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ABSTRACT

The biomedical imaging techniques grow rapidly and output big amount of data quickly in

the recent years. But image segmentation, one of the most important and fundamental biomedical

data analysis techniques, is still time-consuming for human annotators. Therefore, there is an

urgent need for segmentation to be taken by machine automatically. Segmentation is essential for

biomedical image analysis and could help researchers to gain further diagnostic insights.

This paper has three topics under biomedical image segmentation scenario. For the first topic,

we examine a popular deep learning structure for segmentation task, U-Net, and modify it for our

task on bacteria cell images by using boundary label setting and weighted loss function. Compared

to the MATLAB segmentation program used before, the new deep learning method improves the

performance in terms of object-level evaluation metrics.

For the second topic, we participate into a brain image segmentation challenge which aims for

helping neuroscientists to segment the membrane from neurites in order to get the reconstruction of

neurites circuit. Data augmentation tricks and multiple loss functions are examined for improving

the test performance and finally using combined loss functions can out-perform the original U-Net

result in terms of the official ranking metric. A new dice loss is designed to focus more on the hard

to segment class.

The third topic is to apply the unsupervised segmentation method which will not be restrained

by human labelling speed and effort. This is meaningful under biomedical segmentation scenario

where training data with expert labelling is always lacking. Without using any labelled data, the

unsupervised method, Double DIP, performs better than the MATLAB program on the semantic

level.
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1. INTRODUCTION

1.1 Background

High-resolution biomedical images can be acquired quickly with advanced biology microscopy

imaging techniques in today’s world, but analysing such data can be time-consuming for re-

searchers. Because of the need for professionalism of biomedical image annotation, usually only

human experts with the related knowledge can give the accurate annotations. And they still need

large amount of time to annotate. If the annotation process becomes automatic, less human efforts

and lower cost can be achieved, and it can be act as an assisted role to reduce human mistakes.

This work focuses on design and improve an automatic deep learning segmentation method on two

kinds of biomedical microscopy images, (bacteria) cell images and brain (fruit fly nerve) images.

A good automated segmentation method can have a lot of potential applications including counting

normal or dead cells, segmentation of desired regions or objects, re-constructing neural connec-

tions and using these preliminary results to perform other meaningful analysis such as to classify

cancer grades and understand nervous system etc. [5, 6].

Segmentation of biomedical images can be very challenging for computer and sometimes even

for human experts [7], because of the various visual characteristics in color, shape and texture in the

images which will be shown in next section. On the other hand, a large dataset with ground truth is

always preferred for neural network to get best performance. But for the problem of segmentation

on biology microscopy images, usually only limited number of manually segmented images are

freely available and doing hand labelling of biology image consumes much manpower and time.

So the main challenges we have here are the essential complexity of biology images and scarcity

of labelled data. For traditional image segmentation algorithms like Otsu’s method [8], K-mean

clustering [9], Grab Cut [10] and etc, there are mainly two weaknesses explained in [5]. First is

it can only be effective for limited types of images and very sensitive to manually set parameters.

Second is it probably need semi-automated correcting afterwards which would be a burden for

1



researchers because of the huge amount and high resolution of biology data.

Fortunately, deep learning becomes dominating in the computer vision for the past few years,

as it can usually achieve higher accuracy and quicker speed than traditional method. There is al-

ready one branch in deep learning area focusing on segmentation task which need the classification

and localization of each pixel in the desired image. This work learns from two fundamental works

in this branch which are "fully convolutional network" FCN [2] and U-Net [3] and examines modi-

fying and tuning different parts of these framework to get a good model we want. Such supervised

method needs big training data which is hard to get, so we also find an unsupervised method to do

semantic segmentation on cell images without the need for labelled data.

1.2 Problems Definitions

This work includes two kinds of biomedical image data, cell and brain. Two deep learning

method, supervised and unsupervised structures are examined to tackle different problems of seg-

mentation tasks on the two datasets. Totally three topics are covered, each topic’s problem and

challenges are defined here .

Cell data are fluorescence microscopy images of E.coli bacteria cells provided by Zeng lab in

Texas A&M University’s biochemistry/biophysics department. Previously, a MATLAB program

is used to do automatic segmentation first and followed by human correction. The program’s au-

tomatic segmentation results usually have problems which may cost long-time manual correction.

It is shown in Figure 1.1 that target cells on the border of the image are missing and surrounding

area of cells is identified wrongly as cell instance. Such problem is caused by the inconsistent

background fluorescence or color of the image. Another challenge is there are lots of touching

cells, especially for some cells undergoing splitting process. These sometimes are expected to be

separated as two instances.

The training data of brain image is a set of section images from a serial section Transmission

Electron Microscopy (ssTEM) data set of the Drosophila first instar larva ventral nerve cord (VNC)

[11]. The expert labels are provided in the format of white for the pixels of segmented neuron cell

objects and black for the membranes (borders of neurites) [1] . This dataset looks harder than

2



Figure 1.1: left: original image, right: MATLAB program automatic instance segmentation results;
Problems in the results: missing few cells; miss-predict the background area surrounding cell
where the color is inconsistent

the cell dataset since there are more complexities within the images. It can be seen in Figure 1.2

that there exist fuzzy and low contrast parts and inside compartments similar to the target borders

which should be ignored when doing segmentation. This image is a projection of the 2D section,

so some of the membranes that are not orthogonal to the cutting plane appear blurry and fuzzy [1].

