service (AS) Market

2.1.1.3.1 Ancillary service (AS) An Ancillary Service (AS) is an obligation between the ISO

and a generator that the generator must provide a variety of services to maintain system reliability

upon request of ISO.

There are four types of ancillary service markets in ERCOT. [5]

• Non-spinning Service (NS):

NS is the reserves maintained by ERCOT, that are deployed for the operating hour in re-

sponse to loss-of-Resource contingencies on the ERCOT System. Generator should provide

off-line generation resource capacity, or reserved capacity from on-line generation resources,

which are capable of being ramped to a specified output level within 30 minutes, or loads

acting as a resource that are capable of being interrupted within 30 minutes and that are ca-

pable of running (or being interrupted) at a specified output level for at least one hour upon

ISO’s request.

• Responsive Reserve Service (RR):
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RR is the operating reserves ERCOT maintains to restore the frequency of the ERCOT

System within the first few minutes of an event that causes a significant deviation from the

standard frequency. In addition, RR also provides reserved resources that are deployed for

the operating hour in response to loss-of-Resource contingencies on the ERCOT System.

Generators should provide the capacity from unloaded generation resources that are on line,

with the resources controlled by high-set under-frequency relays 4 or from Direct Current

(DC) tie-line 5 response. The capacity from unloaded generation resources or a DC Tie

response should be deployable within 15 seconds.

• Up Regulating Reserve Service (RU):

RU is deployed in response to a decrease in ERCOT System frequency to maintain the

target ERCOT System frequency.

• Down Regulating Reserve Service (RD):

RD is deployed in response to an increase in ERCOT System frequency to maintain the

target ERCOT System frequency.

Unlike the period since December 2010, in 2008 the AS market was the only day-ahead market

in ERCOT. Since the AS market concerns the obligation between the ISO and generator companies,

and the main purpose of AS is to maintain system reliability, no transactions of energy can be made

by any customers. For this reason, there is no economic reason for a customer to show its interest

and respond to AS prices. However, my hypothesis throughout this study is that a customer may

well respond to AS prices if the AS price is a reasonable predictor of RTP. According to my

hypotheses, a customer with a larger demand inertia tends to be more responsive to DAP than RTP.

4An underfrequency relay is a device that functions to protect the load when the event comprised of system fre-
quency decreasing below preset limits is detected. A high-set instantaneous overcurrent setting is intended to operate
for close faults with high short circuit current. The setting applied is usually higher than the maximum short circuit
current beyond the downstream devices (breaker or fuse). The purpose of such a setting is to prevent unselective
tripping of the feeder breaker for faults on taps, which are normally cleared by the tap fuse.

5A DC tie-line is a transmission line between neighboring interconnections.
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2.1.1.3.2 Operation of Day-Ahead Market (DAM) The DAM transpires from 6:00 AM to 6:00

PM on the day prior to the operating day. Generators may submit balanced schedules and ancillary

services bids for each one hour period based on operational forecasts. After the AS for each of the

four markets clears, ERCOT publishes the results.

2.1.2 Literature Review

In support of the recent extensive deployment of advanced metering infrastructure, there has

been a consensus on the potential benefits of real-time retail pricing (RTRP) among economists

and some policy makers [10] [11] [15] [16] [19] [23]. As RTRP is one of the most important

issues in the power industry, there has been an abundant literature supporting the economic benefits

realizable from RTRP. The first potential benefit mostly discussed in the previous literature is the

allocative efficiency improvement resulting from resolving the market inefficiency caused by (near)

constant retail electricity prices justified both via an econometric approach [9] and by theoretical

analysis [12] [16] [18] [22] [23]. The second benefit studied is the increased robustness of market

with RTRP resulting from the exercise of market power 6 [21] [13], [14] [17]. The last benefit

considered is that the mitigation of demand volatility induced by real-time price signals will also

relieve the need for a huge reserve capacity which incurs a large portion of the social costs [10]

[20] [22]. However, all the potential economic benefits of RTRP substantially depend on how

much demand is responsive to price, i.e., the price elasticity of demand [20] [22].

The allocative efficiency improvement of RTRP is well analyzed in the literature [12] [18] [22]

[23], as depicted in Figure 2.2. Since the demand curve has a time variant property, it is not likely

to happen that the fixed rate meets C or C ′, which are the optimal market clearing prices in terms of

social welfare maximization. Thus, the shaded triangles ∆ABC and ∆A′B′C ′ are the deadweight

loss, the economic inefficiency caused by fixed rate the P0.

6Market power is the ability of a firm to profitably raise the market price of a good or service over marginal cost
mostly based on its own market share. The exercise of market power is an attempt by a firm to manipulate market
price utilizing its market power. A critical condition for attaining the efficiency of a free competitive market is that
every market participant is a price-taker. In that sense, a greater market power of a firm may bring a greater risk of
market failure. If demands are inelastic, withholding a small portion of supply by a firm may drive the market price
higher.
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Figure 2.2: The economic inefficiency resulting from a fixed retail electricity tariff.

Due to the instantaneousness of electricity, it is reasonable to assume that the electricity for

each time slot is a distinct commodity. For instantaneous and accurate market convergence to the

optimal market clearing prices (C or C ′ in Figure 2.2), RTRP advocates argue that the ultimate

real-time retail price is the optimal pricing policy [18] in terms of economic efficiency.

Although the analysis shown in Figure 2.2 seems reasonable, it requires several assumptions

to be justified: (1) Demand converges to C or C ′ almost immediately, in at most one time slot as

determined by the market rules, and (2) Utility from the consumption in each time slot is attained

in that same time slot. However, both assumptions are not likely to be true for every case unless

the market is slow-paced. However, the electricity consumption for running a laundry machine

(say) does not provide utility until the laundering is complete, which may take more than one

period. Another fundamental limitation in the demand-supply curve model is that it is difficult to

obtain any insight concerning the dynamic structure from demand curve, which makes it difficult

to estimate and predict demand from this model.
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2.2 Preliminary Results and Discussion

In this chapter, my preliminary work on dynamic behavior of loads in response to RTP [1]

as well as DAP described in the first half. In the latter half, a model is proposed to explain the

characteristics of loads based on the observations made in my preliminary work.

2.2.1 Preliminary Results

In prior work [1] we have conducted an empirical study of data from two sources. In our

first study, all customers are exposed to real-time prices, and we study their empirical response to

such real-time prices. In the second study, we study their responses to day ahead prices as well as

subsequent reactions to real-time prices as they later manifest themselves.

2.2.1.1 Empirical Transfer Function Modeling of Price Responsive Demand

We first describe our prior work [1] on the problem of determining a dynamic model of demand

response to RTP from empirical data.

2.2.1.1.1 Introduction The operation of power systems has traditionally adopted the philosophy

of controlling generation to balance the stochastic demand. As a result, the dynamic modeling and

control of power systems has primarily focused on generator side. Governor-turbine-generator

(GTG) modules from various fossil fuels have been modeled from first principles, resulting in a

mature modeling taxonomy with well engrained notions such as droop characteristics and ramp

rate [28]. More recently, there has also been work on modeling renewable energy sources such

as wind farms as stochastic dynamic systems controlled by doubly-fed induction generators [29].

During the era when the prevailing paradigm was that supply follows demand, this modeling of

supply side was enough to develop a coherent resource allocation framework for power systems.

However, with the advent of demand response where demand too can be viewed as a controllable

entity, it has become imperative to symmetrically develop models for analyzing demand response

too as a dynamical system with well defined inputs and outputs. The goal of our first prior work in

Section 2.2.1.1 is to develop just such a dynamic system viewpoint for the demand side.

The central contribution of this work is to exhibit from analysis of anonymous commercial/industrial
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(C/I) data7 that it is indeed possible to model demand response to prices as such a dynamical input-

output system. Our contributions based purely on analysis of empirical data are twofold:

1. The response to large prices (over 95%-quantile: $144.42) can be modeled as a Hammerstein

system, i.e., a static nonlinearity followed by a linear transfer function [30]. Such large prices

rarely persist for longer than a quarter-hour duration, and so the demand response can be

viewed as a response to a price spike of a specific amplitude. We show that the resulting

demand response indeed appears to be an impulse response of a nonlinear transformation

of the initiating large price. The nonlinear transformation captures the fact that the demand

reduction is not proportionate or linear in the price swing initiating the demand response,

i.e., a 100× price increase does not result in a reduction that is five times the response to a

20× price increase. After accounting for this nonlinear transformation, which is typically

concave since the response is sublinear, the response exhibits a reduction after a delay of

about 0.75-2.5 hours, before subsequently reverting back to normal levels. Fig. 2.5 shows a

typical demand response gleaned from the nine months data (Jan.1 - Sep. 30, 2008) available

to and analyzed by us.

2. The response to moderate prices (up to $144.42) can be modeled as a linear stochastic sys-

tem, specifically as an autoregressive exogenous (ARX) system, i.e., an autoregressive (AR)

system with exogenous input and white noise.

2.2.1.1.2 Preliminary Data Analysis In Fig. 2.3, the C/I load and prices from Electric Relia-

bility Council of Texas (ERCOT) measured at intervals of 15 minutes from Jan. 1, 2008 to Sep.

30, 2008 is plotted with respect to time. Figs. 2.3(a) and 2.3(b) are presented as boxplots. A

boxplot is a graphical approach of depicting groups of data through their quartiles. While the

bottom and top of the box are the first and third quartiles, the length of each whisker is equal to

1.5 × interquartile range (IQR), i.e., the height of the box. The first point which can be easily ob-

served here is that the plot on price (Fig. 2.3(b)) shows many outliers while the plot on load rarely
7Anonymous even to us.
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(a) The boxplot of hourly load.
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(b) The boxplot of hourly prices.
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(c) The median price by time of day (at 15-minute
intervals).
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(d) The price time series on July 9.

Figure 2.3: Figs. 2.3(a) and 2.3(b) show the hourly plots of a C/I load and prices from ERCOT,
based on 15-minute measurements from Jan. 1, 2008 to Sep. 30, 2008. Fig. 2.3(c) shows the
median price over these nine months by time of day. Fig. 2.3(d) shows a particular sample of the
price series on July 9, 2008 [1]. (© 2015 IEEE)
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Table 2.1: Statistics of price (P) and load (Q) [1]. (© 2015 IEEE)

Kurtosis Skewness Mean Std. Deviation
P 149.0002 10.9133 67.9700 173.2434

Q 2.7712 0.1069 2246 631.0869

has them. This shows the “spiky" nature of price series, an abrupt and irregular sudden extreme

price change for a very short term of 15-30 minutes duration (Fig. 2.3(d)). This makes the price

highly non-normally distributed with heavy tail. Such spiky nature of prices can be explained by

either the high marginal cost of production by the generators with the ability to respond rapidly to

meet peak demand (e.g., gas or oil fired plants), or the bidding or withholding strategy of utility

companies to maximize their profit. The other notable feature we see in Fig. 2.3 is that the load

time-series exhibits a depressed demand in the afternoons, over time intervals overlapping fairly

well with the time intervals which show frequent large outliers in the price time series. We infer

that the depressed demand is developed as a consequence of demand response, and that the demand

response is highly related to the outliers of price, because the depression can be hardly explained

by the plot of the median of prices (Fig. 2.3(c)).

In Fig. 2.4, the statistics of the prices (P) and C/I load (Q) on workdays are depicted. From Fig.

2.4(b), the empirical probability plot of load versus the normal distribution shown by the diagonal

dashed line, we can see that the empirical distribution of the load is fairly close to the normal

distribution. For further validation, we can also check an estimate of the kurtosis, µ4/σ4, where

µn is the nth moment about the mean and σ is the standard deviation. It is 2.77, which is close to

the value 3.0 for the normal distribution. Also its skewness, µ3/σ3, is 0.11, which is close to the

value 0 for the normal distribution. (Table 2.1). Therefore, we can conclude that the distribution of

the load is very close to a normal distribution. We also see that the load shows a highly correlated

structure with the past load in Fig. 2.4(c), the plot of autocorrelation (ACF) of the load, while

the partial autocorrelation (PACF) of the load (Fig. 2.4(d)) decays rapidly not exceeding lag of

five quarter hours (75 minutes). Taking these facts into account, it is highly likely that a simple
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(c) The autocorrelation function (ACF) of Q. (One
discrete unit of time = 15 mins)
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(d) The partial autocorrelation function (PACF) of
Q (The autocorrelation of each lag k after the de-
pendence on lags 1,2, . . . , k − 1 is removed).

Figure 2.4: The statistics of Price (P ) from ERCOT and the C/I load (Q) on workdays (i.e., week-
ends removed) based on 15-minute measurements from Jan. 1, 2008 to Sep. 30, 2008 [1]. (© 2015
IEEE)
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autoregressive (AR) model of order 3 or 5 would sufficiently well describe the load process.

On the other hand, the first characteristic of price we can observe in Fig. 2.4(a) is that the

distribution of prices is highly non-normal. At low to moderate prices, the cumulative distributions

matches with the diagonal dashed line, suggesting closeness to the normal distribution. However,

the top 5% of the prices severely deviate from the line, reflecting the spiky nature of electric-

ity prices. Such a long-tail property yields huge kurtosis (149.0002) and skewness (10.9133) as

presented in Table 2.1.

From the above, it is clear that it is not feasible to get a linear relationship between load and

price over all values of P and Q. Hence, we conclude that it is not possible to obtain one universal

linear dynamic system model between price and demand. As an alternative, it is natural to con-

tinue the analysis by assuming that there are two transfer functions (TFs), one for moderate prices

which is a linear model, and one for high prices where there are large values. The deviation from

normality of the top 5% in Fig. 2.4(a) gives a reasonably good demarcation between moderate

prices and peak or high prices.

2.2.1.1.3 Estimation of Dynamic model on Load and Price From the aforementioned prelim-

inary data analysis in previous section, we conjecture that there exist two qualitatively distinct

regimes, a low to moderate price regime, and a high price regime. In the former we consider a

linear transfer function between price and load with additional noise to account for uncertainty,

i.e., an ARX model driven by white noise. In the high price regime we consider a concave trans-

formation of peak prices to account for non-normality of the process. In this section, we further

address this problem of identifying the dynamic model of DR.

2.2.1.1.4 Methodology We briefly discuss the estimation and validation methodology to esti-

mate the dynamic model of DR. For the basic dynamic model of DR, we consider an ARX model

driven by white noise, one of the simplest but most useful models for forecasting and control. For

estimation, we consider the least squares (LS) method for estimating the unknown parameters in a

linear regression model [32], [33]. To verify the existence of DR and the significance of the results

of estimated parameters, we use the analysis of variance (ANOVA) method [34]. For examining
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the minimum net contribution of price information to reduction of error in load estimation, we

consider a two-step estimation procedure. To achieve parsimony of the model, we cross-validate

the model by a random division of each complete data set under two separate conditions (i.e., mod-

erate prices and high prices) into two sets of the same size, namely, a training set and a test set. We

estimate the model from the training set and evaluate it on the test set.

2.2.1.1.5 Autoregressive Exogenous (ARX) model Denote by {P (t)}Nt=1 and {Q(t)}Nt=1 the

time series of prices and loads, each consisting of N observations. If we denote by z−1 the backshift

operator z−1X(t) ∶=X(t − 1), the ARX model can be described as follows:

α(z−1)Q(t) = β(z−1)P (t) + ϵt, (2.1)

where vectors α ∶= [1 − α1 − α2 ... − αm]′ and β ∶= [β1 β2 ... βn]′ are unknown parameters to

be estimated, α(z−1) ∶= α′ ⋅ [z−i]mi=1 and β(z−1) ∶= β′ ⋅ [z−i]ni=1 are the characteristic and numerator

polynomial of TF respectively, and ϵt is an error which is an independent and identically distributed

(i.i.d.) noise process with Eϵt = 0 and VARϵt = σ2.

2.2.1.1.6 Two-step Estimation Our primary objective in this work is to show the existence of

DR and understand it from a dynamic system perspective. We employ the following two-step

estimation procedure to examine the net contribution of price information to reduction of error in

load estimates.

1. First estimate the regression parameters α̂, and obtain Qres(t) ∶= (1 −∑m
i=1 α̂iz−i)Q(t).

2. Estimate β̂ using the equation Qres(t) = (∑n
i=1 βiz−i)P (t) + ϵt.

Then, the overall estimated ARX model is the following:

Q(t) = (
m

∑
i=1

α̂iz
−i)Q(t) + (

n

∑
i=1

β̂iz
−i)P (t) + ϵt, (2.2)

where α̂i and β̂i are the LS estimators of αi and βi.
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Table 2.2: Estimated AR Model of Q(t) in the moderate price regime [1]. (© 2015 IEEE)

Q(t) = α1Q(t − 1) + α3Q(t − 3) + α5Q(t − 5) + α0 +Qres(t)
Coeff. Estimate SE tStat pValue
α0 238.07 13.989 17.018 8.883 × 10−64

α1 0.81268 0.0085477 95.075 0

α3 0.046086 0.010267 4.4886 7.2744 × 10−6

α5 0.036614 0.0085466 4.284 1.8579 × 10−5
√

MSE : 301 R2: 0.775

F-statistic vs. constant model: 8.81 × 103 p-value = 0

2.2.1.1.7 Demand Response to Moderate Price We now present an ARX model for DR in the

moderate price regime, the prices below the 95%-quantile. Tables 2.4 shows the overall estimation

results of the ARX model. The estimated TF of the model is:

TFLow =
−0.8555z−1 + 0.5273z−2

1 − 0.8127z−1 − 0.0461z−3 − 0.0366z−5
. (2.3)

This model explains 77.6% of the variance that Q(t) initially possesses. Tables 2.2 and 2.3 present

the results of the analysis for each of the two steps of estimation. The Estimate column shows the

estimated coefficient value, the SE refer to the standard error of the estimate, the tStat indicates

the t-statistic for a hypothesis test that the coefficient is zero, and the pValue is the p-value for the

t-statistic.

What we see here is that though price has sufficient statistical significance due to its low p-

value (0.0147), its innovative contribution to the load forecast is relatively small (less than 0.1%),

and most of the change in Q(t) can be explained by the past of the load itself (AR(5) model). This

suggests that a moderate price has very little impact in eliciting demand response, which is also

consistent with our observation in the preliminary analysis shown in preliminary data analysis part.

