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ABSTRACT

Static facial Expression Recognition with Openpose

Sicong Huang
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Anxiao Jiang
Department of Computer Science and Engineering

Texas A&M University

This thesis gives a reliable machine model that recognizes the action of "look down at

phone" and distinguishes it from other similar actions in a given consecutive video. It first repro-

duces facial recognition research of dimpler. Then it moves on to introduce body action recognition

and explains key factors like landmarks and Openpose used in the research. It then presents the ac-

tion of "look down at phone" as the research focus and briefly mentions related works to the topic.

Later on, the thesis presents methods on how facial expression is performed and quickly moves on

the body expression detection techniques. For body expression detection, the thesis first explains

the process with image inputs, then continues to explain the process for video samples. At the end

of the methods chapter, it demonstrates how the machine model processes a 26-second video with

complex actions and gives a reliable and correct estimation of the actions the video contains. The

thesis later presents the results of this research and compares the estimation given by the machine

model to the true answers of given samples. At last, the thesis concludes the effect and benefit of

this machine model and suggests future works for this research.
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NOMENCLATURE

adam adaptive moment estimation

AI Artificial Intelligence

CMU Carnegie Mellon University

CUDA Compute Unified Device Architecture

json JavaScript Object Notation

MLP Multi-layer Perception

rbf Radial basis function

SVC Support Vector Classifiers

SVM Support Vector Machine

TOI Transdermal Optical Imaging
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CHAPTER I

INTRODUCTION

Facial recognition is very important, and it has been used in many aspects of life. It is a

complex process that has not yet refined. Many factors can play a role during encoding, which

makes the recognition not accurate enough. In addition, based on the previous research that has

been done in facial recognition, the images in facial action coding system are still very limited.

the research builds on the existing methods for facial recognition and focus on generating more

accurate and diverse results by using deep learning with advanced facial landmarks technique and

categorical model. The goal of this research is focusing on improving the accuracy and diversity

of facial expression recognition with deep learning.

Just like humans who mostly recognize and determine facial expression and body actions

through instincts and experiences, the machine learns them through supervised training to increase

accuracy, too. Machines determine whether someone is smiling by looking at his or her lips and/or

cheeks with the help of human classified facial landmarks.

Body action expression recognition is another vital field in artificial intelligence (AI). Ma-

chines that can detect body motions can understand basic actions made by humans enable comput-

ers to automate tasks of recognizing some frequent actions done by human through conventional

cameras. Through the help of body landmarks, reliable and accurate machines that can detect spe-

cific actions have been used in commercial purpose and achieved high popularity in the industry.

The action of "looking down at phone" is a common action that people frequently perform on daily

basis. The purpose of this research is to accurately detect and distinguish this action from a given

video clip.

Conventional computer vision techniques in the body expression research focus on detect-

ing and labeling critical facial landmarks to identify features and obtain information from conven-

tional cameras.

5



Definition of Landmarks

Landmarks, when used in AI research, represent a set of keypoints gathered from a human.

Facial landmarks usually include keypoints representing the location of nose, eyes, eyebrows, lips,

chin, etc. While body landmarks usually collect keypoints from hands, feet, arms, shoulders, neck,

etc.

Figure 1: demonstration of facial and body landmarks

Kernel Functions in Supported Vector Machine

Kernel functions take data as input and transform it into the desired form by using complex

mathematical calculations and statistical formulations [1]. In machine learning, a “kernel” is a

method of using a linear classifier to solve a non-linear problem. Different kernel functions can fit

deep learning features to different dimensions, finding correlations and threshold among the data

samples. The kernel is fundamental to the supported vector classifier (SVC) which analyzes and

classifies data according to the model and marks true fields among the whole data grid.
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Body Landmarks Detection with Openpose

Openpose is a software that detects the human body, hand, facial, and foot keypoints on

single images and videos[2][3]. Body keypoints include nose, neck, shoulders, elbows, wrist, knee,

ankles, etc. Hand keypoints contains all the fingers, their joints, and wrist[4]. Facial keypoints

include eyebrows, eyes (both upper and lower), nose, mouths, and chins. Foot keypoints contain

similar results as the hand keypoints[5].

"Look down at Phone"

Constantly looking down at the phone is people’s new addiction in this age of the cellphone.

A survey claims that Americans on average check phones once every 12 minutes. The survey

also claims that Americans repeat the same action at least 80 times every day. If the machine

can automatically detect the action of "looking down at phone", it will enable more research and

business relating to cellphone use. For example, schools may implement the machine to prevent

the illegal use of cellphone during exams.

Related Works

Previously, action pattern recognition has been performed to testify motion sequence in-

formation using deep learning [6]. Their emphasis was on detecting motions on various temporal

regions to generate a new motion representation structure.

Another related research focused on localizing actions to decompose and record temporal

"key poses" in given data to achieve superior performance with high accuracy [7]. The model they

developed could only detect actions but failed to classify and recognize the specific actions. This

research’s focus is on detecting the specific, cardinal action of "look down at phone" instead.

A similar research performed by Zhao dedicated to recognizing all actions performed in

a static image [8].He and his fellows limited the scope to be any given static image and detected

basic actions performed by different parts of a human body. For example, an image with the action

of "pour the liquid down" would be detected as a human with actions like "head looking down",

"right arm curving down", and "left hand half holding" happening simultaneously. This research’s

focus is instead on recognizing the macro action of "look down at phone", much like the "pour the
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liquid down" action in their example.

A research that focuses on recognized cellphone use actions has been taken place[9]. But

their research dedicated to recognizing driver’s abnormal behavior and only tested their model on

vehicle drivers using the camera mounted on the dashboard.
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CHAPTER II

METHODS

A machine learning library called scikit-learn was used throughout the data analysis model

because it was capable of carrying out multi-layer perceptron and support vector machines [1].

