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ABSTRACT 

Hand Recognition and Body Language Recognition Using YOLO  

Aashish Ananthanarayan 
Department of Computer Science and Engineering 

Texas A&M University 

Research Advisor: Dr. Anxiao Jiang 
Department of Computer Science and Engineering 

Texas A&M University 

Neural Networks play an important role in real-time object detection. Several types of 

networks are being developed in order to perform such detections at a faster pace. One such 

neural network that can prove useful is the YOLO network. Built to perform real-time detection, 

YOLO offers great speeds for simple detections. The goal of our research is to see how YOLO 

would work with body language. Would it be fast enough? And how accurate would it be? 

Compared to other forms of object detection, body-language detection is more vague. 

There are several factors to be accounted for. This is why we first begin by talking about hand 

recognition and gesture recognition, and then move onto body language. This research aims at 

understanding how YOLO would perform when subject to several tests by using its implementa-

tions, building datasets, training and testing the models to see whether it is successful in detect-

ing hand gestures and body language.  
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IMPORTANT TERMS 

Neural Networks: Systems inspired by human brains, they are interconnected webs of nodes 

that interact with each other and learn to perform tasks through training rather than being specifi-

cally programmed to do so. 

YOLO: You Only Look Once. The neural network model used for this paper. 

PyTorch: Open source Machine Learning Library 

GPU: Graphics Processing Unit. Manipulates memory for image processing and computer 

graphics.  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CHAPTER I  

INTRODUCTION 

Body language is an essential form of human communication. According to Carol Kinsey 

Goman, a contributor to Forbes Magazine, body language is 93% of human communication [1]. 

We thus notice the importance body language could have on the way we communicate with one 

another. Humans can convey a lot of different thoughts and feelings through simple bodily ges-

tures.  

Why Recognize Body Language? 

Over the last few years, Deep Learning has made great advancements in the field of real- 

time object detection. Introduced by Redmon et al, the YOLO network is known for its superior 

speed and accuracy. YOLO has been very successful in detecting objects, like face detection, de-

tecting the presence of cars on the street, detecting differences between animals and so on. Such 

neural networks have both speed and accuracy and show true powers of computation when it 

comes to such complex tasks. But what if we could go one step further and explore more intri-

cate details? What if we could have computers detect a person’s sub-conscious action in real 

time? Wouldn’t it be awesome to know if a computer could truly be able to tell you exactly how 

you are feeling at a certain point? This research focuses on seeing if the YOLO network can be 

successful enough in detecting certain body language gestures and if it can be used even further 

to successfully detect how a person behaves. 
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About The YOLO Network 

YOLO - You Only Look Once is a different approach to real-time object detection. Pre-

sented by Redmon et al, YOLO uses frame object detection as a regression problem to spatially 

separated bounding boxes and associated class probabilities [2]. Because of this, the single neur-

al network can predict the bounding boxes and class probabilities directly from the full image in 

one evaluation. As a result, YOLO shows incredible speed in real-time object detection and is 

useful for simple detections like face recognition, hand recognition (as shown later in this paper), 

and so on. Image processing in YOLO is pretty simple, the system resizes to 448 x 448, runs a 

single convoluted network on the image and thresholds the resulting detections by the model’s 

confidence [2].  

YOLO is extremely useful because it also trains on full images and directly optimizes the 

detection performance. YOLO does not require any complex pipelining, as it is a regression 

problem for frame detection. Speeds are reported to run at 45 frames per second on the Titan X 

GPU, and the fast version runs at 150 frames per second [2]. Also, YOLO does not use any win-

dow or region based techniques, but it uses the entire image during training time and encodes 

contextual information about the classes as a result [2]. All of this helps in making YOLO super 

fast and hence, our choice of neural network for this thesis. 

The version of YOLO experimented on in this thesis is YOLOv3. It is the most recent 

implementation of the YOLO network as it released back in 2018. It is considered to be an in-

cremental improvement to the YOLO network [3]. It now performs detection of boxes at three 

different scales. As a result, it might not be faster than previous versions of YOLO, but it is defi-

nitely stronger and is better at detecting smaller images. The initial weights of YOLOv3 can be 
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found in [4]. Using these weights as the starting point along with the YOLOv3 configuration 

files, we can begin working on object detections. It is a very easy method to follow and train, but 

first, you have to get your dataset ready and annotated accordingly. Over the course of this paper, 

in the Dataset sections, I have given a small description on how the dataset was annotated so that 

it fits the YOLO model properly. 