2.2.1.1.8 Demand Response to High Price We now present an ARX model for the high price

regime, where the prices are over the 95%-quantile (144.4187 $/MWh). A sample time-series of a
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Table 2.3: Estimated Linear Model of Qres(t) in the moderate price regime [1]. (© 2015 IEEE)

Qres(t) = β1P (t − 1) + β2P (t − 2) + β0 + ϵt
Coeff. Estimate SE tStat pValue
β0 22.506 10.054 2.2385 0.025218

β1 -0.8555 0.42677 -2.0046 0.045043

β2 0.5273 0.43006 1.2261 0.2202
√

MSE : 301 R2: 0.00084

F-statistic vs. constant model: 4.22 p-value = 0.0147

Table 2.4: The ARX Model on Q(t) in the moderate price regime [1]. (© 2015 IEEE)

(1 − α1z−1 − α3z−3 − α5z−5)Q(t)
= (β1z−1 + β2z−2)P (t) + ϵt + ϵ0

Coeff. Estimate Coeff. Estimate
α1 0.81268 β1 -0.8555

α3 0.046086 β2 0.5273

α5 0.036614 ϵ0 260.126
√

MSE : 301 R2: 0.776
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Table 2.5: ANOVA Results for Fig. 2.5(b) [1]. (© 2015 IEEE)

Source SS DF MS F p-value
Groups 1.21 × 107 10 1.21 × 106 3.21 3.86 × 10−4

Error 3.89 × 109 10351 3.76 × 105

Total 3.90 × 109 10361

8

SS: Sum of squares; DF: Degree of freedom of error;
MS: Mean square; F: F-statistic.

typical load evolution after a high price spike is shown in Fig. 2.5(a). Here, we observe a huge drop

of the load after a one and half hour lag. Fig. 2.5(b) shows that such a load drop phenomenon is not

an isolated event; we generally see such a general load drop and recovery pattern over two and half

hours after price surges. The ANOVA result in Fig. 2.5(b) in Table 2.5 supports our observation

that there exists a significant load drop 0.5-1.5 hours after a price surge due to its extremely low

p-value (3.86 × 10−4). This is sufficiently low to reject the null hypothesis of a constant model for

the load.

In addition, we also observe that the height of price surge is correlated to the depth of load drop

from Fig. 2.5(c) and 2.5(d). Fig. 2.5(c) shows the average curve of the change Q(k), at a certain

level of price surge P at time t, where Q(k) ∶= 1
∣P∣ ∑P (t)∈P [Q(t + k) −Q(t)] for all P in a subset

of sample prices P = {P (t) ∶ Pmin ≤ P (t) ≤ Pmax} for given Pmin and Pmax. We see that higher Pmin

and Pmax result in the greater load drop. Fig. 2.5(d) shows the correlation between the height of

the price surge (∆P = P (t) − P (t − 1)) and the load Q, which is most negatively significant after

k = 5 quarter-hour periods (i.e., one hour and 15 minutes) from a price surge.

Based on the above observations, we establish a simple dynamic model between the magnitude

of the price surge and the load, for high price surges. Taking into account the long-tailed character-

istic of prices, we consider a linear model in the convex transformation logP (t), instead of P (t),

for better estimation performance. Moreover, because of the innate time-dependency on DR, we

present a TF for a specific time period, from 2:00pm to 2:30pm, in this paper. The estimation

results for the ARX model of DR at high price are shown in Tables 2.6, 2.7, and 2.8. The estimated
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Figure 2.5: The temporal pattern of the change of Q in response to price surge [1]. (© 2015 IEEE)

TF of the ARX model is:

TF 2∶15pm
Peak = −220.1z−4

1 − 0.4015z−1 + 0.2383z−2 − 0.2512z−4
, (2.4)

which explains 51.2% of the variance that Q(t) has. The first point we observe here is that the

accuracy of the AR model for Q(t) is severely degraded (R2 = 33.2%) in Table 2.6, compared to

the AR model for the moderate price regime (Table 2.2). However, we see that a relatively high

portion (27%) of the variance of Qres(t) is explained by the estimated model of Qres(t) shown in

Table 2.7, from which we conclude that the innovation from the price information is significant to
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Table 2.6: Estimated AR Model for Q(t) in the high price regime [1]. (© 2015 IEEE)

Q(t) = α1Q(t − 1) + α2Q(t − 2) + α4Q(t − 4) + α0 +Qres(t)
Coeff. Estimate SE tStat pValue
α0 748.26 233.72 3.2015 0.0025097

α1 0.40153 0.11763 3.4133 0.0013678

α2 -0.23826 0.1461 -1.6308 0.10992

α4 0.25124 0.11516 2.1816 0.0344
√

MSE : 336 R2: 0.332

F-statistic vs. constant model: 7.44 p-value = 0.000377

Table 2.7: Estimated Linear Model for Qres(t) in the high price regime [1]. (© 2015 IEEE)

Qres(t) = β4logP (t − 4) + β0 + ϵt
Coeff. Estimate SE tStat pValue
β0 1213.4 293.68 4.1316 0.00014688

β4 -220.1 52.774 -4.1707 0.00012965
√

MSE : 281 R2: 0.27

F-statistic vs. constant model: 17.4 p-value = 0.00013

improve R2 of ARX model up to 51.2% as shown in Table 2.8.

In Fig. 2.6, we check the validity of our model by sample load forecast. Figs. 2.6(a) and

2.6(b) depict the errors in the load forecast at 3:15pm after a price surge at 2:15pm. We see

that the forecasted Q̂(t) and the actual Q(t) at t = 3:15pm are fairly well correlated (correlation

(rQ̂Q = 0.7160) in Fig. 2.6(b), and that the errors exhibit normality (Kurtosis = 3.1809) in Fig.

2.6(a).

In Fig. 2.7, we investigate the time dependency of the ARX model for a high price surge.

Fig. 2.7(a) shows that the time lag in the TF has some randomness, ranging from 0.75 hours to

2.75 hours. Fig. 2.7(d) suggests that the period of the day in which DR demonstrates statistical

significance is from 1:15pm to 2:45pm, with the most significant time slot being from 2:00pm to

2:30pm (Fig. 2.7(c) and 2.7(d)), for which the TF is shown in Equation (2.4).
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Table 2.8: The ARX Model for Q(t) in the high price regime [1]. (© 2015 IEEE)

(1 − α1z−1 − α2z−2 − α4z−4)Q(t) = β4z−4logP (t) + ϵt + ϵ0
Coeff. Estimate Coeff. Estimate
α1 0.40153 β4 -220.1

α2 -0.23826 ϵ0 1961.66

α4 0.25124
√

MSE : 281 R2: 0.5124
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2.2.1.1.9 Summary of Prior Work In this section, I have introduced my prior work that poses

the problem of modeling price responsive demand at wholesale level. Based on the empirical data

acquired from ERCOT, I propose a dynamical transfer function approach to modeling such behav-

ior. Empirical study suggests that (1) the price responsiveness of demand may have qualitatively

different behavior during “normal price” and “peak price” periods; and (2) there exists a demand

response delay consequent on a high price surge. The first finding can be reasonably interpreted

as saying that there is little incentive for increasing power consumption at low price since we do

not have efficient energy storage yet. On the other hand, this finding is in line with the observation

in financial markets that a financial market tends to react more sensitively to bad news than good

news [35]. The second finding shows that there exists a certain “inertia” in consumption so that it

takes a certain time delay to reduce power consumption after a peak price observation.

Perhaps more important than the two specific findings is the potential value of the very ap-

proach of employing transfer functions for flexible demand modeling. This modeling approach

offers many more degrees of freedom in characterizing the salient nature of power consumers as

compared with classical econometric modeling of price elasticity.

2.2.1.2 A Study of Consumer Behavior in Response to Day Ahead Prices (DAP)

In Section 2.2.1.1, we have seen that there is a delayed demand response after a price spike,

indicating that there is an inertial in demand. Accepting this fact and assuming that a customer is

rational, the reasonable reaction of the customer is to respond and adjust its consumption based on

price prediction. However, the verification of the hypothesis that demand is responsive to predicted

prices requires the availability of such a price prediction.

Day Ahead Prices (DAP) can be a good source of such a price prediction available to most

stake holders. While the current ERCOT electricity market is equipped with a day-ahead market

for actual energy purchase, in 2008 there were day ahead markets only for ancillary services in

ERCOT. Ancillary services stands for services to maintain system reliability upon the request of

the ISO. For this reason, there was no actual power transacted in the day ahead market in 2008, so
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that, strictly speaking, there was no economic reason for the customers to respond to DAP in 2008.

Thus, it would be a valid evidence that customers are actually responsive to price anticipation if

we can indeed verify the fact that customers are well responsive to DAP in this 2008 dataset.

Another point to note here is that the verification actually supports the hypothesis only if the

DAP is somewhat different from RTP; otherwise it is not clear where the verified good responsive-

ness comes from, while it is meaningless if DAP is very different from RTP because this contradicts

the assumption that DAP is a good predictor of RTP. Our data of the year 2008 from customers

in Houston shows that the correlation between DAP and RTP is about 0.5 which indicates that it

could be an appropriate source for the verification.

Since the verification is ongoing work, I conclude this section with Figure 2.8 which is a sample

demonstrating how demand is responsive to DAP. What we can observe here is that demand is

responsive to the overall shape of the price series especially in peak hours, but the responsiveness

varies over time.

2.2.2 Preliminary Model on Consumer Behavior

In Section 2.2.1.1, we observe that (1) power demand responds to high price surges while it

does not exhibit significant response to modest price changes; (2) there exists a demand response

delay consequent on a high price surge. On the other hand, another important observation we have

seen in both Sections 2.2.1.1 and 2.2.1.2 is that the responsiveness of power demand to both RTP

and DAP varies over time. While such observations are explicable in a broad sense, it looks as

if these conflict with the rational consumer assumption. One of the key assumptions underlying

economics is that every consumer seeks the least available expense for a given amount of con-

sumption. Hence, it is a crucial to examine whether the given power consumption data can be

rationalized. Such a rationalization problem can be described as a process to demonstrate the ex-

istence of a coherent optimization problem of which the solution appears as the given result. Once

such an optimization problem is identified, the identification will provide us the understanding of

the mechanism of consumer behavior as a price responsive system. In this section, I propose a

model attempting to explain the observed phenomena, which delineates the optimization problem

27



h

0 5 10 15 20 25

k
W

h

1000

1500

2000

2500

3000

3500

4000
Load

5/14/2008

h

0 5 10 15 20 25

$
/M

W
h

50

100

150

200
Real-time Price

5/14/2008

h

0 5 10 15 20 25

$
/M

W
h

10

20

30

40

50

60

70
Day-ahead Price (Responsive Reserve Service)

5/14/2008

Figure 2.8: A sample of load, RTP, and DAP series on May 14, 2008. The load and RTP are from
Houston, and the DAP is the price of the responsive reserve service.

for the system to be estimated.

2.2.2.1 An “Appliance” Usage Model

The identification of an optimization problem requires the identification of both an objective

function and the set of feasible solutions. From the economic point of view, the objective function

seems to be obvious, i.e., to minimize the total expenditure of the consumption. However, it is
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not clear whether the consumption does actually minimize the total expenditure from the given

data set. The correlation between the 10-month-series of price and consumption from 30 randomly

picked consumers in Texas, who explicitly indicated themselves as price responsive customers,

does not go below -0.1, while the average of the correlation between one-day-series of price and

consumption does not go below -0.6 for both DAP and RTP. Figure 2.8 shows an example why

such a phenomenon happens. While demand and price are typically negatively correlated when it

is a peak hour period, in off-peak hours there is a near zero or even positive correlation on many

days.

To rationalize the data, it is worth setting up a hypothesis, i.e., there exists some constraints

which restrain the set of feasible solution, before we jump to the conclusion that consumers tend

to be less rational in off-peak hours. This raises an interesting question: Can we estimate the

unknown constraint set of an optimization problem from the price as an independent variable

which determines the objective function, with the demand as a dependent variable which is an

optimal solution of the optimization problem?

Below I formalize a model of consumption that attempts to answer the above question. For

the estimation process, it is necessary to set up a model about the structure of the constraints as an

initial step. Consider a consumer using an “appliance” such as a dishwasher. Accepting the idea

that such constraints may be related to our natural “appliance” usage pattern, it becomes necessary

to set up a model for appliance usage to identify the constraints. As a beginning, let us call the

usage of an appliance for a task as an atomic load.

Definition 2.2.1 (Task). A task T is a tuple (q, S, a) where,

• Load level q ∈ R+, this is the power drawn by the load while it is active;

• Session S ≡ [ts, td] ⊂ Z, a time interval which indicates the feasible time period over which

the activation of T is feasible. Here, ts is the release time of T and td is deadline. We assume

the duration of ∣S∣ does not exceed 24h, with ∣S∣ denoting the number of (typically 15 min

or 1 hour) time slots in S, i.e., ∣S∣ = ∣td − ts + 1∣;
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• Activeness constraint a ∈ Z+, denoting the length of the total active time period of the task

which needs to be mandatorily accomplished. Note that a ≤ ∣S∣. The total energy consump-

tion of T is aq.

The main motivation of proposing the structure of a task as shown in Definition 2.2.1 is to set

up the relationships between all the loads in each time slot. The real-time retail pricing advocates

claim that the load on each time slot should be regarded as a distinct commodity because of the

real-time characteristic of loads. However, the traditional demand-supply curve model does not

capture how these loads are related to each other, because this model is specialized to depict the

relationship between saturated demand, supply, and market clearing price, while the explanation of

the dynamics of the demand or the relations with other goods is not the main issue the model deals

with. The main purpose of introducing the task model is to manifest such a relationship between

all the loads on each time slot. Once a task T is given, we can easily infer that the load on time slots

not in S and the load on time slots within S have an independence relationship; any load change

on one time slot does not affect that of the other one. However, between the two loads on the time

slots within S, we can infer that they are substitutes of each other; if one time slot in the past is

also active, it is less likely the another slot in the future is active, due to the activeness constraint

a. On the other hand, if two time slots are both within S and adjacent, it is likely that the loads on

them are in a complementary relationship if T has a delay, especially if both belong to one atomic

job.

Example 1. I indicate below some examples of appliance usage.

• Running a dishwasher: (q = 1.8kW,S = 1 day, a = 2h)

• Charging a mobile phone: (q = 0.006kW,S = [low battery alert, departure time], a = 3h)

• Running a simulation on a desktop computer: (q = 1kW,S = [5 PM,8 AM], a = 1h)

2.2.2.2 Price Responsiveness of a Task to Real Time Prices (RTP)

In this section, I show how the proposed appliance usage model can potentially provide an

understanding of dynamic demand response to RTP that we have observed in Section 2.2.1.1. I
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presume that completion of a task T produces a certain level of utility u(T ), while the cost from

energy consumption is aq. At first, it is natural to assume that a customer executes a task if and

only if it is worth doing it. To address this, we also introduce a penalty for aborting a task, and

denote it by c ≥ 0. This could be a contract cancellation fee if T is a contractual task.

Assumption 2.2.1. A task T subsists if and only if the expected net utility of its completion is

greater than the cost of its abortion.

While the introduction of Assumption 2.2.1 seems to be natural, it has a crucial implication: the

exact net utility cannot be realized until its completion. This is because the available information

to a customer is limited to real time electricity prices of past and present time slots, not those

of the future, so that the one can only estimate the cost of the task, but not know it with certainty.

Assumption 2.2.1 can be described in terms of the following two conditions, the initiation condition

and the abortion condition of a task.

Proposition 2.2.2 (Initiation Condition). A customer initiates a task if and only if there exists A

such that the expected total cost is less than the utility of the task, i. e.,

∃A ⊂ S s.t. u(T ) − a ⋅ q ⋅EA[PRTP
t ] > 0, (2.5)

where u ∶ {Ti ∶ i ∈ Z} → R+ is the utility function, A ⊂ S is a set of time slots of active power

consumption by T so that ∣A∣ = a, and EA[PRTP
t ] denotes the expected power price during A.

Proposition 2.2.3 (Abortion Condition). A customer aborts a task at time t0 if and only if the

utility of the task minus the minimum expected total cost of the remaining period of A is greater

than the penalty for abortion,

u(T ) − af ⋅ q ⋅EAf [PRTP
t ] < −c, ∀Af , (2.6)

where, Ap = A ∩ {t ∶ t < t0} is the set of past active time slots, Af ⊂ (S ∩ {t ∶ t ≥ t0}) is the set of

future active time slots so that a = ap + af where ap = ∣AP ∣ and af = ∣Af ∣, and c ≥ 0 is the penalty
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for aborting T , e.g., there could be a contract cancellation fee if T is a contractual task.

The maximum net utility of the completion of the task T is the total utility of task T minus the

minimum expected total cost, while the net utility from the abortion of the task T is zero utility

minus the the total cost from the past active time slots as well as the additional penalty. Thus, a

customer aborts the task T if the net utility of the completion of the task T (LHS of the inequality

(2.7)) is less than the net utility from the abortion of the task T (RHS of the inequality (2.7)) for

all possible A ⊂ S. i.e.,

∀A ⊂ S such that Ap ⊂ A, u(T ) − aqEA[PRTP
t ] < 0 − ∑

t∈Ap

qPRTP
t − c. (2.7)

This can be restated as,

∀Af ⊂ (S ∩ {t ∶ t ≥ t0}),

u(T ) − (∑
t∈Ap

qPRTP
t + afqEAf [PRTP

t ]) < − ∑
t∈Ap

qPRTP
t − c

so that

u(T ) − afqEAf [PRTP
t ] < −c, ∀Af ⊂ (S ∩ {t ∶ t ≥ t0}),

which is the inequality (2.6) in Proposition 2.2.3.

Here, the utility is an internal concept that cannot be measured. The initiation of tasks will

appear in a stochastic manner depending on the prices in a real situation. However, the important

implication of Propositions 2.2.2 and 2.2.3 is that, using both propositions, (1) We can restate the

task abortion condition without involving an unmeasurable utility function, as we show below and,

(2) We can gain understanding on how the observed delays in given data could be explained by

shedding light on where the inertia of demand comes from.

Lemma 2.2.4. An initiated task T is aborted at t0 if the following condition is met,

32



∀Af , afqEex−post
Af [PRTP

t ] − aqEex−ante
A [PRTP

t ] > c (2.8)

where Eex−ante
A [⋅] is an expectation over A obtained before ts and Eex−post

Af [⋅] is an expectation over

Af obtained at t0.