Only 339 images of cell data and 30 images of brain data can be used for the above supervised

segmentation tasks here. Such scale of data is limited for deep learning method which usually

requires thousands of images, but this is an inherent problem for biomedical image segmenta-

tion. The reason is that getting and annotating biomedical images are more complicated and time-

consuming than labelling natural images [12]. Human labelling costs too much time, for the brain

dataset we use, one and half days are needed for the labelling of 30 section brain datasets [1]; for

the cell dataset, it is not hard to imagine human correction time of thousands of cell images which

are the needed amount of data for just one research project in Zeng Lab. Therefore, an unsuper-

vised method which doesn’t require any labelled data to give a segmentation result comes to our

interest. Here the problem simplifies to: given one original cell image, can we get a mask layer to

segment all the cells out. As far as we know, there hasn’t been such attempt in cell segmentation

3



Figure 1.2: left: original image; right: ground truth label; Challenges in brain image: low contrast
and fuzzy appearance; compartments inside neuron having similar color characteristic as mem-
brane of neuron. Images adapted from source [1]

area yet.

1.3 Related Works

The MATLAB based software Zeng Lab used to do segmentation is called Schnitzcells which

is developed specifically for bacteria and has been instrumental in analyzing E.coli and B. subtilis

movies [13]. It helps to get segmentation for bacteria cell and do quantitative analysis of living

cells. It has an useful GUI for researchers to view the automatic segmentation results and edit

the problem manually. Human correction is very time-consuming which may takes hours for few

images, so this segmentation method is not scalable with the increasing amount of data generated

in the lab. Moreover, the automatic segmentation results are sometimes very bad which causes a

lot of post-processing time for human researchers to correct them back.

Another related method is to use deep learning, convolutional neural networks (CNNs) to do

semantic segmentation tasks in recent years. Since CNNs are first designed to do classification

task with fully connected layer in the end, Ciresan et al. adopted a sliding window based method

to perform segmentation by pixel classification on each patch around the center pixel [14]. The

fully convolutional network without any fully connected layers is proposed by Long et al. in 2015

to perform end-to-end full image segmentation, and it surpassed all the previous approaches in an

4



elegant and efficient way [2]. FCN type network have also shown great promise in doing biomed-

ical image segmentation[15], and most of the credits go to the U-Net [3]. U-Net and U-Net like

models have been successfully used in segmenting biomedical images of neuronal structures [3],

skin lesion [16], etc. The structure of U-Net is based on FCN, using an encoder network with a de-

coder network improved from the naive upsampling path of FCN. Furthermore, the corresponding

same size layers of the encoder and decoder are connected by skip connections to be concatenated,

prior to the max pooling layer and subsequent to a upsampling operation respectively [17].

1.4 Organization of Thesis

1. Section I Introduction: This section gives background and definition of the problem we

learned and introduces related works to show the state of the biomedical segmentation field.

The challenges of the problems lead to following three topics. Our main goal is to improve

the performance compared to existing backbone and get meaningful observation of the spe-

cific way for improvements.

2. Section II Supervised Learning for Cell Segmentation: first overview the current standard

deep learning method U-Net and based on the baseline framework, modify it for the task of

cell segmentation to have better performance than MATLAB program.

3. Section III Supervised Learning for Brain Segmentation: simple modification on U-Net

structure, data augmentation tricks and several loss functions are studied to improve per-

formance compared to the original U-Net.

4. Section IV Unsupervised Learning for Cell Segmentation: applied an unsupervised deep

learning framework on cell semantic segmentation, doing metric comparison with MATLAB

results on a semantic level.

5. Section V Conclusions and Future Works: we will conclude the observation and contribu-

tions for each of the topic and propose possible directions for the next step of segmentation

on such data, especially for the current naive unsupervised method.

5



2. SUPERVISED LEARNING FOR CELL SEGMENTATION

The bacteria cell datasets we do experiments on are all from Zeng Lab of Biochemistry-and-

Biophysics department in Texas A&M University. They labelled the cell image data with Schnitz-

cells program [13] introduced in first chapter and perform human correction on the raw annotations

of the traditional segmentation algorithm. As they described the segmentation process of using the

program, automatic segmentation takes about one minute per image and precisely labelling one

cell image could take hours. So our objective is to design an automatic image segmentation tool

for them based on the deep learning structure, U-Net [3] and achieve better performance as well as

quick speed on the provided cell type data. The raw data we got is in mat file format, python script

is written to extract the annotation matrices out and save them corresponding to the original cell

images in one directory named "FISH" (Fluorescence In Situ Hybridization) which is the name of

their imaging technique. The first 48 images come with raw MATLAB automatic segmentation

without human correction, so these 48 images will be held out as validation set to compare the

performance of our designed method to the MATLAB program. Remaining 291 images are used

as our training set. Average number of cells on one image is 65 and the area of cells range from

600 to 1500 which doesn’t include any tiny target. An example of the given data is shown in Figure

2.1. In human annotation, each cell is labelled with a different classes so shown in different color.

2.1 Overview of Deep Learning Structures

More detailed background of the deep learning structure, U-Net, we used for this task are

presented here.

