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ABSTRACT

Building Commissioning is important for evaluating energy and dollar savings in existing

buildings. Energy Systems Lab of Texas A&M University has developed WinAM with the purpose

of aiding that process. WinAM is a steady-state calculation engine tool that computes energy and

dollar savings for commissioning purposes in existing buildings. However, the problem can rise

with WinAM’s simplified calculation method rendering inaccurate results. This research proposes

a Resistance-Capacitance (RC) model be added to the current WinAM model that incorporates

the effects of solar heat gains and thermal mass effects. The RC model is tested against 11 sim-

ulation cases with EnergyPlusTM, a building energy simulation program, and the current WinAM

version. Parameters are changed in all models to analyze the proposed RC model against Ener-

gyPlus results. The results show that the RC model achieves better performance than WinAM

when compared to EnergyPlus. The extreme case differs of 286% for annual heating consumption

between the RC model and EnergyPlus, while WinAM differs in 4040% for annual heating con-

sumption when compared to EnergyPlus. The RC model annual heating and cooling consumption

results approximates better to EnergyPlus in more than 90% of the cases analyzed. Energy savings

are estimated for the cases of temperature setback and dead-band temperature set points, for seven

different weather conditions and three different building masses. A case study is also analyzed of a

real building, each model is calibrated to the building’s metered energy consumption, and applied

energy efficiency measures (EEMs) to the models, comparing each model’s estimated savings. For

the case study, the estimated savings from all models when temperature set back and temperature

dead-band are applied present similar estimated savings. The extreme cases are of WinAM over

predicting savings for temperature set back such as 47% for annual heating consumption, while

RC predicts 27% and EnergyPlus only predicts 6%, and WinAM under predicting savings for tem-

perature dead-band such as 31% for annual heating consumption, while RC predicts 96%, and

EnergyPlus predicts 99% savings. The RC model presents improvement from the current WinAM

model in 53/55 of simulated cases of the estimated savings when compared to EnergyPlus esti-

ii



mated savings.
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1. INTRODUCTION

1.1 Background

The hazards of Climate Change are increasingly well known [6] [7] resulting in a reduction of

energy consumption and lowered carbon emissions.

Energy consumption for commercial and residential buildings is approximately 40% of U.S.

total energy usage [8]. Consequently, the importance in reducing energy consumption for this

sector, and hence the job of building commissioning is vital.

Building commissioning, according to ASHRAE’s “The Strategic Guide to Commissioning”[9],

is defined as: “a quality-focused process for enhancing the delivery of a new and existing building

project”. It also states: “Post-occupancy on-going commissioning can also contribute to sustaining

optimal performance over time, delivering energy efficiency and operational savings”.

The Energy Systems Laboratory (ESL) at Texas A&M University developed a unique building

commissioning process called Continuous Commissioning R⃝, or CC R⃝[10]. Its main objective is

to produce a rapid payback while improving occupant comfort using cost effective measures into

existing buildings. One of the tools developed by ESL for this process is WinAM. This software

provides a quick method to estimate energy consumption and Energy Efficiency Measures (EEMs)

that can be applied to existing buildings, with the emphasis of using its existing equipment rather

than proposing costly retrofits.

WinAM is a simplified building energy simulation. Its main features are fewer user-input

parameters when compared to its peers, a calibration assistant that enables a user to perform a

quick calibration of a model to the building’s measured energy consumption data, and the ability

to estimate savings when EEMs are applied to the calibrated model. Notably, due to WinAM’s

non-complex thermal model, it lacks a comprehensive physical modeling in some of its features,

e.g. neglecting the effects of thermal mass and solar gains to the building’s energy consumption,

which can render misguided results, especially when estimating savings for a temperature setback
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EEM [1].

Likins (2018) shows a comparison from WinAM and EnergyPlusTM performances when ap-

plying a temperature setback and proposes a correction factor. EnergyPlus is a building energy

simulation program funded by the U.S. Department of Energy’s (DOE) Building Technologies Of-

fice (BTO). Figure 1.1, from the author’s thesis, shows a comparison of the estimated savings from

the cooling coils for a heavy mass construction in College Station, Texas. The study shows that

WinAM is over predicting energy and dollar savings when applying temperature setback EEM,

thus becoming an ineffective EEM for use when using WinAM. This is highly damaging for the

CC R⃝ process, as this EEM has great potential in generating energy and dollar savings, if estimated

correctly. Although Linkin’s correction factor has shown effectiveness for the case displayed in

Figure 1.1 into adjusting the estimated savings from a temperature set back EEM, it has also been

demonstrated that it is not a comprehensive model for all climate scenarios.

Figure 1.1: Monthly cooling coil energy savings for a heavy mass construction in College Station
(Reprinted from [1])

Source: (Linkins, 2018)
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1.2 Objective

The objective of this research is to test a Resistance-Capacitance (RC) model which incorporate

thermal mass effects and solar gains, and to compare its effectiveness when applying EEM’s, when

compared to the savings obtained using EnergyPlus.

The testing is done against several EnergyPlus and WinAM simulations with buildings of sim-

ilar parameters as the model’s. It is also performed a case study for a real building, calibrating all

three models to its measured data, and comparing the results when applied the proposed EEM’s.
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2. LITERATURE REVIEW

2.1 Energy Building Simulation

Since the energy crisis in the 1970’s, a variety of building energy simulation programs were

developed, with different calculation methods, yielding considerably different results when simu-

lating the same building [11].

A comparison of several features of 20 major building energy simulation programs was made

by Crawley et al. (2008), which included DOE2.1-E, EnergyPlus, eQuest, TRNSYS and others

[12]. Notably although most programs deal with internal thermal mass, most perform design siz-

ing calculation using only outside air dry bulb temperature, i.e. steady-state calculations. Although

several features such as load calculations, economic evaluation and validation of reports are an-

alyzed, they do not report on the ease of calibrating the simulation of an existing building to its

metered energy consumption.

For building commissioning, it is of extreme importance to have a reliable physical model, in

order to estimate energy and dollar savings. The challenge rises in building such a model when

one needs to determine a series of building, loads, and system parameters.

Tiwari (2016) used the program eQuest to build an energy model for an existing building in

Qatar, determining its Energy Utilization Index (EUI) and comparing it with a peer program, Visual

DOE [13]. The results from eQuest’s energy model more accurately reflect the building’s physical

reality, when compared with measured data, showing a deviation of only 8%, while the Visual

DOE prediction is less than 57% of the measured EUI. However, the latter model was developed

during the building’s pre-occupancy phase, lacking comprehensive data, such as occupancy data.

The study shows that since eQuest requires fewer inputs than other programs, it is more sensitive to

its input parameters when compared to other detailed and complex programs such as EnergyPlus.

Ahmad & Culp (2006) emphasizes the importance of calibration for energy simulation of ex-

isting buildings [14]. Their research shows that an experienced energy simulation engineer, per-
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forming a detailed input of parameters of four buildings, had energy simulation results that ranged

over +- 90% for individual components when compared to actual data. The discrepancies are due

to the lack of efficiency in several real components of the building, as well as broken components

that are hard to identify.

Lin et al. (2012) identifies that a second order RC model reproduces the input-output behavior

of a 13th order model quite accurately [15], for predictive control using MPC (Model Predictive

Control) control. Even a first order model is well fitted for the task.

In sum, even if a detailed energy modelling of an existing building is performed, it is still an

arduous task to perform a calibration of the model to its measured consumption data. The studies

demonstrate the importance of having a building energy simulation with real data assisting its

parameters to more realistic values. Calibration of a building energy model is important due to its

ability to predict energy consumption patterns when changing some of its parameters, e.g. loads,

control operations, etc. However, to have a reliable calibrated model, it is more important for it to

trend similarly to reality than for it to “fit” the data into the model.

2.2 Thermal Mass and Solar Gains

The thermal mass of a building is the capacity to store thermal energy, rather its sensible or

latent, which has great influence in its indoor temperature, cooling/heating requirements and occu-

pant comfort.

Reilly & Kinnane (2017) highlights that many engineers and architects focus primarily in the

thermal resistances of buildings in the design stages, in making it energy efficient, disregarding

its thermal mass[16]. In fact, this thinking is also incorporated into building design codes and

regulations. Their study shows that substantial reductions in energy use are possible for a high

mass building in hot climates, while for cold climates it would be a drawback.

Balars (1996) compared several analyzes done from different studies, and concluded that a high

mass building has a smaller interior air temperature variation due to thermal mass effects compared

to a low mass building [17]. For locations with large diurnal temperature fluctuations, the technique

of energy storage is highly beneficial for reducing the energy consumption of mechanical systems,
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while maintaining occupant thermal comfort.

Braun (2003) highlights that many wrongly assume that building mass contributes to increase

operation costs [18]. An assumption is often made that a massless building would require no

time for pre-cooling or pre-heating, and it would have lower overall cooling loads than an actual

building. However, it is possible to load shift the cooling required with the purpose of significantly

reducing operational costs under proper circumstances. Braun compares different studies that have

attempted to achieve optimal control strategies for reducing operational costs with load shifting

due to thermal mass effects. Braun concludes that all strategies are sensitive to the following

parameters: utility rate structure, type of equipment, occupancy schedule, building construction

and climate conditions. Of these, the utility rate structure is the biggest factor. Most savings were

achieved in east zones, and interior zones, indicating that solar gains as well as thermal mass effects

in interior zones are dominant for these types of strategies. In Braun’s overview, the studies found

that by pre-cooling the building effectively taking into account its thermal mass, dollar savings

were possible ranging from 10% to 50% cost reduction.

Belic (2016) investigates the accuracy and complexity of a buildings thermal model using a

hybrid method combining the advantages of a first-principles model, where it is possible to un-

derstand its dynamics, and a data-driven model to estimate parameters more accurately, using an

optimization tool [2]. The author proposes several different model structures, for a multizone,

multistore building. First, the author builds an RC Model as in Figure 2.1. For this figure the

author uses a 3R2C (three resistances and two capacitances) model, using tabulated values to build

the initial model. Subsequently, an optimization tool is used to more accurately represent the

model compared to the reference model result, minimizing error by changing the model parame-

ters. Belic tested different complexity models, 4R3C, 3R2C and 2R1C to compare the impacts of

the different models on results. In fact, the “non-optimized” model 4R3C was more accurate than

the optimized 2R1C results, showing that the model structure is more important than the parameter

estimation itself. Belic concluded that the best error function to be used in the optimization pro-

cess, in which “best” is characterized by smallest difference compared to the reference model, is
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the RMSE (Root Mean Square Error) function. Lastly, Belic experimented reducing complexity of

the existing models, by eliminating elements representing interior walls and fenestrations (doors

and windows). The reduced models produced highly inaccurate results, demonstrating once again

the importance of the model’s structure. Belic stated: “the disadvantage of using RC method is

that the resulting network grows in complexity for real buildings. (. . . ) For example, relatively

simple family house (. . . ) with 14 rooms has 194 states and state matrix with 194 x 194 elements.

For large commercial building, this number can be much larger”.

Figure 2.1: 3R2C Thermal Model (Reprinted from [2])

Source: Belic c⃝[2016] IEEE

Scotton et al. (2013) propose three physics-based models for determining CO2 level, indoor

temperature and humidity of a room in the Q-building on Kungliga Tekniska Högskolan (KTH)

Campus, Stockholm/Sweden [3]. For the temperature model, an energy balance equation was de-

rived based on known heat transfer equations (general heat conduction and heat convection equa-

tions), having 11 parameters unknown. In this model, the authors do not account for the thermal

capacitance of the walls and floor, although they do consider the thermal capacitance of the air.

These parameters were established by using a set of measured data during 45 minutes in May 12,
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2012. Subsequently, the authors validate their model by testing it against a different set of weather

conditions in June of the same year as shown in Figure 2.2.

Figure 2.2: Scotton Simulation data against measured data (Reprinted from [3])

Source: Scotton c⃝[2013] IEEE

Although the results are impressive when compared to experimental data, the authors recognize

the model lacks testing against a different set of weather conditions. This model was customized

for a specific lab room, and was not tested for a generic building.

Balasubramanya et al. (1992) found that when varying the parameters of buildings mass, as-

pect ratio, glass area ratio, internal load, control throttling range and thermostat setback, the SEAP

(Simplified Energy Analysis Procedure) calculations from ASHRAE TC 4.7 results were signifi-

cantly different when compared to a DOE-2 simulation [4]. It differentiates itself because it uses a

simplified solar gain calculation and neglects the effects of thermal mass. The authors then develop

a “modified SEAP” [19], in which maintains the basic premises of the SEAP, and adds the effects

of solar heat gains and thermal mass, resulting in a RC Model as shown in Figure 2.3. This method
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was tested for 45 different cases against an hourly DOE-2 simulation. The results showed that in

more than 80% of the cases the “modified SEAP” produced a better simulation than the original

SEAP. The remaining cases are similar or have worsened.

Ta

a R
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i Rs

Tm

m

C

G

Figure 2.3: Thermal RC Model for the Modified SEAP (Adapted from [4])

Source: (Claridge, et al. 1992)

Kassas (2015) also proposes an RC Thermal Model, but considers heat transfer into the air as

well as into the buildings mass, and having a capacitance attached to the air as well as the buildings

mass, as in Figure 2.4 [5].

Kassas finds that there is little difference when using average daily outside air temperature

and hourly outside air temperature, in terms of daily energy consumption through his simulation.

He then proposes that the average daily outside air temperature could be used for estimating en-

ergy consumption for an entire residential area with this model based on an average outside air

temperature for the summer period and an average outside air temperature for the winter period.

Similar to thermal mass effects, the solar heat gain is an important feature necessary to be

incorporated in a building’s thermal model. Yang et al. (2015) showed energy consumption is

increased as the window/wall ratio is increased, becoming a sensitive parameter when estimating
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Figure 2.4: Kassas Thermal RC Model (Reprinted from [5])

Source: (Kassas, 2015)

energy consumption [20]. This sensitivity is increased if the fenestration surface is oriented west

or east.

In sum, research studies show the importance of incorporating the effects of solar heat gains

and the effects of thermal mass, or else the thermal model used would be incomplete and fail to

achieve its purpose, especially in certain conditions described in the research studies.

10



3. METHODOLOGY

3.1 RC Model

This research proposes testing an RC building energy model to be used for evaluating its ef-

fectiveness when different building’s mass are applied, and for different climates, especially for

analysing setback temperature savings, when compared to the current model of WinAM and to

EnergyPlus.

The current WinAM model, is an hourly steady-state calculation between the outside air and

the inside air, as described in Figure 3.1.

Toa R
Ti

Q̇i Q̇Sys

Figure 3.1: Resistance model of WinAM

In Figure 3.1, Toa is outside air temperature, Ti is the zone’s indoor temperature, R is the

envelope resistance, Q̇i is the internal heat gain from people, electrical equipment and lighting,

and Q̇Sys is the cooling or heating required to achieve the temperature set point. The envelope

resistance is R = 1∑n
i UiAi

, where Ui is the heat transfer coefficient for each surface of the zone, Ai

is each surface area, and n is the number of zone surfaces (exterior walls and roof).

The proposed thermal model is inspired by the research studies mentioned on the literature

review, but is different due to considering the internal heat gain sources (occupants, lighting and

electrical equipment) primarily being transferred to the indoor air temperature (Ti), and secondarily

heating up the mass of the building (walls, floors and furnishing). A diagram of this model is
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showed in Figure 3.2.

Toa Roa

Tw

Cw

Q̇s

Rw

Ti

Rm

Tm

Cm

Q̇i Q̇Sys

Figure 3.2: RC Model

The building’s mass is represented by a temperature node (Tm) coupled with a single mass

(Cm) and separated by a thermal resistance (Rm), which is the resistance of the air boundary layer

and anything between the air and the floor, e.g. carpet, rug. The value of Rm was fixed as 0.5

hr·ft2·◦F/Btu through all cases in this research, which was achieved from a calibration process in

simulation cases.

This model also considers that the solar heat gains are transferred primarily to the outside wall

surface, and secondarily to the inside air temperature.

Toa represents the outside air temperature and Tw represents the outside wall surface and mass

temperature. Roa represents the thermal resistance between the outside surface of the wall and the
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outside air, Rw represents the thermal resistance between the outside surface of the wall and the

internal air, Cw represents the zone’s walls thermal capacitance and Cm represents the zone’s mass

thermal capacitance.