Using SVM

The SVM library used for this research was provided by scikit-learn. SVM has different es-

timators like Linear Support Vector Classification (LinearSVC), Nu Support Vector Classification

(NuSVC), and C Support Vector Classification (SVC) [1]. SVC is chosen because data samples

are non-linear and this research doesn’t control the number of support vectors. To use SVC on

Python, the data samples must be formatted into a 2D array (matrix) of size N X M while N repre-

sents the number of samples and M represents the number of features of each sample. Because this

training is supervised, the SVC also requires a 1D array of size N that represents the true answer

(target value) of each sample. SVC also allows users to choose different kernels, gamma (kernel

coefficient), etc. After some adjustments, this research determines that the SVC with rbf kernel

and "scaled" gamma. A gamma of "scale" means the kernel coefficient equals to 1 / (number of

features multiplies the variance of data samples).

After calling the SVC function, its returned SVM model can be used to fit the training

samples (same structure as the previous N X M data samples) to estimate the results for those

answers as a 1D array (same structure as true answer array). By comparing the estimated results

and true answers, the accuracy can be calculated and the trend of the estimation can be plotted.

Facial Expression Detection

For the data analysis model, the same scikit-learn library [1] was used. For the training

samples, 20 static pictures with Huang’s face were taken using a conventional camera on a cell

phone. Then these pictures were sorted and labeled sequentially, marking the ones with dimpler

with “1” and otherwise “0”, storing the values to a text file as the true value for the training samples.
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Because this research is supervised, the accuracy of the true values substantially determines the

accuracy and use case of this research.

Proceed to the data sample localization, AI research scientist Adrian Bulat’s published

GitHub repository of face alignment library[10] was used to generate facial landmarks. After

denoising and localizing facial landmarks from the data samples with his library, data grids for

corresponding facial landmarks for further empirical analysis.

With the data grids collected previously, those coordinates are used to rationalize facial

landmarks with supplied data and categorize facial behaviors with mathematical values. For ex-

ample, predicting the curve of lips is a way to supervise the machine to find a correct threshold.

Moving on the data model design, four different kernels functions are used for the supported vector

machine approach (Figure 2).

Figure 2: Different kernels can yield different estimation of the same sample using SVC
[1]
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Body Expression Detection with images

For body expression detection, the Openpose package provided by the Perceptual Comput-

ing Lab at CMU was used. After downloading and installing Openpose on a windows desktop,

15 static images of a person performing some actions taken by a conventional camera were used

and inputted to the computer (“op_pic_#_.jpg” in the “Sicong-deep-learning/my_pics” directory).

After marking them accordingly, all the images (usually denoted as samples) were processed using

Openpose and only configured the software to only detect body and facial keypoints (Figure 3).

Figure 3: Rendered images with keypoints clearly marked
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Openpose then produced a sequence of rendered images of jpg format with body landmarks

identified body (“op_pic_#_rendered.jpg” in the “Sicong-deep-learning/my_pics/output_pic” di-

rectory) and facial keypoints and a list of json data files for corresponding samples in the same

directory. This concludes the first round of data collection in this project. For data process, a csv

file called “ans_all_15_images.csv” in the “Sicong-deep-learning/my_pics/json_datas” directory

was used to store true answers (target values). Images with positive “looking at phone” action

were denoted as 1 and otherwise as 0 [11] were stored in the csv file mentioned above. By doing

so, a 1D array of size N for answers to the samples was made for future use. Another csv file called

“input_all_15_images.csv” in the “Sicong-deep-learning/my_pics/json_datas” directory was used

to collect and store keypoints from each json files generated above with each row representing

keypoints of an image. Thus, a 2D array of size N x M where N denotes as the number of samples

and M denotes as the number of keypoints for each sample was created. This concludes the data

processing part of the research.

After uploading all the materials to a GitHub, the research proceeded on to Python pro-

gramming. With different datasets, It first inputted the “input_all_15_images.csv” to get the N x M

array. Because every keypoint has x label, y label, and keypoint scale and only x label and y label

were needed to proceed, all the keypoint scales were removed and then pair on the x and y labels.

The updated 2D array will have 2/3 of its original size and correspond to M/3 landmarks collected.

There are a total of 15 landmarks and 15 samples for this step, the 2D array should always a size

of 15 X 30 by the end of this step.

The next step is to create features from these keypoints. To detect whether the person in the

sample is looking down at the phone, the only relevant landmarks are neck, both elbows, wrists,

and eyes. After filtering, the 7 landmarks, each with x label and y label, will shorten the size of the

2D array to 15 X 14. Using the keypoints, 2 different features were used to improve the machine’s

accuracy. The first feature is simple, the briefly organized raw data were dumped in. In the second

feature partitioned left wrist and elbow to calculate the curve correspondingly and did the same

with the right wrist elbow, and shoulder. It then generated a new 2D array with a size of 15 X 7
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array that contains curves of both arms and raw data for neck and both eyes. In the meantime, the

1D array representing the true answers of the samples remain unchanged.

With the help of PyCharm, a Python IDE, the same scikit-learn library plugin for Python to

perform the dataset training with deep learning was used. Using the “train_test_split()” function

provided by scikit-learn, a random 30% percent of the samples were used to the training sample

and everything else was considered test samples. It has been established that SVM performs the

highest accuracy within the experiment setting. To use different kernels to find out that rbf kernel

fits the dataset with the highest accuracy after 100 iterations of random test & training samples, the

SVM function produced a 1D array of N (size of 15) and represented the predicted results for these

training samples. When compared to the true answers of the samples, the accuracy on average

is 86.465%. This concludes the first portion of Body expression, the research then moved on the

detecting a sequence of videos instead of individual, unrelated images.