Proof. An initiated task T should always meet the inequality (2.5) by Proposition 2.2.2,

u(T ) − a ⋅ q ⋅Eex−ante
A [PRTP

t ] > 0. (2.9)

On the other hand, multiplying −1 on both sides of the inequality (2.6) allows us to restate (2.6)

as

∀Af ,−u(T ) + afqEex−post
Af [PRTP

t ] > c. (2.10)

Adding (2.10) to the inequality (2.9) reduces to (2.8).

Lemma 2.2.4 states that a task is not aborted unless there is a significantly erroneous predic-

tion at the time of the task initiation. This situation is not likely to happen when it is off-peak

hours, because af ≤ a so that the condition (2.8) could be satisfied only when Eex−post
Af [PRTP

t ] is

significantly greater than Eex−ante
A [PRTP

t ].

However, our observations indicate that a price spike is likely to occur soon after a price spike

occurrence, which may yield a substantial difference between Eex−post
Af [PRTP

t ] and Eex−ante
A [PRTP

t ].

Observation 1. A price spike is likely to be occurred soon after a price spike occurrence if it is in

peak hours.

Figure 2.9 shows a comparison of the estimated conditional probability of price spike in differ-

ent situations, based on the obtained data from Houston. Each figure in Figure 2.9 shows a different

time period. We can easily check from the Figure 2.9 that the conditional probability of a price

spike after the occurrence of a price spike quickly reduces in off-peak hours, so that I infer that the

price spike at off-peak hours is not likely to cause a task abortion. However, we also observe that
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the conditional probability of a price spike after the occurrence of a price spike during peak-hours

remains at a significantly higher level than the probability of price spike without any conditioning.

From this, I surmise that the price spikes in peak-hours are highly likely to induce task abortion.

Another notable point from Lemma 2.2.4 is that the relative position of the price spike occurrence

within a session S is also a crucial factor which determines whether the task T is to be aborted. The

abortion of a task T caused by a price spike is likelier if the price spike occurs near the beginning

of the session S. Such a relationship is captured in the following Theorem 2.2.5.

Theorem 2.2.5. A task is aborted in response to a price spike at time t0 if the following condition

is satisfied,

∀Af ,
af

a
>
Eex−ante

A [PRTP
t ]

Eex−post
Af [PRTP

t ]
+ cd (2.11)

where cd = c

aqEex−post
Af [PRTP

t ]
.

Proof. This is a simple rearrangement of Lemma 2.2.4.

Theorem 2.2.5 shows that a greater af or Eex−post
Af [PRTP

t ] induces a task abortion. This im-

plies that if a price spike in peak hours, making a greater difference between Eex−ante
A [PRTP

t ] and

Eex−post
Af [PRTP

t ], occurs in the earlier part of S, then it is more likely to be aborted.

Besides the explanation of Theorem 2.2.5 showing why the task is only responsive to price

spike, Theorem 2.2.5 also provides a candidate cause for the observed delay in response from

the given data in Section 2.2.1.1. The following example illustrates how this induces a demand

response delay.

Example 2. Suppose there are two tasks T1 and T2, such that T1 has a session starting at tT1
s , and

T2 has a session ends at tT1

d . Consider two scenarios as follows. In one scenario, there is a price

spike at time slot t0, which causes T1 to be aborted, but not T2. In the other, there is no price spike.

Then, Figure 2.10 shows how the aggregated load Qt = QT1
t +Q

T2
t differs in the two scenarios. We

can observe that Qt in Figure 2.10(a) shows the pattern of a delayed response, while the session

termination of S1 is not revealed in Figure 2.10(b).
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Figure 2.9: The conditional probability of price spike occurrence compared for different time
periods
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(a) The scenario with a price spike. (b) The scenario without any price spike.

Figure 2.10: Load patterns with same tasks under two different price scenarios, one with a price
spike, and another without a price spike.

As in Example 2, aggregated loads of multiple tasks, with different abortion chances deter-

mined by various sessions and activeness constraints, may aggregately exhibit a delayed response

to price spike observed in Section 2.2.1.1.

Corollary 2.2.6. A load is responsive to PRTP
t if the following conditions are met:

1. Every task has its session S = [ts, td] within a time slot so that ts = td, and

2. The distributions of u(Ti) and qi are time invariant.

Proof. Since the minimal time length we can recognize is one time slot by the definition of a task

(Definition 2.2.1), a = af = 1 and A = Af = {t}. Thus, a task Ti is initiated and activated at time t

only if u(Ti)/qi > PRTP
t by Proposition 2.2.2.

Take two time slots t1 and t2 for which PRTP
t2

< PRTP
t1

. Let i be the index of the tasks in t1 and

j be the index of the tasks in t2 such that u(Ti) = u(Tj) and qi = qj if i = j, indicating that {Ti}

and {Tj} meet the condition (2) in Corollary 2.2.6.
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Then, we can easily check that u(Ti)/qi > PRTP
t2

if u(Ti)/qi > PRTP
t1

, whereas the reverse is

not necessarily true when PRTP
t2

< u(Ti)/qi < PRTP
t1

. This implies that I ⊂ J , from the fact that

u(Ti)/qi = u(Tj)/qj if i = j , where I ∶= {i ∶ u(Ti)
qi
> PRTP

t1
} and J ∶= {j ∶ u(Tj)

qj
> PRTP

t2
}.

Therefore, Qt2 > Qt1 where Qt1 =∑
i∈I

qi and Qt2 =∑
j∈J

qj are total loads for corresponding time

slots, since qi = qj if i = j.

Typically, in an economic market it is assumed that every trade brings utility to both market

participants, suppliers and consumers. For demand response, Corollary 2.2.6 suggests that RTRP

may work well in a situation satisfying both the following conditions:

• The utility from consumption is realized at every market clearing point, and

• The demand characteristic for price is nearly time-invariant.

In contrast, demand may not be well responsive if utility necessarily involves multiple market

clearing points. From this point of view, electricity has a peculiar feature in comparison to other

commodities; consumer utility from electricity consumption comes from the completion of a task

so that if the activeness constraint a is longer than the market clearing period, the traditional con-

cept of price elasticity is not well defined.

2.2.2.3 Price Responsiveness of a Task to Day Ahead Prices

The appliance usage model in Section 2.2.2.1 along with Propositions 2.2.2 and 2.2.3 in Sec-

tion 2.2.2.2 implies that there is a fundamental reason for a task to be responsive to price prediction

rather than the actual RTP: a task is initiated or aborted based on the prediction of overall cost by

the task, unless the actual price signal indicates that the prediction of price is likely to be signifi-

cantly erroneous. From Theorem 2.2.5 in Section 2.2.2.2, I have shown that the responsiveness of

demand to RTP, or demand inertia, critically depends on the predetermined active slots A in a task

T . Although the determination of active slots A from S of a task T for the minimization of the

expected expenditure crucially depends on the individual customer’s price prediction, obtaining

such information is generally not possible in practice, as previously mentioned in Section 2.2.1.2.
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Hence, I assume that DAP represents the customer’s price prediction in this section. However,

unless the obtained DAP data is from an actual day ahead energy transaction market, DAP may

significantly differ from RTP. While a day ahead ancillary service market may be a good predic-

tion source for RTP, there is no reason that the ancillary service price should match up with RTP.

Hence, to assume DAP as a predictor for RTP, I assume that a day series of RTPs preserves the

overall shape of DAP for the day even though the actual price level may deviate.

Assumption 2.2.7. Consider a rearrangement of time slots so that resulting one-day series of

{PDAP
t } are monotone increasing. We assume that the same rearrangement of time slots of one-

day series of {PRTP
t } also results in monotone increasing.

Proposition 2.2.2 implies that a customer should find min
A⊂S, ∣A∣=a

a ⋅ q ⋅ EA[PRTP
t ] of a task T

before the initiation of T to compare this to u(T ). The optimal solution of the cost minimization

problem for the task T is described in the following lemma.

Lemma 2.2.8 (Optimal load scheduling for a task T ). Let A∗ ∶= arg min
A⊂S, ∣A∣=a

a ⋅ q ⋅EA[PRTP
t ] and

A∗DAP ∶= {t ∶ time index of the ith smallest element of {PDAP
t ∶ t ∈ S} where i = 1, ..., a}, both

assumed to be unique minimizers. Then, A∗ = A∗DAP .

Proof. By Assumption 2.2.7, A∗DAP and the set A∗RTP ∶= {t ∶ time index of the ith smallest element

of {PRTP
t ∶ t ∈ S} where i = 1, ..., a} have exactly same elements so that A∗DAP = A∗RTP . To verify

the proposition A∗ = A∗RTP , suppose there exists an A′ such that aqEA′[PRTP
t ] < aqEA∗RTP

[PRTP
t ]

so that ∑
t∈A′

PRTP
t < ∑

t∈A∗
PRTP
t .

Since ∣A∗RTP ∣ = ∣A′∣ = a, there exists a time slot t′ ∈ S∖A∗RTP such that PRTP
t′ < PRTP

supA∗RTP
. This

conflicts with the definition of A∗RTP . Therefore, A∗ = A∗RTP = A∗DAP .

Once A∗ is obtained, an active power consumption is scheduled at each time slot in A∗ for the

task T . The following theorem states the condition when the load scheduled for a task T is not

responsive to DAP, to provide an idea on the price responsiveness of load to DAP.
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Theorem 2.2.9. Consider two identical tasks T1 and T2 initiated on two different days d1 and d2

(i.e., there may exist a specific time t0 such that PDAP
t0 in d1

≠ PDAP
t0 in d2

) respectively. Scheduled loads

for tasks T1 and T2 are same if and only if A∗1 = A∗2 .

Proof. Set T1 ∶= (q0, S0, a0)d1 and T2 ∶= (q0, S0, a0)d2 . The scheduled load by T1 is QT1
t = q0 ⋅

1A∗1
(t), and the scheduled load by T2 is QT2

t = q0 ⋅ 1A∗2
(t), where 1X(t) is an indicator function.

Therefore, QT1
t = Q

T2
t if and only if A∗1 = A∗2 .

Theorem 2.2.9 can be considered as the corresponding version of Theorem 2.2.5 for DAP.

Since Theorem 2.2.9 asserts that QT1
t = QT2

t regardless of their DAPs as far as equality of A∗1

and A∗2 is concerned, the load scheduled for a task is not responsive to any difference between

{PDAP
t }d1 and {PDAP

t }d2 unless A∗1 ≠ A∗2 . Moreover, the load assigned to task T is not responsive

to any price decrements within A∗ nor increments within S ∖A∗. Hence, it can be inferred from

Theorem 2.2.9 that the relationship between DAPs and loads would exhibit nonlinearity. However,

the identification of a task T would become clearer if T is routinely initiated at the same time

everyday so that S is almost invariant, or at least stationary over days. This would help precise

load prediction from DAP as well as task identification.

The difference between two sessions of multiple tasks initiated in a same day may appear as a

time-varying price responsiveness of load. The following example illustrates how DAP delineate

the load dynamics if there are multiple tasks initiated.

Example 3. Suppose a series of DAP {PDAP
t , t ∈ {1,2,3,4,5,6,7}} is announced as follows,

PDAP
t = (0,1,8,9,8,1,0),
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and a customer initiates its tasks as follows,

T1 = (q1 = 1, S1 = [1,5], a1 = 4),

T2 = (q2 = 1, S2 = [2,6], a2 = 4),

T3 = (q3 = 1, S3 = [3,7], a3 = 4).

Then, optimal load scheduling for each task is,

QT1
t = (1,1,1,0,1,0,0),

QT2
t = (0,1,1,0,1,1,0),

QT3
t = (0,0,1,0,1,1,1).

Hence, the total load from the aggregation of the initiated tasks is,

Qt =∑
i

QT1
t = (1,2,3,0,3,2,1).

The shape of PDAP
t and load Qt is provided in Figure 2.11.

Remark. Despite the simple problem setting in example 3, we can clearly see that the pattern

of the load Qt in Figure 2.11 has all the peculiar features present in the load data from a customer

in Houston shown in Figure 2.8, such as time-varying price responsiveness, especially the positive

correlation between price and load at off-peak hours as well as the sudden load drop at peak hours.

Another interesting point in Example 3 is that, the correlation between the load Qt and PDAP
t

is 0.2, which is a positive value. The positive correlation between load and price throughout whole

time period as well as the strong positive correlation between load and price in off-peak hours are

both counterintuitive results which are not explicable by the traditional consumption model. Our

proposed model, however, gives an idea how to rationalize the pattern we can frequently observe

in real world load data. It supports the claim that such a behavioral pattern is an optimal choice
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Figure 2.11: The DAP and optimal load scheduled for the given tasks T1, T2, and T3.

selected by a rational customer, by providing us insight about the underlying structure in such a

pattern.

Corollary 2.2.10. If a = ∣S∣, any price change does not involve load change unless the task T is

aborted.

Proof. If a = ∣S∣, A∗ = S so that A∗ is always same for any price change.

There could be a critical task, e.g., the tasks of life supporting devices in hospitals, which would

appeared as extremely price inelastic loads. Corollary 2.2.10 shows the ability of the proposed

appliance usage model for describing such loads.
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2.3 Potential Further Extension

As this work aims modeling and closing the loop around price responsive demand data, po-

tential extension of his study may include the empirical quantitative modeling of price responsive

consumers based on the proposed “appliance” usage model in Section 2.2.2.1, and the design of

optimal pricing as well as market efficiency analysis based on the proposed consumer behavior

model.

2.3.1 Construction of a Quantitative Price Responsive Consumer Behavior Model from

Empirical Data

The potential next step of this study can be the development of a mechanism to systematically

identify and construct a quantitative model of consumer behavior from past history. Unlike what

has been believed so far, our study of consumers’ behavior with respect to real time price changes

based on empirical data on price-responsive loads in ERCOT area suggests the following:

• Load is a prescheduled quantity based on price prediction, rather than an instantaneously

price-responsive quantity in real time.

• A prescheduled load is only affected by real time price shocks that severely deviate from the

price prediction.

Therefore, it is crucial to develop a dynamic model between the load as a prescheduled quantity,

and the DAP as an RTP predictor. To address the nonlinearity between consumption and DAP

suggested from Theorem 2.2.9 in Section 2.2.2.3, a suitable choice one may consider is to introduce

an artificial neural network. A possible multilayer perceptron structure can be deduced from the

proposed appliance usage model as follows. By the appliance usage model, the load Qt can be

described as,

Qt =∑
i

qi1Ai
(t),

where the Ti’s are the task initiated at time t, with each Ti ∶= (qi, Si, ai). Hence, Q̂t, the predicted
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Qt, can be achieved by taking the expectation of Qt over the Ti’s,

Q̂t =∑
i

qiPr[t ∈ Ai].

Here, Pr[t ∈ Ai] may vary by Si and ai, as well as {PDAP
τ ∶ τ ∈ Si}. Meanwhile, it is

reasonable to assume that Si is independent of DAP itself, due to the assumption in Section 2.2.2.3

that S is stationary over days. Here, I emphasize the following key assumption for the availability

of effective off-line estimation: Most power consumption is from the tasks which are routinely

initiated by necessity in daily life before the exact electricity price is known. Hence, Q̂t can be

rewritten as follows,

Q̂t =∑
i

qiPr[t ∈ Si] ⋅Pr[t ∈ Ai∣t ∈ Si, P
DAP ], (2.12)

where PDAP is a given one-day series of DAP. Assuming Pr[t ∈ Si] is an estimable constant pit,

and assuming that Pr[t ∈ Ai∣t ∈ Si, PDAP ] takes the form of a logistic function of DAP, Q̂t in

(2.12) can be reduced to,

Q̂t =∑
i

qipit ⋅
1

1 + ewit⋅PDAP =∑
i

vit ⋅
1

1 + ewit⋅PDAP , (2.13)

where vit ∶= qipit is a scalar to be estimated, and wit is a weight vector corresponding to PDAP .

In fact, as can be seen this results in a two-layer perceptron with one hidden layer zit:

Q̂t =∑
i

vitzit where zit ∶=
1

1 + ewit⋅PDAP . (2.14)

Hence, the training process to obtain vit and wit can be performed by backpropagation, and optimal

prices can be in a similar fashion through, for example, a gradient descent method, once training

is done.

As mentioned in Section 2.2.2, and specifically in Section 2.2.2.1, the main purpose of propos-

ing the appliance usage model is to delineate the structure of the constraints of an optimization

problem that we ultimately aim to identify. Hence, a further step of my future work is to develop
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the methodology for identifying an underlying optimization problem which will provide a uni-

fied view on consumer behavior in response to price. This would ultimately rationalize the given

data by linking the observed demand response to RTP. The arguments made here is extended and

reinterpreted in Chapter 3.

2.3.2 Market Efficiency Analysis and Optimal Pricing Design

Market is a dynamical system that is designed to proceed toward an optimal state as its equi-

librium. However, such a process necessarily requires a certain amount of time to reach its equi-

librium. While dynamic modeling and control on the generation side in power systems has been

well understood, the understanding of dynamic behavior on the demand side in response to price

has been unclear. Our study of consumers’ behavior with respect to real time price changes based

on empirical data from price-responsive loads suggests that a load is basically determined by price

prediction, and only affected by real time price shocks with delay. Such behavior features imply

that frequent price changes do not necessarily bring economic efficiency in the sense of social

welfare maximization.

This idea provides important guidance in designing two fundamental factors in time-varying

retail electricity prices – the frequency and timeliness, where (1) Frequency of Price is the fre-

quency at which retail prices change, and (2) Timeliness of Price is the time lag between when a

price is set and when it is effective [18]. It is generally assumed among economists that RTRP

with high frequency and just-in-time timeliness would be ideal in terms of economic efficiency in

the electricity market, as RTRP is an attempt to get more accurate signals closely reflecting the

actual supply/demand status in the market. However, my inference based on my work is that both

arguments are not necessarily right. The inherent delayed responsive nature of loads with high

price volatility exacerbates the predictability of price, thereby making demand less responsive to

RTRP, which worsens economic efficiency. Consumers which are more exposed to market volatil-

ity stiffen their demand to be more inelastic and tend to be more conservative due to the inertial

nature of demand. This suggests that there exists a trade-off between controllability of demand

and observability of markets, so that there may exist an optimal frequency and timeliness which is
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not extreme for optimal pricing design. This also supports the importance of relatively long-term

contract markets such as day-ahead electricity markets. Market efficiency should be reanalyzed

taking into consideration the trade-off between the controllability of demand and the observability

of the market.