The resistance values of Roa and Rw were chosen as described in Equation 3.1. Therefore, for

cases in which thermal mass and solar gains are not taken into account, the model reduces itself to

the current WinAM model, as described in Figure 3.1. The values of Roa and Rw were chosen to

have Roa much less than Rw, since its physical meaning is the resistance between the wall and the

outside air temperature. Thus, the distribution chosen was Roa =
1
5

1∑n
i UiAi

and Rw = 4
5

1∑n
i UiAi

.

Roa +Rw =
1∑n

i UiAi

(3.1)

The thermal capacitance is a term calculated as in Equation 3.2.

C =
N∑
i

ρicpiVi (3.2)

where ρi is density, cpi is the specific heat and Vi is volume, of each layer of massive material that

the thermal capacitance represents.

The thermal capacitance, based on the lumped capacitance model, is befitting to a real body

when its Biot number is smaller than 0.1. For real wall buildings and floors, this is not the case.

Hence, this is something to consider when analyzing the results of this model.

This model results in a differential equation, which becomes Equation 3.3 if written in terms

of finite differences with terms of order O((∆t)2) neglected.

T p+1
m

T p+1
w

 =

1− ∆t
RmCm

∆t
RmCm

0 0

0 ∆t
RwCw

1− (Rw+Roa)∆t
RwRoaCw

∆t
RoaCw




T p
m

Ti

T p
w

Toa


+

 0

∆t
Cw

[
Q̇s

]
(3.3)
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The index p indicates the time step, and ∆t indicates the duration of the time step. This is a simple

matrix format that is not computationally expensive.

For a fixed Ti, Q̇Sys can be calculated from an energy balance on the node Ti, as described in

Equation 3.4.

Q̇Sys =
Rm +Rw

RmRw

Ti −
1

Rm

Tm − 1

Rw

Tw − Q̇i (3.4)

Note that when the indoor air temperature is in the throttling range, i.e. between the heating and

cooling set points, Q̇Sys is not zero. The system still provides cooling at the cooling coil set point,

with no reheat, operating at minimum flow.

3.2 Solar Calculations

It is well known that the solar irradiance on a surface is composed of three components: the

direct beam, the diffuse radiation and the reflected radiation. For this research, ASHRAE’s clear

sky model is used to calculate all three components, where it is necessary to have the tables of the

clear sky optical depth for beam irradiance and the clear sky optical depth for diffuse irradiance,

for a given location, which are provided in 2017 ASHRAE Fundamentals. An example of the

calculation for solar gains using this model is demonstrated in Appendix D. From these calcula-

tions, it is possible to determine the total hourly irradiance from the sun for a surface with a given

orientation.

As an example, the values for the parameters described are displayed for day 21 of each month,

in Table 3.1.

Table 3.1: Monthly Solar Parameters for College Station

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
τb 0.342 0.362 0.376 0.396 0.417 0.458 0.463 0.479 0.425 0.368 0.352 0.336
τd 2.391 2.298 2.267 2.223 2.211 2.088 2.09 2.029 2.226 2.413 2.415 2.463

Ib,N (Noon) (W/m2) 281 285 288 285 278 265 263 258 269 280 275 278
Id,h (Noon) (W/m2) 33 39 42 45 46 52 52 54 43 34 32 30
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In Table 3.1, τb is the clear sky optical depth for beam irradiance, τd is the clear sky optical

depth for diffuse irradiance, Ib,N (Noon) is the normal direct solar irradiance for a horizontal surface

and Id,h (Noon) is the diffuse solar irradiance for a horizontal surface.

From interpolating the values from one month to another on a given day, a daily value for the

clear sky optical depth for τb and τd can be calculated. Using these values, solar irradiation for wall

surfaces oriented south, east, north, west, and parallel to the ground (roof) can be calculated. As

an example, for College Station, the solar irradiation per unit area for each given surface can be

seen as in Figures 3.3 and 3.4, for January 1 and July 1 respectively.
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Figure 3.3: Solar Intensity for College Station January 1

In this research, the results for solar gains calculated using ASHRAE’s Clear-sky radiation

model are multiplied by a parameter σS , which can be interpreted as the wall’s radiation absorptiv-

ity combined with the Window/Wall area ratio. The amount of solar heat gain is highly dependent
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Figure 3.4: Solar Intensity for College Station July 1

on the window area of a building. This parameter σS was estimated when compared to EnergyPlus’

results, in the simulations having solar effects. For the solar load heat gain calculations, for a given

orientation of the building, it is necessary to account for different orientations then presented in

Appendix B and C. This is done through a weighted sum, as described:

For a given orientation of the building the solar gain for a labeled orientation, will be given by

the orientation of the building with respect to that label θ as follows:

1. If θ < 90◦, W1 = 1− θ
90◦

, W2 =
θ

90◦
, W3 = 0, W4 = 0.

2. If 90◦ < θ < 180◦, W1 = 0, W2 = 2− θ
90◦

, W3 =
θ

90◦
− 1, W4 = 0.

3. If 180◦ < θ < 270◦, W1 = 0, W2 = 0, W3 = 3− θ
90◦

, W4 =
θ

90◦
− 2.

4. If 270◦ < θ < 360◦, W1 =
θ

90◦
− 3, W2 = 0, W3 = 0, W4 = 4− θ

90◦
.

where W1, W2, W3, and W4 are the weighted sum factors applied according to Equation 3.5 for
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the solar gain in the zone Q̇SZ .

Q̇SZ = W1Q̇SO +W2Q̇SO+90◦ +W3Q̇SO+180◦ +W4Q̇SO+270◦ (3.5)

where Q̇SO, Q̇SO+90◦ , Q̇SO+180◦ , Q̇SO+270◦ , are the solar gains for the labeled orientation of the

zone’s labeled, 90◦ apart, 180◦ apart, and 270◦ apart, respectively.

As an example, the building described in the Case Study in Chapter 6 was considered oriented

150◦ from its labeled “North” to the true North orientation. Therefore, the solar gain in the labeled

“North” zone is calculated as Q̇SZ = 0.333Q̇SE + 0.666Q̇SS , having in this case W1 = 0, W2 =

0.333, W3 = 0.666, and W4 = 0.

3.3 Simulation Cases

For this study, a series of building energy simulations is performed. The strategy is to add more

complexity to each simulation and observe how the results from the proposed RC model compare

to EnergyPlus, as well as comparing them to the results of WinAM1. Care must be taken to use the

same weather data, building envelope, and system parameters, for an effective comparison.

For the initial simulation case, “Single Zone High R”, a 1-Zone building is simulated in

WinAM, the RC model, and EnergyPlus, with the geometry described in Appendix A. The purpose

of this simulation is to observe if EnergyPlus, WinAM and the proposed RC model agree in a very

basic case, with the conditions described in Table 3.2, and the floor plan described in Appendix A.

For the second simulation case, “5 Zones Normal R”, a 5-Zone building is simulated in WinAM

and EnergyPlus, with floor plan described in Appendix B. This case adds more complexity com-

pared to “Single Zone High R ”, adding more zones, having more realistic values for wall/roof

resistance, minimum flow rate and internal heat gain loads, but still maintaining a massless build-

ing as described in Table 3.3.

The R-value for the wall is based on a lumped value from a typical building wall with an R-

value of 10.0 hr·ft2·◦F/Btu, with 10% window area on the wall with an R-value of 1.89 hr·ft2·◦F/Btu,
1WinAM 5.2 and EnergyPlus 8.9 was used throughout this research
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Table 3.2: Parameters for “Single Zone High R”

1 Zone
System: SDVAV

No OA (Outside Air)
No Sensible Heat Gain
No Latent Heat Gain
No Solar Heat Gain

No Infiltration
No mass effects

Adiabatic surface under floors
Temperature Setpoint: 75 ◦F

Wall Resistance: 40 hr·ft2·◦F/Btu
Roof Resistance: 40 hr·ft2·◦F/Btu

Design Flowrate: 1 CFM/ft2

Minimum Flowrate: 0.01 CFM/ft2

People/Lighting/Equipment Schedule: Always off
Weather: College Station/TX TMY3

Table 3.3: Parameters for “5 Zones Normal R”

5 Zones
System: SDVAV

25% OA (Outside Air)
Sensible Heat Gain per person: 250 Btu/hr

Peak Occupancy: 150 ft2/person
Sensible Heat Gain from Lighting/Electrical Equipment: 2 W/ft2

Latent Heat Gain per person: 200 Btu/hr
No Solar Heat Gain

No Infiltration
No Mass Effects

Adiabatic surface under floor
Preheat Temperature Setpoint: 35 ◦F
Heating Temperature Setpoint: 75 ◦F
Cooling Temperature Setpoint: 75 ◦F

Wall Resistance: 7.0 hr·ft2·◦F/Btu
Roof Resistance: 20.0 hr·ft2·◦F/Btu

Design Flow Rate: 1 CFM/ft2

Minimum Flow Rate: 0.15 CFM/ft2

People/Lighting/Equipment Schedule: Always 100%
Weather: College Station/TX TMY3
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which is estimated for a triple glazed window with 1/4” air gap.

For the third simulation case, “Masses”, thermal mass is added to the walls and zones of the

base model “5 Zones Normal R” while maintaining the original resistance values. This is simulated

only with EnergyPlus and the proposed RC model since there is no input parameter that defines the

property of thermal mass in WinAM. “Low mass”, “Medium mass”, and “High mass” buildings

will be simulated, to analyze the energy consumption compared to the base model and see how the

thermal mass affects the overall energy consumption.

Also, the results from Case 3 and all cases after it are used as a metered consumption data into

WinAM. This is then used for a calibration process with the intent of noting which parameters

WinAM suggests to adjust to be considered “calibrated”.

The wall and floors material to be used in the “Low mass”, “Medium mass” and “High mass”

are described in Table 3.4. The capacitance of the walls and floors are calculated using the wall area

and floor area of 1672.3 m2 and 8361.3 m2 respectively. Note that the thickness of the insulation

material in the walls varies from one building type to another, in such a way to always maintain a

wall resistance of 7.0 hr·ft2·◦F/Btu (1.233 m2·K/W).

For the roof, it was assumed to have no significant mass, and therefore its capacitance was

neglected for all cases in this research.

For the fourth simulation case, “Solar”, solar gains are added to the base model “5 Zones

Normal R”. This is simulated only with EnergyPlus and the proposed RC model, since there is no

input parameter that defines the property of solar gains in WinAM.

The fifth simulation case, “Mass & Solar” is the same as “Masses” + “Solar”, i.e. including

solar gains and thermal mass effects combined and repeating the same analysis as before.

For the sixth simulation case, “Internal Load Variation”, schedules are added to “Mass & Solar”

for internal load variation, i.e. people/lighting/equipment peak output heat values will be multiplied

by the multiplier that varies as in Figure 3.5. The same analysis is repeated as before, except now

the same load schedule is also added to the WinAM model, and this becomes the new base model

for later simulations.
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Table 3.4: Construction Layers for each type of Building for “Masses”

Surface Construction Layers
From Outside to Inside

Density
(kg/m3)

Specific Heat
(J/kg·K)

Length
(m)

Conductivity
(W/m·K)

Resistance
(m2·K/W)

Capacitance per Area
(J/m2·K)

Light Mass

Floor
4" Concrete 2300 750 0.102 1.5 0.068 175260
Total - - 0.102 - 0.068 175260

Walls

Wood 608 1630 0.025 0.15 0.167 24776
Insulation 43 1210 0.028 0.03 0.941 1469
Gypsium 800 1090 0.020 0.16 0.125 17440
Total - - 0.073 - 1.233 43685

Medium Mass

Floor
8" Concrete 2300 750 0.203 1.5 0.135 350520
Total - - 0.203 - 0.135 350520

Walls

4" Brick 1920 790 0.102 0.80 0.127 154107
Wood 608 1630 0.025 0.15 0.167 24776
Insulation 43 1210 0.024 0.03 0.814 1271
Gypsium 800 1090 0.020 0.16 0.125 17440
Total - - 0.171 - 1.233 197594

Heavy Mass

Floor
12" Concrete 2300 750 0.305 1.50 0.203 525780
Total - - 0.305 - 0.203 525780

Walls

12" Concrete 2300 750 0.305 1.50 0.203 525780
Wood 608 1630 0.025 0.15 0.167 24776
Insulation 43 1210 0.022 0.03 0.738 1152
Gypsium 800 1090 0.020 0.16 0.125 17440
Total - - 0.372 - 1.233 569148

For the seventh simulation case, “Temperature Setback”, a temperature setback of 10◦F is

applied to “Internal Load Variation” during unoccupied hours, with a cooling set point of TC =

85◦F and a heating set point of TH = 68◦F. Unoccupied hours are defined from 7:00 PM to 5:00

AM of next day. This is also implemented in the WinAM model.

For the eight simulation case, “Temperature Deadband”, the heating temperature set point is

changed to 70◦F and the cooling temperature set point to 76◦F from “Internal Load Variation”,

during all hours. No temperature setback is applied for unoccupied hours. This is also implemented

in the WinAM model.

For the ninth simulation case, “Setback % Deadband”, this is the same as “Temperature Set-

back” + “Temperature Deadband”, analyzing the combined effect of temperature throttling range

and night-time temperature setback.

For the tenth simulation case, “10 Stories”, this is the same as “Set Back & Deadband”, except

the building has 10 floors, maintaining the same total floor space as before, but reducing its internal
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Figure 3.5: Daily Schedule Multiplier for Internal Loads

zone, as described in the floor plan in Appendix C. This will also be implemented in the WinAM

model.

For the eleventh simulation case, “6 Climates”, two types of buildings will be tested for six

different climates: El Paso - TX, Juneau - AK, New York - NY, Las Vegas - NV, Denver - CO, and

Chicago - IL. Type 1 Building is the same as “Setback & Deadband”, and type 2 building is the

same as “10 stories”.

3.4 Case Study

A case study is proposed to test its results against the Outpatient Clinic, located in New York

City, that is undergoing the Continuous Commissioning R⃝ process. This test analyzes the behavior

of the proposed findings in a real building with multiple floors.

WinAM, EnergyPlus, and RC models are generated and calibrated to real measured data. Sub-

sequently, three EEM’s are applied to all models: reduction of minimum flow in the system’s fans,
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increasing the zone’s temperature throttling range, and applying a night-time temperature setback.

An analysis is made of the savings generated from each EEM.

3.5 WinAM Calibrations

From Simulation Case 3 forward, the WinAM baseline model is calibrated to the results of

the modified EnergyPlus models results, treating the EnergyPlus simulation results as “Measured

Data”. The calibration process is one in which through engineering analysis, input parameters to

the model are altered to approximate the modeled consumption results to the measured data.

The WinAM calibration assistant suggests to improve the TOTAL CV-RMSE (Coefficient of

Variation of the Root Mean Square Error), which is a normalized version of the RMSE (Root Mean

Square Error). Its calculation is described in Equations 3.6, 3.7, 3.8, and 3.9.

RMSE =

√∑n
i=1(MEi − SEi)2

n− 1
(3.6)

MME =

∑n
i=1MEi

n
(3.7)

CV RMSE =
RMSE

MME
(3.8)

CV RMSET =

√
CV RMSECOOLING

2 + CV RMSEHEATING
2 (3.9)

where ME is Measured Energy, SE is Simulation Energy, n is the number of data points, MME

is the Mean Measured Energy, CV RMSET is the Total CV-RMSE, and MDEC is the Mean Daily

Energy Consumption.

In all attempts, the calibration assistant tool from WinAM will follow the same protocol, as

described:

1. The first suggestion shown to modify its parameter will be modified.

2. The value it suggests will be chosen.

3. If the program does not reach Calibration Status, repeat steps 1 and 2. If it does, check to

see if the next suggestion improves the Total CV-RMSE by reducing it more than 2% of the
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current CV-RMSE. If so, modify the parameter by its suggested value, then repeat step 3. If

not, stop.

Even though this procedure is NOT recommended when applied to a real Commissioning project

without engineering reasoning, the intent of performing this protocol is to analyze how WinAM

“adjusts" itself to the effects of each case.

3.6 Air Handling Unit (AHU) System

3.6.1 Description

Through all Simulation Cases, the system will be the same: a Single Duct Variable Air Volume

(SDVAV) with reheat, having a blow-through fan, as represented in Figure 3.6. Only one system is

present in all simulation cases.