2.1.1 Fully Convolutional Network

The image segmentation branch of computer vision using deep learning begins to prosper after

this end-to-end approach, Fully Convolutional Network (FCN) first introduced in 2015 [2]. The

authors replace all the fully connected layers in the well-known architectures of that time by con-

volutional layers to make the network have the ability to output an image but not one dimensional

6



(a) original image
(b) human annotation

Figure 2.1: One example of cell images data

vector. In order to learn image features on different levels, convolutional neural network uses

downsampling operation, like the maxpooling layer, to get larger receptive fields for convolutional

layers. This works very well for the task like classification because network can learn the abstract

information of what is in the image but such downsize operation damages the location information

within the image data. For segmentation task, the location information is important and need to

be restored back after downsampling. So the network need to learn how to restore the downsized

feature maps back to the same size of original input. The reverse of downsampling operation, up-

sampling operation, is introduced to increase the size of feature map [2]. Upsampling layers will

interpolate the input feature map by the way of duplicate the nearest pixel or biliear interpolation

to increase the size by normally a scale of two. An advanced upsampling layer is later devised,

commonly called deconvolution layer [18], which has learnable filters to do the equivalent opposite

operation to convolution with strides. Generally, the downsampling path is seen as an encoder and

the upsampling path is seen as a decoder, and this way of design gives the network same size for

the input and output, so that it can be trained using a pixel-wise loss with the ground truth label.

Compared to pixel predictor design [14] using sliding-window approach, FCN is more elegant and
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efficient, also with better performance. An illustration of FCN design is in Figure 2.2

Figure 2.2: Fully Convolution Network output pixel-wise prediction Illustration. Image reprinted
from [2]

2.1.2 U-Net Structure

Based on FCN network architecture, U-Net improves the network design with a symmetric

structure and skip connection which is now one of the most popular method in the biomedical

image segmentation field [3]. It can be seen in Figure 2.3 that the overall shape of the structure

looks like a big letter ’U’ and that is why this design is called U-Net. It consists of a contraction

path on the left and an expansion path on the right, corresponding to encoder and decoder. Con-

traction path consists of consecutive blocks of two times of 3 × 3 convolutional layers and 2 × 2

max pooling layer [19]. This can help to extract more advanced features but it also reduce the size

of feature maps. This can be intuitively understand as the network learns more of what is in the

image from advanced information but loses information of where the object locates in the image.

Expansion path consists of consecutive blocks of 2 × 2 deconvolutional layer and two times of

3 × 3 convolutional layers to recover back to the size of segmentation map. Skip connections are

added in the network between the contraction path and expansion path to combine same-size fea-
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ture maps. This skip connection design means to help upsampling path better recover the location

information from the earlier levels in contraction path. Such skip connection mechanism also in-

spired the famous residual networks [20] which uses skip connection to make the network deeper

a lot. At the end this network design, 1 × 1 convolutional layer is to reduce feature map channel

number from 64 to the label channel number which depends on how the task is defined.

The original U-Net structure downsizes the input image 4 times in the contraction path and

then upsampled them back. Although skip connections are used between the layers of same size

from, we have doubt that the learning ability of such depths may not be fully utilized for our tasks,

namely, cell and brain segmentation. Discussion for how to choose the depth of the U-Net is in the

next two chapters.

Figure 2.3: Original U-Net architecture. Image reprinted from [3]
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2.1.3 Network Depth

As we downsized the original cell image, it can be seen by eyes that the information for cell

shapes, boundaries and relation between adjacent cells loses a lot, after downsize three times, each

time by a scale of 2. The number of pixels for one cell, especially on the border of one cell, are

very few and this could not bring useful information into the whole network training. It should

be mentioned that the border of the cell is one of the most important information for the network

to discriminates different cell objects in our task. So a shallow depth of U-Net structure which

contains only 2 maxpooling layers is chosen and we do comparison experiments with U-Net of

depth 3 to show that deeper network here is not able to perform better but instead a little worse

which verify our doubt that some learning capability is wasted.

Figure 2.4: left: original image 512x512 resolution; middle: 128x128 resolution; right: 64x64
resolution

2.2 Label channel addition and corresponding weighted Loss Function

2.2.1 cell, background and boundary annotations

For our cell segmentation task, the wanted output is the instance segmentation of cell images

which requires different classes assigned to different cells, but U-Net is designed as a semantic

segmentation network which means it can only assign the same class to the same category, so all

the cells will be classified into one class without different indexes for them. The first thing we need
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to do is to transform this problem from instance segmentation to semantic segmentation suited for

U-Net. The raw annotations with different numbers representing different cells are transformed

into binary labels, 0 for background and 1 for all cells shown in the middle picture of Figure 2.5.

This can be easily transformed back to instance label by using labelling algorithm [21] in python

skimage package under the condition that predicted cells have no merging region. Binary cross

entropy loss is used to do the training for this label setting. Loss function for each pixel is shown

in Equation 2.1. p and p′ are the probability of prediction and ground truth respectively. The overall

loss value is the average or summation of all pixel loss values. However, such configuration with

only two classes, background and cell, gives us too many merger errors since one of the challenges

in the cell image is that there are many adjacent and touching cells. It can be seen in Figure 2.6,

the middle picture is the output of binary label setting, the cell cluster on the middle region is not

separated out correctly, all with the same label number so same color for them.

binary cross entropy =


− log (p′) , p = 1

− log (1− p′) , p = 0

(2.1)

The information of how to separate between cells should be given into the network explicitly.