45



3. PRICE RESPONSIVE LOAD MODELING WITH CAUSAL ANALYSIS

In this chapter, we are concerned with generic data-centric modeling of a price responsive

demand from given data, extending the arguments provided in Section 2.2. Throughout this chap-

ter, the problem we are concerned with is specified, and the theoretical justification of our pro-

posed problem-tackling methodology is expounded. In Section 3.1, we elucidate the fundamental

problem of the modeling electricity demand – the impossibility of consistent modeling with non-

experimental data alone regardless of its sample size. This necessitates the invocation of some

untested assumptions prior to any observational studies. In the following subsections, we thor-

oughly examine the theoretical premises, and establish required parsimonious postulates for con-

sistent modeling of demand response. In Section 3.2, we propose the abstract consumer behavior

framework that rests on the equivalence between the consumer behavior portrayed in contempo-

rary economic theories and Shannon’s secrecy system framework with a minor modification. In

Section 3.3, we propose a novel neural model representation, the Stochastic Neuron, for an ef-

fective instantiation of the above consumer behavior framework. This is followed by the proof

that the proposed demand response model backed by the proposed consumer behavior framework

enables the consistent modeling of price-responsive electricity demand. Subsequently in Section

3.4, we refine the proposed most rational account principle for effective and irreducible model

representation by developing a measure of rationality.

3.1 The Fundamental Problem of Consumer Behavior Modeling in Electricity Consump-

tion

In this work, we address the problem of modeling the effect of real-time price on individual

electricity load given a data set D ∶= (X,Y ), where X and Y are the sets of observed price se-

quences and load sequences respectfully. Generally speaking, this task falls into an identification

problem of “y = g(x)” given a full knowledge of P (x,y)1, the joint probability distribution of

1Full knowledge on P (x,y) is the ultimate knowledge one can achieve from data regardless of the data size.
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price x and load y. However, the underlying difficulty of the electricity consumption identification

problem arises from the existence of confounders, which are the common factors that influence

both the electricity price and the load behavior, such as weather condition, and the practical infea-

sibility of maintaining full information of potential confounders on each consumer individual. It is

well known from the slogan “correlation does not imply causation” that such confounding bias pre-

cludes the disentanglement of causation and spurious association in purely passive observational

studies [36]. Thus, in principle, any problem-tackling strategies solely relying on associational

inference techniques could be erroneous in regard to the identification problems with confounders

unless we have full information of them, as they may infuse ambiguity into the identification tasks.

For the purpose of articulation, it is convenient to illustrate the problem with the tool estab-

lished by Pearl and his collaborators: structural causal modeling [37], which is a formal causal

framework that unifies graphical causal analysis [38], counterfactual analysis [39], and structural

equation modeling (SEM) [40]. The starting point of this framework is to model the system as a

directed acyclic graph (DAG) called a causal diagram of a Markovian model or a causal Bayesian

network. A Markovian model consists of a causal graph represented as a directed acyclic graph

(DAG) G = (V,E) over a vertex set V , which represents the set of random variables, and an edge

set E of ordered vertex pairs, which indicates the causal influence between the pair of random

variables. The term “Markovian” comes from the interpretation of the causal model graph G that

each variable is independent of all its non-descendants conditioned on its parent variables in G.

Such a structural property permits one to construct the joint distribution P (V ) of all variables

V ∶= {V (i)}ni=1 via a modular configuration, i.e, it can be factorized as follows:

P (V ) =
n

∏
i=1

P (V (i)∣Pa(V (i))), (3.1)

where Pa(V (i)) denotes the parent node set of V (i) in G. Hence, the full description of a Marko-

vian modelM is defined as the following tuple:

M = ⟨V, GV , {P (V (i)∣Pa(V (i))) ∶ V (i) ∈ V }⟩, (3.2)
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where (i) V is a set of the variables in the system of interest, (ii) GV is a DAG with the nodes

corresponding to the elements of V , and (iii) P (V (i)∣Pa(V (i))) is the conditional probability of

variable V (i) given Pa(V (i)) in GV . P (V (i)∣Pa(V (i))) = P (V (i)) if Pa(V (i)) = ϕ.

Traditionally, SEM has been the main workhorse for causal effect analysis in many scientific

disciplines. SEM represents the causal influence as a set of functional equations of the form

v(i) = gi(Pa(v(i)), ϵ(i)), (3.3)

where Pa(v(i)) stands for the set of variables which directly determine the value of v(i), and ϵ(i)

denotes unknown or unmeasured factors causing errors. The interpretation of gi(⋅), which is called

law in science, is standard in natural and social sciences; it is a description of the data generating

process that assigns a value to v(i) by a mechanism, in response to the values Pa(v(i)) and ϵ(i)

taken on by external intervention. The identification of gi(⋅) has been of primary interest in most

scientific studies since it is not meaningful to attempt to identify the causal effect of an arbitrary

v(j) on v(i) without the specification of gi(⋅). We use the notation do(v(j) = v0) to denote the

external intervention of assigning a value v0 to v(j), which is named as do-operator by Pearl [38].

Converting SEM to the corresponding causal diagram G can be straightforwardly done by

taking each v(i) as V (i) and placing an arrow toward V (i) from each member of Pa(V (i)). As the

mathematical operation do(V (j) = v0) implies the simulation obtained by fixing V (j) to v0, it can

be described as the following two-step operation in SEM: (i) delete gj(⋅) from {gi ∶ i = 1, ..., n}, and

(ii) replace it with an equation v(j) = v0. Equivalently, it can be defined as the following sequential

operation in a causal diagram creating the submodel MV (j)=v0: (i) the removal of all incoming

edges to V (j) from Pa(V (i)) keeping the rest of the model unchanged, and (ii) the assignment of

V (j) = v0. Hence, the post-intervention distribution Pv(j)(V ) ∶= P (V ∣do(V (j) = v(j))) is given
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by [36]:

Pv(j)(V ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏V (i)∈V ∖{V (j)}P (V (i)∣Pa(V (i)))

V consistent with V (j) = v(j),

0 Otherwise.

(3.4)

It is worth noting that Pv(j)(V ) ≠ P (V ∣v(j)) in general, providing the reaffirmation that correlation

does not imply causation. Causal effects on an arbitrary variable set Y ⊂ V can be obtained through

appropriate marginalization of Eq. (3.4), i.e., Pv(j)(Y ) = ∑(V ∖{V (j)})∖Y Pv(j)(V ).

The notable implication of structural causal modeling is that the full specification of GV ex-

plicates the prerequisite tacit information for the consistent computation of the “causal query”

Px(Y ) for any disjoint X,Y ⊂ V from the probabilistic premise P (V ) given GV , if one has a full

observation of the model variables. The gold standard for the estimation of causal effect among

scientists has been the randomized controlled experiment: after the subjects to be manipulated are

randomly chosen from the population of interest to neutralize the effect of confounding factors,

the experimenter applies direct manipulation on the subjects. In a variety of studies, however,

this methodology is infeasible due to the issues of practicality or ethics. Instead, one inevitably

needs to rely on non-experimental observations to infer causal effects. Structural causal modeling

provides a tool for hypothetical simulation of randomized controlled experiments to infer causal

effects from statistical information obtained from intervention-free behavior.

In many cases, however, it is unrealistic to presume that one has full observation of V , as most

real world systems in practice do not permit one to have full observation of all system variables. If

there are unobserved confounders affecting two or more variables in V , it may prohibit the modular

configuration (3.4) so that the inferability of a causal effect could be questionable. Thus, the deter-

mination of “identifiability” of a causal query Px(Y ) of interest is the first step of most scientific

studies when the observations are made under partial information onM. The main problem dealt

with in this work, the identification of causal effect of energy price on its consumption, also falls

into this category in the sense that we do not have any information on the confounders other than
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their presence. Taking into account the ignorance of some variables in V by taking V = O ∪N ,

where O and N are the sets of observable and unobservable variables respectively, the causal effect

of do(X = x) on Y is said to be identifiable from P (O) in GV if Px(Y ) is uniquely determined

from P (O) in any causal model which induces GV . The formal definition of causal identifiability

is as follows [36]:

Definition 3.1.1 (Identifiability). Let X,Y ⊂ O be disjoint sets of observable variables. Given

a causal diagram GV , the causal query Px(Y ) is identifiable if we have P (1)(O) = P (2)(O) ⇒

P
(1)
x (Y ) = P (2)x (Y ) for any two modelsM(1) andM(2) sharing a common GV , where P (i)(⋅) is

the associated probability distribution ofM(i) and P
(i)
x (⋅) is the post-interventional distribution of

M(i)
x by do(X = x).

A line of literature by Tian and Pearl [41], Shpitser and Pearl [43], and Huang and Valtorta [44]

provides a complete graphical characterization of models for the identifiability of causal queries

in a semi-Markovian model, which is a Markovian modelM with unobserved variables such that

each unobserved variable inM is a root node with exactly two observed children. In fact, these

works completely close the causal identifiability decision problem for the Markovian model with

arbitrary unobserved variables, since Tian and Pearl present in their work [42] a conversion method

for an arbitrary Markovian model to a semi-Markovian model, preserving its causal effect identifi-

ability properties. As semi-Markovian models structurally assume an unobserved confounder has

two observed children, it is convenient to introduce a bidirected edge to denote the unknown con-

founding effect. That is, if there is an unobserved confounder N (k) affecting both observables O(i)

and O(j), i.e., O(i) ← N (k) → O(j), then it is depicted as a dashed bidirectional edge V (i) ⇠⇢ V (j)

in the causal diagram of the semi-Markovian model. The key result from [41] used in this work is

the following lemma:

Lemma 3.1.1 (Tian and Pearl [41]). Px(O) is identifiable if and only if there is no bidirectional

path connecting X to any of its children in GV .

Using the language of structural causal modeling, the modeling task of demand response in
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(a) (b)

(c) (d)

Figure 3.1: (a) The causal diagram of the simplest demand response model. (b) The causal diagram
presuming that there is no causal effect of X on Y but spurious correlation in between those. (c)
The expanded causal model of Fig. 3.1(a) for time series representation of demand response. (d)
The expanded causal model of Fig. 3.1(b) for time series representation of the hypothesis that there
is no causal effect of X1∶t on Y1∶t.

electricity consumption can be articulated as the identification problem of Px(Y ) in V = O ∪N

where O = {X,Y } and N are the unknown factors, where X is a variable representing an electricity

price, and Y denotes the electricity consumption. The simplest causal diagram of the demand

response model we consider is depicted in Fig. 3.1(a). While the direction of the edge (X,Y )

can be justified from an essential assumption in microeconomics that an individual consumer is a

price-taker, one may cast a doubt on the existence of the edge (X,Y ), since the causal diagram

may be as depicted in Fig. 3.1(b).

The Chap. 2 and our previous work [1] statistically validates the dismissal of the model in

Fig. 3.1(b), where X and Y are related only through a confounding factor, by showing the causal
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effect of X on Y from the given data of a consumer in Texas. As the main goal of the paper [1]

was to construct a dynamic model of demand response, it begins by temporally separating X and

Y into time series representations X1∶t and Y1∶t, and showing that the consumer exhibits Xt á Yt

while Yt /á Y1∶t, where á denotes independence. With these independence/non-independence rela-

tionships in hand, it then proceeds by making some further postulates as follows: (i) Y1∶t−1 have a

direct effect on Yt. E.g., whether to turn on a dish washer with one hour cycle may directly affect

the electricity usage 15 minutes later. (ii) Y1∶t−1 blocks the effect of the confounders which poten-

tially affect both X1∶t−d and Yt, where d > 1. E.g., the past weather condition prior to the time t − d

may not be informative for the inference of Yt if one knows the air conditioner’s operational status

at the time t − 1. These extra postulates, along with a stationarity2 assumption permit one to ex-

pand the causal models in Fig. 3.1(a) and 3.1(b) to those in Fig. 3.1(c) and 3.1(d), respectively. By

verifying X1∶t−d /á Yt∣Y1∶t−1 via statistical hypothesis testing, the existence of the edge (X1∶t−d, Yt)

is substantiated, which implies that the causal relations in Fig. 3.1(c) as well as Fig. 3.1(a) are the

correct ones.

While our previous work [1] shows that the simplest demand response causal model is a valid

form, its structure highlights the fundamental unidentifiability problem of modeling electricity

consumption.

Theorem 3.1.2 (The Fundamental Problem of Consumer Behavior Modeling in Electricity Con-

sumption). The simplest demand response model in Fig. 3.1(a) is unidentifiable.

Proof. This is deduced directly from Lemma 3.1.1 as the model in Fig. 3.1(a) is semi-Markovian.

It is not a difficult task to construct a toy example illustrating the unidentifiability in Theorem

3.1.2. Consider two different models M(1) and M(2) with the same causal diagram depicted in

Fig. 3.1(a). Regarding the data generation process from the unobservable variable N , suppose

X = N for both models but let Y (1) = X + 2N for M(1), and Y (2) = 2X + N for M(2). Then,
2This is a common assumption in time series analysis. It also means that the causation remains intact after time

shift.
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it can be easily checked that the joint distributions of the observable variables in both models are

the same, i.e., P (1)(X,Y ) = P (2)(X,Y ), but P (1)x (Y ) = P (x + 2N) and P
(2)
x (Y ) = P (2x +N),

so that P (1)x (Y ) ≠ P (2)x (Y ). Shpitser and Pearl also present another illustrative example in their

work [43] to show the unidentifiability of Fig. 3.1(a) when all variables in the model are Boolean.

The provided example clearly illustrates why the determination of Px(Y ), i.e., y = g(x), is

fundamentally impossible solely from the obtained P (X,Y ). Even the expansion of Fig. 3.1(c)

to include a link (X,Y ) does not help to resolve unidentifiability. For this reason, our previous

work [1] takes a conservative approach to model selection; it presents the model with the least price

causality in the sense that it chooses the demand response model with the least influence of price on

load among all the possible models. The above fundamental unidentifiability implies that the task

of modeling of price responsive consumer behavior inevitably necessitates some extra knowledge

or untested assumption of the data-generating process, and the model cannot be determined from

the data alone regardless of sample size, nor from probabilistic premise. In the next section, we

first examine some preexisting studies in modern economics mainly focusing on consumer theory

and behavioral economics to aid in making appropriate structural assumptions to construct an

identifiable causal model. Subsequently, we propose an abstract framework for consumer behavior

models which enlightens the key structural aspects of consumer behavior for identifiable causal

model construction.

3.2 The General Framework for Consumer Behavior Models

Most theoretical demand response literature widely adopts the neoclassical viewpoint of the

microeconomic consumer model, which is considered as a standard approach accepted in modern

economic theory, taking a consumer as a selfish solver of the following optimal choice problem

(OCP) [46]:

u∗ ∶= max
y⃗∈B(x⃗,b)

u(y⃗) (3.5)
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where u(⋅) ∶ Rk
+ → R is a utility function, (x⃗, y⃗) ∈ (Rk

++,Rk
+) are the sequences of prices and loads

respectively for a short term period which may be influenced by each other3, and b ∈ R++ is a budget

constraint. Both x⃗ and b determine the set of affordable load profile choices B(x⃗, b) ∶= {y⃗ ∈ Rk
+ ∶

x⃗ ⋅ y⃗ ≤ b}. The optimal solution for the problem (3.5) is called Walrasian demand correspondence

defined to be y∗(x⃗, b) ∶= argmaxy⃗∈B(x⃗,b) u(y⃗) because y∗(x⃗, b) is not necessarily unique in general.

The essential foundation of consumer theory, which eventually leads Walrasian demand corre-

spondence into a demand function via guaranteeing a unique optimal load profile at any price given

budget, is (i) the consistency, named consumer rationality by economists, which indicates the tran-

sitiveness and completeness of the preference; (ii) the local nonsatiation; and (iii) the strict con-

vexity of her preference [46]. The presupposition of rational consumers implies that a consumer’s

choices are the manifestation of her rational preference so that the observed consumer choices are

the series of her revealed preference. As a result of efforts to rationalize the observed behavior, the

traditional axiomatic approach on the basis of the principle of revealed preference specifies a fam-

ily of rationalizable utility functions as those which rationalize an observed consumer behavior,

e.g., the set of continuous, strongly monotone, and strictly quasi-concave functions, as is stated in

Afriat’s theorem [46].

In addition to the above properties for rationalizable utility functions, it is often convenient to

posit the differentiability of utility function enabling us to analyze consumer behavior via standard

tools in calculus. A well known example is Roy’s identity which formulates the demand function

directly from the derivatives of indirect utility function v(x⃗, b) = u∗, i.e., y∗ = −∇x⃗v/∂v∂b . More

importantly, it is known that twice differentiability of the utility function has a crucial implica-

tion beyond its analytic convenience when we take a whole exchange economy into consideration

beyond the mere consumer side, in the sense that the uniqueness and stability of equilibria of an

economy is premised upon the smoothness of demand function as well as the corresponding utility

function [48]. While a utility function is in fact an unobservable entity, another notable result on

differentiable rationalizable utility functions is that they always generate unique homeomorphic

3Rk
+ denotes the non-negative orthant, and Rk

++ denotes the strictly positive orthant.
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demand functions; specifically, the differentiability of a rational utility function implies the exis-

tence of an open X ⊆ Rk
++ and a unique bijective demand function y∗(⋅, b) ∶ X → int(B(x⃗, b)),

where int(⋅) denotes the interior of a topological set [49]. Hence, the invertibility of demand from

its homeomorphy is one of the core interests of economists and market operators in (i) empirical

identification and estimation of demand; and (ii) theoretical analysis of the stability and uniqueness

of Walrasian equilibrium prices [50].

A key limitation of the neoclassical axiomatic approach to modeling consumer behaviors is that

the assumption of perfect information is at the heart of the optimal choice problem formulation

[47]. Although the standard neoclassical viewpoint suggests an alternative formulation of (3.5),

viz., the expected utility theory constructed by von Neumann and Morgenstern [51] for the analysis

of decision making under risk which supposes a consumer choice is a maximizer of expected

utility, it still presumes that a consumer has a perfect knowledge of her preference over the choice

space, which is endogenous and consistent, since this is the crucial premise of consumer rationality.

Another important limitation of the neoclassical approach is that it was never intended to be a

realistic model of human cognition; it originally emerged as a normative theory rather than a

descriptive one [52]. The prediction solely based on an optimal choice problem formulation would

be hardly accurate so that it may require a deliberate manual process of filtering, adjustment and

calibration, or even extra assumptions.