So, without wasting any more of your time, lets dive deep and understand how YOLO 

can be used on the custom body language dataset in order to see if it can be successful in making 

quick detections. 
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CHAPTER II  

METHODS 

YOLO for Hand Detection 

The first phase of this research comprises using the YOLO network for detecting hands 

and seeing its performance for simple hand detection. There are a few phases in this process that 

I am going to discuss.  

Data Collection 

The first step of the process is data collection. In order to get properly annotated images, I 

made use of the Oxford hands dataset [5]. This dataset comprises images and annotations from 

several sources like movies and television shows. However, these annotations have a slight dif-

ference. The YOLO network normalizes the x and y between 0 and 1 and uses x, y, w, h as its 

data inputs, where x and y represent the normalized center of the bounding box (the box around 

the area we want to identify, in this case, hands) relative to the grid cell bounds and w and h rep-

resent the width and height relative to the image. The Oxford Dataset on the other hand gives us 

the coordinates of the end points. Using a Python Script, these annotations were first converted 

into YOLO annotations and then, were placed into a text file for each image along with the class 

number. This means that every single image had its own annotated text file. For instance, if an 

image was Buffy_1.jpg, it had its annotated text file Buffy_1.txt. After this was completed, all 

the absolute paths of the images were stored in a text file called train.txt. This file would be used 

to get all the images and annotations and feed them into the YOLO network. Only certain images 

from this dataset were used, using different shots. 
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Figure 1. A) An example of an image from the Oxford Dataset [5]. B) An example of an image 

from the Oxford Dataset [5].  

 

Training 

Once data collection is complete, we can begin training the YOLO network. In order to 

do this, a PyTorch model of the YOLO network from [6] and [7] was used and readied for hand 

detection. Pre-trained YOLO weights from [3] were utilized in order to begin training the YOLO 

model. Once this was completed, the data was transferred to respective folders and the annota-

tions were kept ready. In the configuration settings, the class name was set to Hands, the number 

of batches was set to 16 and the number of subdivisions was set to 1. This means that at a time, 

the GPU can look through 16 images instantly, which speeds up the training process. Also, filters 

= (classes + 5) x 3. As we have only one class, the filters variable was set to 18. Once this was 
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completed, the code was run through the in-lab GPU. Initially, the number of epochs was set to 

500 and fewer images were used in order to observe how training worked. The training displayed 

the losses of each x, y, w and h and the precision values. Every 50 epochs, weights were stored in 

a checkpoints folder, in order to keep a tab of the training. After that, the network was trained for 

2000 epochs to observe the performance and loss values.  

Testing 

Once training was completed, it was time to test the network on unseen images and video 

in order to see if it works or not. In order to visualize the results, I worked on some code and 

took inspiration from [8]. The test images and video frames were unseen from the Oxford dataset 

and were placed in a separate folder. After this was completed, the weights from the training set 

were transferred to the configuration folder of the testing set. Then, a Jupyter notebook was used 

to view the final results. The script was run using the GPU and was opened in a Jupyter notebook 

using Localhost. After this was completed, the path to the weights was set to the weights we ob-

tained from training the data and the test images were used in order to see if predictions were 

made. The results for these are displayed in the results section.  

YOLO for Body Language Recognition 

Now that we have completed hand recognition using YOLO, we should shift our atten-

tion to the second phase of this thesis, which is body language recognition. For this, we need to 

first understand what some body language signs mean and how YOLO could be used to recog-

nize them. For testing YOLO on body language, I have read through a book by Joe Navarro, 

called The Dictionary of Body Language - A Field Guide to Human Behavior. A former FBI 

agent, Mr. Navarro has worked extensively on recognizing how humans interact with different 
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body languages and how body language plays an important part in human non verbal communi-

cation. As a result, this is a very reliable source that I will be counting on for this research. In or-

der to work with real time object detection, a few distinct body-language signs were used in or-

der to figure out whether YOLO can be capable of recognizing body-language gestures. These 

gestures were run on the same implementation of the YOLO network, using the same methods 

that we used initially for hand detection to see if YOLO is successful enough in recognizing 

those body-language gestures in a speedy manner.  

Running Fingers Through Hair (men) 

When stressed, men will run their fingers through their hair both to ventilate their heads 

and to stimulate the nerves of skin as they press down [9]. As a result, this could be either if they 

are concerned, stressed or have any doubt. Another reason men run their fingers through hair is 

attraction. A lot of men do this subconsciously, maybe to look “cool” at times. Personally, I have 

done this during times of stress, for example when I was going through final revisions for this 

paper! This could be a sign for the neural network to pick up if a human male is stressed or not. 

In order to work on this,  a slightly different approach was used to collect data, but the training 

and testing will be similar to that for hand detection.  