Inspired by the 1st place solution of 2018 data science bowl [22] and U-Net paper[3], a boundary

channel is added along with background, cell interior channels. The surrounding pixels around the

cells are defined to be boundary, having value 1 in the boundary channel, all the pixels of cells

inside boundary are set to value 1 in cell channel. The background class is the remaining pixels

outside of boundary. So our label becomes a 3 channel image, each channel represent background

cell and boundary respectively. An image illustration is given in Figure 2.5 with rgb colors for

background, cell and boundary respectively. Loss function is changed into multi-class version

of cross entropy loss shown in equation 2.2, M is 3 for three classes label setting. After using

separated channels for three different classes, many merger errors are corrected. It can be seen in

the right picture of Figure 2.6, on the up left middle part of the results, a cluster of merged cells in

the middle becomes separated clearly.
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multi-class cross entropy =
M∑
c=1

pc log (p
′
c) (2.2)

(a) (b) (c)

Figure 2.5: (a) original image (b) binary label (c) 3 channel label (adding boundary class)

2.2.2 Weighted Loss Function for Unbalance Problem

Adding a background channel ameliorates the merger error, however, after doing a statistic

analysis, the number of merger errors is still more than MATLAB results. So how the cross en-

tropy loss function works are examined. This loss calculates difference on each pixel between the

network output and the ground truth annotation. On each channel, a binary representation is set

Figure 2.6: Compare MATLAB results, binary label results and 3 channels label results, from left
to right respectively
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for whether this pixel is background, cell, boundary or not. For the added boundary channel, the

numbers of 0 and 1 are highly unbalanced since the boundaries are only one or two pixel width

around cells.So the positive pixels which meaning it belongs to boundary are much less than the

negative pixels in the boundary channel. And this causes the network tending to predict more

negative pixels corresponds to value 0 which means not boundary, because this is an easier way

to get a lower loss. A good solution to cancel out this unbalance problem is to add more weights

onto the boundary channel. For the 3 channels of the output, a weight is multiplied on it after

calculating the multi-class cross entropy loss. We first add weight 10 onto the boundary channel

and achieved good improvements. A result sample is shown in Figure 2.7, using weighted loss

can separate better than both no weight version or matlab result. Then the weight ratio for three

channel is chosen as 1:3:15 according to the reverse ratio between the number of pixels of three

different classes. This is intuitive so succeeding experiments with different ratios are performed to

see how to choose the weight for best performance. We finally find out a trad-off relation between

split and merger errors controlled by different weights.

Figure 2.7: Zoomed in comparison after giving more weight to boundary channel

2.2.3 Training

When performing the experiments, several hyper parameters are chosen as below. Random

crop of original images can give more training samples to ameliorate the problem of lacking data.
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Another way for this problem is using some data augmentation techniques, flip, rotation and adding

Gaussian noise are used to train the rotation invariance of the network for biomedical data. Each

epoch will be trained 300 steps with batch size of 16 so totally 4800 samples can be seen by the

network in each epoch. Early stop monitor the validation loss and if it doesn’t decrease for 10

epochs, the network will be stopped immediately before the 200 training epochs. Learning rate

scheduler also monitors validation loss, if it doesn’t decrease for 3 epochs, the learning rate will be

multiplied by the factor. Tensorboard callback is used to monitor the overall training performance,

precision and accuracy for each channel and overall categorical accuracy are recorded into the

tensorboard interface. When doing prediction, the whole image will always be used as input on

validation set.

• random crop size: 256

• batch size: 16

• training epochs: 200

• step per epoch: 300

• early stop patience: 10

• reduce learning rate factor: 0.2

2.3 Evaluation Metrics and Results Analysis

Apart from pixel accuracy, the object-level accuracy is relatively more important for medical

research, because further biomedical research is performed on the individual level. Intersection of

Union (IoU) match, one of the common object level metrics is chosen as the evaluation metrics for

our task. The equation of IoU is given below.

IoU(A,B) =
A ∩B
A ∪B

(2.3)
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Here A and B means ground truth area and predicting area. When the overlapping between

A and B is more than a threshold, this prediction, B, is called a IoU match. For example, at the

threshold of 0.7, one predicted area is considered a match with the ground truth object if their IoU

is greater than 70%. The thresholds are a range of discrete value, at each value, the average of

higher-level metrics for the validation set are calculated and shown in table 2.1. We calculate on

the threshold values range from 0.5 to 0.9 with a step size of 0.05 same as in [23]. Then three

basic metrics, true positive (TP), false positive (FP) and false negative (FN), can be defined as one

and only one match, extra prediction match no ground truth area, missed ground truth area with

no prediction match respectively based on IoU [23]. These three values are used to calculate the

precision, recall and F1 score on an object level. Another important aspect we cared about are the

split and merger errors which can also be defined by IoU match, split meaning one ground truth

object matches more than one predictions and mergers are one predict area matches more than one

ground truth region.

In table 2.1, binary label setting which does not includes boundary information is the worst.

After adding boundary channel, the performance is improved a lot and becomes better than MAT-

LAB results in several metrics except Recall. Finally, using a higher weight on the unbalanced

boundary channel gives us the best result, all better than MATLAB results. So this results prove

our experiments to be reasonable and meaningful. It is probably used to replace the previous

MATLAB program to do the automatic segmentation task on the cell images for Zeng Lab.

Experiment Name MATLAB Binary Label 1:1:1 1:1:10
F1 score 0.873 0.551 0.874 0.941
IoU score 0.810 0.707 0.875 0.892
Precision 0.806 0.660 0.901 0.929
Recall 0.959 0.480 0.850 0.960

Table 2.1: Metrics Comparison between MATLAB and different label and loss settings results.
1:1:1 and 1:1:10 are the weight of loss function when using 3 channel label setting
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2.3.1 Trade-off between split and merger errors

After doing experiments with different weight ratio settings shown in table 2.2 and 2.3, a pattern

shows that fixing weight on the first two classes, higher weight on the boundary class leads to

higher split errors along with less merger errors. Also more extra cells, (higher false positive rate)

are related to higher split errors, same for missing cells corresponding to merger errors. As we

discussed with the student in Zeng Lab, the weight should be a chosen hyper-parameter depending

on the personal criteria of the researcher. Different people may have different need of split and

merge performance of their biomedical research.