Triggered by the seminal works of Kahneman and Tversky [53, 54], which offer a descriptive

alternative to expected utility theory based on a psychological background for decision making

under uncertainty that is labeled as prospect theory, behavioral economists provide a variety of

descriptive heuristic alternatives of the orthodox neoclassical approach leaning on laboratory ex-

periments and empirical evidence. While the number of cognitive and behavioral errors identified

and described by behavioral economists is large and constantly growing [55], their main view-

points may be divided into two groups. The first group of critiques attacks the rationality of a

consumer, initiated by the works of Kahneman, Tversky, and Thaler [53, 54]. A large body of lit-

erature in behavioral economics has shown that consumers perceive utility as being in flux which
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leads to one’s behavior appearing as irrational, exhibiting various distortion patterns. This point

of view argues that a consumer is prone to have numerous types of “error” that its manifestation

is always inconsistent and context-dependent due to (i) social and cultural factors, as well as (ii)

her selection of sources of information, and (iii) her unawareness of the way it is processed [56].

An example is the work of Thaler [57], who first applied a behavioral economics approach to

describe consumer behavior, and showed an inertial effect in consumer choices through various

experiments, and concluded that a consumer is uncertain about her utility and she tends to cling to

choices she previously made to avoid potential regret. Although one may consider a more sophis-

ticated and complex utility structure with multiple latent states representing exogenous changes,

e.g., by taking a consumer as an optimal multi-armed bandit problem solver to choose ‘exploration’

or ‘exploitation’ at each time step, which is an active area of study in reinforcement learning these

days, Sunstein and Thaler [58] point out that the term ‘preference’ may be inappropriate under

strong context-dependency [55], stating that: “If the arrangement of alternatives has a significant

effect on the selections customers make, then their true preferences do not formally exist”.

On the other hand, the second point of view attempts to reconcile empirical observations with

neoclassical theory by presupposing consumers’ willingness to be rational. Rather than abandon-

ing the concept of rationality, the studies consider the problem of implementing it in practice.

Simon proposes the concept of bounded rationality in his work [59] to denote the entire range

of restrictions that crop up on both the informational and computational sides that prevent people

from behaving as in the normative ideal in neoclassical theory. As Simon indicates “most peo-

ple have reasons for what they do” [59], he argues that individuals choose from among the best

options available to them, given a certain encoded utility function and a set of constraints, which

may be either physical and informational. Another body of literature including Stigler’s work [60]

introduces the concept of information cost so that it is rational to stop processing or collect further

information if the cost of information processing outweighs the expected gain by it. This viewpoint

also suggests that rationality may be deemed not as a dichotomous but as a continuous variable so

that one can refer to degrees of it [56]. In fact, recent studies suggest that the first viewpoint at-
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tacking the concept of rationality can be explained by the interpretation of the bounded rationality

as a consumer possibly having a bounded insight of her own utility, for biological reasons such

as the information processing capability limitation of a brain. As an example, an empirical study

in neuroscience demonstrates that the human brain encodes the subjective utility (value) of an ob-

served item in a compressed form, where the precision with which neural representations encode

is proportional to the frequency with which the item is actually encountered [61].

The idea of potential extra constraints on the consumer choice space in addition to those defined

by price and budget is also applicable to models of electricity consumption. Besides the potential

uncertainty or fluctuation in utility function from various exogenous factors such as weather, ex

ante demand response to uncertainties in future prices, a peculiar non quasi-concave utility struc-

ture resulting from the nature of an appliance usage, and limited load controllability no better than

simple on-off switches, could all derail the rational load behavior ideal of the standard model (3.5)

equipped with the rational preference.

Although empirical evidence extensively studied by behaviorists well demonstrates the lim-

itation of neoclassical standard model, developing an alternative paradigm of consumer choice

encompassing various empirical observations from diverse domains is a challenging task. This is

because, behavioral economics lacks a general conceptual foundation that coherently synthesizes

a variety of observations [55]. Unlike economics, which has been dominated by a single paradigm

for a long time, psychology has multiple paradigms without any one school prevailing as the main-

stream. Moreover, no systematic attempts have been made within behavioral economics to assess

the frequency of various cognitive and behavioral errors. Affected by this cultural background,

behavioral economics does not suggest any general theory of decision making over cognitive dis-

tortions, and appears to be just a catalog of psychological phenomena of observations made on

an occasion-by-occasion basis [55]. The existence of a multitude of opportunistic heuristics from

behavioral economics leads to the following critical questions for which it is difficult to get clear

answers when we attempt to translate the results from behavioral economics into a particular field

such as the study of demand response in electricity markets: “Which methods and concepts to be
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imported from behavioral economics are universally applicable?” and “How to decide whether an

observation from lab experiments in a specific field is transferable to another field?” No shared

understanding has been evolved in behavioral economics for answering these questions [56]. As a

consequence of this difficulty, a policy recommendation based on behavioral economics is neither

conclusive nor solid without a thorough empirical validation of a candidate set of heuristics for

a specific field. Such validation also could be a highly demanding task, as the list of identified

heuristics is too vast and it spans a broad range of different conditions. According to one of the

lists which is far from complete, the number of the heuristics was already almost 50 in 2009 [62].

Although the traditional neoclassical viewpoint presents an elegant normative explanation on

how demand should behave stemming from the postulate of rational behavior, a large body of

literature in behavioral economics criticizes that it lacks descriptive power based on empirical ev-

idences. The core ideas permeating the behaviorists’ works can be summarized as follows: (i) a

consumer generally faces arbitrary physical or institutional restrictions in her choices in addition

to those prescribed by the prices and her budget; (ii) a consumer also faces informational restric-

tions due to her limited capability to observe and process information about her utility, available

choices, and even a full bundle of prices, all of which brings about distortion during her informa-

tion processing; and (iii) the consumer’s choice is context dependent and inconsistent; so that a

consumer hardly or never makes an optimal choice anticipated from a normative consumer. On

the other hand, the lessons from a variety of heuristics developed for different domains regarding

bounded rationality suggest that to pick and impose a specific presumptive hypothetical heuristic

belief may not appropriate for a domain such as electricity consumer behavior. It may instead be

desirable to drop or relax normative or heuristic beliefs that may be unnecessary or outside of our

interests, and instead attempt to posit a flexible prior on a clean slate.

Adopting the viewpoint from [61] that a consumer or a decision maker is an information proces-

sor of limited capability, we can generalize a consumer’s decision making process as a sequential

pair of encoding and decoding process, i.e., y⃗ = gd(ge(x⃗)), where ge ∶ Rk
++ → X ′ is an encoding

operation, gd ∶ X ′ → Rk
+ is an decoding operation, and X ′ is an arbitrary vector space which rep-
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resents the space of encoded prices, which reflects the whole body of encoded information for her

decision making, including her subjective utility and the observable prices. We may interpret such

a decomposition as follows: (i) a consumer first takes the price sequence as an input and encodes

it into her internal representation, namely an encoded price, then (ii) she makes her choice and

transforms the encoded price into a realization such as a consumption bundle or a load process

as an output. If we let the framework be totally free without any specific prior restriction on the

space of the pair of encoder and decoder, it may possess superfluous flexibility in the sense that

there could be infinitely many encoder-decoder pairs (ge, gd) describing a common consumption

behavior. However, the assumption of a normative consumer, i.e., a rational consumer with a ratio-

nalizable and differentiable utility, imposes certain restrictions on the framework such that (i) an

encoder ge(⋅) and the correspondent decoder gd(⋅) are both invertible (homeomorphic) functions,

and (ii) the decoder is uniquely determined by a given encoder.

This observation implies that the proposed model structure resembles Shannon’s secrecy sys-

tem [63] depicted in Fig. 3.2. Shannon’s secrecy system is composed of three components, an

encoder, a decoder, and a key source. If a system receives a message M from an information

source, the encoder performs a functional operation M ′ = g(M ;K) to generate an encoded mes-

sage or a cryptogram M ′, where K is a key randomly generated by the key source, and g(⋅,K) is

an invertible function. Then, the decoder operation M ′′ = g−1(M ′;K) which transforms M ′ space

to M ′′ space, recovers the original message M . The similarity between Shannon’s secrecy system

and the proposed framework for a normative consumer behavior can be readily checked as follows:

(i) both ge = g(⋅,K) and gd = g−1(⋅,K) are invertible for all K; (ii) if an encoder g(⋅,K) is fixed by

a given key K, then the decoder g−1(⋅,K) is uniquely determined; and (iii) the key K is latent in

the sense that it may be present but is supposed to be invisible to others, resembling the subjective

utility function of a consumer. Thus, Shannon’s secrecy system with minor modifications, which

has a pair of homeomorphic encoder and decoder, allowing the decoder a general gd(⋅,K) instead

of g−1(⋅,K), gives an equivalent model of a normative consumer.

One may see that the only stochastic part in Shannon’s secrecy system, the key source com-
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Figure 3.2: A schematic diagram of Shannon’s general secrecy system [63].

Figure 3.3: A schematic diagram of the proposed consumer behavior framework.

ponent that determines an active encoder-decoder pair, has a similar role to the utility function

in consumer theory in the sense that it materially determines a demand function in neoclassical

consumer theory. In the language of consumer theory, such stochasticity can be translated as fol-

lows: (i) the natural fluctuation in a consumer utility excited by exogenous environmental factors,

and (ii) an epistemic uncertainty from its latent nature, affected by common environmental factors,

drive price change such as weather condition in electricity consumption. We emphasize that the

structural presumption that K blocks the influence of the confounder on the output load plays a

crucial role for the identifiability of consumer behavior modeling. We address this in Theorem

3.3.9 in detail.
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In addition to the epistemic uncertainty dwelling in the key source, relaxing the rationalizable

and differentiable utility condition taking account of bounded rationality could be implemented

by presuming extra uncertainties on each part of the modified secrecy model as follows, which is

depicted in Fig. 3.3:

1. The physical and institutional constraints may arbitrarily limit the available choices or the

controllability of the load. Thus, it is reasonable to posit a stochastic decoder [64] instead of

a deterministic one to reflect such uncertain constraints.

2. Like physical/institutional constraints, the informational constraints can be implemented by

the replacement of the deterministic encoder by a stochastic encoder [64], and the possibility

of information distortion suggests that the encoder may not necessarily be a bijection.

3. The inconsistency of preference implies that the key θ which determines a stochastic encoder

may not uniquely determine the corresponding stochastic decoder. We may consider imple-

menting this implication by the insertion of a noisy channel between the key source and the

decoder, which reflects a random distortion of θ to θ′.

However, presuming such multiple sources of uncertainty infuses ambiguity into the model

framework: how to break down the observed noise into three distinct uncertainty sources in prac-

tice? We first note that it is reasonable to believe that the stochastic encoder and decoder are condi-

tionally independent given a key θ, i.e., ge á gd ∣ θ or equivalently, P (ge, gd∣θ) = P (ge∣θ)P (gd∣θ),

unless there is a strong reason to posit that there is a certain interrelationship between informational

constraints and physical constraints. On the other hand, we admit that a consumer has willpower to

be rational so that it is reasonable to choose the most rational explanation if there are multiple pos-

sible accounts. This belief is in line with the idea that it is most probable to be a right representation

if we find a representation of uncertainty decomposition having the least noisy channel in Fig. 3.3

among numerous ways of uncertainty decomposition keeping conditional independence between

the stochastic encoder and decoder. Hence, another core problem of interest throughout this work,

besides the model identifiability problem, is to find the model representation that provides a most
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rational account from empirical data, which is articulated in the following sections. Using the lan-

guage of machine learning, this goal could be paraphrased as the extraction of stochastic features

that well factorize the demand response system.

The following examples from different types of electricity load usage for a consumer who is

facing real-time electricity price may clarify the principle of the most rational account:

1. The scenario for interruptible and deferrable “dishwahser” type loads: One enjoys the

benefit from a dish washer only after the completion of the running cycle. This inevitably

involves a price forecast for the remaining running cycle period to decide whether to turn a

dishwasher on or off. Among two options the consumer has, it is rational to keep it turned on

only if the risk of total energy cost for the remaining running cycle exceeding the expected

utility from the cleaned dishes is sufficiently low. For this type of load, the actual fluctuating

real-time price may not be very informative to capture the load behavior, but the most rational

account principle suggests that there exists a representation of her latent price forecast that

almost determines the load behavior. This could be restated as the statistical parameter θ of

a stochastic encoder, indicating a denoiser with epistemic uncertainty on the ways in which

the actual prices are smoothed, almost determines a unique bijection that transforms the

representation of smoothed prices to the observable load behavior. The measured load of

a smart meter installed in a typical home could be a mixture of these types of loads with

various load profiles e.g., a dish washer, a laundry machine, a coffee maker machine, and an

electric oven, etc. Such a scenario can be captured by rephrasing the previous statement for

the single dish washer case in a loosened way that a stochastic encoder almost determines

a stochastic decoder, which in turn maps an encoded price to a load behavior taking into

account the uncertainty on which appliances are on demand.

2. The scenario for duty cycle controlled “air conditioner” type loads: Most modern ther-

mostats apply a hysteresis control (also known as a bang-bang control), so that a consumer

is not capable of precisely controlling the load itself, but can only manipulate the reference

room temperature. This indicates that actual prices may be useful for estimating the aver-
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age proportion of time the air conditioner is in operation, but they may not be informative

enough to precisely predict the current level of an air conditioner load. However, the most

rational account principle implies that it is reasonable to believe there is a homeomorphic

map from electricity price to her current reference room temperature setting, and such map

almost determines the stochastic behavior of the air conditioner based upon reference tem-

perature. This could be paraphrased by saying that a stochastic decoder, taking the reference

temperatures to the actual load with epistemic uncertainty introduced by the hysteresis con-

trol, is determined by a bijection that transforms the price into the reference temperature.

In the case of a consumer with various thermostats for multiple rooms, boilers, refrigerators

etc., the deterministic encoder in the single air conditioner scenario could be extended to a

stochastic encoder for the mapping from the price to the mixture of reference temperature

settings for the thermostats for various locations and purposes.

On the other hand, we emphasize that it may not be common to have a perfect determinism between

the stochastic encoder and decoder, since there may exist an aleatory uncertainty that cannot be

reduced further, which could be interpreted as either irrationality, or the consumer’s imperfect

knowledge of her utility. Hence, how bijective the map between the stochastic encoder and the

stochastic decoder is, could be used as a measure of rationality.

In summary, inspired by our observation that the normative neoclassical consumer model can

be boiled down to a modified Shannon’s secrecy system model, we propose an abstract framework

for consumer behavior on the basis of the modified Shannon’s secrecy system with uncertainty

components, giving consideration to behaviorists’ critiques. As the ambiguity on the representa-

tion of uncertainty remains, we attempt to break such ambiguity by the separation of the poten-

tial epistemic and aleatory uncertainties, and posit a minimum aleatory uncertainty assumption,

namely the proposed principle of “most rational account”.

A detailed description of the implementation will be provided in the following two sections.

For the implementation of the pair of encoder and decoder, we will consider the application of a

neural representation to take advantage of the full expressivity of a universal approximator to drop
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all unnecessary assumptions for bottom-up model construction. To describe the innate stochas-

ticity of the pair of encoder and decoder with neural representation, we propose a novel neural

representation in Section 3.3, a stochastic neuron, which has a more concise form with an equiva-

lent expressivity to a Bayesian Neural Networks with symmetric priors. Thereafter, in Section 3.4,

we discuss how to measure rationality to eventually find the “most” rational account from the ob-

served data. As we interpret the noisiness of the channel in Fig. 3.3 as an indicator of irrationality,

we postulate that the measure of rationality is an innate channel property uniquely determined by

the given channel itself. Based on the intuition that the demand response of a rational consumer is

a causal effect driven by the price dynamics, we consider the use of causality measure as a measure

of rationality in Section 3.4.

3.3 The Stochastic Artificial Neuron

In this section, we discuss how to represent the pair of stochastic encoder and decoder in de-

tail. We consider a neural representation due to its ability to approximate arbitrary functions. In

the past, a collection of results [65] [66] has shown that the conventional standard feedforward

network (FFN) with one hidden layer is a universal approximator in the sense that it can approx-

imate any continuous function of real variables arbitrarily well. Based on their flexibility and

expressivity, neural networks have dramatically gained a great deal of popularity and are being

successfully applied across a remarkably diverse range of problem domains such as medicine,

finance, engineering, and energy. However, it is well known that the standard FFNs suffer from

several drawbacks, and extensive efforts have been made to overcome them. First, from a Bayesian

perspective, the training of a standard FFN is equivalent to a maximum likelihood estimate (MLE)

for its weights, which is susceptible to overfitting. The most popular known remedy for this prob-

lem are the standard regularization techniques such as weight decay [67], which are essentially

equivalent to the maximum a posteriori (MAP) estimate for weights inducing various specific pri-

ors on the weights. Aside from the traditional explicit regularization approaches, there are widely

adopted implicit variants of these, such as the dropout technique [68] which prevents overfitting

by injecting a noise during the training; and batch normalization [72] which is an operator that
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normalizes the layer inputs within each mini-batch for the purpose of stabilizing the input distri-

bution during training. Besides those, traditional methods to avoid overfitting such as bootstrap

aggregating (bagging) [69, 70], and early stopping in the iterative training process [71], are also

widely used.

Second, the determination of the proper neural architecture is a challenging task since it in-

volves an expensive global search process. As a core topic in the study of automated machine

learning (AutoML), this task addresses the problems of finding the optimal numbers of layers and

neurons in a neural network, and the types of activation functions. While neural network architec-

tures were typically designed by experts in a painstaking and ad hoc fashion in the past, there has

been a recent surge of interest in network architecture search (NAS), and many black-box method-

ological strategies for NAS have been proposed, e.g., based on evolutionary algorithms, random

search, Bayesian optimization, evolutionary methods, reinforcement learning, and gradient-based

methods [73, 75]. Regarding the size of the network, Neal’s work [81] breaks the common beliefs

in the machine learning community by introducing Bayesian learning on an FFN with a hidden

layer of infinite number of hidden units, and showing the following findings [74]: (i) neural net-

works with a very large number of hidden units can avoid overfitting via Bayesian learning, and

(ii) such huge networks are still computationally feasible to be numerically optimized. Extending

Neal’s idea, Le Roux and Bengio introduce continuous neural networks [74] by replacing the sum

over neurons by an integral over neurons with different continuous weight functions assigned to

a neuron. Philipp and Carbonell introduce nonparametric neural networks [75] as an alternative

to black-box based NAS for deep networks, which is a non-probabilistic framework to reduce the

heavy computation required for typical black-box NAS approaches.