Figure 3.6: Single Duct Variable Air Volume (SDVAV) Diagram

The outside air (OA) is drawn through the pre-heat coil (PH) and mixed with the return air

forming a mixed air (MA). The fan blows the mixed air through the cooling coil (CC) and branches

into the different zones. Before the air reaches each zone, it passes through the reheat coil (RH)

and is heated as necessary, entering each zone. The air gets heated or cooled in the zones from the

internal load gains plus the heat transferred from the walls, floors and roof. The air leaves the zone,
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is mixed again in the return air, where some is exhausted out of the building, and the remainder is

returned back to the system, completing a full cycle.

3.6.2 Calculation

All calculations from this project are based in the First Law of Thermodynamics applied to a

control volume, as described in Equation 3.10.

Ėin − Ėout + Ėg =
dE

dt
(3.10)

where Ėin is the rate of energy entering the control volume, Ėout is the rate of energy leaving the

control volume, Ėg is the rate of energy generated inside the control volume and dE
dt

is the rate of

energy change through time inside the control volume.

The calculations are considered steady-state for each hour with no internal heat generation for

the following components: Pre-heat coil, Cooling Coil and each Reheat Coil, reduce Equation 3.10

to Ėin = Ėout, as shown in Equation 3.11.

Q̇in = ρairV̇aircpair(Toutair − Tinair) (3.11)

where Q̇in is the heat input (it will be negative for cooling) into the component, ρair is the density of

air, V̇air is the air volumetric flow, cpair is the specific heat of air, Tout is the air temperature leaving

the component and Tinair is the air entering the component. For the purpose of this research, ρair

was always considered a constant value of 1.207 kg/m3, and the air specific heat is 1.0 kJ/kg·K.

If Equation 3.11 is described in the imperial system, having V̇air described in CFM (Cubic Feet

per Minute), Equation 3.11 reduces to Equation 3.12.

Q̇in = 1.08V̇air(Toutair − Tinair) (3.12)

Similarly, the latent heat that is removed from the air in the cooling coil can be described as in
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Equation 3.13.

Q̇LAT = ρairV̇airhvwater(ωMA − ωCL) (3.13)

where Q̇LAT is the latent heat removal, hvwater is the vaporization enthalpy of water, ωMA is the

mixed air humidity ratio, and ωCL is the humidity ratio leaving the cooling coil.

The assumption made for the fan, for WinAM, the RC model and in EnergyPlus is that there

is no heat gain across the fan and therefore ∆Tfan = 0. This is to assure a reliable comparison

between models, since WinAM and EnergyPlus have different methods to calculate the heat gain

through the fan.

When passing through the Cooling Coil, sensible and latent heat are removed from the air as

described in Equations 3.12 and 3.13.

It is assumed that the return air temperature is a weighted average of the temperature leaving

each zone with each zone air flow, as described in Equation 3.14.

TR =

∑5
i=1 V̇iTZi

V̇T

(3.14)

where V̇i is the air flow exhausted from each zone, and TZi is each zone’s temperature. It is also

assumed in this research that the leaving temperature of the zone is the zone’s temperature, with

no heat added in the air ducts.

The mixed air temperature is calculated as in Equation 3.15.

TMA = XOAToa + (1−Xoa)TR (3.15)

where XOA is the percentage of outside air of the total flow.

The preheat will be active when Toa < Tph, where Tph is the preheat temperature set point. In

the simulation cases, Tph is 35◦F.

For cases which jump from a wider temperature deadband to a narrower temperature deadband,

an adjustment of calculation was observed necessary for Ts, Tm, and V̇i. For this research, this

particular hour is called hour “C” (of Change). The supply air necessary now is as described in
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Equations 3.16 and 3.17 (only for these hours of change). The necessary flow from Equation 3.16

is tested to see if it goes below minimum, in which case it is reset to the minimum flow. The

temperature supply also is tested if it goes below the cooling coil set point temperature, in which

case it is reset to the cooling coil set point temperature.

V̇i =
Q̇T − Cm(TC − T p−1

m )

1.08(TC − TCL)
(3.16)

Ts(C) = TH − Q̇T

1.08V̇i

+
Cm(TH − T p−1

m )

1.08V̇i

(3.17)

where TCL is the cooling coil set point temperature, TC is the zone’s cooling set point temperature,

TH is the zone’s heating set point temperature, and Q̇T is the sum of the internal gains with the total

heat transferred from the walls and floors. In the hour “C”, Tm is reset according to the following

circumstances:

1. If Tm is lower than the heating set point, it is heated to the heating set point, being reset to

TH and calculated according to Equation 3.17.

2. If Tm is higher than the cooling set point, it will be cooled to the cooling set point, being

reset to TC and calculated according to Equation 3.17.

3. If Tm is between the cooling and heating set points, it will be calculated as usual (Equation

3.3).

3.7 Humidity Ratio Difference

The humidity ratio calculation in WinAM assumes a constant ambient pressure for its calcu-

lations. Therefore, in order to have similar comparisons, the weather file was modified for the

weather input into WinAM and the RC model. The “new weather” adjusts its wet bulb and dew

point temperatures, in order to match EnergyPlus’ humidity ratio, which takes into account differ-

ent ambient pressure for each hour.
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From this, the humidity ratio matched for all cases except when the relative humidity went to

approximate or exactly 100%, when no further adjustment can be made for the WinAM weather

file, i.e. it is not possible to “fabricate” weather with relative humidity above 100%.

3.8 Time Step

The time step used in EnergyPlus and the RC model for the first 6 simulation cases is 1-time

step per hour. This was made in order to be able to compare the results for each time step with

WinAM, which uses 1-time step per hour.

Tests were made to see how the results were to be different with different time steps in “5 Zones

Normal R”, where all simulations are expected to match. All the metrics errors were worsened with

shorter time steps.

From the seventh simulation case forward, a time step of 6 per hour is used in EnergyPlus.

Thus, its comparison is only made on a yearly basis, instead of a time step basis.

3.9 Comparison Tables

For all simulation cases, comparison tables are displayed between the models, showing the

percentage difference between the consumption data for each model. This percentage difference is

calculated as the largest value computed using Equations 3.18 and 3.19.

%Difference =
|M1 −M2|

M1

(3.18)

%Difference =
|M1 −M2|

M2

(3.19)

where M1 and M2 are the heating or cooling consumption results from two separate models.
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4. SIMULATION CASES RESULTS AND DISCUSSIONS

4.1 Single Zone High R

For Single Zone High R case, the parameters used are described in Table 3.2. This case is to

test and ensure that WinAM, EnergyPlus and the proposed RC model have approximate or exact

results. Therefore, high R-values are used in the roof and walls. In sum, it’s a 1 zone building with

no Outside Air and no internal loads.

The maximum difference when comparing each data point between WinAM and the RC model

is 0.36% for cooling and 0.00% for heating. The annual difference is 0.064% and 0.00% respec-

tively. As these metrics indicates, the difference between the WinAM and RC model is too small

for visual comparison. Thus, comparison will be displayed only between WinAM and EnergyPlus

in Figures 4.1 and 4.2, for its system’s hourly cooling and heating consumption respectfully. The

comparison metrics between simulations are described in Table 4.1.

Table 4.1: Comparison between models for Single Zone High R

WinAM EnergyPlus % Difference
Max. Difference Data Point for Cooling (MMBTU) 0.0194 0.0202 4.01%
Max. Difference Data Point for Heating (MMBTU) 0.00140 0.00151 7.51%

Annual Cooling (MMBTU) 194.00 194.38 0.19%
Annual Heating (MMBTU) 374.16 375.31 0.31%

From Figure 4.1, one can notice the slope of increase cooling when the temperature goes above

82 ◦F. This increase occurs because the fan increases flow above minimum, as the zone requires

more cooling. Similarly, at Figure 4.2, the system requires no reheat when the system’s flow is

above minimum.

From Table 4.1, the results are considered satisfactory comparatively, achieving the proof of

similarity through a simple energy balance for the building.
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Figure 4.1: Single Zone High R - Cooling Consumption
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Figure 4.2: Single Zone High R - Heating Consumption
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4.2 5 Zones Normal R

For 5 Zones Normal R case, the parameters used were as described in Table 3.3. This simula-

tion adds internal loads and intake of outside air when compared to the previous case. Note also

that the walls and roof R-values are changed to a more common value encountered in commercial

buildings. Lastly, although the same floor space is used as before, it is now braked down into

a 5-zone building, instead of 1, as described in Appendix B. Since there isn’t any solar loads or

thermal mass effects, it is also expected for the results for each case to match.

The maximum difference when comparing each data point between WinAM and the RC model

is 0.26% for cooling and 0.00% for heating1. The annual difference is 0.15% for cooling and

0.00% for heating. Again, as these metrics indicates, the difference between the WinAM and RC

model is too small for visual comparison. Thus, comparison is displayed only between WinAM

and EnergyPlus in Figures 4.3 and 4.4, for its system’s hourly cooling and heating consumption

respectfully. The comparison metrics between simulations are described in Table 4.2.

Table 4.2: Comparison between models for 5 Zones Normal R

WinAM EnergyPlus % Difference
Max. Difference Data Point for Cooling (MMBTU) 0.5780 0.6581 13.85%

Average Difference for Cooling - - 2.65%
Standard Deviation for Cooling - - 2.07%

Max. Difference Data Point for Heating (MMBTU) 0.00327 0.01104 237.46%
Average Difference for Heating - - 2.56%
Standard Deviation for Heating - - 12.05%

Annual Cooling (MMBTU) 7713.36 7895.69 2.37%
Annual Heating (MMBTU) 34.20 33.85 1.03%

From Figure 4.3, one can notice a linear increase of cooling until TOA reaches approximately

35 ◦F. From there on, the latent loads generated by the people, as well as the outside air, gain

considerable effect, generating the spread seen.
1The comparison for the data points in which the heating consumption was below 0.001 MMBtu was not considered

in any analysis made throughout this research
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Figure 4.3: 5 Zones Normal R - Cooling Consumption
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Figure 4.4: 5 Zones Normal R - Heating Consumption
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From Figure 4.4, one can notice that heating only occurs in temperatures below 50◦F, when

minimum flow is achieved and the reheat starts. Then, the heating increases linearly until reaches

35◦F, which is the pre heat set point. This first slope will be called as “Slope 1” for heating in

the following simulation cases. Bellow that temperature, the slope is increased due to the sum

of preheat and reheat. This second slope will be called “Slope 2” for heating in the following

simulation cases. Note that the EnergyPlus trends in a zig-zag format along the mentioned first

slope. This is due to the time step choice of 1 per hour, generating a small instability in the results.

However, even with this instability, the results are considered comparable. The heating plot with

EnergyPlus using a time step of 4 per hour is displayed in Figure 4.5 for a better visual comparison.
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Figure 4.5: 5 Zones Normal R - Heating Consumption with 15 minutes time step for EnergyPlus

From Table 4.2, the results are again considered satisfactory comparable, achieving the proof

of similarity through a simple energy balance for the building.

This simulation case is the base model comparison for simulation cases “Masses”, “Solar”, and

“Mass & Solar”, i.e. WinAM will not change any parameters. The results displayed are still low
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when looking at the annual cooling and heating consumption for all cases. The difference for each

data point is of high value in the heating data points due to reaching very low values, in which the

percentage comparison will still be high.

4.3 Masses

Masses adds mass into the walls and floors to the 5 Zones Normal R case, and is subdivided

into three type of wall and floor constructions, as displayed in Table 3.4. Note that the overall

resistance value for each type of wall is still the same as the WinAM model, making possible the

comparison of solely the mass effect of each type of building, to WinAM, which does not take this

effect into consideration. The comparison is made between the RC model results and EnergyPlus,

as well as both with the baseline model of WinAM (5 Zones Normal R case). Then, the calibration

assistant tool of WinAM is used to analyze what type of calibration steps its suggesting to represent

the results from the EnergyPlus model.

4.3.1 Light Mass

The cooling and heating results are displayed in Figures 4.6 and 4.7. For cooling, the light

mass has little effect in its consumption. For heating however, a small spread occurs in the Slope

1, for the EnergyPlus and RC models, due to the heat storage that occurs in the walls. Figure 4.8

demonstrates how the wall temperature Tw from the RC model tracks the Outside Air Temperature

(Toa) for the first 1000 hours of the year. For this case, there is not a considerable difference

between the two, showing that little heat storage is occurring in the walls.

Table 4.3 displays the comparison metrics between the simulations for this case. Note that if

only mass effects are included, and the building has little mass, the divergence in overall results is

not that high.
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Figure 4.6: Masses - Light Mass - Cooling Consumption
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Figure 4.7: Masses - Light Mass - Heating Consumption
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Table 4.3: Comparison between models for Masses - Light Mass

Difference between WinAM and RC
WinAM RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.665 0.712 7.15%
Average Difference for Cooling - - 0.48%
Standard Deviation for Cooling - - 0.47%

Max. Difference Data Point for Heating (MMBTU) 0.014 0.002 783.40%
Average Difference for Heating - - 3.95%
Standard Deviation for Heating - - 24.82%

Annual Cooling (MMBTU) 7713.36 7699.52 0.18%
Annual Heating (MMBTU) 34.20 33.01 3.60%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.554 0.647 16.80%
Average Difference for Cooling - - 2.70%
Standard Deviation for Cooling - - 2.02%

Max. Difference Data Point for Heating (MMBTU) 0.023 0.002 1140.87%
Average Difference for Heating - - 5.83%
Standard Deviation for Heating - - 34.36%

Annual Cooling (MMBTU) 7713.36 7896.75 2.38%
Annual Heating (MMBTU) 34.20 30.70 11.40%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.582 0.712 22.37%
Average Difference for Cooling - - 2.79%
Standard Deviation for Cooling - - 2.16%

Max. Difference Data Point for Heating (MMBTU) 0.001 0.006 515.69%
Average Difference for Heating - - 3.30%
Standard Deviation for Heating - - 17.12%

Annual Cooling (MMBTU) 7896.75 7699.52 2.56%
Annual Heating (MMBTU) 30.70 33.01 7.54%
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4.3.2 Light Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 is used to cali-

brate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 21%. Only one step was made to complete the protocol, resulting a

Total CV-RMSE of 11%. The step was:

• Increase the Conditioned Floor Area from 90000 ft2 to 92728 ft2, reducing the Total CV-

RMSE from 21% to 11.4%.

4.3.3 Medium Mass

The cooling and heating results are displayed in Figures 4.9 and 4.10. For cooling, the medium

mass also has little effect in its consumption. For heating however, a larger spread then before

occurs in temperatures below 65◦F, for the EnergyPlus and RC models, due to the heat storage that

occurs in the walls. Figure 4.11 demonstrates how the wall temperature Tw from the RC model

39



 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10  20  30  40  50  60  70  80  90  100  110

M
M

B
tu

/h
r

Toa (oF)

WinAM

(a) WinAM Cooling Consumption

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10  20  30  40  50  60  70  80  90  100  110

M
M

B
tu

/h
r

Toa (oF)

RC

(b) RC Cooling Consumption

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10  20  30  40  50  60  70  80  90  100  110

M
M

B
tu

/h
r

Toa (oF)

Energy Plus

(c) EnergyPlus Cooling Consumption

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10  20  30  40  50  60  70  80  90  100  110

M
M

B
tu

/h
r

Toa (oF)

WinAM
RC

Energy Plus

(d) WinAM, RC, and EnergyPlus Cooling Consump-
tion

Figure 4.9: Masses - Medium Mass - Cooling Consumption

tracks the Outside Air Temperature (Toa) for the first 1000 hours. For this case, note that the wall

temperature fluctuates less than before, presenting a higher mass effect from the walls.