Body Expression Detection with videos

With help from friends, 8 videos performing “looking down at phone” action were col-

lected. To produce a more comprehensive result, the videos not only included a person acting as

different background, using both hands or one hand, looking sideway and directly at the camera,

and start at either true or false action. Because most conventional cameras usually record videos

in MP4 format, VLC media player were used to convert them to avi format manually. To reduce

the workload while keeping the integrity of the sample, “frame_step” flag was used to only detect

body landmarks every 5 frames and treat every video as an individual sequence of consecutive

images so that they could be proceeded using similar data processing techniques mentioned above

but storing all of the data and materials in the “Sicong-Deep-Learning/my_videos” (Figure 4).
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Figure 4: Rendered consecutive frames with keypoints clearly marked, to better visualize the video

Later, the 8 sets of samples were divided into two categories, “looking at the camera” and

“looking sideways”. Using SVM with the same kernel, it achieves a much higher accuracy with

“looking at the camera” than otherwise and received the permission from the advisor to proceed.

The final training sample was a long, consecutive video where the person performed various

actions in front of the camera. It was a 26-second video where the person first looked at the phone,

put on a hat, drank water, and at least looked at the phone again. When processing the video, it

was decided to only record and generate every 10 frames due to the extensive size. After viewing

the consecutive images, no visual discord was detected so the research proceeded to the next step.

Using the same technique above, a new sample marked as “avi_9” with 79 frames of keypoints

was generated. After processing and filtering the 2D array of size 79 X 75 with the same technique

above, the feature could accurately distinguish among “looking down at phone” and other actions.
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CHAPTER III

RESULTS

For facial expression recognition, the research successfully reproduced an accurate dimpler

detection model and yields an accuracy of over 88%. For body expression detection, the result of

single images maintains a rate of 86.465% accuracy when using the SVM with rbf kernel provided

by scikit-learn library. SVM yields reliable results by focusing on the local minimum. Although

MLP was considered, SVM fits the data better because as an individual undergraduate student,

the lack of funding and resource limited the ability to collect extensive datasets and samples for

the research to take the advantage of the more accurate and reliable model provided by MLP.

Although the adam function [12] does indeed leveraged its adaptive nature in seeking correlations

among the dataset with the relatively small input sample size, MLP still fails to provide a more

reliable estimation of samples and were thus disregarded when moving on.

After collecting short videos for the next step of the research, using SVM with rbf kernel

consistently provided the best estimation of the models among other kernels and providing a result

that correlated to the results above (when samples were images). However, one of the flaws in

this stage was the inconsistency when the person in the camera was looking sideways. Because

body landmarks have utterly different positions and movement curves depending on which way

the person was facing. It was conceivable to suspect that the deep learning model overfitted the

samples of people looking directly at the camera and neglected the instances otherwise. Despite

this incident, the overall outputs consistently correlated with true samples when people looking

directly at the camera and only had a few spikes on where the people were looking at the data.
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Figure 5: Estimated result of video sample 1

For the above graphs, the x-axis represents the number of frames and the y-axis represents

the estimated result of that frame. For example, at frame 0 (the first frame), the model predicted

the image didn’t contain the action of "look down at phone" and represented its finding by setting

the y value to 0 (Figure 5).
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Figure 6: Consecutive frames of sample video 1, as compared to data graph above, the result is
very accurate

As we see from the actual frames above (Figure 6), the spikes are neglectable because the

model only makes mistakes at transitioning frames, which can be tricky to humans as well. When

viewing the spikes, although those spikes were lowering the overall score of the dataset, the data

could still consistently detect the start and end frame of the looking down at phone action. With

some additive processing, the model gives a reliable interval to represent which portion of the

samples have positive action.

17



Meanwhile, for the final sample (video 9) , a comprehensive representation of the whole

progress on body expression detection is presented below (Figure 7).

Figure 7: Blue line represents true answers and orange line represents estimated answers

As mentioned above, the person started by looking down at the phone. He then put on a

hat and drank water from a water bottle. At the end of the video, he looked down at the phone

again. Although the spikes mentioned before still exist in the image, this accuracy of this model

is shockingly high. Because of it, an interval of “looking down at phone” action can be easily

extracted with high confidence.

18
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CHAPTER IV

CONCLUSION

The research builds upon preexist landmark detection technology and deep learning tech-

niques to detect one of the most prevalent contemporary actions, looking down at the phone. At the

end of the research, it successfully trained a reliable machine model that can accurately recognize

the action of "look down at phone" and distinguish this action from other similar actions like "put

on a hat", and "drink water from a bottle".

Facial and Body Landmarks

The use of facial and body landmarks can substantially improve the accuracy of the deep

learning model. This is because those classified points are pivots to define each facial expression

and body actions. Throughout this research, the research confirms that 7 landmarks are enough to

generate a reliable and efficient deep learning model to detect most conventional motions.

Benefit to the Society

Because the model can accurately detect an interval of frames inside a video. This model,

after being modified as an API, can be easily used for places where the use of cellphones is pro-

hibited. A user story example is provided below. As law enforcement, this technology can help me

track drivers who look at their phones while waiting for traffic lights so that I can enforce the local

law of “no texting while driving” without dispatching officers at every block of the roads.

Future Works

The result of this research meets the expectation within the time frame. Although the

accuracy is not the state of the art, the research result is acceptable. After enhancing the data

accordingly, the interval provided in the result, the interval evaluated by the end of the research

provided a confident estimation of the action with given samples.