Last but not least, conventional standard FFNs are not suitable for modeling the uncertainty

associated with their model parameters and the predictions they make. For that, the most common

way is to consider a full Bayesian treatment. Given a dataset D ∶= {(xj,yj)}nj=1, where X ∈

Rn×dx ,Y ∈ Rn×dy , let (x,y) ∈ (Rdx ,Rdy) with ϕ(⋅) is a nonlinear activation. A Bayesian FFN
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(BFN) with single hidden layer [76] is defined as

BFN(x) ∶= ϕ(W(x)x)⊺W(y) (3.6)

where (W(x),W(y)) are random weight matrices on (Rm×dx ,Rm×dy).4 There are well known no-

table advantages of such treatment [81]. In addition to its representation capability with respect

to the model uncertainty, a BFN provides a unified view of various techniques devised for overfit-

ting avoidance in standard FFN training, as the training of a standard FFN is deemed to be just a

point estimate of a BFN obtained by various estimation techniques such as MLE or MAP. Another

important main, and commonly believed, benefit of Bayesian modeling is that it is immune to over-

fitting. This implies that controlling model complexity based on the size of the collected data is in

fact a theoretically irrelevant idea, and that practical matters including the computational expense

should be the only reasons for limiting the network size [81]. However, in terms of practicality,

such BFNs have several shortcomings, as follows: (i) the Bayesian setting of the state of the art

of a complex deep neural net with over millions of parameters involves complicated high dimen-

sional integrals which render its estimation and prediction cost prohibitively expensive, forcing us

to resort to poor approximations; and (ii) Such models of highly complex representation are still

incomprehensible, like other complex neural networks.

Taking notice of the fundamental symmetry inherent in neural networks arising from its ad-

ditive structure, we consider the reduction of a whole layer of a BFN to a more succinct form, a

“random neuron”, with an asymptotically zero sacrifice of its expressivity. This task is inspired

from de Finetti’s view that the consistency of an inference solely stems from the symmetry of

observations, when we aim to encode information from a sequence of observed quantities of a ran-

dom phenomenon. Our suggestion comes by tweaking the original idea of de Finnetti in the sense

that symmetry in a BFN allows us to devise a consistent method for its compression, which leads

to the idea of a stochastic neuron that we propose. Specifically, such symmetry of observations

4This definition is a simplified form of a BFN for less verbosity. However, all of the results presented in this
section can be easily extended to the original definition of BFN(x) ∶=W(y)⊺ϕ(W̃(x)x̃) + y⃗0, where x̃ ∶= [x⊺, 1]⊺,
W̃(x) ∶= [W(x), x0], x0 ∈ Rm×1, and y⃗0 ∈ Rdy×1.
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implies order irrelevance, which can be articulated into exchangeability as follows:

Definition 3.3.1 (Exchangeable Random Variables). A sequence of random variables {Zi} ∶=

{Z1, ..., Zm} is said to be exchangeable if P ({Zi}) = P ({Zπ(i)}) for every permutation π of

{1, ...,m}.

The structural symmetry we make use of in this work originates from the commutative prop-

erty of summation. Since Sn = ∑m
i=1 Yi is invariant to the exchange of Yi, so is P (∑i Yi ≤ s);

i.e., P (∑i Yi ≤ s) = ∫∑i yi≤s
dF{Yi}({yi}) = ∫∑i yπ(i)≤s

dF{Yπ(i)}({yπ(i)}) for all permutations π of

{1, ...,m}, where F (⋅) is a cumulative distribution function (CDF).

When it comes to a BFN, it is fair to posit that all neurons are assigned equal priors if we have

no reason to believe that the neurons are a priori different. We say that a BFN has a neurosym-

metric prior if the priors of the row wi’s in the weight matrix W ∶= [W(x),W(y)], as well as

the interdependencies between them are identical with each other, i.e., W is row-exchangeable.

Note that most well recognized regularization schemes used in a large body of literature share an

underlying assumption of i.i.d. priors when we interpret them from the Bayesian point of view,

which leads to the notion of neurosymmetric priors.

Definition 3.3.2 (Neurosymmetric Prior of a BFN). A BFN(x) = ϕ(W(x)x)⊺W(y) has a neu-

rosymmetric prior on W if P (W) = P (ΠW) for every m ×m permutation matrix Π.

An interesting feature of the neurosymmetry of a BFN is that it is closed under belief updates,

i.e., the neurosymmetry holds throughout the belief evolution on the weight space of the BFN

driven by the learning process over incoming datasets.

Lemma 3.3.1. If a BFN(x) = ϕ(W(x)x)⊺W(y) provided by a dataset D has neurosymmetric

prior on W, the posterior P (W∣D) is also neurosymmetric.

Proof. Let w(x)i and w
(y)
i denote the ith row of W(x) and W(y) respectively. Then, BFN(x) is
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invariant to the row exchange of W, i.e.,

ϕ(W(x)x)⊺W(y) =
m

∑
i=1

ϕ(w(x)i ⋅ x)w
(y)
i =

m

∑
i

Yi

=
π(m)

∑
i=π(1)

Yi

(3.7)

for all permutations π of {1, ...,m}, where Yi ∶= ϕ(w(x)i ⋅x)w
(y)
i . Thus, the likelihood of BFN(x)

is permutation invariant to its parameters, i.e.,

P (Y ∣W,X) = P (Y ∣ ΠW,X) (3.8)

for all permutation matrices Π. On the other hand, the LHS and RHS of equation (3.8) can be

rewritten as follows by Bayes’ rule:

P (Y ∣W,X) = P (W ∣X,Y)P (Y∣X)
P (W∣X)

, and

P (Y ∣ ΠW,X) = P (ΠW ∣X,Y)P (Y∣X)
P (ΠW∣X)

,

(3.9)

so that we obtain

P (W ∣X,Y) = P (ΠW ∣X,Y) ∀Π, (3.10)

since W and X are independent, and the BFN(x) has neurosymmetric prior.

Hence, P (W ∣ D) is invariant to the row exchange of W. Here, note that the row-exchangeability

of W∣D implies that {Yi∣D} is also exchangeable if ϕ(⋅) is Borel measurable by Lemma 1 in

[77].

We first consider the nonparametric version of BFN to show useful limiting properties.

Definition 3.3.3 (Infinitely Exchangeable Random Variables). A stochastic process {Zi}∞i=1 is an

infinitely exchangeable random sequence if the joint probability P ({Z1, , ..., Zm}) is invariant to

permuatation of the indices for any m.
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Lemma 3.3.2. Consider a nonparametric BFN, BFN∞(x) ∶= ϕ(W(x)x)⊺W(y), with neurosym-

metric prior on W ∈ Rm×(dx+dy) with m→∞. If BFN∞(x) is well defined, i.e., E[∣BFN∞(x)∣] <

∞, for all x, W∣D is infinitely row-exchangeable for a given dataset D.

Proof. Take BFN∞(x) = ∑∞i=1 Yi ∶= ∑∞i=1 ϕ(w
(x)
i ⋅ x)w

(y)
i . For an arbitraty m0 <∞, ∑∞i=m0+1 Yi is

also well defined if BFN∞(x) is well defined. Hence,

BFN∞(x) =
∞
∑
i=1

Yi =
m0

∑
i=1

Yi +
∞
∑

i=m0+1
Yi

=
π(m0)

∑
i=π(1)

Yi +
∞
∑

i=m0+1
Yi,

(3.11)

for all m0 ∈ N since {Yi}m0
i=1 is exchangeable.

As the neurosymmetric belief of a BFN is invariant to belief updates, it is pointless to specify

the chronological information of neurosymmetry explicitly.

Definition 3.3.4 (Neurosymmetric Bayesian Feedforward Neural Network). The Neurosymmetric

Bayesian Feedforward Neural Network (NBFN) is the BFN with neurosymmetric belief.

It is well known that infinitely exchangeable random variables are conditionally i.i.d. given

their empirical distribution, by the de Finetti-Hewitt-Savage Representation Theorem. Such a con-

ditionally i.i.d. property allow us to exploit some desirable features originally produced from i.i.d.

random variables.

Lemma 3.3.3 (de Finetti-Hewitt-Savage for NBFNs). For any nonparametric NBFN, the beliefs

on rows {wi} of W are conditionally i.i.d. on a random probability distribution F on W such that

Fm
d→ F , where Fm is the empirical distribution of {wi}mi=1.

Proof. The nonparametric NBFN implies that {wi}∞i=1 is infinitely exchangeable. The rest of the

proof directly follows from the de Finetti-Hewitt-Savage representation theorem [78] by taking

Zi =wi, stating that a sequence {Zi}∞i=1 with its members in a real vector space (or more generally

a Polish, or complete separable metric, space) is infinitely exchangeable if and only if each Zi is
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conditionally i.i.d. over F and P (Zi ≤ z∣F ) = F (z), where F = limm→∞Fm with the random

measure Fm ∶= m−1∑m
i=1 IZi≤z, i.e. the empirical distribution of {Zi}mi=1, and I{⋅} is the indicator

function.

Kolmogorov’s Strong Law of Large Numbers (SLLN) states that the empirical mean of an i.i.d.

sequence is an unbiased estimator for the expectation of an element of the sequence. The fact that

SLLN holds for exchangeable sequences suggests that an NBFN is in fact an unbiased estimator

of E[Yi] after rescaling depending on its size. This implies that the information on the belief

of a neuron is sufficient to simulate a nonparametric NBFN, which may dramatically reduce the

dimension of the parameter space we should work on.

Definition 3.3.5 (Stochastic Neuron). Let w ∶= (w(x),w(y)) be a random vector defined on (Rdx ,Rdy).

The stochastic neuron SN(x) is defined as follows:

SN(x) = ϕ(w(x) ⋅ x)w(y)

The following theorem shows that a nonparametric NBFN is an unbiased estimator of the

expectation of an SN.

Theorem 3.3.4 (Strong Law of Large Numbers for NBFNs). A nonparametric NBFN almost surely

converges to a value ŷ ∈ Rdy as m→∞, if and only if an SN equals ŷ almost surely, i.e.,

m−1ϕ(W(x)x)⊺W(y) → ŷ a.s. ⇐⇒

E[ϕ(w(x) ⋅ x)w(y)] = ŷ a.s.

(3.12)

Proof. The conditional version of Kolmogorov’s SLLN [79] is as follows: let (Ω,A , P ) be a

probability space, and F a sub-σ-algebra of A . If {Zi}i≥1 is F -i.i.d., then

m−1
m

∑
i=1

Zi → Z∗ a.s. ⇐⇒ E[Z1 ∣F ] = Z∗ a.s. (3.13)

The theorem still holds when we take F to be the σ-algebra in the probability space on which the
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random probability distribution F in Lemma 3.3.3 is defined, and Zi = Yi, where Yi ∶= ϕ(w(x)i ⋅

x)w(y)i , so that ∑m
i=1 Yi = NBFN , and E[Y1] = E[SN].

Another elegant approach for the proof of the SLLN for exchangeable sequences is to use the

backwards martingale convergence theorem, making use of the fact that m−1∑m
i=1Zi is a backward

martingale if {Zi}i≥1 is infinitely exchangeable; as shown in Examples 12.13 and 12.15 in [80].

Taking into account that an FFN is in fact a point estimate form of a BFN, Theorem 3.3.4 suggests

that the ŷ predicted via a standard FFN trained to be a point estimate of an NBFN, and the predic-

tion made by an FFN whose parameters are sampled from P (w∣D) by an SN, are asymptotically

the same.

It is notable that there is no particular restriction on the distribution of y∣x specified by an SN,

while a nonparametric NBFN is in fact a Gaussian Process. It is well known that a nonparametric

BFN with i.i.d. Gaussian priors is in fact a Gaussian process [81], which holds for deep BFNs with

layers more than one [82] as well as those with an arbitrary i.i.d priors [83]. We now show that a

nonparametric NBFN is also a Gaussian process,

Lemma 3.3.5 (The Conditional Multivariate Central Limit Theorem). Let a sequence of random

vectors {Zi}i≥1 be F -i.i.d with ΣF ∶= E[(Zi−E[Zi∣F ])(Zi′ −E[Zi′ ∣F ])⊺ ∣F ] such that ∥ΣF ∥ <

∞ a.s. Then,

(mΣF )−
1
2 (Sm −E[Sm ∣F ])

d→ N (0⃗, I), (3.14)

where Sm = ∑m
i=1Zi, and N (µ⃗,Σ) is a multivariate normal distribution, with I the identity matrix.

Before proceeding to the proof, we note that the conditional version of the classical central limit

theorem [84,85] can be stated as follows: Let {Zi}i≥1 be F -i.i.d with σ2
F ∶= E[(Z1 −E[Z1∣F ])2 ∣

F ] <∞ a.s., and Sm ∶= ∑m
i=1Zi. Then,

m−1Sm −E[m−1Sm ∣F ]
m−

1
2σF

d→ N(0,1). (3.15)

Here, E[m−1Sm∣F ] =m−1∑m
i=1E[Zi∣F ] = E[Z1∣F ].
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The proof of the relation (3.15) follows from the original form of the conditional CLT:

E[ exp (ιtm
−1Sm −E[m−1Sm ∣F ]

m−
1
2σF

∣F)]→ e−
t2

2 a.s. (3.16)

where ι2 = −1, using the dominated convergence theorem and Lévy’s continuity theorem for char-

acteristic functions [84, 85]. We can readily extend the relation (3.16) to the multivariate version

by following standard arguments.

Proof. Let Zi be an n dimensional random vector. Then

E[exp (ιt⃗ ⊺(mΣF )−
1
2 (Sm −E[Sm ∣F ])) ∣F ]

=E[
m

∏
k=1

exp (ιt⃗ ⊺(mΣF )−
1
2 (Zk −E[Zk ∣F ])) ∣F ]

=
m

∏
k=1

E[ exp (ιt⃗ ⊺(mΣF )−
1
2 (Zk −E[Zk ∣F ])) ∣F ]

=(E[ exp (ιt⃗ ⊺(mΣF )−
1
2 (Zk −E[Zk ∣F ]) ∣F ])

m

=(1 − t⃗ 2

2m
+E[o(

t⃗ ⊺Σ−1F t⃗

m
)∣F ])

m

→ e−t⃗
2/2 a.s.

(3.17)

as E[o( t⃗
⊺Σ−1F t⃗

m
)∣F ]→ 0 a.s. for a fixed t⃗ ∈ Rn.

Theorem 3.3.6 (Central Limit Theorem for NBFN). A nonparametric NBFN converges to a Gaus-

sian Process.

Proof. If we take F to be the σ-algebra in the probability space on which the random probability

distribution F and Zi = [Yik(xj)]nj=1, then P ([yjk(xj)]nj=1) = P ([∑
m
i=1 Yik(xj)]nj=1) converges to a

joint multivariate Gaussian for finite n arbitrary xj’s for any k = 1, ..., dy by Lemma 3.3.5, where

(xj,yj) ∶= ([xjk]dxk=1, [yjk]
dy
k=1) and D = {(xj,yj) ∶ j = 1, ..., n}.

Aside from the expressivity in prediction, another matter of interest to us is the feature expres-

sivity of SN concerning how well an SN is available to capture the features extracted by an NBFN.

The classical Glivenko-Cantelli theorem states that the empirical distribution of an i.i.d. sequence

converges to a common cumulative distribution function. We make use of the result given by Berti
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and Rigo [86] proving that the Glivenko-Cantelli theorem holds for infinitely exchangeable se-

quences. We show that the empirical distribution of wi provided by {wi}mi=1 in NBFN converges

to a common probability distribution, namely, that of w in the SN.

Theorem 3.3.7 (Glivenko-Cantelli Theorem for NBFN). For an NBFN, there exists a random

probability measure P̃ on w such that ∥P (wm+1∣{wi}mi=1) − P̃ (w∣Fm)∥TV → 0 a.s., where ∥P −

P̃ ∥TV ∶= supA ∣P (A) − P̃ (A)∣ is the total variation distance, and Fm is the empirical distribution

from {wi}mi=1 so that P̃ (w ≦ w⃗∣Fm) = Fm(w⃗).

Note that Theorem 3.3.7 suggests that Fm on w is sufficient to describe wi.

Proof. Berti and Rigo [86] extend the classical Glivenko-Cantelli theorem for exchangeable ran-

dom sequences, showing that the difference between the predictive and empirical distributions

converges to zero almost surely uniformly, i.e.,

∥P (Zm+1 ≦ z ∣ {Zi}mi=1) − Fm(z)∥TV → 0 a.s. (3.18)

for an exchangeable sequence {Zi}i≥1 with its members in a real vector space (Lusin space). The

proof of the theorem 3.3.7 directly follows by taking Zi =wi.

Coming back to finite width NBFNs, finite exchangeability does not allow us to enjoy desir-

able results provided by infinite exchangeability in general [87]. However, we present a corollary

without proof which shows that the joint distribution of exchangeable sequences may be approxi-

mated as the product of empirical distribution of the sequence, based on Theorem 13 by Diaconis

and Freedman [88], which establishes the sharp bounds for the approximations of sampling wi,

providing the bounds for the probabilistic difference of sampling with and without replacement.

Corollary 3.3.8 (Finite Version of de Finetti-Hewitt-Savage). Consider an NBFN with M neurons.

There exists a random probability measure P̃ on w such that ∥P ({wi}mi=1) −∏
m
i=1 P̃ (w∣FM)∥TV ≤

1−M−mM !
(M−m)! for m ≤M , where FM is the empirical distribution from {wi}Mi=1 so that P̃ (w ≦ w⃗∣FM) =

FM(w⃗).
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Figure 3.4: The causal diagram of the proposed consumer behavior model.

The Corollary 3.3.8 provides an upper bound on the potential discrepancy between the joint

probability distribution on {wi} in NBFN and the product of the empirical distribution of w in SN,

which uniformly approaches to 0 as M → ∞. Note that the Corollary 3.3.8 can be interpreted as

the cost of the mean field approximation.

In summary, we consider a neural representation for the pair of stochastic encoder and decoder

in the proposed consumer behavior framework through this subsection. As previously developed

various neural representations have a limited fit for our purpose, we propose a novel neural rep-

resentation for that, namely a stochastic neuron, and demonstrate that it has good expressivity as

powerful as a BFN. Specifically, we show the correspondence between SN and NBFN by limiting

its width to infinity. The SN and NBFN framework can be readily extended to deep NBFNs on the

basis of the results on the partial exchangeability but we do not treat it in this work as it is beyond

our scope.