Table 4.4 displays the comparison metrics between the simulations for this case. Note that now

the results are presenting considerable difference for heating when compared to the baseline model

of WinAM. Also, the RC is getting an approximate result with EnergyPlus.
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Figure 4.10: Masses - Medium Mass - Heating Consumption
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Table 4.4: Comparison between models for Masses - Medium Mass

Difference between WinAM and RC
WinAM RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.763 0.685 11.35%
Average Difference for Cooling - - 1.88%
Standard Deviation for Cooling - - 1.58%

Max. Difference Data Point for Heating (MMBTU) 0.041 0.001 3202.26%
Average Difference for Heating - - 14.01%
Standard Deviation for Heating - - 93.14%

Annual Cooling (MMBTU) 7713.36 7682.34 0.40%
Annual Heating (MMBTU) 34.20 23.47 45.69%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.499 0.589 18.21%
Average Difference for Cooling - - 2.90%
Standard Deviation for Cooling - - 2.35%

Max. Difference Data Point for Heating (MMBTU) 0.033 0.001 2736.64%
Average Difference for Heating - - 11.94%
Standard Deviation for Heating - - 81.50%

Annual Cooling (MMBTU) 7713.36 7886.65 2.25%
Annual Heating (MMBTU) 34.20 26.56 28.73%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.579 0.712 22.98%
Average Difference for Cooling - - 2.92%
Standard Deviation for Cooling - - 2.27%

Max. Difference Data Point for Heating (MMBTU) 0.018 0.001 1349.90%
Average Difference for Heating - - 5.45%
Standard Deviation for Heating - - 37.31%

Annual Cooling (MMBTU) 7886.65 7682.34 2.66%
Annual Heating (MMBTU) 26.56 23.47 13.17%

42



 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  100  200  300  400  500  600  700  800  900  1000

T
em

pe
ra

tu
re

 (
o F

)

Hour of the Year

Toa
Tw

Figure 4.11: Masses - Medium Mass - Tw vs Toa

4.3.4 Medium Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 48%. Only one step was made to complete the protocol, resulting a

Total CV-RMSE of 14%. The step was:

• Constant Cooling Coil Set Point from 55 ◦F to 57.8 ◦F, reducing the Total CV-RMSE from

48% to 14.3%.

4.3.5 Heavy Mass

The cooling and heating results are displayed in Figures 4.12 and 4.13. For cooling, the high

mass has little effect in its consumption, like previous cases. For heating however, a larger spread

then before occurs in temperatures below 70◦F, for the EnergyPlus and RC models. This is due to

the heat storage that occurs in the walls. Figure 4.14 demonstrates how the wall temperature Tw
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(d) WinAM, RC, and EnergyPlus Cooling Consump-
tion

Figure 4.12: Masses - Heavy Mass - Cooling Consumption

from the RC model tracks the Outside Air Temperature (Toa) for the first 1000 hours. For this case,

note that the wall temperature fluctuates even less then before.

Table 4.5 displays the comparison metrics between the simulations for this case. Note that now

the results are presenting considerable difference for heating when compared to the baseline model

of WinAM. Also, the RC is getting an approximate result with EnergyPlus.
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Figure 4.13: Masses - Heavy Mass - Heating Consumption
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Table 4.5: Comparison between models for Masses - Heavy Mass

Difference between WinAM and RC
WinAM RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.763 0.683 11.75%
Average Difference for Cooling - - 2.41%
Standard Deviation for Cooling - - 1.95%

Max. Difference Data Point for Heating (MMBTU) 0.040 0.001 2754.43%
Average Difference for Heating - - 16.09%
Standard Deviation for Heating - - 108.08%

Annual Cooling (MMBTU) 7713.36 7669.04 0.58%
Annual Heating (MMBTU) 34.20 14.76 131.76%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.499 0.586 17.52%
Average Difference for Cooling - - 3.20%
Standard Deviation for Cooling - - 2.79%

Max. Difference Data Point for Heating (MMBTU) 0.040 0.001 2950.07%
Average Difference for Heating - - 17.05%
Standard Deviation for Heating - - 116.90%

Annual Cooling (MMBTU) 7713.36 7870.52 2.04%
Annual Heating (MMBTU) 34.20 17.22 98.63%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.590 0.712 20.69%
Average Difference for Cooling - - 2.96%
Standard Deviation for Cooling - - 2.17%

Max. Difference Data Point for Heating (MMBTU) 0.027 0.003 940.57%
Average Difference for Heating - - 5.09%
Standard Deviation for Heating - - 34.34%

Annual Cooling (MMBTU) 7870.52 7669.04 2.63%
Annual Heating (MMBTU) 17.22 14.76 16.68%
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Figure 4.14: Masses - Heavy Mass - Tw vs Toa

4.3.6 Heavy Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 170%. Two steps were made and no further suggestions were available

from the Calibration Assistant, and the model was not considered calibrated. Therefore, the proto-

col was not able to be completed. The resulting Total CV-RMSE after these steps was 28%. The

steps were:

• Overall Zone Occupied Cooling Set Point from 75 ◦F to 72 ◦F, reducing the Total CV-RMSE

from 170% to 29.5%.

• Constant Cooling Coil Set Point from 55 ◦F to 55.5 ◦F, reducing the Total CV-RMSE from

29.5% to 28.1%.
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(d) WinAM, RC, and EnergyPlus Cooling Con-
sumption

Figure 4.15: Solar - Cooling Consumption

4.4 Solar

At first, when attempting to simulate the solar gains in EnergyPlus, only through adding the

solar effects in the walls, it did not change hardly at all. Therefore, the EnergyPlus model was

changed to have 10% window area in its external walls. In order to remain consistent with the

same UA value from before, the wall now was made with an R-Value of 10 hr·◦F·ft2/Btu, and the

window was made with an R-Value of 1.89 hr·◦F·ft2/Btu.

The cooling and heating results are displayed in Figures 4.15 and 4.16. For cooling, the solar

effects have higher effects in its consumption. For heating, a small spread below the Slope 1 occurs

in temperatures below 50◦F, for the EnergyPlus and RC models. This is due to a decrease on the

necessary heating, due to solar gains.

Table 4.6 displays the comparison metrics between simulations. Note that the heating con-
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Figure 4.16: Solar - Heating Consumption
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sumption has been reduced, and the cooling consumption has been increased, for the EnergyPlus

and RC models, when compared to the baseline model of WinAM.

Table 4.6: Comparison between models for Solar

Difference between WinAM and RC
WinAM RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.450 0.624 38.75%
Average Difference for Cooling - - 7.89%
Standard Deviation for Cooling - - 9.90%

Max. Difference Data Point for Heating (MMBTU) 0.024 0.001 2190.67%
Average Difference for Heating - - 3.60%
Standard Deviation for Heating - - 50.09%

Annual Cooling (MMBTU) 7713.36 8389.34 8.76%
Annual Heating (MMBTU) 34.20 31.08 10.02%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.429 0.624 45.36%
Average Difference for Cooling - - 9.88%
Standard Deviation for Cooling - - 9.19%

Max. Difference Data Point for Heating (MMBTU) 0.040 0.002 2387.17%
Average Difference for Heating - - 7.95%
Standard Deviation for Heating - - 59.56%

Annual Cooling (MMBTU) 7713.36 8479.14 9.93%
Annual Heating (MMBTU) 34.20 23.68 44.39%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.624 0.452 38.12%
Average Difference for Cooling - - 4.89%
Standard Deviation for Cooling - - 5.00%

Max. Difference Data Point for Heating (MMBTU) 0.002 0.028 1619.47%
Average Difference for Heating - - 6.54%
Standard Deviation for Heating - - 41.14%

Annual Cooling (MMBTU) 8479.14 8389.34 1.07%
Annual Heating (MMBTU) 23.68 31.08 31.24%
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4.4.1 Solar WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 86%. Two steps were made to complete the protocol, resulting a Total

CV-RMSE of 15%. The steps were:

• Overall U-Value from 0.07 Btu/ft2·◦F·hr to 0.06 Btu/ft2·◦F·hr, reducing the Total CV-RMSE

from 86% to 20.7%.

• Constant Preheat Coil Set Point from 35 ◦F to 34 ◦F, reducing the Total CV-RMSE from

20.7% to 15.2%.

4.5 Mass & Solar

Mass & Solar case is the same as Masses with the added solar effects from Solar case. The

comparison is made between the RC model results and EnergyPlus, as well as both with the base-

line model of WinAM (5 Zones Normal R case).

For this case, it is notable to see the combined effects for consumption of thermal mass and

solar effects, for the RC and EnergyPlus models. A higher consumption occurs for cooling, mainly

due to solar effects. For heating, as the mass increases, more spread is noted for temperatures near

both heating slopes.

4.5.1 Light Mass

The cooling and heating results are displayed in Figures 4.17 and 4.18. Table 4.7 displays the

comparison metrics between simulations.
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Figure 4.17: Mass & Solar - Light Mass - Cooling Consumption
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Figure 4.18: Mass & Solar - Light Mass - Heating Consumption

53



Table 4.7: Comparison between models for Mass & Solar - Light Mass

Difference between WinAM and RC
WinAM RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.450 0.617 37.13%
Average Difference for Cooling - - 7.80%
Standard Deviation for Cooling - - 9.39%

Max. Difference Data Point for Heating (MMBTU) 0.027 0.001 1871.26%
Average Difference for Heating - - 7.08%
Standard Deviation for Heating - - 54.42%

Annual Cooling (MMBTU) 7713.36 8387.22 8.74%
Annual Heating (MMBTU) 34.20 30.05 13.81%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.429 0.616 43.54%
Average Difference for Cooling - - 9.36%
Standard Deviation for Cooling - - 8.69%

Max. Difference Data Point for Heating (MMBTU) 0.041 0.001 3731.64%
Average Difference for Heating - - 9.72%
Standard Deviation for Heating - - 80.35%

Annual Cooling (MMBTU) 7713.36 8438.70 9.40%
Annual Heating (MMBTU) 34.20 23.13 47.85%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.616 0.442 39.41%
Average Difference for Cooling - - 4.61%
Standard Deviation for Cooling - - 4.86%

Max. Difference Data Point for Heating (MMBTU) 0.001 0.029 2649.85%
Average Difference for Heating - - 6.43%
Standard Deviation for Heating - - 57.33%

Annual Cooling (MMBTU) 8438.70 8387.22 0.61%
Annual Heating (MMBTU) 23.13 30.05 29.92%
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4.5.2 Light Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 91%. Two steps were made to complete the protocol, resulting a Total

CV-RMSE of 15%. The steps were:

• Minimum Occupied Supply Air Flow from 0.15 CFM/ft2 to 0.12 CFM/ft2, reducing the Total

CV-RMSE from 91% to 19.7%.

• Constant Preheat Coil Set Point from 35◦F to 34◦F, reducing the Total CV-RMSE from

19.7% to 15.1%.

4.5.3 Medium Mass

The cooling and heating results are displayed in Figures 4.19 and 4.20. Table 4.8 displays the

comparison metrics between simulations.
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Figure 4.19: Mass & Solar - Medium Mass - Cooling Consumption
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Figure 4.20: Mass & Solar - Medium Mass - Heating Consumption
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Table 4.8: Comparison between models for Mass & Solar - Medium Mass

Difference between WinAM and RC
WinAM RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.382 0.517 35.08%
Average Difference for Cooling - - 7.69%
Standard Deviation for Cooling - - 7.20%

Max. Difference Data Point for Heating (MMBTU) 0.027 0.001 1759.63%
Average Difference for Heating - - 22.32%
Standard Deviation for Heating - - 81.87%

Annual Cooling (MMBTU) 7713.36 8366.84 8.47%
Annual Heating (MMBTU) 34.20 20.00 70.94%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.429 0.616 43.51%
Average Difference for Cooling - - 9.31%
Standard Deviation for Cooling - - 8.15%

Max. Difference Data Point for Heating (MMBTU) 0.048 0.001 4353.00%
Average Difference for Heating - - 14.68%
Standard Deviation for Heating - - 109.75%

Annual Cooling (MMBTU) 7713.36 8431.48 9.31%
Annual Heating (MMBTU) 34.20 19.08 79.19%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.616 0.451 36.47%
Average Difference for Cooling - - 4.22%
Standard Deviation for Cooling - - 4.75%

Max. Difference Data Point for Heating (MMBTU) 0.001 0.045 2940.70%
Average Difference for Heating - - 7.72%
Standard Deviation for Heating - - 68.82%

Annual Cooling (MMBTU) 8431.48 8366.84 0.77%
Annual Heating (MMBTU) 19.08 20.00 4.83%
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4.5.4 Medium Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 146%. Two steps were made to complete the protocol, resulting a Total

CV-RMSE of 16%. The steps were:

• Minimum Occupied Supply Air Flow from 0.15 CFM/ft2 to 0.10 CFM/ft2, reducing the Total

CV-RMSE from 146% to 18.8%.

• Constant Cooling Coil Set Point from 55◦F to 54.3◦F, reducing the Total CV-RMSE from

18.8% to 16.5%.

4.5.5 Heavy Mass

The cooling and heating results are displayed in Figures 4.21 and 4.22. Table 4.9 displays the

comparison metrics between simulations.
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Figure 4.21: Mass & Solar - Heavy Mass - Cooling Consumption
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Figure 4.22: Mass & Solar - Heavy Mass - Heating Consumption
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Table 4.9: Comparison between models for Mass & Solar - Heavy Mass

Difference between WinAM and RC
WinAM RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.382 0.521 36.33%
Average Difference for Cooling - - 7.72%
Standard Deviation for Cooling - - 6.96%

Max. Difference Data Point for Heating (MMBTU) 0.027 0.001 1871.26%
Average Difference for Heating - - 28.10%
Standard Deviation for Heating - - 95.62%

Annual Cooling (MMBTU) 7713.36 8355.38 8.32%
Annual Heating (MMBTU) 34.20 14.32 138.76%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.429 0.620 44.50%
Average Difference for Cooling - - 9.28%
Standard Deviation for Cooling - - 8.12%

Max. Difference Data Point for Heating (MMBTU) 0.041 0.002 2411.52%
Average Difference for Heating - - 15.51%
Standard Deviation for Heating - - 101.80%

Annual Cooling (MMBTU) 7713.36 8422.69 9.20%
Annual Heating (MMBTU) 34.20 14.38 137.89%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.620 0.460 34.92%
Average Difference for Cooling - - 4.23%
Standard Deviation for Cooling - - 4.69%

Max. Difference Data Point for Heating (MMBTU) 0.001 0.023 1763.49%
Average Difference for Heating - - 4.92%
Standard Deviation for Heating - - 42.94%

Annual Cooling (MMBTU) 8422.69 8355.38 0.81%
Annual Heating (MMBTU) 14.38 14.32 0.37%
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4.5.6 Heavy Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 253%. Seven steps were made to complete the protocol, altering four

parameters, resulting a Total CV-RMSE of 16%. The steps were:

• Minimum Occupied Supply Air Flow from 0.15 CFM/ft2 to 0.08 CFM/ft2, reducing the Total

CV-RMSE from 253% to 21.4%.

• Constant Cooling Coil Set Point from 55 ◦F to 53.8 ◦F, reducing the Total CV-RMSE from

21.4% to 19.6%.

• Constant Preheat Coil Set Point from 35 ◦F to 34.6 ◦F, reducing the Total CV-RMSE from

19.6% to 18.9%.

• Constant Cooling Coil Set Point from 53.8 ◦F to 53.1 ◦F, reducing the Total CV-RMSE from

18.9% to 18.1%.

• Constant Fan Static Pressure Set Point from 0 inH2O to 1.0 inH2O, reducing the Total CV-

RMSE from 18.1% to 17.3%.

• Constant Preheat Coil Set Point from 34.6 ◦F to 34.2 ◦F, reducing the Total CV-RMSE from

17.3% to 16.9%.

• Constant Cooling Coil Set Point from 53.1 ◦F to 52.4 ◦F, reducing the Total CV-RMSE from

16.9% to 15.6%.

4.6 Internal Load Variation

This case analyzes the effects of internal load variation in the different models. The internal

loads are going to vary according to the multiplier times the peak load (maintained as before), as

described in Figure 3.5. This parameter change is added to Mass & Solar case. This load variation

is also added in the WinAM model.
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(d) WinAM, RC, and EnergyPlus Cooling Consump-
tion

Figure 4.23: Internal Load Variation - Medium Mass - Cooling Consumption

For Internal Load Variation case, only the “Medium Mass” case is analyzed, due to represent a

more typical building construction, and to not have so much repetitive results.