To increase the integrity of the current model, it’s critical to collect and include larger

samples because everyone performs the same actions slightly differently. Another flaw of the
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current model is its low accuracy against samples with people performing the action not directly to

the camera. To resolve this issue, a more diverse sample might be needed but more importantly a

new feature that compensates the impact of an object not directly facing the camera. The method

presented here allows fellow scholars to replicate or perform new body action recognition like

"sweep the floor" and "drink water from a bottle".
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APPENDIX

A demo of how Openpose detects and records landmarks https://youtu.be/JDaMm2D2N4w

Full playlist of videos samples used

https://www.youtube.com/playlist?list=PLIgse6IBhew61dIVYYnX-Yo5n6Ng25wmX

GitHub repository of this research https://github.com/Innoversa/Sicong-deep-learning

Sicong_1.py

This code is used to extract facial landmarks using face-alignment library [10]

import f a c e _ a l i g n m e n t

import m a t p l o t l i b

# matplotlib.use(’Agg’) // uncomment if plotting through remote

machine

import m a t p l o t l i b . p y p l o t a s p l t

from m p l _ t o o l k i t s . mplot3d import Axes3D

from sk image import i o

import c o l l e c t i o n s

import csv

import numpy

def g e t _ i m g _ d a t a ( p a t h ) :

# Run the 3D face alignment on a test image, without CUDA.

f a = f a c e _ a l i g n m e n t . FaceAl ignment ( f a c e _ a l i g n m e n t .

LandmarksType . _3D , d e v i c e = ’ cpu ’ , f l i p _ i n p u t =True )

i n p u t _ i m g = i o . imread ( p a t h )

p r e d s = f a . g e t _ l a n d m a r k s ( i n p u t _ i m g ) [ - 1 ]

# 2D-Plot

23

https://youtu.be/JDaMm2D2N4w
https://www.youtube.com/playlist?list=PLIgse6IBhew61dIVYYnX-Yo5n6Ng25wmX
https://github.com/Innoversa/Sicong-deep-learning


p l o t _ s t y l e = dict ( marker = ’ o ’ ,

m a r k e r s i z e =4 ,

l i n e s t y l e = ’ - ’ ,

lw =2)

p r e d _ t y p e = c o l l e c t i o n s . named tup le ( ’ p r e d i c t i o n _ t y p e ’ , [ ’ s l i c e

’ , ’ c o l o r ’ ] )

p r e d _ t y p e s = { ’ l i p s ’ : p r e d _ t y p e (slice ( 5 4 , 60) , ( 0 . 5 9 6 , 0 . 8 7 5 ,

0 . 5 4 1 , 0 . 3 ) ) ,

’ eyebrow1 ’ : p r e d _ t y p e (slice ( 1 7 , 22) , ( 1 . 0 ,

0 . 4 9 8 , 0 . 0 5 5 , 0 . 4 ) ) ,

’ eyebrow2 ’ : p r e d _ t y p e (slice ( 2 2 , 27) , ( 1 . 0 ,

0 . 4 9 8 , 0 . 0 5 5 , 0 . 4 ) ) }

d a t a = numpy . c o n c a t e n a t e ( ( p r e d s [ p r e d _ t y p e s [ ’ l i p s ’ ] . slice ,

0 : 2 ] , p r e d s [ p r e d _ t y p e s [ ’ eyebrow1 ’ ] . slice , 0 : 2 ] , p r e d s [

p r e d _ t y p e s [ ’ eyebrow2 ’ ] . slice , 0 : 2 ] ) )

return d a t a

wi th open ( ’ d a t a . c sv ’ , mode= ’w’ ) a s d a t a _ f i l e :

d a t a _ w r i t e r = csv . w r i t e r ( d a t a _ f i l e , d e l i m i t e r = ’ , ’ , q u o t e c h a r =

’ " ’ , q u o t i n g = csv . QUOTE_MINIMAL)

# data_writer.writerow([’x_value’, ’y_value’])

for i in range ( 1 7 ) :

if i < 1 0 :

p a t h = ’ p i c s / d i m p l e r _ 0 ’+str ( i ) + ’ . png ’

else :

p a t h = ’ p i c s / d i m p l e r _ ’+str ( i ) + ’ . png ’
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print ( p a t h )

d a t a = g e t _ i m g _ d a t a ( p a t h )

d a t a _ w r i t e r . w r i t e r o w s ( d a t a )
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Sicong_2.py

This code is used to train features for the facial recognition research [1]

import csv

import numpy as np

from s k l e a r n import svm

from s k l e a r n . svm import LinearSVC

import s k l e a r n

import m a t p l o t l i b . p y p l o t a s p l t

from s k l e a r n . n e u r a l _ n e t w o r k import M L P C l a s s i f i e r

from s k l e a r n import d a t a s e t s

from s k l e a r n . n a i v e _ b a y e s import GaussianNB

from s k l e a r n . svm import LinearSVC

from s k l e a r n . l i n e a r _ m o d e l import L o g i s t i c R e g r e s s i o n

from s k l e a r n . m e t r i c s import ( b r i e r _ s c o r e _ l o s s , p r e c i s i o n _ s c o r e ,

r e c a l l _ s c o r e , f 1 _ s c o r e )

from s k l e a r n . c a l i b r a t i o n import C a l i b r a t e d C l a s s i f i e r C V ,

c a l i b r a t i o n _ c u r v e

from s k l e a r n . m o d e l _ s e l e c t i o n import t r a i n _ t e s t _ s p l i t

def p l o t _ c a l i b r a t i o n _ c u r v e ( e s t , name , f i g _ i n d e x ) :

"""Plot calibration curve for est w/o and with calibration.