Experiment Name 1:3:5 1:3:10 1:3:15 1:3:30
Splits 9 27 45 90
Mergers 30 12 6 4
Extra 160 173 212 237
Miss 130 98 97 130

Table 2.2: Trade-Off between Splits and Mergers errors when giving different weights on 3 chan-
nels label, fix 1 and 3 as weights for background and cell classes, increase weight for boundary
class

Experiment Name 1:5:10 1:5:15 1:5:20
Splits 10 20 34
Mergers 28 20 11
Extra 157 179 196
Miss 127 106 102

Table 2.3: Trade-Off between Splits and Mergers errors when giving different weights on 3 chan-
nels label, fix 1 and 5 as weights for background and cell classes, increase weight for boundary
class
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3. SUPERVISED LEARNING FOR BRAIN SEGMENTATION

The brain data we work on is from the first international competition on 2D segmentation of

electron microscopic (EM) images of the fly brain [1]. The importance of electron microscopy

(EM) imaging technique is described in [1]. This technique has advanced the research on synapses

and other subcellular structures. In 2012, the connectivity within elegans nervous system is re-

constructed on serial EM technique[24]. However, since human labelling on such images are too

time-consuming, there is an urgent need for the development of an automatic machine aid program

for the analysis of EM images. An example showing how time-consuming this task is is in [25],

a reconstructed area of a mouse retina costs 20,000 hours of experts’ time but this area is only

enough to encompass the smallest types of retinal neurons. In other word, without the automation

or semi-automation, the reconstruction process of EM images will require much more of human

effort and this will be the biggest bottleneck for the research of this field.

This competition aims for appealing machine learning experts to the task of image segmenta-

tion which can further help brain reconstruction connectomics. Anyone can submit and test his

predict result to the online server, and the result will get scored compared with human expert an-

notations hidden from participants. We do experiments on the training data they provided with

human expert label and submit the best configuration of our experiments to the test server.

An example of the brain images is shown in Figure 3.1 which are total 30 consecutive images

(512 × 512 pixels). The goal is to assign each pixel to either value “0” for belonging to the

membrane (boundary) between neurons, or value “1” for belonging to the interior of the boundary,

resulting into a binary image with “black” for neurites boundaries and “white” for all neurites. The

right colored image in Figure 3.1 is the next step by giving each closed boundary region a different

class shown in different colors. These instance segmentation sections can be further connected

by merging same segmentation class in the z-direction of 30 consecutive images so that a 3D

reconstruction can be built in the end. 3D reconstruction of neurites helps neuroscientists to study

the structure of nerve system.
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Figure 3.1: Image from [1]: A is the original image, B is the ground truth boundary label, C is the
instance segmentation into neurite cross-sections

3.1 Network Structures

U-Net [3] was one of the participants in this challenge at that time. Since the online test server

of this competition is still running today, we can do experiments with U-Net as baseline model to

study how different modifications influence the overall network performance on this task.

First thing we think about is still the depth of the network. As shown in the previous chapter,

U-Net uses 4 times downsampling operations but that could be a waste of computation resources

without learning effective information. A comparison of resized brain images is shown in Figure

3.2, after 3 times of downsampling by a scale of 2, the image becomes blurry and most importantly,

some small but complex part of boundaries of the neurites in black color are losing too much

information. This loss of information will damage the prediction performance on those small

intricate region. Even with learned deconvolution layer and skip connections, lost information can

not be ensured to recover back. So we assume depth more than 3 cannot introduce more useful

information into the network and chose 3 as our network depth. There will be test results in the

following result analysis section showing that shallow network perform even better than deeper

network using 4 as the depth.

Compared to the cell images in the last topic, the brain images are more complicated and irreg-

ular. There are more compartments of fly nerve than bacteria cell and all neuron cells are clustered
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Figure 3.2: Original data compared with data downsized 3 times, each time by a scale of 2

together without any regular patterns. So on the expansion path which is for recovering the fea-

tures localization information back, more network capability corresponding to larger number of

channels is added to help the network learn the complicated detailed information of boundaries.

The channel number of convolutional layers in expansion path are doubled and this improves the

performance on the test set. Dropout layers are added for the lowest three blocks of the U-Net to

overcome the problem of overfitting on small training set. If adding more dropout layers to the

higher blocks of the U-Net, it will cause a degeneration of the network performance.
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3.2 Data Augmentation

Three hundreds of cell images are already short for the deep learning training, only 30 images

are provided for brain. And one third of them are selected out as the validation set to help us deter-

mine the training performance when doing experiments. So intensive data augmentation tricks are

used on this task. Apart from the first step of data augmentation including simple flip and rotation

operations, we use uniform and Gaussian noises addition, brightness change and deformation as

the second step. In the second step, these transformations are not performed on the ground truth

labels but only on the original images. Theoretically, these transformations let the network see

more possible situations of the brain images and it can be seen in the result analysis section that

such data augmentation tricks improve the overall performance. Deformation using here is to give

displacements to the coordinates of the image, and map the pixels of the original image corre-

sponding to the deformed new coordinates onto a regular coordinate . The displaced coordinates is

used to find the corresponding pixel value in the original input to be mapped to the output image.

The value of these found displaced pixel value is determined by spline interpolation if it doesn’t fit

into another pixel position, in the order of output coordinates. This mapping function is provided

in python scipy package. An example of such transformation is shown in Figure 3.3. Different

sigma and alpha (standard deviation and scaling factor) setting for Gaussian filter lead to different

intensity of the deformation. The left picture uses a larger setting than the right picture in Figrue

3.3.