4.6.1 Medium Mass

The cooling and heating results are displayed in Figures 4.23 and 4.24. It is possible to note

separate regions of heating and cooling due to load variation. For heating, it is also possible to

notice a spread in the EnergyPlus and RC models due to thermal mass effects. Table 4.10 displays

the comparison metrics between simulations.
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Figure 4.24: Internal Load Variation - Medium Mass - Heating Consumption
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Table 4.10: Comparison between models for Internal Load Variation case - Medium Mass

Difference between WinAM and RC
WinAM RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.444 1.125 153.14%
Average Difference for Cooling - - 14.16%
Standard Deviation for Cooling - - 25.97%

Max. Difference Data Point for Heating (MMBTU) 0.001 0.202 15110.35%
Average Difference for Heating - - 42.59%
Standard Deviation for Heating - - 397.08%

Annual Cooling (MMBTU) 5113.63 5700.23 11.47%
Annual Heating (MMBTU) 1632.75 1540.75 5.97%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Max. Difference Data Point for Cooling (MMBTU) 0.830 0.414 100.44%
Average Difference for Cooling - - 10.21%
Standard Deviation for Cooling - - 10.00%

Max. Difference Data Point for Heating (MMBTU) 0.048 0.001 4431.88%
Average Difference for Heating - - 10.22%
Standard Deviation for Heating - - 103.14%

Annual Cooling (MMBTU) 5113.63 5729.06 12.04%
Annual Heating (MMBTU) 1632.75 1592.51 2.53%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Max. Difference Data Point for Cooling (MMBTU) 1.178 0.496 137.54%
Average Difference for Cooling - - 11.31%
Standard Deviation for Cooling - - 21.02%

Max. Difference Data Point for Heating (MMBTU) 0.001 0.225 16790.96%
Average Difference for Heating - - 40.49%
Standard Deviation for Heating - - 374.69%

Annual Cooling (MMBTU) 5729.06 5700.23 0.51%
Annual Heating (MMBTU) 1592.51 1540.75 3.36%
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4.6.2 Medium Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Curiously, the model was already considered cali-

brated, with a Total CV-RMSE of 12%. However, according to the protocol, it could be improved.

Therefore, the following step was made resulting in a CV-RMSE of 2%.

• Overall Lighting and Plug Electric Usage from 2 W/ft2 to 2.46 W/ft2, reducing the Total

CV-RMSE from 12% to 1.8%.

4.7 Temperature Setback

For Temperature Setback case, a night-time temperature setback of 10◦F is applied to Internal

Load Variation case. The heating and cooling set points during that period is 65◦F and 85◦F

respectively.

Also, for the EnergyPlus model, the time step was change for 6 per hour, to ensure stability in

its results, due to thermal mass effects, especially in the hour of change of temperature set point.

A novelty aspect is introduced in this model that neither the RC model, or the WinAM was

capturing its effect. When the night-time temperature setback is over at 05:00 AM, the system in

EnergyPlus heats not only the space, but also its mass.

At first, the effects of the sudden heating were not accounted for in the RC model, it tried to

heat up the air temperature, without taking to account the elevation of the mass’ temperature. This

yielded a difference as high as 162% in the heating consumption for the Heavy Mass building,

between the RC model and EnergyPlus.

Thus, in order to capture this effect, an adjustment of the RC model’s calculation was made on

those hours in which the temperature set point jumps from 65◦F to 75◦F, which are described in

Section 3.6.2.

4.7.1 Light Mass

The cooling and heating results are displayed in Figures 4.25 and 4.26. Note a considerable

difference in the heating consumption in all three models. The higher values of heating for En-
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(d) WinAM, RC, and EnergyPlus Cooling Consump-
tion

Figure 4.25: Temperature Setback - Light Mass - Cooling Consumption

ergyPlus and the RC model represent the hours in which the temperature set point is reset to the

daytime set point. Table 4.11 displays the comparison metrics between simulations.
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Figure 4.26: Temperature Setback - Light Mass - Heating Consumption

Table 4.11: Comparison between models for Temperature Setback case - Light Mass

Difference between WinAM and RC
WinAM RC % Difference

Annual Cooling (MMBTU) 4722.04 5688.14 20.46%
Annual Heating (MMBTU) 865.27 1056.60 22.11

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Annual Cooling (MMBTU) 4722.04 5633.84 19.31%
Annual Heating (MMBTU) 865.27 1526.13 76.37%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Annual Cooling (MMBTU) 5633.84 5688.14 0.96%
Annual Heating (MMBTU) 1526.13 1056.60 44.44%
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4.7.2 Light Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 48%. Three steps were made to complete the protocol, resulting a Total

CV-RMSE of 3%. The steps were:

• Minimum Unoccupied Supply Air Flow from 0.15 CFM/ft2 to 0.32 CFM/ft2, reducing the

Total CV-RMSE from 48% to 7.9%.

• Constant Cooling Coil Set Point from 55◦F to 54.3◦F, reducing the Total CV-RMSE from

7.9% to 5.7%.

• Minimum Occupied Outside Air from 25% to 20.3%, reducing the Total CV-RMSE from

5.7% to 3.3%.

4.7.3 Medium Mass

The cooling and heating results are displayed in Figures 4.27 and 4.28. Table 4.12 displays

the comparison metrics between simulations. As more mass is added, the models for RC and

EnergyPlus approximate their results more then before.
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(d) WinAM, RC, and EnergyPlus Cooling Consump-
tion

Figure 4.27: Temperature Setback - Medium Mass - Cooling Consumption

Table 4.12: Comparison between models for Temperature Setback case - Medium Mass

Difference between WinAM and RC
WinAM RC % Difference

Annual Cooling (MMBTU) 4722.04 5584.21 18.26%
Annual Heating (MMBTU) 865.27 1085.29 25.43%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Annual Cooling (MMBTU) 4722.04 5651.07 19.67%
Annual Heating (MMBTU) 865.27 1507.26 74.20%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Annual Cooling (MMBTU) 5651.07 5584.21 1.20%
Annual Heating (MMBTU) 1507.26 1085.29 38.88%
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Figure 4.28: Temperature Setback - Medium Mass - Heating Consumption
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4.7.4 Medium Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 48%. One step was made to complete the protocol, resulting a Total

CV-RMSE of 6%. The step was:

• Minimum Unoccupied Supply Air Flow from 0.15 CFM/ft2 to 0.32 CFM/ft2, reducing the

Total CV-RMSE from 48% to 6.3%.

4.7.5 Heavy Mass

The cooling and heating results are displayed in Figures 4.29 and 4.30. Table 4.13 displays

the comparison metrics between simulations. As more mass is added, the models for RC and

EnergyPlus approximate their results more then before.

Table 4.13: Comparison between models for Temperature Setback case - Heavy Mass

Difference between WinAM and RC
WinAM RC % Difference

Annual Cooling (MMBTU) 4722.04 5561.81 17.78%
Annual Heating (MMBTU) 865.27 1107.09 27.95%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Annual Cooling (MMBTU) 4722.04 5647.61 19.60%
Annual Heating (MMBTU) 865.27 1505.01 73.94%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Annual Cooling (MMBTU) 5647.61 5561.81 1.54%
Annual Heating (MMBTU) 1505.01 1107.09 35.94%
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(d) WinAM, RC, and EnergyPlus Cooling Consump-
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Figure 4.29: Temperature Setback - Heavy Mass - Cooling Consumption

74



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10  20  30  40  50  60  70  80  90  100  110

M
M

B
tu

/h
r

Toa (oF)

WinAM

(a) WinAM Heating Consumption

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10  20  30  40  50  60  70  80  90  100  110

M
M

B
tu

/h
r

Toa (oF)

RC

(b) RC Heating Consumption

 0

 1

 2

 3

 4

 5

 6

 10  20  30  40  50  60  70  80  90  100  110

M
M

B
tu

/h
r

Toa (oF)

Energy Plus

(c) EnergyPlus Heating Consumption

 0

 1

 2

 3

 4

 5

 6

 10  20  30  40  50  60  70  80  90  100  110

M
M

B
tu

/h
r

Toa (oF)

WinAM
RC

Energy Plus

(d) WinAM, RC, and EnergyPlus Heating Consump-
tion

Figure 4.30: Temperature Setback - Heavy Mass - Heating Consumption
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4.7.6 Heavy Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 48%. One step was made to complete the protocol, resulting a Total

CV-RMSE of 4%. The step was:

• Minimum Unoccupied Supply Air Flow from 0.15 CFM/ft2 to 0.32 CFM/ft2, reducing the

Total CV-RMSE from 48% to 6.2%.

4.8 Temperature Deadband

This case analyzes the effects of a temperature throttling range (or temperature deadband)

applied to all hours of the day, with no temperature setback. The heating set point is changed to

70◦F, and the cooling set point is changed to 76◦F.

For Temperature Deadband case, only the “Medium Mass” case is analyzed, due to represent a

more typical building construction, and to not have so much repetitive results.

4.8.1 Medium Mass

The cooling and heating results are displayed in Figures 4.31 and 4.32. Table 4.14 displays the

comparison metrics between simulations. WinAM’s heating consumption stands out in this case,

when compared to the other models. Since, WinAM only includes steady-state calculations, it fails

to consider all the energy stored in the building’s mass, which would delay the necessary heating

when the internal heat gains are decreased.
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Figure 4.31: Temperature Deadband - Medium Mass - Cooling Consumption

Table 4.14: Comparison between models for Temperature Deadband case - Medium Mass

Difference between WinAM and RC
WinAM RC % Difference

Annual Cooling (MMBTU) 4765.26 4154.93 14.69%
Annual Heating (MMBTU) 1124.28 75.82 1382.89%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Annual Cooling (MMBTU) 4765.26 3953.33 20.54%
Annual Heating (MMBTU) 1124.28 16.02 6918.02%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Annual Cooling (MMBTU) 3953.33 4154.93 5.10%
Annual Heating (MMBTU) 16.02 75.82 373.27%
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Figure 4.32: Temperature Deadband - Medium Mass - Heating Consumption
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4.8.2 Medium Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 7596%. Eleven steps were made, changing nine parameters, and no fur-

ther suggestions were available from the Calibration Assistant, and the model was not considered

calibrated. Therefore the protocol was not able to be completed. The resulting Total CV-RMSE

after these steps was 20%. The steps were:

• Minimum Unoccupied Supply Air Flow from 0.15 CFM/ft2 to 0.00 CFM/ft2, reducing the

Total CV-RMSE from 7596% to 2545.2%.

• Night Electric Load Ratio from 0.00 to 0.15, reducing the Total CV-RMSE from 2545.2%

to 915.9%.

• Interior Zone Percentage from 81% to 100%, reducing the Total CV-RMSE from 915.9% to

72.5%.

• Zone Occupied Heating Set Point from 70◦F to 67.9◦F, reducing the Total CV-RMSE from

72.5% to 31.8%.

• Constant Preheat Coil Set Point from 35◦F to 38◦F, reducing the Total CV-RMSE from

31.8% to 24.9%.

• Constant Cooling Coil Set Point from 55◦F to 57.8◦F, reducing the Total CV-RMSE from

24.9% to 21.4%.

• Minimum Occupied Outside Air from 25% to 28.1%, reducing the Total CV-RMSE from

21.4% to 20.7%.

• Zone Occupied Cooling Set Point from 76◦F to 76.6◦F, reducing the Total CV-RMSE from

20.7% to 20.4%.

79



• Constant Cooling Coil Set Point from 57.8◦F to 58.2◦F, reducing the Total CV-RMSE from

20.4% to 20.3%.

• Conditioned Floor Area from 90000 ft2 to 89646 ft2, reducing the Total CV-RMSE from

20.3% to 20.2%.

• Constant Cooling Coil Set Point from 58.2◦F to 58.6◦F, reducing the Total CV-RMSE from

20.2% to 20.1%.

4.9 Setback & Deadband

For Setback & Deadband case, the combined effects of Temperature Setback and Temperature

Deadband cases are analyzed. It is noticeable that the necessary heating increase for all the change

hours in EnergyPlus is now decreased when compared to the RC model.

4.9.1 Light Mass

The cooling and heating results are displayed in Figures 4.33 and 4.34. Table 4.15 displays the

comparison metrics between simulations.

Table 4.15: Comparison between models for Setback & Deadband case - Light Mass

Difference between WinAM and RC
WinAM RC % Difference

Annual Cooling (MMBTU) 4572.46 4221.13 8.32%
Annual Heating (MMBTU) 749.48 54.32 1279.81%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Annual Cooling (MMBTU) 4572.46 3955.02 15.61%
Annual Heating (MMBTU) 749.48 16.38 4476.81%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Annual Cooling (MMBTU) 3955.02 4221.13 6.73%
Annual Heating (MMBTU) 16.38 54.32 231.70%
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(d) WinAM, RC, and EnergyPlus Cooling Consump-
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Figure 4.33: Setback & Deadband - Light Mass - Cooling Consumption
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Figure 4.34: Setback & Deadband - Light Mass - Heating Consumption
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4.9.2 Light Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 5147%. Fifty steps were made, changing fourteen parameters, and no

further suggestions were available from the Calibration Assistant, and the model was not consid-

ered calibrated. Therefore the protocol was not able to be completed. The resulting Total CV-

RMSE after these steps was 21%. The steps are displayed in Appendix ??. The initial and final

result of each parameter changed is displayed below:

• Conditioned Floor Area from 90000 ft2 to 52195 ft2

• Maximum Primary Flow from 1 CFM/ft2 to 0.98 CFM/ft2

• Minimum Occupied Supply Air Flow from 0.15 CFM/ft2 to 0.01 CFM/ft2

• Minimum Unoccupied Supply Air Flow from 0.15 CFM/ft2 to 0.00 CFM/ft2

• Constant Cooling Coil Set Point from 55◦F to 73.0◦F

• Constant Preheat Coil Set Point from 35◦F to 36.2◦F

• Peak Occupancy from 150 ft2/person to 17 ft2/person

• Night Electric Load Ratio from 0.00 to 0.15

• Interior Zone Percentage from 81% to 68%

• Overall U-Value from 0.07 Btu/ft2·◦F·hr to 0.05 Btu/ft2·◦F·hr

• Zone Unoccupied Cooling Set Point from 85◦F to 109.0◦F

• Zone Occupied Cooling Set Point from 76◦F to 85.0◦F

• Zone Occupied Heating Set Point from 70◦F to 64.7◦F

• Zone Unoccupied Heating Set Point from 65◦F to 64.6◦F
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(d) WinAM, RC, and EnergyPlus Cooling Consump-
tion

Figure 4.35: Setback & Deadband - Medium Mass - Cooling Consumption

4.9.3 Medium Mass

The cooling and heating results are displayed in Figures 4.35 and 4.36. Table 4.16 displays the

comparison metrics between simulations.
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Figure 4.36: Setback & Deadband - Medium Mass - Heating Consumption

Table 4.16: Comparison between models for Setback & Deadband case - Medium Mass

Difference between WinAM and RC
WinAM RC % Difference

Annual Cooling (MMBTU) 4572.46 4150.84 10.16%
Annual Heating (MMBTU) 749.48 37.44 1901.75%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Annual Cooling (MMBTU) 4572.46 3952.45 15.69%
Annual Heating (MMBTU) 749.48 15.53 4724.46%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Annual Cooling (MMBTU) 3952.45 4150.84 5.02%
Annual Heating (MMBTU) 15.53 37.44 141.01%
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4.9.4 Medium Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 5434%. Fifty-seven steps were made, changing thirteen parameters,

and no further suggestions were available from the Calibration Assistant, and the model was not

considered calibrated. Therefore, the protocol was not able to be completed. The resulting Total

CV-RMSE after these steps was 20%. The steps are displayed in Appendix ??. The initial and

final result of each parameter changed is displayed below:

• Conditioned Floor Area from 90000 ft2 to 48898 ft2

• Minimum Occupied Supply Air Flow from 0.15 CFM/ft2 to 0.00 CFM/ft2

• Minimum Unoccupied Supply Air Flow from 0.15 CFM/ft2 to 0.00 CFM/ft2

• Minimum Unoccupied Outside Air from 25% to 7%

• Constant Cooling Coil Set Point from 55◦F to 72.9◦F

• Peak Occupancy from 150 ft2/person to 16 ft2/person

• Night Electric Load Ratio from 0.00 to 0.15

• Static Pressure Set Point from 0 inH2O to 0.15 inH2O

• Interior Zone Percentage from 81% to 51%

• Zone Unoccupied Cooling Set Point from 85◦F to 106.0◦F

• Zone Occupied Cooling Set Point from 76◦F to 85.3◦F

• Zone Occupied Heating Set Point from 70◦F to 61.0◦F

• Zone Unoccupied Heating Set Point from 65◦F to 60.9◦F
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Figure 4.37: Setback & Deadband - Heavy Mass - Cooling Consumption