"""

# Calibrated with isotonic calibration

i s o t o n i c = C a l i b r a t e d C l a s s i f i e r C V ( e s t , cv =2 , method= ’ i s o t o n i c

’ )
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# Calibrated with sigmoid calibration

s igmoid = C a l i b r a t e d C l a s s i f i e r C V ( e s t , cv =2 , method= ’ s igmoid ’ )

# Logistic regression with no calibration as baseline

l r = L o g i s t i c R e g r e s s i o n (C= 1 . )

f i g = p l t . f i g u r e ( f i g _ i n d e x , f i g s i z e =(10 , 10) )

ax1 = p l t . s u b p l o t 2 g r i d ( ( 3 , 1 ) , ( 0 , 0 ) , rowspan =2)

ax2 = p l t . s u b p l o t 2 g r i d ( ( 3 , 1 ) , ( 2 , 0 ) )

ax1 . p l o t ( [ 0 , 1 ] , [ 0 , 1 ] , " k : " , l a b e l =" P e r f e c t l y c a l i b r a t e d " )

for c l f , name in [ ( l r , ’ L o g i s t i c ’ ) ,

( e s t , name ) ,

( i s o t o n i c , name + ’ + I s o t o n i c ’ ) ,

( s igmoid , name + ’ + Sigmoid ’ ) ] :

c l f . f i t ( x _ t r a i n , y _ t r a i n )

y_pred = c l f . p r e d i c t ( x _ t e s t )

if hasattr ( c l f , " p r e d i c t _ p r o b a " ) :

p rob_pos = c l f . p r e d i c t _ p r o b a ( x _ t e s t ) [ : , 1 ]

else : # use decision function

prob_pos = c l f . d e c i s i o n _ f u n c t i o n ( x _ t e s t )

p rob_pos = \

( p rob_pos - p rob_pos .min ( ) ) / ( p rob_pos .max ( ) -

p rob_pos .min ( ) )

c l f _ s c o r e = b r i e r _ s c o r e _ l o s s ( y _ t e s t , prob_pos , p o s _ l a b e l =

Y.max ( ) )
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print ( "%s : " % name )

print ( " \ t B r i e r : %1.3 f " % ( c l f _ s c o r e ) )

print ( " \ t P r e c i s i o n : %1.3 f " % p r e c i s i o n _ s c o r e ( y _ t e s t ,

y_pred ) )

print ( " \ t R e c a l l : %1.3 f " % r e c a l l _ s c o r e ( y _ t e s t , y_pred ) )

# print("\tF1: %1.3f\n" % f1_score(y_test, y_pred))

f r a c t i o n _ o f _ p o s i t i v e s , m e a n _ p r e d i c t e d _ v a l u e = \

c a l i b r a t i o n _ c u r v e ( y _ t e s t , prob_pos , n _ b i n s =10)

ax1 . p l o t ( m e a n _ p r e d i c t e d _ v a l u e , f r a c t i o n _ o f _ p o s i t i v e s , " s -

" ,

l a b e l ="%s (%1.3 f ) " % ( name , c l f _ s c o r e ) )

ax2 . h i s t ( prob_pos , range=( 0 , 1 ) , b i n s =10 , l a b e l =name ,

h i s t t y p e =" s t e p " , lw =2)

ax1 . s e t _ y l a b e l ( " F r a c t i o n o f p o s i t i v e s " )

ax1 . s e t _ y l i m ( [ - 0 . 0 5 , 1 . 0 5 ] )

ax1 . l e g e n d ( l o c =" lower r i g h t " )

ax1 . s e t _ t i t l e ( ’ C a l i b r a t i o n p l o t s ( r e l i a b i l i t y c u r v e ) ’ )

ax2 . s e t _ x l a b e l ( "Mean p r e d i c t e d v a l u e " )

ax2 . s e t _ y l a b e l ( " Count " )

ax2 . l e g e n d ( l o c =" uppe r c e n t e r " , n c o l =2)

p l t . t i g h t _ l a y o u t ( )
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def f e a t u r e A l l ( i n p u t 1 ) :

print ( i n p u t 1 )

# input("hello")

o u t p u t = [ ]

o u t p u t += ( f e a t u r e 1 ( i n p u t 1 ) )

# output += (feature2(input1))

o u t p u t += ( f e a t u r e 3 ( i n p u t 1 ) )

o u t p u t += f e a t u r e 4 ( i n p u t 1 [ 7 : : ] )

return o u t p u t

def f e a t u r e 1 ( i n p u t 1 ) :

# feature regarding lips

o u t p u t = [ 0 , 1 , 2 , 3 ]

o u t p u t [ 0 ] = ( i n p u t 1 [ 0 ] [ 0 ] - i n p u t 1 [ 3 ] [ 0 ] )

o u t p u t [ 1 ] = ( i n p u t 1 [ 0 ] [ 1 ] - i n p u t 1 [ 3 ] [ 1 ] )

o u t p u t [ 2 ] = ( i n p u t 1 [ 6 ] [ 0 ] - i n p u t 1 [ 3 ] [ 0 ] )

o u t p u t [ 3 ] = ( i n p u t 1 [ 6 ] [ 1 ] - i n p u t 1 [ 3 ] [ 1 ] )

# output_val = output[0] + output[1] * 10 + output[2] * 100 +

output[3] * 1000

return [ o u t p u t [ 1 ] - o u t p u t [ 0 ] , o u t p u t [ 3 ] - o u t p u t [ 2 ] ]

# return output
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def f e a t u r e 2 ( i n p u t 1 ) :

# feature regarding lips

o u t p u t = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ]

o u t p u t [ 0 ] = i n p u t 1 [ 0 ] [ 1 ]

o u t p u t [ 1 ] = i n p u t 1 [ 1 ] [ 1 ]

o u t p u t [ 2 ] = i n p u t 1 [ 2 ] [ 1 ]

o u t p u t [ 3 ] = i n p u t 1 [ 3 ] [ 1 ]

o u t p u t [ 4 ] = i n p u t 1 [ 4 ] [ 1 ]

o u t p u t [ 5 ] = i n p u t 1 [ 5 ] [ 1 ]

o u t p u t [ 6 ] = i n p u t 1 [ 6 ] [ 1 ]

return o u t p u t

def f e a t u r e 3 ( i n p u t 1 ) :