The proposed consumer behavior model, an incarnation of the consumer behavior framework

via the representation of stochastic artificial neuron, renders the simplest elaboration of the uniden-

tifiable causal model in Fig. 3.1(a) into the identifiable form shown in the following Theorem 3.3.9.

This Theorem closes the fundamental problem of consumer behavior modeling introduced in Sec-

tion 3.1 as follows:

Theorem 3.3.9 (The Identifiability of the Consumer Behavior Model). The proposed modelM =

⟨V = O ∪ N, GV , y = ϕ(w(x) ⋅ x)w(y)⟩ is identifiable, where w = [w(x)w(y)], O = {w,x,y},
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N = {ν} where ν is the vector representation of all the unknown confounders affecting both x and

w, with GV the causal diagram shown in Fig. 3.4.

Proof. Since the modelM is semi-Markovian,M is identifiable by Lemma 3.1.1. Such identifia-

bility can be readily proven by the direct computation of Px⃗(y). First. we can write

Px⃗(V ) = P (ν)P (w∣ν)P (y∣w, x⃗).

Here, even though we presume that we do not have any information on P (ν) and P (w∣ν), these

terms effectively vanish due to the following marginalization:

Px⃗(y) = ∫
w,ν

P (y∣w, x⃗)P (w∣ν)P (ν)dwdν

= ∫
w
P (y∣w, x⃗)∫

ν
P (w∣ν)P (ν)dwdν

= ∫
w
P (y∣w, x⃗)P (w)dw

= Ew[P (y∣w, x⃗)].

Hence, we obtain the unique Px⃗(y) from P (O).

However, an important caveat to the utilization of the exchangeability is that it does not provide

any guidance about setting priors. The key message from the de Finetti theorem is that there exists

some prior which well represents the data, but the choice of priors remains as a subjective matter

that requires further modeling assumptions to obtain nontrivial statements. In fact, setting up a

prior is rather domain-specific in the sense that it has a strong linkage to the task of imposing a

good structure a priori inherent in the problem of our interest, which is expected to play a central

role as a right scaffolding for an effective analysis. We emphasize that this is where the proposed

consumer behavior framework depicted in Fig. 3.3 and the principle of the most rational account

come in. Regarding the choice of prior, we posit the most rational account principle as a minimal

key assumption for an innate prior for the effort to keep parsimony in the plurality of assumptions,

i.e., consumers are price-takers who tend to be rational so that a stochastic decoder is almost
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determined by the stochastic encoder.

If we take an SN to be the pair of stochastic encoder and decoder, we can naturally interpret

w(x) be the stochastic component of the encoder, and w(y) be that of the decoder. Taking the prob-

ability distributions of w(x) and w(y) to be P (w(x); θ⃗(x)) and P (w(y); θ⃗(y)) respectfully, where

θ⃗(⋅) is the set of parameters for the corresponding probability distributions, then we may consider

a hierarchical structure of random variables to separate the stochasticity of the encoder and the

chance of choosing a stochastic encoder. The simplest form having such structure is the mixture

distribution, i.e,

P (w(⋅); θ⃗(⋅)) =
l

∑
k=1

α
(⋅)
k Pk(w(⋅); θ⃗(⋅)k ) such that

l

∑
k=1

α
(⋅)
k = 1 and α

(⋅)
k ≥ 0, ∀k = {1, ..., l},

(3.19)

where α
(⋅)
k and Pk(⋅) are the weight and the probability distribution of a mixture component k,

and l is the number of mixture components. In other words, α(⋅)k represents the probability of

choosing the stochastic encoder/decoder k, and Pk(w(⋅); θ⃗(⋅)k ) represents the internal stochasticity

of the chosen encoder/decoder k. For Example, if we take a Gaussian mixture model for w(⋅), then

w(⋅)∣k ∼ N (µ⃗(⋅)k ,Σ
(⋅)
k ) so that θ⃗(⋅)k = {µ⃗

(⋅)
k , Σ⃗

(⋅)
k }. Hence, the consumer behavior model with SN

can be depicted as Fig. 3.5, where K(⋅) ∼ Cat(α⃗(⋅)) is the categorical random variable indicating

the encoder/decoder k was chosen with parameter α⃗(⋅) = [α(⋅)k ]lk=1, and A(K(x),K(y)) is a Markov

kernel.

From de Finetti’s and Bayesian perspective, the number of mixture components is the part of

prior information that should be set subjectively. Here, the most rational account principle provides

an essential guideline to deal with this subjectivity for consumer behavior modeling. Having an

SN as a basic building block of the proposed consumer behavior model, the most rational account

principle can be stated as follows: (i) The choice of decoder j and the choice of encoder i are

“entangled” each other, i.e., the relation between {θ⃗(x)i ∶ i = 1, ..., l} and {θ⃗(y)j ∶ j = 1, ..., l} is

bijection; and (ii) The stochasticities within an encoder and a decoder are mutually independent,

i.e., P (w(x),w(y);θ(x),θ(y)) = P (w(x);θ(x))P (w(y);θ(y)) for all i and j = 1, ..., l. We can take
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Figure 3.5: The plate diagram for the consumer behavior model with SN.

the number of mixture components as the number which produces a trained model satisfying both

statements most. However, to quantifying how much a model fit to the most rational account

principle is yet obscure, and should be necessarily formalized.

As we interpret the noisiness of the channel in the proposed consumer behavior framework,

i.e., the Markov kernel A(K(x),K(y)) in Fig. 3.5, as the indication of irrationality, the measure

for the fitness of a model to to the most rational account principle could be used for the measure of

rationality. The detailed explanation of how the concept of causality is employed in the principle

of the most rational account is provided in Section 3.4.

In fact, the SN is mere a BFN with one neuron so that any training algorithm proposed for

BFN in previous literature is applicable for training an SN. E.g., [89] proposes training algorithm

to learn variational posterior for a Bayesian neural network with Gaussian mixture density. Instead

of suggesting a new Bayesian style training algorithm, we focus on how a pretrained standard

FFN can be successfully transformed to SN and vice versa in this work. We first obtain pretrained

standard FFN via traditional methods. The arguments made in this section allow us to assume
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that the weights of a neuron in a pretrained FFN is a normalized sample of an SN. Thus, we can

directly estimate the weight uncertainty from the pretrained standard FFN. Prediction of an SN can

be made in the inverse manner. We first obtain multiple output samples of g(x) from the sampled

weights of the SN from the estimated weight uncertainty. Then, taking average of the sampled

output provides an unbiased prediction of SN, and the variance of the sampled output provides the

output uncertainty.

3.4 The Rationality Measure and the Most Rational Account Principle

In this section, we address the problem of effective representation of the model uncertainty for

the manifestation of the structural attribute which is brought by the proposed consumer behavior

framework and elaborated to the most rational account principle (MRAP). This problem can be

boiled down to the determination of the minimal sized latent key source in Fig. 3.3, which implies

the least number of entangled pairs of stochastic encoder and decoder that well explains the varia-

tion of the demand behavior. As we provided in Sec. 3.3 that how an SN with mixture distribution

defined on its parameter space well represents the proposed consumer behavior framework, we

consider Gaussian mixture model (GMM) as the base distribution family that an SN as a demand

function lies on.

GMM is a distribution representation mainly used for the following main purposes: (i) to

provide a semiparametric density estimation to model unknown distributional shapes [91]; (ii) to

provide a probabilistic clustering of the data that a component in the mixture model corresponds

to a cluster [91]; (iii) to provide a probabilistic representation of piece-wise linear relationship

such as trajectory or motion segmentation in robotics research [92]. Taking w(x) and w(y) be

Gaussian mixtures, identifying the key source size in the proposed consumer behavior framework

can be rephrased to the problem of finding the Gaussian mixtures of w(x) and w(y) with minimal

components that meets the MRAP most.

From unsupervised learning perspective, the question of how many components to include in

a GMM or a clustering task in general has been addressed by a large body of previous literature in

machine learning and statistics communities [90, 91]. The approaches for the component number
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determination of a GMM may vary by the context of the GMM usage, which may be differentiated

by their particular interpretation of “Occam’s razor” [93] for their specific application purpose. the

mostly used approach in practice has been to use heuristic penalized log likelihood maximization

criteria such as Akaike’s Information Criterion (AIC) [94] and Bayesian Information Criterion

(BIC) [95] to assess the order of a mixture model. It has been also common to use encoding

length based criteria such as Minimum Description Length (MDL) principle [96] or Minimum

Message Length (MML) principle [97], which are based on the idea that building the shortest code

for a given dataset implies to build the best data generation model differing how to address the

minimum encoding length principle [90]. It is noticeable that MDL mathematically coincides with

BIC in spite of their clear conceptual difference [90]. Although numerous methods were proposed

for components number selection in GMM in the past literature, none of them take account of

MRAP as their main design objective is to estimate a generative model in the various flavours of

unsupervised context regardless of its internal entanglement structure between its sub-vector5.

To identify best GMM representation of an SN for demand response modeling in terms of

MRAP, it is essential to define how to represent entanglement between stochastic encoders and

decoders as the first step. Perhaps, a general communication system scheme introduced by Shan-

non [99] may be an illustrative causal model6 offering a decent account of such entanglement,

as the Shannon’s communication system scheme is devised to formally describe the system that

an observed outcome of which is a consequence of a transmitted symbol from the source of the

system. The schematic similarity between the entanglement between stochastic encoders and de-

coders in the proposed consumer behavior framework and the communication channel model is

depicted in Fig. 3.6 and Fig.3.7. We can check that a Markov kernel, i.e., 2 × 2 real matrix with

5We call a random vector zsub a sub-vector of the random vector zsup = [Z1, ..., Zn] if zsub = [ZJ1 , ..., ZJk
], where

J = {J1, ..., Jk} ⊆ {1, ..., n}, and Ji < Ji′ if i < i′.
6We clarify that the terminology “causality” used here has a slight conceptual difference with the term “causality”

in Sec. 3.1 coined by Pearl. The “causality” in Sec. 3.1 is the causation which is represented by a Bayesian network
putting causal direction in its center. The causality used in this section refers to the associational strength between
two variables to express the entanglement between a stochastic encoder and decoder. This conceptually resembles the
Granger causality [98] in the sense that the causality in this section refers to how an observation on one variable is
informative to infer another unobserved variable, while this does not need to consider the physical time order of the
events of each variable precisely as Granger causality does. In this section, we will interchangeably use “entangled”
and “causal”.
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Figure 3.6: A schematic diagram of Shnnon’s binary communication channel [99].

Figure 3.7: A schematic diagram of the entanglement between stochastic encoders and decoders
proposed consumer behavior framework.

∑j pij = 1 in these cases, well represents both situations. We may deem that a system is per-

fectly causal if a noiseless channel is given, while an extent of channel noise may keep the system

away from the maximal causality. This observation gives us an intuition that a Markov kernel, as

A(K(x),K(y)) in Fig. 3.5, is a decent choice to represent the entanglement between all possible

stochastic encoder/decoder pairs, and we may set up a similar “entanglement measure” to the mea-

sure of the noiselessness for a communication channel, or other causality measures proposed in

previous literature beyond information theoretic background.

The task of quantifying causality depends on the idea of how to measure the reduction of

uncertainty in a target variable after observing another one [103]. In a large body of previous

literature, numerous attempts to quantify causality have been made from both non-information

theoretic background and information theoretic background. Perhaps, the most renowned and

widely used non-information theoretic causality measure may be the p-value of the F -test statis-

tic in the Analysis of Variance (ANOVA) technique developed by Fisher [34], which is a widely
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used technique in a variety of hypothesis testing experiments suitable for verifying linear influ-

ences. Another renowned non-information theoretic causality measure is Granger causality [98],

which is a hypothesis test to quantify variance reduction between time series. As the measure of

the strength of an “arrow” in a Bayesian network, the average causal effect (ACE) proposed by

Pearl [37] to quantify causal strength between binary variables. On the other hand, various causal-

ity measures are proposed from the informational theoretic viewpoint. The most basic information

theoretic measure of the association between two random variables X and Y is the mutual infor-

mation I(X,Y ) ∶= ∑x,y P (x, y) log
P (x,y)

P (x)P (y) . Numerous causality measures have been proposed

by extending mutual information to time series analysis in various contexts. For example, directed

information [100] and transfer entropy [101] applies mutual information to time series analysis by

extending the argument of Granger causality. Ay and Polani [102] propose a causal dependence

measure named “information flow” extending the spirit of ACE by Pearl from information theoret-

ical viewpoint. Janzing et al. [103] establish the formal postulates on the desired properties that a

proper causality measure should have, and propose a causality measure that well satisfies all of the

established postulates, given by relative entropy distance (Kullback-Leibler divergence) between

the distribution of target variables with and without intervention.

However, the mutual information based causality measure has an evident limitation as the mea-

sure of entanglement since an entanglement is solely determined by the Markov kernel A(K(x),K(y))

or a communication channel, while mutual information is the quantity that not only determined by

the communication channel itself but also the probability distribution of the source P (X) as fol-

lows:

I(X,Y ) =∑
x
∑
y

P (x, y) log P (x, y)
P (x)P (y)

=∑
x

P (x)∑
y

P (y∣x) log P (y∣x)
P (y)

=∑
x

P (x)DKL(P (y∣x)∣∣P (y)),

(3.20)

where DKL(P (Z)∣∣P ′(Z)) ∶= ∑z P (Z) log
P (Z)
P ′(Z) is the Kullback-Leibler divergence. Shannon did

not explicitly mentioned the concept of causality in his work [99] but he attempts to characterize a
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channel’s indigenous property through the concept of channel capacity by quantifying the strength

of the strongest dependencies between the source and the outcome that the channel may demon-

strate. In the sense of causality, the channel capacity can be deemed as a measure of potential

influence, while mutual information is that of the factual causal influence [103].

Alongside the effort to understand and measure “consciousness” in neuroscience community,

integrated information theory argues that a system’s consciousness is determined by its causal

properties of any physical system [104]. Hoel et al. [105,106] attempt to extend the arguments to a

general system analysis framework. As a part of their study, they propose a “channel-indigenous”

measure of causality in Markov chain. By taking a Markov kernel as a state-to-state transition

probability for all possible states in a complex system, they define a quantity named effective in-

formation defined as EI(S) = 1
n ∑sC∈SC

DKL(P (SE ∣sC)∣∣P (max)(SE)) to measure causality, where

SC and SE are the sets of all possible states that could be cause and effect respectively, P (max)(SE)

is the distribution on SE when P (SC) is given as a uniform distribution over SC . As the authors use

the notation SC and SE to denote causal time difference only, S = SC = SE for any given Markov

chain, where S is the set of all states. n is the number of states in S, i.e., n ∶= ∣SC ∣ = ∣S∣. Note that

effective information can be rephrased as EI(S) = I(SC , SE) when SC is uniformly distributed,

while Shannon’s channel capacity is defined as maxP (X) I(X,Y ). In [105,106], the authors argue

that there is an optimal “resolution” to describe a system in the sense that a macroscale description

sometimes can be more informative than a microscale description via assessing effective informa-

tion of a system of different system description resolution. Specifically, they adjust the size of

Markov kernel of a given system by controlling the number of states via grouping system compo-

nents appropriately; reducing the number of states can be accomplished by merging multiple out-

puts from different components in a group into one value through reasonable ways, e.g., averaging,

and take the value as an output of the group, i.e., a component of the system in the low-resolution

system description. They attempt to find the optimal size of Markov kernel and optimal component

grouping to maximize the effective information of a system description. However, these works do

not show an efficient algorithm for optimal system component grouping than a brute-force search,
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which limits the scalability of its application in practical use.

Perhaps, the simplest candidate measure of entanglement may be the absolute value on the

matrix determinant operation. This is based on the fact that ∣detA∣ ≤ 1 for any Markov kernel A,

with equality if and only if A is a permutation matrix [107], as a permutation matrix is the matrix

representation of a perfectly noiseless channel. However, the absolute value of matrix determinant

has some drawbacks to be a good measure of entanglement. (i) This may be too strict to be a proper

measure for entanglement in the following sense; ∣detA∣ = 0 does not imply that the set of possible

stochastic encoders and decoders have zero entanglement. For example, if a Markov kernel A is a

block diagonal formed matrix such that a block of A has zero determinant, then ∣detA∣ = 0, though

there are still some degrees of entanglement between stochastic encoders and decoders. That is,

∣detA∣ = 0 does not imply zero-entanglement. (ii) Although we find a GMM representation of

SN that its Markov kernel A is a permutation matrix, which may imply a perfect entanglement

between stochastic encoders and decoders, we cannot conclude that the GMM representation of

SN well satisfies MRAP. This is because, it does not imply the paired encoder and decoder are

mutually independent.

However, if we find a block diagonalized form of Markov kernel A, it may be informative to

find an optimal component number of GMM of an SN as a DR model. For example, consider the

Markov kernel A of an SN is given as follows when we take the component number l = 4:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, we can easily conclude that the optimal component number l = 2 for following reasons:

1. The entanglement between the 1st and 2nd stochastic encoder/decoder pair, as well as the

3rd and 4th stochastic encoder/decoder pair are near zero. That is, e.g., having a clear

knowledge of which one is activated among 3rd and 4th stochastic encoder is not informative
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to determine which stochastic decoder will be activated among the 3rd one and the 4th one.

In other words, the selection of activating 3rd and 4th components of stochastic encoder is

independent with the selection of which of 3rd and 4th stochastic decoder to be activated.

2. The newly generated Markov kernel A′ equals to the identity matrix I , if we group the 1st

and 2nd stochastic encoder/decoder into a stochastic encoder/decoder, and so as 3rd and 4th

stochastic encoder/decoder. A′ exhibits perfect entanglement while the paired encoder and

decoder remain almost mutually independent.

This example illustrate the idea that which mixture components are “lumpable” for better rep-

resentation in terms of MRAP, when we have a “too high-resolution” on the distribution of the

model. The key observation from this example is that if activating two different stochastic en-

coders results in the activation of the similar mixture of stochastic decoders, these encoders and

decoders are lumpable. We extend this observation to develop a heuristic procedure to find the op-

timal number l of components of the mixture distribution for an SN as a demand function. Let our

objective is to find an optimal l in terms of MRAP for a demand function g(x) = ϕ(w(x) ⋅ x)w(y)

with mixture distribution P (w(⋅)) = ∑l
k=1α

(⋅)
k Pk(w(⋅)), and a Markov kernel A ∈ Rl×l such that

α⃗(y) = Aα⃗(x), where α⃗(⋅) = [α(⋅)k ]lk=1. We assume that (x,y) ∈ (Rd,Rd).