4.9.5 Heavy Mass

The cooling and heating results are displayed in Figures 4.37 and 4.38. Table 4.17 displays the

comparison metrics between simulations.
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Figure 4.38: Setback & Deadband - Heavy Mass - Heating Consumption

Table 4.17: Comparison between models for Setback & Deadband case - Heavy Mass

Difference between WinAM and RC
WinAM RC % Difference

Annual Cooling (MMBTU) 4572.46 4127.58 10.78%
Annual Heating (MMBTU) 749.48 31.52 2277.78%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Annual Cooling (MMBTU) 4572.46 3951.86 15.70%
Annual Heating (MMBTU) 749.48 14.67 5010.16%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Annual Cooling (MMBTU) 3951.86 4127.58 4.45%
Annual Heating (MMBTU) 14.67 31.52 114.91%
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4.9.6 Heavy Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 5765%. Forty-one steps were made, and thirteen parameters changed,

and no further suggestions were available from the Calibration Assistant, and the model was not

considered calibrated. Therefore, the protocol was not able to be completed. The resulting Total

CV-RMSE after these steps was 17%. The steps are displayed in Appendix ??. The initial and

final result of each parameter changed is displayed below:

• Conditioned Floor Area from 90000 ft2 to 60084 ft2

• Maximum Primary Flow from 1 CFM/ft2 to 2.00 CFM/ft2

• Minimum Occupied Supply Air Flow from 0.15 CFM/ft2 to 0.03 CFM/ft2

• Minimum Unoccupied Supply Air Flow from 0.15 CFM/ft2 to 0.00 CFM/ft2

• Constant Cooling Coil Set Point from 55◦F to 72.7◦F

• Constant Preheat Coil Set Point from 35◦F to 35.4◦F

• Peak Occupancy from 150 ft2/person to 22 ft2/person

• Night Electric Load Ratio from 0.00 to 0.15

• Interior Zone Percentage from 81% to 58%

• Overall U-Value from 0.07 Btu/ft2·◦F·hr to 0.05 Btu/ft2·◦F·hr

• Zone Unoccupied Cooling Set Point from 85◦F to 100.0◦F

• Zone Occupied Cooling Set Point from 76◦F to 85.0◦F

• Zone Occupied Heating Set Point from 70◦F to 65.2◦F
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Figure 4.39: 10 Stories - Light Mass - Cooling Consumption

4.10 10 Stories

For 10 Stories case, a building of 10 stores is analyzed, with the same system and load prop-

erties as Setback & Deadband case, changing only the floor plan for each store (see Appendix C).

This case essentially changes the interior/exterior area ratio, while maintaining the same param-

eters as before. This alteration improves the overall results of the RC model when compared to

WinAM, showing its effectiveness for buildings with high external areas.

4.10.1 Light Mass

The cooling and heating results are displayed in Figures 4.39 and 4.40. Table 4.18 displays the

comparison metrics between simulations.
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Figure 4.40: 10 Stories - Light Mass - Heating Consumption

Table 4.18: Comparison between models for 10 Stories case - Light Mass

Difference between WinAM and RC
WinAM RC % Difference

Annual Cooling (MMBTU) 4597.66 3877.40 18.58%
Annual Heating (MMBTU) 797.55 122.06 553.44%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Annual Cooling (MMBTU) 4597.66 3640.54 26.29%
Annual Heating (MMBTU) 797.55 158.79 402.26%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Annual Cooling (MMBTU) 3640.54 3877.40 6.51%
Annual Heating (MMBTU) 158.79 122.06 30.10%
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4.10.2 Light Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 455%. Six steps were made, changing five parameters, to complete the

protocol, resulting a Total CV-RMSE of 14.8%. The steps were:

• Night Electric Load Ratio from 0.00 to 0.30, reducing the Total CV-RMSE from 455% to

58.0%.

• Minimum Occupied Supply Air Flow from 0.15 CFM/ft2 to 0.08 CFM/ft2, reducing the Total

CV-RMSE from 58.0% to 35.5%.

• Conditioned Floor Area from 90250 ft2 to 82045 ft2, reducing the Total CV-RMSE from

35.5% to 25.9%.

• Zone Occupied Cooling Set Point from 76◦F to 79.0◦F, reducing the Total CV-RMSE from

25.9% to 20.4%.

• Constant Cooling Coil Set Point from 55◦F to 56.2◦F, reducing the Total CV-RMSE from

20.4% to 17.1%.

• Zone Occupied Cooling Set Point from 79.0◦F to 82.0◦F, reducing the Total CV-RMSE from

17.1% to 14.8%.

4.10.3 Medium Mass

The cooling and heating results are displayed in Figures 4.41 and 4.42. Table 4.19 displays the

comparison metrics between simulations.
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Figure 4.41: 10 Stories - Medium Mass - Cooling Consumption

Table 4.19: Comparison between models for 10 Stories case - Medium Mass

Difference between WinAM and RC
WinAM RC % Difference

Annual Cooling (MMBTU) 4597.66 3798.77 21.03%
Annual Heating (MMBTU) 797.55 181.43 92.25%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Annual Cooling (MMBTU) 4597.66 3633.73 26.53%
Annual Heating (MMBTU) 797.55 154.14 417.44%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Annual Cooling (MMBTU) 3633.73 3798.77 4.54%
Annual Heating (MMBTU) 154.14 92.25 67.08%
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Figure 4.42: 10 Stories - Medium Mass - Heating Consumption
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4.10.4 Medium Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 472%. Five steps were made to complete the protocol, resulting a Total

CV-RMSE of 16%. The steps were:

• Night Electric Load Ratio from 0.00 to 0.30, reducing the Total CV-RMSE from 472% to

62.1%.

• Minimum Occupied Supply Air Flow from 0.15 CFM/ft2 to 0.08 CFM/ft2, reducing the Total

CV-RMSE from 62.1% to 35.8%.

• Zone Occupied Cooling Set Point from 76◦F to 85.0◦F, reducing the Total CV-RMSE from

35.8% to 19.2%.

• Conditioned Floor Area from 90250 ft2 to 86440 ft2, reducing the Total CV-RMSE from

19.2% to 18.1%.

• Constant Cooling Coil Set Point from 55◦F to 56.2◦F, reducing the Total CV-RMSE from

18.1% to 15.8%.

4.10.5 Heavy Mass

The cooling and heating results are displayed in Figures 4.43 and 4.44. Table 4.20 displays the

comparison metrics between simulations.
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(d) WinAM, RC, and EnergyPlus Cooling Consump-
tion

Figure 4.43: 10 Stories - Heavy Mass - Cooling Consumption

Table 4.20: Comparison between models for 10 Stories case - Heavy Mass

Difference between WinAM and RC
WinAM RC % Difference

Annual Cooling (MMBTU) 4597.66 3768.06 22.02%
Annual Heating (MMBTU) 797.55 76.24 946.07%

Difference between WinAM and EnergyPlus
WinAM EnergyPlus % Difference

Annual Cooling (MMBTU) 4597.66 3633.73 26.53%
Annual Heating (MMBTU) 797.55 154.14 417.44%

Difference between EnergyPlus and RC
EnergyPlus RC % Difference

Annual Cooling (MMBTU) 3633.73 3768.06 3.70%
Annual Heating (MMBTU) 154.14 76.24 102.16%
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Figure 4.44: 10 Stories - Heavy Mass - Heating Consumption

97



4.10.6 Heavy Mass WinAM Calibration

Using WinAM’s Calibration Assistant tool, protocol described in Section 3.5 was used to cal-

ibrate WinAM’s model to EnergyPlus results. Initially, the model was not considered calibrated,

with a Total CV-RMSE of 489%. Four steps were made to complete the protocol, resulting a Total

CV-RMSE of 15%. The steps were:

• Night Electric Load Ratio from 0.00 to 0.30, reducing the Total CV-RMSE from 489% to

65.9%.

• Minimum Occupied Supply Air Flow from 0.15 CFM/ft2 to 0.05 CFM/ft2, reducing the Total

CV-RMSE from 65.9% to 34.4%.

• Conditioned Floor Area from 90250 ft2 to 82045 ft2, reducing the Total CV-RMSE from

34.4% to 22.7%.

• Zone Occupied Cooling Set Point from 76◦F to 82.0◦F, reducing the Total CV-RMSE from

22.7% to 15.5%.

4.11 6 Climates

For this case, the building with the parameters from Setback & Deadband case, which will be

called building type 1, and the building with the parameters from 10 Stories case, which will be

called building type 2, is simulated in 6 other weather conditions, for the Light Mass, Medium

Mass and Heavy Mass types of constructions. The cities chosen for simulation are: El Paso - TX,

Juneau - AK, New York - NY, Las Vegas - NV, Denver - CO, and Chicago - IL. The results for

each type of building, for each simulation program, for each city, is presented in Appendix F.

Tables 4.21 and 4.22 presents the results for the highest differences between each pair of pro-

grams used, for each type of construction, for each type of building geometry.

Notice that the highest differences in heating consumption between models occurs mostly in

hot weathers, and the highest differences in cooling consumption occurs mostly in cool weath-
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Table 4.21: Type 1 Building Highest Differences

Building
Construction

WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and
EnergyPlus
Heating

Light Mass 18.72% 993.22% 30.65% 4040.95% 13.01% 286.47%
Medium Mass 21.81% 1319.43% 30.72% 4146.21% 9.93% 202.71%
Heavy Mass 22.72% 1388.02% 30.77% 4249.81% 9.25% 192.68%
Highest Percentage and Type of Construction it Occurs

22.72% 1388.02% 30.77% 4249.81% 13.01% 286.47%
Heavy Mass Heavy Mass Heavy Mass Heavy Mass Light Mass Light Mass

City Where the Highest Percentage Occur
Juneau Las Vegas Juneau El Paso Denver El Paso

Table 4.22: Type 2 Building Highest Differences

Building
Construction

WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and
EnergyPlus
Heating

Light Mass 21.56% 436.36% 36.37% 420.24% 12.19% 22.71%
Medium Mass 24.44% 531.78% 36.77% 437.43% 9.91% 36.43%
Heavy Mass 25.34% 574.42% 36.82% 445.71% 9.16% 43.42%
Highest Percentage and Type of Construction it Occurs

25.34% 574.42% 36.82% 445.71% 12.19% 43.42%
Heavy Mass Heavy Mass Heavy Mass Heavy Mass Light Mass Heavy Mass

City Where the Highest Percentage Occur
Denver Las Vegas Denver El Paso Denver Las Vegas
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ers. This is reflective of the low quantity that is necessary for heating and cooling in the weather

conditions described, yielding a higher percentage difference.

It is also noticeable that the RC model present lower percentage differences with EnergyPlus

in all cases when compared to WinAM’s percentage differences with EnergyPlus, as shown in

more details in Appendix F. The extreme case being a 4250% difference between WinAM’s and

EnergyPlus results, for heating consumption in El Paso, for a Heavy Mass construction building.

In contrast, the highest difference between EnergyPlus and the RC model occurs for heating con-

sumption in a Light Mass construction building in El Paso.

100



5. SIMULATION CASES SAVINGS FOR TEMPERATURE SETBACK AND

TEMPERATURE DEADBAND

Internal Load Variation, Temperature Setback, and Temperature Deadband cases were runned

for all models, for all types of constructions (light mass, medium mass, and high mass), and for

all climates from 6 Climates, as well as College Station, TX. The savings generated from a night-

time temperature setback, from Internal Load Variation case to Temperature Setback case, and the

savings generated from a temperature deadband, from Internal Load Variation case to Temperature

Deadband case, are analyzed as follows.

5.1 Highest Savings From Temperature Setback and Temperature Deadband

Tables 5.1, 5.2, 5.3, and 5.4 describes the highest savings achieved by the different models for

percentage consumption savings and energy consumption savings. They also display the cities in

which these occur, and what type of construction. Appendix G displays all consumption savings,

for all cities.

Table 5.1: Highest Percentage Savings From Night-time Temperature Setback

WinAM RC EnergyPlus
Cooling 17.11% 5.81% 2.40%

Construction Light Mass Light Mass
City Juneau Juneau Juneau

Heating 47.01% 35.19% 6.42%
Contruction Light Mass Light Mass

City College Station Las Vegas El Paso
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Table 5.2: Highest Percentage Savings From Temperature Deadband

WinAM RC EnergyPlus
Cooling 12.16% 38.69% 44.89%

Construction Heavy Mass Light Mass
City Juneau Juneau Juneau

Heating 31.14% 95.58% 99.05%
Contruction Heavy Mass Heavy Mass

City College Station College Station College Station

Table 5.3: Highest Consumption Savings From Night-time Temperature Setback

WinAM RC EnergyPlus
Cooling 399 149 123

Construction Light Mass Light Mass
City Juneau Juneau College Station

Heating 790 819 125
Contruction Light Mass Light Mass

City Juneau Juneau Juneau

Table 5.4: Highest Consumption Savings From Temperature Deadband

WinAM RC EnergyPlus
Cooling 348 1565 1801

Construction Light Mass Light Mass
City College Station College Station College Station

Heating 583 1803 1888
Contruction Heavy Mass Light Mass

City Juneau Juneau Juneau
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5.2 Temperature Setback Savings

For the temperature setback savings, there is only one case in which the results of the RC

model is worse than the WinAM model, when compared to EnergyPlus for this EEM. That is

the predicting of heating savings for a Light Mass Building, in Juneau. All other cases the RC

model has reached more approximate results to EnergyPlus. Results could be improved if the

interior/exterior area ratio is decreased, as seen in 6 Climates, from the previous chapter. A bar plot

of energy generated savings is displayed in figures 5.1 and 5.2 for cooling and heating consumption

respectively.
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Figure 5.1: Annual Cooling Coil Savings for Medium Mass Building of 90,000 ft2 for Temperature
Setback

In general, WinAM over predict savings when compared to EnergyPlus, mainly due to not con-

sidering the large amount of heating or cooling necessary in the hours of changing the temperature

set point to occupied hours, due to the building’s mass. Take the case of the savings in heating con-

sumption on Juneau for temperature setback. While WinAM is predicting 790 MMBtu of annual
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Figure 5.2: Annual Heating Coil Savings for Medium Mass Building of 90,000 ft2 for Temperature
Setback

heating savings, EnergyPlus is predicting only 125 MMBtu of savings, less then 1/5 of WinAM.

This would be a difference of 665 MMBtu of heating, making it a $3325.00 difference in a 90000

ft2 building, considering a price of $5.00 per MMBtu of heating.

5.3 Temperature Deadband Savings

For the Temperature deadband savings, the generated savings from WinAM is considerably

lower than the ones predicted from RC and EnergyPlus, mainly due to the calculation that occurs

in WinAM, always considering that the zone’s temperature is either at the heating set point, or the

cooling set point, and will increase the heating or cooling accordingly. This is not the case for the

RC and EnergyPlus models, where there are hours in which the zone’s temperature fluctuates in the

deadband temperature range, operating at minimum flow, with no additional heating or cooling.

As an example, for Juneau, as WinAM predicts 583 MMBtu of heating savings, both EnergyPlus

and the RC model predicts over 1800 MMBtu’s of savings for a heavy mass building, more then 3

times of WinAM’s predictions. This case represents a difference of 1305 MMBtu of cooling, when

104



compared to the Light Mass EnergyPlus model, making it a $13,050.00 difference in a 90,000 ft2

building, considering a price of $10.00 per MMBtu of cooling. A bar plot of energy generated

savings is displayed in figures 5.3 and 5.4 for cooling and heating consumption respectively.
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Figure 5.3: Annual Cooling Coil Savings for Medium Mass Building of 90,000 ft2 for Temperature
Deadband

For the cities of El Paso, the RC model is over predicting savings in heating consumption for all

construction types, but not in terms of percentage of consumption reduction, since the initial model

(Internal Load Variation) have different consumptions, and the difference does not go beyond 55

MMBtu in a total of energy savings of 1528 MMBtu.
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Figure 5.4: Annual Heating Coil Savings for Medium Mass Building of 90,000 ft2 for Temperature
Deadband
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6. CASE STUDY: NEW YORK VETERANS ASSOCIATION OUTPATIENT CLINIC

The Outpatient Clinic is a 3-story building with 156,500 ft2, in which 133,000 ft2 is condi-

tioned. The building was built in year 2000 and is primarily used for clinic and support space,

incorporating spaces for police, pharmacy and offices. It is located at 800 Poly Place, Brook-

lyn, NY 11209. It is shown as Building 15 on the map of the Brooklyn Veterans Administration

Medical Center, shown in Figure 6.1.