# feature regarding lips

o u t p u t = [ 0 , 1 , 2 , 3 , 4 , 5 ]

o u t p u t [ 0 ] = i n p u t 1 [ 0 ] [ 0 ]

o u t p u t [ 1 ] = i n p u t 1 [ 0 ] [ 1 ]

o u t p u t [ 2 ] = i n p u t 1 [ 3 ] [ 0 ]

o u t p u t [ 3 ] = i n p u t 1 [ 3 ] [ 1 ]

o u t p u t [ 4 ] = i n p u t 1 [ 6 ] [ 0 ]

o u t p u t [ 5 ] = i n p u t 1 [ 6 ] [ 1 ]

return o u t p u t

def f e a t u r e 4 ( i n p u t 2 ) :

o u t p u t = [ ]
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for e in range (len ( i n p u t 2 ) ) :

o u t p u t . append ( i n p u t 2 [ e ] [ 0 ] )

return o u t p u t

w i th open ( ’ d a t a . c sv ’ , mode= ’ r ’ ) a s d a t a _ f i l e :

d a t a _ r e a d e r = csv . r e a d e r ( d a t a _ f i l e , d e l i m i t e r = ’ , ’ , q u o t e c h a r =

’ \ ’ ’ , q u o t i n g = csv .QUOTE_NONNUMERIC)

ou tp = [ ]

for each in d a t a _ r e a d e r :

ou tp . append ( each )

wi th open ( ’ answer . c sv ’ , mode= ’ r ’ ) a s d a t a _ f i l e :

d a t a _ r e a d e r = csv . r e a d e r ( d a t a _ f i l e , q u o t i n g = csv .

QUOTE_NONNUMERIC)

ans = [ ]

for each in d a t a _ r e a d e r :

ans = each

ans = list (map (int , ans ) )

w i th open ( ’ f a k e _ s m i l e . c sv ’ , mode= ’ r ’ ) a s d a t a _ f i l e :

d a t a _ r e a d e r = csv . r e a d e r ( d a t a _ f i l e , q u o t i n g = csv .

QUOTE_NONNUMERIC)

f a k e = [ ]

for each in d a t a _ r e a d e r :

f a k e = each

f a k e = list (map (int , f a k e ) )
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wi th open ( ’ happy_smi l e . c sv ’ , mode= ’ r ’ ) a s d a t a _ f i l e :

d a t a _ r e a d e r = csv . r e a d e r ( d a t a _ f i l e , q u o t i n g = csv .

QUOTE_NONNUMERIC)

happy = [ ]

for each in d a t a _ r e a d e r :

happy = each

happy = list (map (int , happy ) )

# print(ans)

f1 = [ ]

for a in range ( 1 7 ) :

f1 . append ( f e a t u r e A l l ( ou tp [ a * 1 6 : a * 16 + 1 6 ] ) )

# f1.append(featureAll(outp))

# f1.append(feature3(outp))

print ( ’ p r i n t i n g ’ , f1 )

print ( ’ l e n = ’ , len ( f1 ) )

# print(ans)

X = np . a r r a y ( f1 )

# print(X)

Y = np . a r r a y ( ans )

# print(Y)

acc = 0

f 1 _ s c o r e = 0

s c o r e = 0

s c o r e 2 = 0

for i in range ( 1 0 0 0 ) :
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x _ t r a i n , x _ t e s t , y _ t r a i n , y _ t e s t = s k l e a r n . m o d e l _ s e l e c t i o n .

t r a i n _ t e s t _ s p l i t (X, Y)

# clf = svm.SVC(degree=3, gamma=’scale’, kernel=’poly’,

decision_function_shape=’ovr’)

c l f = svm . LinearSVC ( r a n d o m _ s t a t e =0 , t o l =1e - 5 )

# clf2 = MLPClassifier(solver=’adam’, alpha=1e-5,

hidden_layer_sizes=(5, 2), random_state=1)

c l f . f i t ( x _ t r a i n , y _ t r a i n )

# clf2.fit(x_train, y_train)

y_pred = c l f . p r e d i c t ( x _ t e s t )

# y_pred2 = clf2.predict(x_test)

# score2 += MLPClassifier.score(clf2, X, Y)

s c o r e += svm . SVC . s c o r e ( c l f , X, Y)

acc = acc + s k l e a r n . m e t r i c s . a c c u r a c y _ s c o r e ( y _ t e s t , y_pred )

# print(sklearn.metrics.accuracy_score(y_test, y_pred))

# f1_score = f1_score + sklearn.metrics.f1_score(y_test,

y_pred, average=’binary’)

print ( acc / 1000)

print ( s c o r e / 10)
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Sicong_4.py

Sicong_3.py was a refactored version of Sicong_2.py for documentation purpose. For Sicong_4.py,

this code is used to train features for the body expression recognition research with images [1]

import csv

import numpy as np

from s k l e a r n import svm

import s k l e a r n

def f e a t u r e _ l o o k _ d o w n _ 1 ( i n p u t _ p t s , i n p u t _ i n d e x ) :

o u t p u t _ p t s = [ ]

o u t p u t _ p t = [ ]

for e a c h _ r in i n p u t _ p t s :

for i n d e x in i n p u t _ i n d e x :

o u t p u t _ p t . append ( e a c h _ r [ i n d e x ] )

o u t p u t _ p t s . append ( o u t p u t _ p t )

o u t p u t _ p t = [ ]