Data Collection 

For collecting the data, web-scraping was tried in order to find images of men running 

their fingers through their hair. Previous datasets were searched through in order to find images 

with this gesture. However, as I was unable find them through the datasets and was unsure about 

web-scraping laws, so I decided to just take pictures of myself running fingers through my hair. 

Once this was completed, bounding boxes were drawn round the required region. After this was 
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done, the python script was executed to annotate the images according to YOLO specifications 

as discussed earlier, along with the class number. Then, the annotated text files and images were 

be placed into the same data folder, and once this was completed, the class name was changed to 

running_hair.  

Training 

Then the same training model, the PyTorch YOLO representation was used to train the 

network. The number of filters was again be set to 18, the number of classes to 1, number of 

batches at 16 and subdivisions at 1. The training script was run for 500 epochs and losses were  

recorded. Weights were saved every 50 epochs.  

Testing 

Using the object detector described in the previous Testing section for Hand Detection, 

unseen images from this dataset/frames from video were used in order to see if proper predic-

tions are made. The weights from the training were be used in order to evaluate the final predic-

tions. All results are displayed in the result section.  

Finger Pointing and Gestures 

There is a universal dislike to people having a finger pointed at them [9]. When someone 

points a finger at you, you do tend to feel a little disrespected and awkward. This form of hand 

gesture is is generally replaced by pointing all five fingers in a professional or a romantic 

setting[9]. Also, when we direct someone to a particular location, we tend to use all five fingers 

to usher a person to that location, this tends to be more respectful. Notice ushers in a theater, 

they’ll always use five fingers to point to a location. Again, we would like to see if YOLO can 

recognize between respectful signs of finger pointing and disrespectful signs of pointing a single 
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finger. While we are at this, let us also consider the Gig’Em Aggie sign, which is used by Aggies 

universally (except Germany, where it is considered obscene unfortunately).  

Data Collection 

The first step again was to collect data to feed into the YOLO network. In order to do 

this, the Pointing and command gestures under mixed illumination conditions dataset was select-

ed [10]. First, the dataset was searched thoroughly to find images that contained a single finger 

pointing sign, a five finger pointing sign and the Aggie Gig’Em sign, which is called the sign of 

affirmation in this dataset. Once this was completed, every single image had to be labelled indi-

vidually according to the sign it displayed and bounding boxes were drawn around them as the 

images here are not annotated. Once this was completed, the coordinates of the bounding boxes 

were taken and converted into the normalized YOLO format and was placed into a text file, one 

text annotation file for each image. The text file consisted of the class number and the x, y, w and 

h annotations and the class number as well.  

Training 

The training for this was similar to the training for hand detection. Training took place for 

2000 epochs. Using the model, weights will be saved every 50 epochs and will be used for test-

ing. The number of filters will be set to 18, number of batches to 16 and the number of subdivi-

sions to 1. 

Testing 
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After training was completed, the weights were be saved and transferred to the object de-

tector as done previously. Using a Jupyter notebook, the weights from training were used and a 

few test images and video frames in order to test the final results and see if the system worked or 

not.  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CHAPTER III  

RESULTS 

Hand Detection 

Training for Initial Dataset  

The initial dataset was trained for 2000 epochs and the losses for x, y, w and h and the 

total losses for each batch in each epoch were observed. The total losses were recorded for each 

batch for epochs for which the weights were stored and then averaged the batch loss within each 

epoch to get the epoch loss. Then, the loss curve was plotted.  

Figure 2. Loss curve for the initial hand dataset over 2000 epochs.  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From figure 2, we can see that the loss decreases from extremely high during the first few 

epochs to very low during the later epochs. However, some spikes in the loss function were ob-

served, which gradually reduced over time. 

Testing for Initial Dataset 

In order to test the results, weights from different epochs were used to see which ones 

worked best. Weights from multiple epochs were utilized to see which weights worked best with 

testing the image. Certain misclassifications were also noted for hand detection.  

Figure 3. A) Correctly classified sample. B) Misclassified sample. 
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Body Language Recognition  

Running Fingers Through Hair (men) 

Training 

The first thing observed was that due to large image sizes (as I used the .jpg images 

straight from my iPhone), training took a longer time. Also, the initial loss was extremely high, 

training took place for 500 epochs and the loss was calculated. 

Figure 4. Loss curve for running fingers through hair training. 

From this loss curve, we can see that the initial loss was indeed extremely high but re-

duced drastically as the model trained on. It took about 2.5 hours to train for 500 epochs which 

was a lot more training time than those for other features. This could be attributed to the image 

sizes and pixelation.  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Testing 

For the first 100 epochs, the loss reduced drastically, yet the image was not properly de-

tected. When I ran a testing image using those weights, the bounding box did not accurately fit 

around the gesture. But as the epochs progressed, the results got better. 