• Input parameters: ϵ > 0, and the training dataset D.

• Outputs: P (⋅)′ = ∑l∗

k=1α
′
kP
(⋅)′
k for x and y: Alternative mixture representation of P (w(x))

and P (w(y)).

1. Train a standard FFN g0(x) = ϕ(W⃗ (x) ⋅ x)W⃗ (y) from the given training dataset D, where

W⃗ (⋅) ∈ Rm×d.

2. Take an arbitrary sufficiently large L ≫ 3, and estimate the mixture distributions P (w(x))

and P (w(y)) with the l = L,L − 1 from W⃗ (x) and W⃗ (y) respectively. Obtain the Markov

kernel AL and AL−1. Check if ∣det(AL)∣ < min(ϵ, ∣det(AL−1)∣), and go to the next step if

the condition is satified. Otherwise, take a larger L and repeat this step.
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3. Obtain α⃗(y∣kx) = Ae⃗kx for kx = 1, ..., l, where e⃗kx is the unit vector that its kxth component is

1 and all other components are 0. Calculate P (w(y)∣kx) ∶= ∑l
k=1α

(y∣kx)
k Pk(w(y)) for all kx.

4. Run k-mean clustering to on {P (w(y)∣kx) ∶ kx = 1, ...l}with the distance metric d(P ′, P ′′) ∶=

DKL(P ′∣∣P ′′)+DKL(P ′∣∣P ′′)where P ′ and P ′′ are probability distributions. Repeat this step

with various k’s.

5. Choose the optimal cluster number k∗ as follows:

k∗ = argmaxEinter[d(P (w(y)∣kx = i), P (w(y)∣kx = j))]

−Eintra[d(P (w(y)∣kx = i), P (w(y)∣kx = j))]

for all i ≠ j such that i, j ≤ l,

(3.21)

where Einter[d(P ′, P ′′)] is the average distance between the distributions P ′ and P ′′ in the

same cluster and Einter[d(P ′, P ′′)] is the average distance between the distributions P ′ and

P ′′ in different clusters.

6. From the step 5, we have k∗ clusters on {P (w(y)∣kx) ∶ kx = 1, ...l} in our hand, whose

element can be identified by kx. Take l∗ = k∗. Approximate the mixture of the distributions

in each cluster Ck to a Gaussian P
(x)′
k = argminD( 1

α′
k
∑kx∈Ck

α
(x)
kx

P
(x)
kx
∣∣P (x)′k ), where α′k =

∑kx∈Ck
α
(x)
kx

, and a Gaussian P
(y)′
k = argminD( 1

∣Ck ∣ ∑kx∈Ck
P (w(y)∣kx)∣∣P (y)′k ).

In the input parameters, ϵ is typically set as a small value (< 0.01) to be used as a threshold

to find a sufficiently large initial l in step 2. In the output, α′k = α
(x)′
k = α

(y)′
k , since A∗ is the

identity matrix. The step 3 states the method to calculate the distribution of P (w(y)) if a stochastic

encoder, i.e., a Gaussian component of GMM of P (w(x)), is activated (i.e., kx). The step 4 is an

implementation of the idea that some components from {Pkx(w(x))} are allowed to be lumped

if the corresponding P (w(y)∣kx) is similar. To define the similarity between two distribution, we

define the distance metric d(P ′, P ′′) of two probability distributions P ′ and P ′′ in step 4, as the

Kullback-Leibler divergence DKL is not symmetric. We attempt to find the components kx’s with
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similar P (w(y)∣kx) via k-mean algorithm. In the step 5, we show the proposed measure to quantify

how a model representation meets the MRAP. The larger k∗ indicates that the model meets the

MRAP better.

Meanwhile, it is known that there is no closed form of DKL for mixture distributions [108]. For

this reason, we derive an approximated formula to calculate DKL for mixture distribution for the

proposed l∗ selection procedure to be applicable. First, we derive an upper bound of the entropy

of a mixture distribution. Here, we denote a mixture distribution P = ∑k αkPk. Then,

H(X) = −∫ (∑
k

αkPk) log∑
k′
αk′Pk′dx

= −∑
k

αk ∫ Pk log∑
k′
αk′Pk′dx

=∑
k

αk (Hk +DKL(Pk∣∣∑
k′
αk′Pk′))

=∑
k

αk (Hk +DKL(Pk∣∣P ))

≤∑
k

αk (Hk +∑
k′
αk′DKL(Pk∣∣Pk′))

(3.22)

by Jensen’s inequality and the convexity of DKL. Similarly, we can derive the approximated form

of DKL, where the approximation error is bounded in either sides, i.e., upper and lower bounded.

Take another mixture distribution Q = ∑k βkQk. Then,

DKL(P ∣∣Q) =∑
k
∫ αkPk log

∑k′ αk′Pk′

∑k′ βk′Qk′
dx

=∑
k

αk (−Hk −D(Pk∣∣P ) +Hk +D(Pk∣∣Q))

=∑
k

αk (D(Pk∣∣Q) −D(Pk∣∣P ))

≈∑
k

αk (∑
k′
βk′D(Pk∣∣Qk′) −∑

k′
αk′D(Pk∣∣Pk′)) .

(3.23)

If we take P and Q as Gaussian mixtures, each mixture component Pk and Qk are Gaussian dis-

tributions. The Kullback-Leibler divergence DKL of two Gaussian distributions given as N (µ,Σ)
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and N (µ′,Σ′) are well known as follows:

DKL(N (µ,Σ)∣∣N (µ′,Σ′)) =
1

2
log

detΣ

detΣ′
+ 1

2
Tr(Σ′−1Σ) + 1

2
(µ′ −µ)⊺Σ′−1(µ′ −µ) − d

2
(3.24)

where µ,µ′ ∈ Rd.

We also note that this procedure can be applied to the state identification problem in imitation

learning problems in Partially Observable Markov Decision Process (POMDP) setting. Specifi-

cally, consider the situation that a machine apprentice attempts to learn an optimal policy for an

unknown environment which may be modeled in Markov Decision Process (MDP) through ob-

serving an expert’s demonstration. However, suppose that their is a discrepancy of observability

of state between the expert and the apprentice, i.e., apprentice has a limited observability on states,

while an expert has full observability. The proposed procedure can help apprentice to identify

minimal number of states in the MDP, which allow the apprentice to learn minimal policy which

well explains the expert’s demonstration. We leave the detailed implementation of this idea into

future work.

3.5 Further Extensions

In the previous sections in this chapter, we have discussed on the identifiability of demand

response as a fundamental problem of consumer behavior modeling. The other fundamental prob-

lems in price responsive electricity consumption modeling we pose are as follows:

1. Data sparsity: We expect the large-scale deployment advanced metering infrastructure (AMI)

would avail real-time frequent load sampling, which is clearly better informative for system

operators to detect mismatches between power supply and load. However, the proposed

“Appliance” usage model in Sec. 2.2.2.1 suggests that the advance of AMI will not neces-

sarily avail better learnability of consumer behaviors. This is because, increasing sampling

frequency may only increase the dimensions of input and output of a consumer behavior

model, while the total number of samples for a given period will remain fixed as we have de-

fined the input and output as the sequences of prices and loads for a short term period which
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may be influenced by each other in Sec. 3.2, e.g., the sample size would be always 365 if

we take the period as one day, regardless of sampling frequency. Such increment of data

dimension exacerbate data sparsity, as referred to the curse of dimensionality, exacerbates

the learnability of model as it weakens statistical significance of a dataset. This eventually

results the trained model far from robustness.

2. Absence of dynamic account: While the fundamental unidentifiability of demand response

shown in Theorem 3.1.2 entails the establishment of a demand response model from pre-

existing economic theories, the models premised on the static settings in economic theories

lack dynamic systems account. Especially in real-time pricing setting, this may be unrealis-

tic because the price and corresponding load is given in a sequential order. This necessitates

to develop a dynamic model from a given demand response model represented as a stochastic

neuron.

In this section, we introduce the methods to solve these problems.

3.5.1 Variational Meta-Learning for Multiple Sparse Datasets

Even though a dataset obtained from an individual may be sparse, we note that this problem

may be mitigated if the dataset in hand possesses a large number of customers. To deal with the

data sparsity problem, we consider meta-learning approach, because meta-learning, or learning-to-

learn, has been known as a successful strategy in attacking problems that involve small amounts

of data [109]. The key motivation of meta-learning is the observation that a human baby has

an outstanding ability to learn and generalize new various concepts from few observed samples.

This observation raises a highly noticed problem in artificial intelligence communities so called

“few(one)-shot learning problem” [110], addressing how to utilize and transfer the knowledge

from past learning tasks to learn a new task [111].

Inspired by the principal component analysis (PCA) method, we consider the construction of

a code for the weight of a stochastic neuron w, which aim to capture the model variance caused

by different customer. Adopting a variational approach developed for training a variational au-
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toencoder [112], we derive the evidence lower bound (ELBO) as follows by taking a dataset from

a customer i as Di. Here, λ(l) ∈ Rdl denotes the code sensitive to the customer change, while

λ(g) ∈ Rdg denotes the code insensitive to customer change, i.e., λ(g) á Di, where dl + dg = d, the

dimension of x and y.

log∏
i

P (w∣Di) = log∫ ∏
i

P (w∣λ(g),Di)P (λ(g))dλ(g)

= log∫ ∏
i

P (w∣λ(g),Di)P (λ(g))
P̃ (λ(g)∣w)
P̃ (λ(g)∣w)

dλ(g)

= logEP̃ (g) [
∏iP (w∣λ(g),Di)P (λ(g))

P̃ (λ(g)∣w)
]

≥ EP̃ (g) [log
∏iP (w∣λ(g),Di)P (λ(g))

P̃ (λ(g)∣w)
]

(∵ Jensen’s inequality )

= EP̃ (g) [log∏
i

P (w∣λ(g),Di)] −D(P̃ (λ(g)∣w)∣∣P (λ(g)))

=∶ ELBO(g).

(3.25)

We can further hierarchically derive ELBO(l,g) from ELBO(g) as follows:

ELBO(g) =

= EP̃ (g) [log∏
i
∫ P (w∣λ(g),λ(l),Di)P (λ(l)∣Di)dλ(l)]

−D(P̃ (λ(g)∣w)∣∣P (λ(g)))

(∵ we posit λ(g) á λ(l))

≥ EP̃ (g)[∑
i

EP̃ (l) [logP (w∣λ
(g),λ(l),Di)]

−D(P̃ (λ(l)∣w)∣∣P (λ(l)∣Di))]

−D(P̃ (λ(g)∣w)∣∣P (λ(g)))

=∶ ELBO(l,g),

(3.26)

where P̃ (g) = P̃ (λ(g)∣w) and P̃ (l) = P̃ (λ(l)∣w). Obtaining (P̃ (l), P̃ (g), P (w∣λ(g),λ(l),Di)) =
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argmaxELBO(l,g) allows us to train only P (λ(l)∣Dnew) defined on Rdl instead of P (w∣Dnew)when

we encounter a dataset Dnew of a new customer, where we can set arbitrary 0 < dl < d.

P (λ(l)∣Dnew) can be obtained by solving

max
P̃ (λ(l)∣Dnew)

EP (λ(g))[EP (λ(l)∣Dnew) [logP (Dnew∣λ(g),λ(l))]

−D(P̃ (λ(l)∣Dnew)∣∣P (λ(l)))]

= max
P̃ (λ(l)∣Dnew)

EP (λ(g))[

EP (λ(l)∣Dnew)[ logP (Dnew∣w,λ(g),λ(l))P (w∣λ(g),λ(l))]

−D(P̃ (λ(l)∣Dnew)∣∣P (λ(l)))]

= max
P̃ (λ(l)∣Dnew)

EP (λ(g))[

EP (λ(l)∣Dnew) [logP (Dnew∣w)P (w∣λ(g),λ(l))]

−D(P̃ (λ(l)∣Dnew)∣∣P (λ(l)))]

(∵Dnew∣w á (λ(l),λ(g)))

= max
P̃ (λ(l)∣Dnew)

EP (λ(g))[

EP (λ(l)∣Dnew) [logP (Dnew∣w) + logP (w∣λ(g),λ(l))]

−D(P̃ (λ(l)∣Dnew)∣∣P (λ(l)))].

(3.27)

3.5.2 Conversion to a Dynamic Model from a Demand Response Model of Stochastic Neu-

ron Representation

Suppose that we have a trained DR model represented via a stochastic neuron y =w(y)ϕ(w(x) ⋅

x). Our goal is to convert this model to a discrete time dynamic system with a finite horizon

T = dx = dy. Given a series of the current and past prices x1∶t and past loads y1∶t−1, our key interest

is to predict the current load yt, i.e., to compute P (yt∣y1∶t−1, x̂t), where x̂t is the expected full
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price vector xt estimated by a customer at time t. The procedure of computation P (yt∣y1∶t−1, x̂t) is

shown as follows:

1. Estimate the full price vector x a consumer may forecast at every time step t. The full

price prediction x̂t = (x1∶t, x∗t+1∶T ) at time t can be obtained by the price forecast x∗t+1∶T =

argmaxP (xt+1∶T ∣x1∶t) given a prior distribution P (x).

2. Update αk by αk = Pk(y1∶t−1∣x̂t−1)
∑k Pk(y1∶t−1∣x̂t−1) , where

Pk(y1∶t−1∣x̂t−1)

= ∫ Pk(w(y)1∶t−1ϕ(w(x) ⋅ x̂t−1)∣w(x), x̂t−1)

Pk(w(x)∣x̂t−1)dw(x)

= ∫ Pk(w(y)1∶t−1ϕ(w(x) ⋅ x̂t−1)∣w(x), x̂t−1)

Pk(w(x))dw(x)

(3.28)

since w(x) á xt−1. Here, taking zt−1 = w(x) ⋅ x̂t−1 ∈ R allows us to rewrite Eq. (3.28) as

follows:
Pk(y1∶t−1∣x̂t−1)

= ∫ Pk(w(y)1∶t−1 =
y1∶t−1

ϕ(w(x) ⋅ x̂t−1)
∣w(x), x̂t−1)

Pk(w(x))dw(x)

= ∫ Pk(w(y)1∶t−1 =
y1∶t−1
ϕ(zt−1)

∣zt−1)Pk(zt−1)dzt−1

(3.29)

where
zt−1 ∼ N (µ⃗(x)k ⋅ x̂t−1, x̂

⊺
t−1Σ

(x)
k x̂t−1), and

w
(y)
1∶t−1∣zt−1 ∼ N (µ⃗

(y)
k,1∶t−1, Σ

(y)
k,1∶t−1)

(3.30)

since w
(y)
1∶t−1 á zt−1.
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3. Obtain the Pk(yt∣y1∶t−1, x̂t) as follows:

P (yt∣y1∶t−1, x̂t)

= ∫ p(yt∣y1∶t−1,w(x), x̂t)p(w(x)∣y1∶t−1, x̂t)dw(x)

= ∫ p(yt∣y1∶t−1,w(x), x̂t)p(w(x))dw(x),

(3.31)

since w(x) is independent with both y1∶t−1 and xt. Similar to the previous step, we can rewrite

Eq. (3.31) as follows by taking zt =w(x) ⋅ x̂t ∈ R:

P (yt∣y1∶t−1, x̂t)

= ∫ p(yt∣y1∶t−1, z)p(zt)dzt

= ∫ p(w(y)t ϕ(zt)∣w(y)1∶t−1 =
y1∶t−1
ϕ(zt)

)p(zt)dzt,

(3.32)

where

zt ∼ N (µ⃗(x)k ⋅ x̂t, x̂
⊺
tΣ
(x)
k x̂t), and (3.33)

w
(y)
t ∣w

(y)
1∶t−1 ∼ N (µ

(y)
k,t +Σ

(y)⊺
k,t Σ

−1(y)
k,1∶t−1(w

(y)
1∶t−1 − µ

(y)
k,1∶t−1),

σ
2(y)
k,t −Σ

(y)⊺
k,t Σ

−1(y)
k,1∶t−1Σ

(y)
k,t ).

(3.34)

Eq. (3.34) is derived from Pk(w(y)) = N (µ⃗(y)k ,Σ
(y)
k ) as we decompose it as follows:

⎡⎢⎢⎢⎢⎢⎢⎣

w
(y)
1∶t−1

w
(y)
t

⎤⎥⎥⎥⎥⎥⎥⎦

∼ N (µ(y)k,1∶t,

⎡⎢⎢⎢⎢⎢⎢⎣

Σ
(y)
k,1∶t−1 Σ

(y)
k,t

Σ
(y)⊺
k,t σ

2(y)
k,t

⎤⎥⎥⎥⎥⎥⎥⎦

), (3.35)

where Σ
(y)
k,1∶t−1 ∈ R(t−1)×(t−1), Σ

(y)
k,t ∈ R(t−1)×1, and σ

2(y)
k,t ∈ R are the subblocks of Σ(y)k .

4. Obtain P (yt∣y1∶t−1, x̂) = ∑k αkPk(yt∣y1∶t−1, x̂t).

Such framework and the proposed dynamic load prediction procedure can be readily extended

to continuous time dynamic system model via Gaussian Process GP(⋅). If take y(t) = ∑k αkyk(t)

such that yk(t) = ϕ(∫
T

t=0w
(x)
k (t)x̂(t)dt)w

(y)
k (t) where w

(⋅)
k (t) ∼ GP(µ

(⋅)
k (t),K

(⋅)
k ), the proposed
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procedure can be directly applied for the calculation of P (y(t) ∣ {y(τ) ∶ τ is a finite subset of [0, t)}, x̂(t)).
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4. SUMMARY AND CONCLUDING REMARKS

Today’s electricity power system and market is already a tremendously complex system. In-

cluding economic and technical characteristics of power systems as well as regulatory and political

issues, there arise a number of issues to be considered for a successful market and smart grid de-

sign. Such complexity makes it extremely difficult to determine a priori whether a design will be

a successful. Although there are many flourishing examples of power pools and exchanges in the

energy market today, the inherent complexity of power systems and markets makes it extremely

hard to adapt to novel technologies or innovative concepts. Demand Response is no exception.

Though Demand Response is expected to be a key mechanism in the smart grid, it is unclear how

to apply in the current energy market without a thorough understanding of demand sensitivity to

price and sufficient understanding of its complexity. This study is intended to be an initial guide

toward better understanding of markets and smart grid design.
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