# print(len(output_pts), len(output_pts[0]))

return o u t p u t _ p t s

# start of data processing part

wi th open ( ’ my_pics / j s o n _ d a t a s / a n s _ a l l _ 1 5 _ i m a g e s . csv ’ , mode = ’ r ’ )

a s d a t a _ f i l e :

d a t a _ r e a d e r = csv . r e a d e r ( d a t a _ f i l e , d e l i m i t e r = ’ , ’ , q u o t e c h a r =

’ \ ’ ’ , q u o t i n g = csv .QUOTE_NONNUMERIC)

a n s _ d a t a = [ ]

for each in d a t a _ r e a d e r :
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a n s _ d a t a = each

a n s _ d a t a = list (map (int , a n s _ d a t a ) )

w i th open ( ’ my_pics / j s o n _ d a t a s / i n p u t _ a l l _ 1 5 _ i m a g e s . csv ’ , mode= ’ r ’ )

a s d a t a _ f i l e :

d a t a _ r e a d e r = csv . r e a d e r ( d a t a _ f i l e , d e l i m i t e r = ’ , ’ , q u o t e c h a r =

’ \ ’ ’ , q u o t i n g = csv .QUOTE_NONNUMERIC)

a l l _ p t s = [ ]

for each in d a t a _ r e a d e r :

# print(each)

a l l _ p t s . append ( each )

# print(’output is ’, all_pts) # all points is a 2D array with 15

rows and 75 columns

# this modifies the list into a 15 rows and 50 columns 2D array

that has only x and y coordinates

for each in a l l _ p t s :

for p t s in each :

if p t s <= 1 :

each . remove ( p t s )

# data I need is neck (1), Relbow(3), Rwrist(4), Lelbow(6),

Lwrist(7), Reye(15), Leye(16)

n e e d _ f e a t u r e s = [ 1 , 3 , 4 , 6 , 7 , 15 , 16]

n e e d _ i d x = [ ]

for each in n e e d _ f e a t u r e s :

n e e d _ i d x . append ( each * 2)

n e e d _ i d x . append ( each * 2 + 1)

# print(need_pts) # this gets the index needed for the research

f e a t u r e _ 1 = f e a t u r e _ l o o k _ d o w n _ 1 ( a l l _ p t s , n e e d _ i d x )
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print (len ( f e a t u r e _ 1 ) )

print (len ( a n s _ d a t a ) )

# start of sklearn part

X = np . a r r a y ( f e a t u r e _ 1 )

Y = np . a r r a y ( a n s _ d a t a )

acc = 0

f 1 _ s c o r e = 0

s c o r e = 0

s c o r e 2 = 0

for i in range ( 1 0 0 0 ) :

x _ t r a i n , x _ t e s t , y _ t r a i n , y _ t e s t = s k l e a r n . m o d e l _ s e l e c t i o n .

t r a i n _ t e s t _ s p l i t (X, Y)

c l f = svm . SVC( d e g r e e =3 , gamma= ’ s c a l e ’ , k e r n e l = ’ r b f ’ ,

d e c i s i o n _ f u n c t i o n _ s h a p e = ’ ovo ’ )

# clf = svm.LinearSVC(random_state=0, tol=1e-5)

# clf2 = sklearn.MLPClassifier(solver=’adam’, alpha=1e-5,

hidden_layer_sizes=(5, 2), random_state=1)

c l f . f i t ( x _ t r a i n , y _ t r a i n )

# clf2.fit(x_train, y_train)

y_pred = c l f . p r e d i c t ( x _ t e s t )

# y_pred2 = clf2.predict(x_test)

# score2 += MLPClassifier.score(clf2, X, Y)

s c o r e += svm . SVC . s c o r e ( c l f , X, Y)

acc = acc + s k l e a r n . m e t r i c s . a c c u r a c y _ s c o r e ( y _ t e s t , y_pred )

# print(sklearn.metrics.accuracy_score(y_test, y_pred))
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# f1_score = f1_score + sklearn.metrics.f1_score(y_test,

y_pred, average=’binary’)

# print(f1_score / 1000)

print ( acc / 1000)

print ( s c o r e / 10)

# print(score2 / 1000)
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Sicong_5.py

For Sicong_5.py, this code is used to train features for the body expression recognition research

with videos [1]

import csv

import numpy as np

from s k l e a r n import svm

import s k l e a r n

import j s o n

def f e a t u r e _ l o o k _ d o w n _ 1 ( i n p u t _ p t s , i n p u t _ i n d e x ) :

o u t p u t _ p t s = [ ]

o u t p u t _ p t = [ ]

for e a c h _ r in i n p u t _ p t s :

for i n d e x in i n p u t _ i n d e x :

o u t p u t _ p t . append ( e a c h _ r [ i n d e x ] )

o u t p u t _ p t s . append ( o u t p u t _ p t )

o u t p u t _ p t = [ ]

# print(len(output_pts), len(output_pts[0]))

return o u t p u t _ p t s

def c a l c _ a c c u r a c y (X, Y) :

acc = 0

f 1 _ s c o r e = 0

s c o r e = 0

s c o r e 2 = 0

for i in range ( 1 0 0 0 ) :
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x _ t r a i n , x _ t e s t , y _ t r a i n , y _ t e s t = s k l e a r n .

m o d e l _ s e l e c t i o n . t r a i n _ t e s t _ s p l i t (X, Y)

c l f = svm . SVC( gamma= ’ a u t o ’ , k e r n e l = ’ r b f ’ )

c l f . f i t ( x _ t r a i n , y _ t r a i n )

y_pred = c l f . p r e d i c t ( x _ t e s t )

s c o r e += svm . SVC . s c o r e ( c l f , X, Y)

acc = acc + s k l e a r n . m e t r i c s . a c c u r a c y _ s c o r e ( y _ t e s t , y_pred