Figure 6.1: Brooklyn Veterans Administration Medical Center

The space breakdown is displayed in Table 6.1.
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Table 6.1: Space Usages

Floor Space Function

Basement

Pharmacy
File Room

Building Management Service
Electrical and Mechanical rooms

First Floor Ambulatory Care Clinics

Second Floor

Cystoscopy
Procedures Room

Eye Clinic
Ambulatory Care Clinic

6.1 HVAC Systems and Plant

The building is served by 12 AHUs. The model created simulated eight AHUs where similar

AHUs were combined into a single AHU. There are two types of AHUs present in the building:

1. Single Duct Variable Air Volume (SDVAV) with reheat.

2. Single Duct Constant Air Volume (SDCAV) with 100% outside air.

The area each AHU serves, as well as the modelled occupancy schedule is described in Table

6.2. Each AHU was modelled to operate 24 hours a day, seven days per week. For EnergyPlus and

RC models, the exterior zones were further divided, in order to capture solar effects according to

each orientation.

A ramp up and ramp down of 1 hour was simulated for the occupancy during its period. Figure

6.2 displays the occupancy for AHU 15-AC-3 as an example. The electrical/equipment loads were

modelled following the same schedule for the occupancy, except 15% of its peak load remained on

during unoccupied hours, as exemplified in Figure 6.3.

The preheat set point is 49◦F. The cooling coil set point if 55◦F. For the zone temperature, a

constant set point of 72◦F is used.

The electric/lighting peak load is 3 W/ft2, and the peak occupancy is 250 ft2/person.
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Table 6.2: System’s Description

AHU Type Conditioned
Area (ft2)

Interior
Zone
(%)

Window
+ Wall
Area
(ft2)

Window
Percentage
(%)

Roof
Area
(ft2)

Occupancy Schedule

15-AC-1A SDVAV 15,568 100 0 0 0 6 AM to 6 PM on weekdays
15-AC-1B SDCAV 4,597 100 0 0 0 7 AM to 5 PM on weekdays
15-AC-2 SDCAV 12,366 62 5115 30 0 24 hours per day, 7 days a week
15-AC-3 SDCAV 12,684 86 1970 30 0 6 AM to 6 PM on weekdays
15-AC-4 SDCAV 12,366 80 2585 30 0 6 AM to 6 PM on weekdays
15-AC-5 SDCAV 24,733 62 10230 10 24733 7 AM to 6 PM on weekdays
15-AC-6 SDCAV 24,733 86 3930 10 24733 7 AM to 6 PM on weekdays
15-AC-7 SDCAV 24,733 80 5170 10 24733 7 AM to 6 PM on weekdays
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Figure 6.2: Occupancy Schedule Multiplier for AHU 15-AC-3

The building’s mass is assumed to have walls and floors the same as the “Medium Mass”

construction materials used in simulations, for the RC and EnergyPlus models. The plant consists

of two chillers with nominal capacities of 900 tons each, with full-load efficiencies of 0.6 kW/ton

each, and 1 boiler of nominal capacity of 32,000 kBtu/hr, with full-load efficiency of 71%.
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Figure 6.3: Electrical Equipment and Lighting Schedule Multiplier for AHU 15-AC-3

6.2 First Simulation Comparison

Initially, the heating and cooling results were as displayed in Figures 6.4 and 6.5. The annual

cooling and annual heating are similar, as displayed in Table 6.3.

Table 6.3: Annual Uncalibrated Cooling and Heating Consumption

Annual Cooling (MMBtu) Annual Heating (MMBtu)
WinAM 18,461 25,219

RC 18,458 25,360
EnergyPlus 19,454 24,993

The consumption data was given for each billing period, according to Tables 6.4 and 6.5.

The COP for the Chiller is initially assumed as 0.6 kW/ton, or 5.86 kW of cooling per electrical

kW. The boiler efficiency is initially assumed as 71%. These assumptions are made based on the
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Table 6.4: Outpatient Clinic Electric Consumption

Start Date (inclusive) End Date (exclusive) kWh
9/13/2016 10/13/2016 418767

10/13/2016 11/10/2016 325942
11/10/2016 12/14/2016 266120
12/14/2016 1/13/2017 266739
1/13/2017 2/14/2017 385859
2/14/2017 3/16/2017 275176
3/16/2017 4/14/2017 220560
4/14/2017 5/12/2017 235173
5/12/2017 6/13/2017 407945
6/13/2017 7/13/2017 695493
7/13/2017 8/11/2017 802640
8/11/2017 9/12/2017 714556

Table 6.5: Outpatient Clinic Natural Gas Consumption

Start Date (inclusive) End Date (exclusive) MMBtu
9/26/2016 10/25/2016 1596

10/25/2016 11/23/2016 2537
11/23/2016 12/23/2016 3585
12/23/2016 1/25/2017 4363
1/25/2017 2/23/2017 3589
2/23/2017 3/27/2017 4446
3/27/2017 4/26/2017 2470
4/26/2017 5/25/2017 1415
5/25/2017 6/26/2017 1338
6/26/2017 7/26/2017 1106
7/26/2017 8/25/2017 1134
8/25/2017 9/25/2017 1235
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Figure 6.4: Outpatient Clinic Simulated Cooling Consumption
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Figure 6.5: Outpatient Clinic Simulated Heating Consumption
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Table 6.6: Uncalibrated Annual Energy Consumption

Model Electricity (kWh) Natural Gas (MMBtu)
WinAM 3,389,544 35,027

RC 3,308,452 35,659
EnergyPlus 5,528,743 35,598

Measured Data 4,833,505 28,813

CC R⃝ staff from their research on the facility. WinAM and EnergyPlus each gives total electric and

natural gas consumption outputs.

For the RC model, some assumptions were made in order to calculate the plant and system

electrical consumption. It is assumed a constant pump electric consumption of 21.81 kW for the

circulation of chilled water and hot water, which is almost a constant observed value in the WinAM

output through the year. The system’s fan electrical consumption is calculated by P = V̇∆p, where

P is the electrical power, V̇ is the air flow, and ∆p is the pressure difference across the fan, which

is assumed a constant 4 inH2O for all fans. The cooling tower fan is assumed a constant 18.81 kW,

based its average value in the WinAM output.

The initial annual electric and natural gas consumption for each model and the measured data

is displayed in table 6.6. The Total CV-RMSE for each model is calculated according to Equations

3.8 and 3.9, and is displayed in Table 6.7, leading to a calibration process.

Table 6.7: Uncalibrated Model’s CV-RMSE

Model Electricity CV-RMSE Natural Gas CV-RMSE Total CV-RMSE
WinAM 46% 25% 52%

RC 46% 27% 53%
EnergyPlus 169% 26% 171%
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Table 6.8: Calibrated Energy Consumption

Model Electricity (kWh) Natural Gas (MMBtu)
WinAM 5,106,665 29,409

RC 4,665,394 29,785
EnergyPlus 5,610,318 29,968

Measured Data 4,833,505 28,813

6.3 Calibration Process

For WinAM, the calibration assistant tool was used, and the protocol described in Section 3.5

was used in order to calibrate its model, with focus on the plant and system parameters alteration

suggestions. The calibration steps adopted were: alter the COP of the chiller from 0.6 kW/ton to

1.4 kW/ton (or COP of 2.5), alter the Boiler efficiency from 72% to 82%, and alter the pressure

rise across the fan from 2 inH2O to 4 inH2O.

For the RC model, in light of the calibration from WinAM, the chiller’s COP was changed

from 5.86 to 2.23.

For the EnergyPlus model, the calibration required more steps, as follows: Chiller COP was

changed from 5.86 to 2.5, the primary pump for the chilled water and for the heating water were

changed to have a head of 179 kPa, the boiler efficiency was changed to 82%, and the systems fans

changed from having a 0 pressure difference across the fan to 1000 Pa.

After the calibration process was complete, the energy consumption and the Total CV-RMSE

for each model gave the results shown in Tables 6.8 and 6.9 respectively. Note that, even though

these inputs in EnergyPlus yielded high error values, it was the best possible outcome without

using a calibration assistant tool as exists in WinAM. Comparison charts are displayed in Figures

6.6 and 6.7, showing that the models trend similarly to the real consumption.
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Table 6.9: Calibrated Model’s CV-RMSE

Model Electricity CV-RMSE Natural Gas CV-RMSE Total CV-RMSE
WinAM 14% 13% 19%

RC 15% 15% 21%
EnergyPlus 33% 15% 37%
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Figure 6.6: Outpatient Clinic Calibrated Monthly Electric Consumption
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6.4 EEM’s applied to models

Three EEM’s were applied to each model, yielding different results for comparison and analy-

sis. Each EEM was applied individually and its energy and dollar savings analyzed, compared to

the calibrated model.

6.4.1 First EEM: VFD Retrofit

Each model had each AHU altered to a VAV, allowing it to reduce its flow to 50% of its design

flow. Note that this already was possible only for AHU 15-AC-1A, which is unaltered for this

EEM. This yielded the energy and dollar savings displayed in Table 6.10.

Table 6.10: Energy Use and Savings Summary for VFD Retrofit

WinAM
Electricity Natural Gas Total ECI EUI

kWh/year $/year MMBtu/year $/year $/year $/(ft2·year) kBtu/(ft2·year)
Baseline Model 5,106,665 $510,667 29,409 $147,044 $657,711 $4.99 355

Model with VFD Retrofit 3,501,622 $350,162 14,001 $70,005 $420,167 $3.19 197

Savings
1,605,043 $160,504 15,408 $77,040 $237,544 $1.80 158

31% 52% 36% 45%
RC

Electricity Natural Gas Total ECI EUI
kWh/year $/year MMBtu/year $/year $/year $/(ft2·year) kBtu/(ft2·year)

Model with VFD Retrofit 4,665,394 $466,539 29,785 $148,927 $615,466 $4.67 347
Proposed Model 3,443,428 $344,343 12,802 $64,009 $408,352 $3.10 186

Savings
1,221,966 $122,197 16,984 $84,918 $207,115 $1.57 161

26% 57% 34% 46%
EnergyPlus

Electricity Natural Gas Total ECI EUI
kWh/year $/year MMBtu/year $/year $/year $/(ft2·year) kBtu/(ft2·year)

Baseline Model 5,610,318 $561,032 29,968 $149,841 $710,873 $5.39 373
Model with VFD Retrofit 4,485,761 $448,576 13,625 $68,125 $516,701 $3.92 220

Savings
1,124,556 $112,456 16,343 $81,716 $194,171 $1.47 153

20% 55% 27% 41%

It is concerning that the RC model is over-estimating natural gas savings from this EEM. How-

ever, its total dollar and energy savings more closely approximates EnergyPlus estimated percent-

age savings.
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6.4.2 Second EEM: Temperature Deadband

The heating and cooling set points for each model were changed to 75◦F and 70◦F respectively.

This yielded the energy and dollar savings displayed in Table 6.11.

Table 6.11: Energy Use and Savings Summary for Temperature Deadband

WinAM
Electricity Natural Gas Total ECI EUI

kWh/year $/year MMBtu/year $/year $/year $/ft2·year kBtu/ft2·year
Baseline Model 5,106,665 $510,667 29,409 $147,044 $657,711 $4.99 355

Model with Deadband 4,912,842 $491,284 27,800 $139,001 $630,285 $4.78 338

Savings
193,824 $19,382 1,609 $8,044 $27,426 $0.21 17

4% 5% 4% 5%
RC

Electricity Natural Gas Total ECI EUI
kWh/year $/year MMBtu/year $/year $/year $/ft2·year kBtu/ft2·year

Baseline Model 4,665,394 $466,539 29,785 $148,927 $615,466 $4.67 347
Model with Deadband 4,639,249 $463,925 25,636 $128,181 $592,106 $4.49 315

Savings
26,145 $2,615 4,149 $20,746 $23,360 $0.18 32

1% 14% 4% 9%
EnergyPlus

Electricity Natural Gas Total ECI EUI
kWh/year $/year MMBtu/year $/year $/year $/ft2·year kBtu/ft2·year

Baseline Model 5,610,318 $561,032 29,968 $149,841 $710,873 $5.39 373
Model with Deadband 5,612,733 $561,273 26,392 $131,960 $693,233 $5.26 346

Savings
-2415 -$242 3,576 $17,881 $17,640 $0.13 27

-0.04% 12% 2% 7%

This EEM does not provide substantial savings, due to still having seven SDCAV AHUs. The

highest savings in energy consumption is in heating, which the RC and EnergyPlus models present

similar results, 14% and 12% respectively, while WinAM under-estimates it with 5% savings. The

RC presents an under-estimate of electricity savings that can partially be attributed to its calculation

methods to determine electricity from pumps, fans and chiller.

6.4.3 Third EEM: Temperature Setback

A temperature setback was applied for each model. The schedule it followed was always one

hour after occupancy hours ended, and the temperature setback ended one hour before occupancy

hours started, respectively for each AHU. Note that AHU 15-AC-2 was maintained unaltered for
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this EEM. For the night-time temperature setback hours, the cooling and heating setpoints were

changed to 85◦F and 60◦F respectively. This yielded the energy and dollar savings displayed in

Table 6.12.

Table 6.12: Energy Use and Savings Summary for Temperature Setback

WinAM
Electricity Natural Gas Total ECI EUI

kWh/year $/year MMBtu/year $/year $/year $/(ft2·year) kBtu/(ft2·year)
Baseline Model 5,106,665 $510,667 29,409 $147,044 $657,711 $4.99 355

Model with Setback 5,049,188 $504,919 20,897 $104,485 $609,404 $4.62 289

Savings
57,478 $5,748 8,512 $42,559 $48,307 $0.37 66

1% 29% 7% 19%
RC

Electricity Natural Gas Total ECI EUI
kWh/year $/year MMBtu/year $/year $/year $/(ft2·year) kBtu/(ft2·year)

Baseline Model 4,665,394 $466,539 29,785 $148,927 $615,466 $4.67 347
Model with Setback 4,665,394 $466,539 20,757 $103,787 $570,327 $4.33 278

Savings
0 $0 9,028 $45,140 $45,140 $0.34 69

0% 30% 7% 20%
EnergyPlus

Electricity Natural Gas Total ECI EUI
kWh/year $/year MMBtu/year $/year $/year $/(ft2·year) kBtu/(ft2·year)

Baseline Model 5,610,318 $561,032 29,968 $149,841 $710,873 $5.39 373
Model with Setback 5,601,948 $560,195 20,039 $100,193 $660,388 $5.01 297

Savings
8,370 $837 9,930 $49,648 $50,485 $0.38 76

0% 33% 7% 20%

The savings on electricity consumption is barely present in all models, mainly due to having

constant air volume fans, with 100% outside air. The savings for natural gas are similar for all

models.

6.5 All EEMs Applied

When all three EEM’s are applied, it results in the estimated energy savings presented in table

6.13.

When all EEMs are applied, the estimated savings for all models are similar. RC slighty

improved its dollar percentage savings to EnergyPlus estimated savings from the current WinAM

model.
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Table 6.13: Energy Use and Savings Summary after all EEMs are applied

WinAM
Electricity Natural Gas Total ECI EUI

kWh/year $/year MMBtu/year $/year $/year $/(ft2·year) kBtu/(ft2·year)
Baseline Model 5106665 $510,667 29409 $147,044 $657,711 $4.99 355
Proposed Model 3402297 $340,230 7163 $35,816 $376,046 $2.85 142

Savings
1704368 $170,437 22246 $111,228 $281,665 $2.14 213

33% 76% 43% 60%
RC

Electricity Natural Gas Total ECI EUI
kWh/year $/year MMBtu/year $/year $/year $/(ft2·year) kBtu/(ft2·year)

Baseline Model 4665394 $466,539 29785 $148,927 $615,466 $4.67 347
Proposed Model 3347513 $334,751 7073 $35,365 $370,117 $2.81 140

Savings
1317882 $131,788 22712 $113,562 $245,350 $1.86 206

28% 76% 40% 60%
EnergyPlus

Electricity Natural Gas Total ECI EUI
kWh/year $/year MMBtu/year $/year $/year $/(ft2·year) kBtu/(ft2·year)

Baseline Model 5610318 $561,032 29968 $149,841 $710,873 $5.39 373
Proposed Model 3905614 $390,561 8656 $43,279 $433,841 $3.29 167

Savings
1704704 $170,470 21312 $106,562 $277,032 $2.10 206

30% 71% 39% 55%
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7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

From the Simulation Case results, it’s important to highlight that the RC model presented

improved results compared to WinAM in 53 out of 55 cases, when percentage comparisons are

made with EnergyPlus, with the exception of the annual cooling consumptions in Masses, and the

annual heating consumption in Internal Load Variation, but with less than 2% differences in these

cases.