Figure 5. A) Testing after using weights from the first 100 epochs. B) Testing the same image 
after using weights from the 250th epoch. C) Testing a different image with different conditions 
(video frame) on the 250th epoch. 
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Finger Pointing and Gestures  

Single Finger Pointing Training 

First, data for the single point gesture was trained in the same way other data was trained. 

The number of epochs was set to 2000 and the x, y, w and h losses, along with the total loss was 

observed. Weights for every 50 epochs were saved as a checkpoint. In order to find the total loss 

for an epoch, the total losses for each batch in the epoch were averaged.  

Figure 6. Loss curve for single finger pointing training. 

As we can see through the loss curve in figure 6, the total loss decreases. At this point, 

the precision (when the loss was near 1000 - 1300 epochs) was roughly at 1.00000 as seen in 

figure 7, which means that the loss was minimal. Around the 1500th epoch or so, the loss drasti-

cally increased, before gradually decreasing again. 
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Figure 7. Hitting maximum precision  

Single Finger Pointing Testing 

The testing set of images was run through the detector with the weights obtained from 

training to see if the network could immediately recognize the single finger point gesture. For 

most part, the network seemed successful to recognize images from the testing set under same 

conditions. Here are some of the correct predictions 

Figure 8. Correct predictions for Single Finger Pointing 
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Five Finger Pointing Training 

 The annotated data for this gesture was sent through the YOLO network for training. 

Training took place for roughly 2000 epochs. The losses for x, y, w and h were observed and to-

tal loss for the epochs was calculated using the average of losses for batches for that epoch. The 

weights from every 50 epochs were saved in checkpoints. 

Figure 9. Loss curve for Five Finger Pointing Training 

 As we can see from figure 9, the loss is initially high but then gets much lower as the 

number of epochs increase. Hence, there are no massive loss increases in the training, giving us a 

smoother result. Still, between epochs 1200 and 1600, we do observe some increases in the total 

loss but compared to other training before, this is less frequent and smaller. 

Five Finger Point Testing  

 The testing images were run through the detector and using the weights obtained through 
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training to check if YOLO could immediately recognize the hand gesture. For most part, YOLO 

was successful in recognizing the gestures from the testing set. 

Figure 10. Five finger pointing predictions 

 As seen in figure 10, for YOLO correctly predicted the bounding boxes around the point-

ing signs.  

Gig’Em Training  

 The annotated dataset for this gesture was sent through the YOLO network just like the 

previous trainings and the x, y, w, h losses were observed, along with the total loss and precision. 

The total loss for the epochs was calculated using the average of the total loss for every batch in 

that epoch. Weights were saved every 50 epochs. 

 The loss again starts extremely high for the initial epochs before getting lower and lower 

with progressing epochs. However, this time that the average total loss wasn’t as low as com-
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pared to the other trainings, but there wasn’t much of fluctuation, just one around the 750th 

epoch and a small one near the 1300th epoch. 

Figure 11. Loss curve for the Gig’Em training. 

Gig’Em Testing 

The weights from the training were then transferred to visualize the testing. Testing im-

ages were run through YOLO using the weights that were trained previously to see its perfor-

mance. Figure 12 shows us that YOLO could successfully detect the Aggie Gig’Em sign well. 
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Figure 12. Predictions for the Gig’Em Sign 
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CHAPTER IV  

CONCLUSION 

This thesis was aimed at displaying the uses of YOLO in recognizing certain body lan-

guage features and viewing its potential for speedy detections. YOLOv3 was an extremely fun 

neural network to work with and it was fun to see how it can be effectively used in recognizing 

certain gestures instantly after training the network for not a very long time. Thus, it proved to be 

very effective. There were certain misclassifications that occurred during the process and some-

times, YOLO failed to recognize certain images placed in extreme conditions, but overall, it is an 

extremely useful neural network for object detection.  

Future Work 

As of now, YOLO’s uses have only been observed through testing images/video frames 

and feeding this information as the testing set to see it make predictions. Sometimes, there were 

some misclassifications and failed detections. So, we will be working to improve the weights 

even more in order to get better results. We would also like to see if YOLO can perform body 

language recognition in real-time, that is, if someone sits in front of a webcam and makes certain 

gestures, can YOLO be used to successfully identify those traits? We also plan on adding more 

sophisticated features to the training set, like multiple body language features in order to observe 

a certain human emotion/feeling, and see if YOLO is capable to perform that as well. 
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