)

print ( acc / 1000)

print ( s c o r e / 10)

return c l f

# start of data processing part

def i n p u t _ d a t a ( i n _ d i g ) :

p t s _ v a r = ’ my_videos / o u t p u t / a v i _ ’+str ( i n _ d i g ) + ’ / a v i _ ’+str (

i n _ d i g ) + ’ _ p t s . c sv ’

a n s _ v a r = ’ my_videos / o u t p u t / a v i _ ’+str ( i n _ d i g ) + ’ / a v i _ ’+str (

i n _ d i g ) + ’ _ans . csv ’

wi th open ( p t s _ v a r , mode= ’ r ’ ) a s d a t a _ f i l e :

d a t a _ r e a d e r = csv . r e a d e r ( d a t a _ f i l e , d e l i m i t e r = ’ , ’ ,

q u o t e c h a r = ’ \ ’ ’ , q u o t i n g = csv .QUOTE_NONNUMERIC)

a l l _ p t s = [ ]

for each in d a t a _ r e a d e r :

# print(each)

a l l _ p t s . append ( each )

# print(len(all_pts), len(all_pts[0])) all_pts is a 13 by 75
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matrix while 13 is the time axis

wi th open ( ans_va r , mode= ’ r ’ ) a s d a t a _ f i l e :

d a t a _ r e a d e r = csv . r e a d e r ( d a t a _ f i l e , d e l i m i t e r = ’ , ’ ,

q u o t e c h a r = ’ \ ’ ’ , q u o t i n g = csv .QUOTE_NONNUMERIC)

a n s _ d a t a = [ ]

for each in d a t a _ r e a d e r :

a n s _ d a t a = each

a n s _ d a t a = list (map (int , a n s _ d a t a ) )

# print(len(ans_data))

return a l l _ p t s , a n s _ d a t a

#processing the pts

def d o _ d e e p _ l e a r n i n g ( i n _ d i g ) :

a l l _ p t s , a n s _ d a t a = i n p u t _ d a t a ( i n _ d i g )

# this modifies the list into a 15 rows and 50 columns 2D

array that has only x and y coordinates

for each in a l l _ p t s :

for p t s in each :

if p t s <= 1 :

each . remove ( p t s )

# data I need is neck (1), Relbow(3), Rwrist(4), Lelbow(6),

Lwrist(7), Reye(15), Leye(16)

n e e d _ f e a t u r e s = [ 1 , 3 , 4 , 6 , 7 , 15 , 16]

n e e d _ i d x = [ ]

for each in n e e d _ f e a t u r e s :

n e e d _ i d x . append ( each * 2)

n e e d _ i d x . append ( each * 2 + 1)
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# print(need_idx)

f e a t u r e _ 1 = f e a t u r e _ l o o k _ d o w n _ 1 ( a l l _ p t s , n e e d _ i d x )

# print(len(feature_1))

# print(len(ans_data))

# start of sklearn part

X = np . a r r a y ( f e a t u r e _ 1 )

Y = np . a r r a y ( a n s _ d a t a )

c l f = c a l c _ a c c u r a c y (X, Y)

# dec_func_ans = clf.decision_function(X)

d e c _ f u n c _ a n s = c l f . p r e d i c t (X)

d e c _ f u n c _ a n s = d e c _ f u n c _ a n s . t o l i s t ( )

print ( d e c _ f u n c _ a n s )

# for each in dec_func_ans:

# if each < 0:

# each = 1 + each

# print (dec_func_ans)

# initializing json output for Dr. Jiang’s required format

d i c t _ t o _ j s o n = {}

d i c t _ l i s t = [ ]

for i in range (len ( d e c _ f u n c _ a n s ) ) :

d i c t _ l i s t . append ( [ i * 5 , d e c _ f u n c _ a n s [ i ] ] )

d i c t _ t o _ j s o n [ ’ head down ’ ] = d i c t _ l i s t

print ( d i c t _ t o _ j s o n )

o u t _ v a r = ’ my_videos / o u t p u t / a v i _ ’+str ( i n _ d i g ) + ’ / a v i _ ’+str (

i n _ d i g ) + ’ _ j s o n _ o u t . j s o n ’

wi th open ( o u t _ v a r , ’w+ ’ ) a s o u t f i l e :
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j s o n . dump ( d i c t _ t o _ j s o n , o u t f i l e )

print ( ’ \ n \ n end of ’ , i n _ d i g )

# do_deep_learning(7)

for i in range ( 8 ) :

d o _ d e e p _ l e a r n i n g ( i +1)
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slave.py

For slave.py, this code is used to plot the trends.

import m a t p l o t l i b . p y p l o t a s p l t

import j s o n

def i n p u t _ d a t a ( i n _ d i g ) :

j s o n _ v a r = ’ my_videos / o u t p u t / a v i _ ’+str ( i n _ d i g ) + ’ / a v i _ ’+str (

i n _ d i g ) + ’ _ j s o n _ o u t . j s o n ’

wi th open ( j s o n _ v a r , ’ r ’ ) a s d a t a _ r e a d e r :

a sd = j s o n . l o a d s ( d a t a _ r e a d e r . r e a d ( ) )

return asd [ ’ head down ’ ]

a v i = [ ]

for i in range ( 8 ) :

a v i . append ( i n p u t _ d a t a ( i +1) )

for i in range (len ( a v i ) ) :

X = [ ]

Y = [ ]

for each in a v i [ i ] :

X. append ( each [ 0 ] )

Y. append ( each [ 1 ] )

p l t . p l o t (X, Y)

# plt.show()

p l t . s a v e f i g ( fname= ’ my_videos / o u t p u t / f i g _ t r e n d _ o f _ a v i _ ’+str ( i

+1)+ ’ .PNG ’ )

p l t . c l o s e ( )
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