3.3 Loss Functions

In the previous chapter for cell segmentation, weighted cross entropy loss is a pixel-level loss

and used to overcome the problem of unbalance ratio between boundary and background classes.

The same problem appears here for brain segmentation with smaller area of boundary and larger

area of neuron cell area. So weighted cross entropy loss should also be used here and the weight

is determined by the reverse ratio between the boundaries and neurites areas which is 4 to 1. The

equation 3.1 of the weighted cross entropy of each pixel is shown below. p is the label for ground
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Figure 3.3: Illustration of deformations with coordinate lines showing what changes are applied;
left: with large std(standard deviation) of Gaussian filter; right: with small std(standard deviation)
of Gaussian filter

truth pixels and p′ is the predicted probability. The overall loss value is the summation or average

of all the pixel losses. Since this is a harder topic compared to cell segmentation, we decided to

examine different loss functions and implemented them to study their influence on the network

performance. Compared to modifying network structures, having a well designed loss function is

more explainable. Below are the overviews of three more loss functions we examined.

WCE(p, p′) = −(p log(p′) + 4(1− p) log(1− p′)) (3.1)

3.3.1 Focal Loss

Focal loss is an upgrade of cross entropy loss by adding exponential down-weight terms which

can suppress the easy classified samples, so that to make the network training on the hard classified

samples. In the equation 3.2 of focal loss of each pixel, (1 − p′)γ and (p′)γ are the exponential

down-weight terms. For example, when the true value of the pixel p = 1, the prediction of this

pixel p′ = 0.97, then this is an easy pixel and the down-weight term is very small for it, but if the

prediction p′ = 0.3, then this is a hard pixel with relatively higher factor.

21



FocalLoss =

 − (1− p′)γ log p′ p = 1

−(p′)γ log (1− p′) p = 0
(3.2)

3.3.2 Object-Level Loss

Cross entropy loss family acts on the pixel level, but pixel accuracy doesn’t directly correlated

with the segmentation performance which can be measured by object-level metric IoU in the last

chapter. This gives us the direction to examine object overlapping level losses for the network

to directly optimize for object level metrics. There are two popular object level losses which are

derived from two object level coefficients which can measure the similarity between two segmenta-

tion results. The equations for these two coefficients are given below which are the dice coefficient

and the Tversky Index. A and B represents ground truth and prediction area respectively. The

intersection of A and B is the true positive. |A−B| and |B −A| are false negative error and false

positive error respectively. So α and β can be put in front of them depending on the user’s perspec-

tive of which error is more important. When these two are both 0.5, tversky index becomes the

dice coefficient. The losses derived from these coefficients are simply 1 - them, because we want

the loss as small as possible, but coefficients as large as possible which meaning more overlapping

area.

Dice Coefficient(A, B) = 2
|A ∩B|
|A|+ |B|

(3.3)

Tversky Index(A, B) =
|A ∩B|

|A ∩B|+ α|A−B|+ β|B − A|
(3.4)

3.3.3 Upgrade Dice Function

In this task, there are two classes, neuron and boundary. We think the difficulties to segment

these two classes are different, segmenting the boundary should be harder because the boundary

class takes less areas and there are more ambiguities. For the cross entropy loss, we adopted
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weights to give different importance to different classes. For dice loss, we find a way to give

different importance of different classes which is inspired by [26]. Adding different power terms

for the loss functions of two classes, equation shown below in 3.5. We can plot the curve of

dice coefficient to dice loss to the power of γ, shown in the Figure 3.4. It can be seen that when

dice coefficient is high around 0.8, using a small γ makes the loss curve to have higher rate of

change, conversely if using a gamma bigger than one. So when the training coming to the point

of a coefficient more than 0.8, we use the small gamma to give more rate of change to the difficult

class, boundary and large gamma for the other class. The reason we focus on coefficient more than

0.8 is that we observe the dice coefficient performance can be quickly trained to 0.8 and slow down

afterwards.

Upgrade Dice Loss = (1−DC0)
γ1 + (1−DC0)

γ2 (3.5)

3.4 Training

When performing the experiments, several hyper parameters are chosen as below. Random

crops of image size 256 x 256 from the whole image with 512 x 512 pixels are used as input.

Extensive data augmentation tricks performed on it, normally no data augmentation will be used

when doing experiments on validation set because real-time data augmentation seems to be 5 times

slower than no augmentation and longer training steps are needed for data augmentation. Each

epoch will be trained 500 steps with batch size of 16. Early stop callback monitors the validation

loss and if it does not decrease for 30 epochs,the network will be stopped immediately before

the total 100 training epochs. Learning rate scheduler also monitors validation loss, if it does not

decrease for 5 epochs, the learning rate will be divided by a scale of 2. Tensorboard callback is

used to monitor the overall training performance, dice and jaccard scores as well as loss values are

recorded into the tensorboard interface.

• random crop size: 256

• train valid split: first 10 as validation set, rest as train set
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Figure 3.4: Curve of dice coefficient and power of dice loss (1 - dice coefficient) with different
gamma value

• training epochs: 100

• steps per epoch: 500

• early stop patience: 30

• learning rate range: 1e-4 to 1e-6

3.5 Evaluation Metrics and Results Analysis

In the paper of brain competition [1], several metrics are examined thoroughly from theoretical

and empirical perspectives. They choose the metrics based on the standard that it should indicate

its potential utility in practical applications which can be helping human experts to segment images

by just having small mistakes of the algorithm results [27]. Pixel error doesn’t correlated to the

good segmentation prediction result. Therefore, apart from the naive pixel error, rand score[28]
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and variation of information [29, 30] are chosen to be the metrics for judging qualitatively of the

object-level segmentation and rand score is official ranking score of the challenge. Since the scripts

for calculating theses metrics are already given by the challenge, simple intuitive introductions for

them are summarized here:

• pixel error: difference between the pixels of original label and the result

• warping error: the number of splits and mergers required to obtain the desired segmentation

[31]

• Rand Score: measure the similarity of two segmentations [28]

• Information Theoretic Score: using mutual information and entropy to measure the similarity

of two segmentations by considering split and merge errors [29]

Experiment Names Rand Score Information Theoretic score
unet4 0.963 0.981
unet3 symmetric 0.966 0.984
unet3 expansion 0.971 0.985
unet3 dropout5 0.955 0.982
unet3 data aug 0.973 0.986

Table 3.1: Compare the performance on test set for different structure modification, using depth
3 U-Net with 3 dropout layers and deeper expansion path is the best network structure; data aug-
mentation can give small improvement

Performance measured by these four metrics for different structures we modified are shown in

table 3.1. U-Net with depth 4 is a little worse than U-Net with depth 3. Adding more convolutional

channels improves the performance by 0.05 on rand score. Using more than three dropout layers

damages the overall performance a lot. Data augmentation only gives a small improvements for the

best structure. For the following results of different loss functions, all experiments are performed

on the best structure we found so far which is the unet3 with more expansion convolutional layers

and using 3 dropout layers.

25



In table 3.2, the performance of four loss functions shows that there are not much difference

between them, tversky and focal loss functions, only better than the normal cross entropy and dice

loss by around 0.05 in the rand score. But in the next table 3.3, combined the pixel-level loss and

object-level loss together give us satisfying improvements which is around 0.1 in the rand score.

Two of them, weighted cross entropy combined with Tversky loss and focal loss combined with

dice loss give the best validation performance and the later one gives the best test performance

which is 0.979 for the rand score, and this test score improves the original U-Net performance we

re-implemented by a margin of 0.13 on the test server. This makes us the top 25 in the leader-

board of this challenge. Considering the top methods usually use some post-processing methods

to improve their deep learning results, our result is satisfying.

Losses wce focal dice Tversky
Pixel Error(10e-3) 66.6 60.9 61.4 65.9
Warping Error(10e-6) 1530 1474 1567 1577
Rand score 0.945 0.947 0.946 0.949
Information Theoretic score 0.977 0.976 0.975 0.975

Table 3.2: Compare the performance on validation set for four losses: the performances of four
different losses are similar

Combination of losses wce+dice wce+Tversky focal+dice focal+Tversky
Pixel Error(10e-3) 60.1 60.1 60 62.2
Warping Error(10e-6) 1400 1350 1445 1520
Rand score 0.95 0.957 0.957 0.94
Information Theoretic score 0.977 0.978 0.977 0.975

Table 3.3: Compare the performance on validation set for combined losses: combined losses like
add weighted cross entropy and dice loss together can give good improvement

In table 3.4 for the upgrade dice loss function, different choices of γ are tested. The perfor-

mance shows that using 0.5 for the loss term of class 0 is better than using a higher value as we
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wanted. The reason is in Figure 3.5, when the dice coefficient is bigger than 0.8, a small γ gives

the loss term higher rate of change, and big γ gives the loss term small rate of change. And this

is what we assume to suppress the easy to classify neuron cell class and give more weight to the

boundary class. Then we fix the value of γ1 to be 0 and increase the value of γ2 from 0.5 to 10, the

best pair we finally have is 0.5 and 2 for γ1 and γ2 respectively.

Two Gamma for upgrade dice loss 5;0.5 1;1 0.5;5 5;5 0.5;0.5
Pixel Error(10e-3) 60.4 61.4 61.5 75.5 62.3
Warping Error(10e-6) 1502 1567 1523 1803 1445
Rand score 0.93 0.946 0.951 0.902 0.945
Information Theoretic score 0.974 0.975 0.976 0.969 0.975

Table 3.4: Compare the results using different gamma pairs for upgrade dice loss: use small gamma
for boundary class 0 and big gamma for neuron class 1 give the best performance as we wanted

Figure 3.5: Fix the gamma 1 as 0.5, increase the value of gamma 2. Best gamma pair for this task
is 0.5;2
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4. UNSUPERVISED LEARNING ON CELL IMAGES

4.1 Overview of Unsupervised Method

The researchers in the Weizmann Institute of Science, Israel have recently published a new

network structure named "Double-DIP" which uses deep learning to separate the wanted and un-

wanted parts from one image with no need of any labelled training data [4]. This method, "Double-

DIP", is based on "DIP" , Deep Image Prior [32] published earlier at CVPR 2018. DIP aims for

image restoration tasks like image denoising, super-resolution, in-painting, etc. It supposes that

part of the capability of deep learning resides in the network structure besides the big training data.

Specifically, such ability is like having a "prior" of the specific task. For our human, prior can

be defined more intuitively as our beliefs if we do not have full information, e.g. In the case of

denoising, a prior of a noisy image is what we think the natural version should look like. For the

unsupervised method, the prior means that the network tends to learn some low-level statistics of

the input image and such low-level statistics are what makes the image natural in human’s per-

spective. Previously, insufficient training data causes overfitting problem and data augmentation

is needed to help the network learn more general information. For DIP, since no labelled data is

used, the network is not going to overfit to the noisy image easily, it tends to restore to the natural

form of the image first.

The authors of DIP use random noise as the input and original image as the wanted output to

see how well the network can generate the natural form they expect. For example, given a foggy

city image as original image, the network is expected to output a translucent image of city but not

further overfit to the foggy original image. This paper also compare the optimization process of

training the network on natural image, image with noise and random noise. Normally, it is likely to

assume that noisy image is the easiest one to be generated back. However, the experiment shows

that the loss converges much faster for the natural image. This is a prove of CNNs have this "prior"

which is actually a bias towards the natural form of one image. This allows us to use a CNNs as a
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decoder for generating natural images given compromised images.

Based on DIP, [4] proposed a layer decomposition framework by using two parallel DIP net-

works. One outputs the foreground layer and the other outputs background layer, combining these

two layers together with a mask to reconstruct an image which should be trained to be similar to

the original image. This capability stems from the fact that the internal statistics of a mixture of

layers is usually more complex than the statistics of each of its individual components [4], and DIP

tends to learn the easier one. So these two networks output relative simple separated layers but not

original image containing mixed layers.

But layer decomposition faces a challenge when there are multiple textures mixed in one image,

which is common for natural images. In the upper part of image 4.1b, different simple textures

can be successfully separated, but in the lower picture, when the layer contains more than one

textures, the separation becomes undetermined and causes the layer decomposition results to be

ambiguous. Such ambiguities are also within our cell images, especially in the background layer.

In the paper, the authors propose to use an initial hint to constrain the network to learn specific

texture area in the beginning stage of the training. They used a crude image saliency [33] for the

two networks, namely shown in Figure 4.1, DIP1 is restrained to train only on the salient image

regions, whereas DIP2 is restrained on the non-salient image regions, for the first few thousands

of training iterations.

Our work applys Double DIP method on the cell data, cell regions are foreground layer with

value 0, color black, and remaining regions are the background with value 1, color white. We use a

simple pipeline to generate the hints and use Double DIP network to train 6000 iterations for each

image, hint relaxed after 3000 iterations. Loss of reconstruction and loss of regularization of mask

are used in our application. These loss are L1 loss which measures the mean absolute error or two

terms. PSNR (peak signal-to-noise ratio) is used during our training process to measure the quality

of reconstruction. The signal in this case is the original image, and the noise is the reconstructed

output. If PSNR is more than 30, then normally human can perceive the reconstructed image is

quite similar to the original image. During the training time, PSNR is calculated between the
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(a)

(b)

Figure 4.1: (a) Double Deep Image Prior Network Structure, decomposing one image into two
layers; (b) The ambiguity within one layer confuses Double DIP network. Image reprinted from
[4]

original image and network reconstructed output and when it is over 30, the network will be early

stopped.

4.2 Hint generation

Simple and automatic generation of hint for the cell images are designed. The mean value of an

image is used as the threshold to separate it into a binary image. It can be seen in the left image of

Figure 4.2 that there are lots of background area around cell, so an erosion operation is performed

using python skimage package. One sample of our hint is in the right part of the image. Double

DIP has the ability to remove the remaining background part, and based on the shrink cell area as

hint to restore the real cell part back.

4.3 Results Example and Analysis

An example of MATLAB and Double DIP segmentation in the semantic form is shown in

Figure 4.3. There is no miss-classified background area in Double DIP result and the cell shape

looks better and detailed. Also the problem of missing cells do not appeared in Double DIP results.

Three introduced metrics are used here to give a quantitative comparison. Pixel accuracy means the
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Figure 4.2: Illustrations of cell image hint generation: left is thresholded by the mean value of the
original image; right is afterwards erosion

Figure 4.3: Comparison between MATLAB automatic segmentation on the middle and Double
DIP segmentation on the right

ratio of correct classified pixel of the whole image, IoU score and Dice coefficient are introduced

in the previous chapters. Double DIP outperformed MATLAB results on all three metrics. So as a

semantic segmentation tool, Double DIP performs quite well.

Metrics MATLAB DOUBLE DIP
Pixel accuracy 0.94 0.97
IoU score 0.76 0.84
Dice Coefficient 0.86 0.91

Table 4.1: Metrics Comparison between MATLAB and Double DIP results
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The touching part between adjacent cells make it impossible to separate them using connected

component labelling algorithm. Also boundary information cannot be added to the network by

modifying the label setting because we do not have label in the unsupervised method. As we

discussed with student in Zeng Lab, such results can be read into their MATLAB program and

they can do the following manual correction.
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5. CONCLUSION AND FUTURE WORKS

Our works are on three different topics: For the supervised learning on cell images, we modified

U-Net by using 3 channel boundary and weighted loss function for the specific segmentation task

on cell images and designed a read-to-use segmentation program for our collaborator, Zeng Lab.

The object-level performance of our designed program is better than the old program they used

previously; For the topic of supervised learning on brain images, modifications on structure and

data input are made. And multiple loss functions are examined, combining them give us the best

test performance which are better than the original U-Net method. We also design an upgrade

dice loss function which can give different importance onto different classes; For the third topic, a

new unsupervised method is applied on the cell images and achieved better semantic segmentation

performance. Unsupervised method could be one of the possible solutions to deal with scarcity

of ground truth data in the biomedical field and help enhance the performance of other supervised

method.

The possible future direction for cell segmentation is that for more complicated scenario of

clustering cells, we may need to upgrade the network by modifying and adding other components

into the U-Net framework to have better separation and localization perfomance. For the brain seg-

mentation, there are more complicated challenges in recent years, it could be our future direction

to participate in these challenges and learn more about brain image segmentation. For the unsuper-

vised method, it has the potential to be stronger. Currently the Double DIP method only works on

relatively simple dataset, it could be a future direction to find a way to add more information into

the training process, like teaching it how to segment the boundary of the cells so that we can get

instance segmentation results directly.
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