It was also important to capture the “heat effect” in the hour “C” described in Section 3.6.2,

that occurs in Temperature Setback and subsequent cases. No mention of this effect was found in

the literature review.

From the comparison of energy savings from the simulation cases, notably the WinAM model

is generally over predicting savings for temperature setback, and under predicting savings for tem-

perature deadband, especially for annual heating consumption. The extreme cases are of WinAM

over predicting savings for temperature setback such as 47% for annual heating consumption,

while RC predicts 27% and EnergyPlus only predicts 6%, for the building in College Station, and

WinAM under predicting savings for temperature deadband such as 31% for annual heating con-

sumption, while RC predicts 96%, and EnergyPlus predicts 99% savings, for College Station. The

RC model presents improvement from the current WinAM model in more than 95% of the esti-

mated savings when compared to EnergyPlus estimated savings, having worsened only for a light

mass building in Juneau. Tables 7.1, 7.2, 7.3, and 7.4 present the overall savings comparison for

all cases analyzed in the simulation cases.

Table 7.1: Average Cooling and Heating Savings Percentage for Temperature Setback

WinAM RC EnergyPlus
Cooling 11% 3% 2%
Heating 39% 29% 6%
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Table 7.2: Average Cooling and Heating Savings Percentage for Temperature Deadband

WinAM RC EnergyPlus
Cooling 9% 32% 35%
Heating 27% 84% 90%

Table 7.3: Average Cost Savings for Temperature Setback

WinAM RC EnergyPlus
Saving $7,816 $4,067 $1,245

Table 7.4: Average Cost Savings for Temperature Deadband

WinAM RC EnergyPlus
Saving $5,797 $20,807 $22,439

From the Case Study, the RC displayed a slight improvement in the savings consumption when

analyzing the major energy source savings for each EEM. The remainder results are similar. Over-

all, the RC results that had a considerable improvement for the estimated savings, but rather all

models had similar results when all EEMs are applied. This is due to this case not having high

mass and solar impacts that could increase the difference between its cases.

The RC model shows effective results, keeping its format simple, with the addition of few

parameters when compared to WinAM’s current model for the user: the building’s orientation θ,

the solar factor σS , the external wall’s capacitance Cw and the building’s mass capacitance Cm.

The estimated savings are better approximated with EnergyPlus for the majority of cases pre-

sented here, when temperature setback and an increase of the temperature throttling range is pre-

sented. This work shows the importance of including these effects in WinAM, which is a program

designed to estimate savings from simple measures as mentioned.
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7.2 Future Work

From this RC model, further case studies is suggested to analyze the model’s weaknesses

and strengths, and the ease of estimating the additional parameters when compared to the current

WinAM model. A study of different comparison with a different simulation tool besides Energy-

Plus is also suggested to compare if the results are consistent with the ones presented here.

A stability analysis for the Equation 3.3 is proposed, since it uses an explicit algorithm, due to

fast computation. While it did not present any instabilities for the cases studied in this research, it

is important to know for what values of R·C and timesteps it becomes unstable.

It would be of high value to analyze which model has better savings predictions with measured

data from post-EEMs applied.

An analysis of difference on other EEMs is also suggested for the RC model, to analyze the

impact of thermal mass and solar gains in its energy savings predictions.

An improvement in the model’s parameters is also a suggested study, such as the values of Rm,

and the solar gains calculation method, in which based on the literature, has many drawbacks[21].
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APPENDIX A

SINGLE ZONE HIGH R FLOOR PLAN

Number of Floors 1
Number of Zones 1

Height of Each Floor 15 ft
Total Floor Area 90000 ft2
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APPENDIX B

5 ZONES NORMAL R FLOOR PLAN

Number of floors 1
Number of zones per floor 5

Height of each floor 15 ft
Total floor area 90000 ft2

Interior zone floor area 72900 ft2

Each exterior zone floor area 4275 ft2

Interior Zone Z1
Exterior Zones Z2, Z3, Z4, Z5
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APPENDIX C

10 STORIES FLOOR PLAN

Number of floors 10
Number of zones per floor 5

Height of each floor 15 ft
Total floor area 90250 ft2

Sum of interior zones floor area 42250 ft2

Sum of each oriented exterior zone floor area 12000 ft2

Interior Zone Z1
Exterior Zones Z2, Z3, Z4, Z5
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APPENDIX D

EXAMPLE OF SOLAR RADIATION CALCULATION FROM ASHRAE’S CLEAR-SKY

RADIATION MODEL

For an East Wall Surface at College Station TX, calculate the solar radiation received at 08:00

a.m. (Local Standard Time - LST ) on March 6.

Given College Station’s location, Latitude (L) = 30.596 N, Longitude (llocal)= 96.307 W, and

lst = 90 W, where lst is the standard time meridian.

For March 6, n = 65 (day of the year).

From these inputs, as well as the reference values from Table 3.1, all the following parameters

are calculated: declination angle (δS), equation of time (ET ), solar time (ST ), hour angle (hs),

solar altitude angle (α), solar azimuth angle (aS), the air mass (m), beam and diffuse air mass

exponents (b and d).

δs = 23.45osin
[360
365

(284 + n)
]
= 23.45osin

[360
365

(284 + 65)
]
= −6.38o (D.1)

ET (min) = 9.87sin2B − 7.53cosB − 1.5sinB = −12.01min (D.2)

Where B = 360(n− 81)/364 degrees = -15.82 degrees.

ST = LST + ET + (lst − llocal)
4min

degree
= 08 : 22 a.m. (D.3)

hs = (ST − 12)
15o

hr
= −54.31o (D.4)

sinα = cos δscos hs + sin δssinL (D.5)

sinas = cosδssinhs/cosα (D.6)

Yielding α = 26.27o and as = −64.17o.
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m =
1

sinα + 0.50572(6.07995 + α)−1.6364
(D.7)

Interpolating the values for τb and τd from Table 3.1, we can calculate b and d.

b = 1.219− 0.043τb − 0.151τd − 0.204τbτd = 0.6867 (D.8)

d = 0.202 + 0.852τb − 0.007τd − 0.357τbτd = 0.1996 (D.9)

Solar radiation (Ic) on a tilted surface is the sum of the direct beam (Ib,c), sky diffuse (Id,c), and

ground reflected (Ir,c) solar radiation, as described in Equation D.10.

Ic = Ib,c + Id,c + Ir,c (D.10)

The extraterritorial solar radiation is given by Equation D.11.

I = IO

[
1 + 0.034cos

( 360n

365.25

)o]
= 1366.1

(360× 65

365.25

)o]
= 1386W/m2 (D.11)

Where IO is the solar constant.

The direct solar radiation component is described in Equation D.12.

Ib,N = Ie−τbm
b

= 729W/m2 (D.12)

The diffuse solar radiation in a horizontal surface is described in Equation D.13.

Id,h = Ie−τdm
d

= 95W/m2 (D.13)

The angle of incidence i is defined as in Equation D.14.

cos i = cosαcos(as − aw)sinβ + sinαcosβ (D.14)
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Yielding i = 36.18 degrees for an east surface, where β is the surface inclination (90 degrees).

Thus, the bem radiation is as described in Equation D.15.

Ib,c = Ib,N cos i = 588.14W/m2 (D.15)

The diffuse radiation on the surface is obtained by multiplying the sky diffuse radiation on a hori-

zontal surface by the view factor between sky and surface (Equation D.16).

Id,c = Id,h cos
2
(β
2

)
= 47.29W/m2 (D.16)

Assuming, the surface is surrounded by ordinary ground or grass, then ρ = 0.2.

Ir,c = ρ(Ib,N sinα + Id,h)sin
2
(β
2

)
= 41.70W/m2 (D.17)

Therefore, Ic = Ib,c + Id,c + Ir,c = 588.14 + 47.29 + 41.270 = 677.13W/m2.
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APPENDIX E

WINAM CALIBRATION STEPS FOR SETBACK & DEADBAND

E.1 Light Mass Building

• Night Electric Load Ratio from 0.00 to 0.15, reducing the Total CV-RMSE from 5147% to

2535.3%.

• Peak Occupancy from 150 ft2/person to 10 ft2/person, reducing the Total CV-RMSE from

2535.3% to 465.9%.

• Conditioned Floor Area from 90000 ft2 to 81818 ft2, reducing the Total CV-RMSE from

465.9% to 429.1%.

• Minimum Unoccupied Supply Air Flow from 0.15 CFM/ft2 to 0.00 CFM/ft2, reducing the

Total CV-RMSE from 429.1% to 390.5%.

• Peak Occupancy from 10 ft2/person to 16 ft2/person, reducing the Total CV-RMSE from

390.5% to 314.8%.

• Overall U-Value from 0.07 Btu/ft2·◦F·hr to 0.05 Btu/ft2·◦F·hr, reducing the Total CV-RMSE

from 314.8% to 232.0%.

• Conditioned Floor Area from 81818 ft2 to 74380 ft2, reducing the Total CV-RMSE from

232.0% to 208.1%.

• Constant Cooling Coil Set Point from 55◦F to 59.0◦F, reducing the Total CV-RMSE from

208.1% to 191.0%.

• Conditioned Floor Area from 74380 ft2 to 67618 ft2, reducing the Total CV-RMSE from

191.0% to 171.8%.
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• Constant Cooling Coil Set Point from 59.0◦F to 63.0◦F, reducing the Total CV-RMSE from

171.8% to 152.4%.

• Zone Occupied Cooling Set Point from 76◦F to 79.0◦F, reducing the Total CV-RMSE from

152.4% to 142.2%.

• Constant Cooling Coil Set Point from 63.0◦F to 65.8◦F, reducing the Total CV-RMSE from

142.2% to 128.1%.

• Zone Occupied Cooling Set Point from 79◦F to 82.0◦F, reducing the Total CV-RMSE from

128.1% to 119.2%.

• Constant Cooling Coil Set Point from 65.8◦F to 69.8◦F, reducing the Total CV-RMSE from

119.2% to 98.2%.

• Interior Zone Percentage from 81% to 75.4%, reducing the Total CV-RMSE from 98.2% to

88.7%.

• Conditioned Floor Area from 67618 ft2 to 61471 ft2, reducing the Total CV-RMSE from

88.7% to 73.8%.

• Zone Occupied Cooling Set Point from 82◦F to 85.0◦F, reducing the Total CV-RMSE from

73.8% to 70.3%.

• Constant Cooling Coil Set Point from 69.8◦F to 71.1◦F, reducing the Total CV-RMSE from

70.3% to 60.6%.

• Minimum Occupied Supply Air Flow from 0.15 CFM/ft2 to 0.10 CFM/ft2, reducing the Total

CV-RMSE from 60.6% to 56.6%.

• Constant Cooling Coil Set Point from 71.7 ◦F to 72.9◦F, reducing the Total CV-RMSE from

56.6% to 51.3%.
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• Minimum Occupied Supply Air Flow from 0.10 CFM/ft2 to 0.03 CFM/ft2, reducing the Total

CV-RMSE from 56.6% to 47.1%.

• Peak Occupancy from 16 ft2/person to 17 ft2/person, reducing the Total CV-RMSE from

47.1% to 43.5%.

• Zone Occupied Heating Set Point from 70◦F to 67.0◦F, reducing the Total CV-RMSE from

43.5% to 41.0%.

• Conditioned Floor Area from 67471 ft2 to 59777 ft2, reducing the Total CV-RMSE from

41.0% to 39.8%.

• Interior Zone Percentage from 75.4% to 74.1%, reducing the Total CV-RMSE from 39.8%

to 37.5%.

• Conditioned Floor Area from 59777 ft2 to 58130 ft2, reducing the Total CV-RMSE from

37.5% to 36.5%.

• Interior Zone Percentage from 74.1% to 72.8%, reducing the Total CV-RMSE from 36.5%

to 34.4%.

• Conditioned Floor Area from 58130 ft2 to 57142 ft2, reducing the Total CV-RMSE from

34.4% to 33.7%.

• Interior Zone Percentage from 72.8% to 71.5%, reducing the Total CV-RMSE from 33.7%

to 32.4%.

• Conditioned Floor Area from 57142 ft2 to 56171 ft2, reducing the Total CV-RMSE from

32.4% to 31.4%.

• Zone Occupied Heating Set Point from 67.0◦F to 65.6◦F, reducing the Total CV-RMSE from

41.4% to 30.7%.
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• Constant Cooling Coil Set Point from 72.9◦F to 73.0◦F, reducing the Total CV-RMSE from

30.7% to 30.1%.

• Interior Zone Percentage from 71.5% to 70.2%, reducing the Total CV-RMSE from 30.1%

to 29.3%.

• Conditioned Floor Area from 56171 ft2 to 54624 ft2, reducing the Total CV-RMSE from

29.3% to 28.0%.

• Interior Zone Percentage from 70.2% to 68.9%, reducing the Total CV-RMSE from 28.0%

to 26.7%.

• Conditioned Floor Area from 54624 ft2 to 54110 ft2, reducing the Total CV-RMSE from

26.7% to 26.3%.

• Zone Occupied Heating Set Point from 65.6◦F to 65.0◦F, reducing the Total CV-RMSE from

26.3% to 26.1%.

• Constant Preheat Coil Set Point from 35◦F to 35.4◦F, reducing the CV-RMSE from 26.1%

to 25.9%.

• Zone Unoccupied Cooling Set Point from 85◦F to 109.0◦F, reducing the Total CV-RMSE

from 25.9% to 24.1%.

• Constant Preheat Coil Set Point from 35.4◦F to 35.8◦F, reducing the CV-RMSE from 24.1%

to 23.9%.

• Minimum Occupied Supply Air Flow from 0.03 CFM/ft2 to 0.01 CFM/ft2, reducing the Total

CV-RMSE from 23.9% to 23.3%.

• Conditioned Floor Area from 54110 ft2 to 53601 ft2, reducing the Total CV-RMSE from

23.3% to 23.1%.
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• Interior Zone Percentage from 68.9% to 67.6%, reducing the Total CV-RMSE from 23.3%

to 22.7%.

• Conditioned Floor Area from 53601 ft2 to 52690 ft2, reducing the Total CV-RMSE from

22.7% to 21.9%.

• Zone Unoccupied Heating Set Point from 65◦F to 64.9◦F, reducing the Total CV-RMSE from

21.9% to 21.7%.

• Constant Preheat Coil Set Point from 35.8◦F to 36.2◦F, reducing the CV-RMSE from 21.7%

to 21.6%.

• Zone Unoccupied Heating Set Point from 64.9◦F to 64.6◦F, reducing the Total CV-RMSE

from 21.6% to 21.2%.

• Conditioned Floor Area from 52690 ft2 to 52195 ft2, reducing the Total CV-RMSE from

21.2% to 20.8%.

• Zone Occupied Heating Set Point from 65.0◦F to 64.7◦F, reducing the Total CV-RMSE from

20.8% to 20.7%.

• Maximum Primary Flow from 1 CFM/ft2 to 0.98 CFM/ft2, reducing the Total CV-RMSE

from 20.7% to 20.6%.

E.2 Medium Mass Building

• Night Electric Load Ratio from 0.00 to 0.15, reducing the Total CV-RMSE from 5434% to

2682.0%.

• Peak Occupancy from 150 ft2/person to 10 ft2/person, reducing the Total CV-RMSE from

2682.0% to 472.5%.
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• Conditioned Floor Area from 90000 ft2 to 81818 ft2, reducing the Total CV-RMSE from

472.5% to 438.1%.

• Minimum Unoccupied Supply Air Flow from 0.15 CFM/ft2 to 0.00 CFM/ft2, reducing the

Total CV-RMSE from 438.1% to 391.7%.

• Peak Occupancy from 10 ft2/person to 16 ft2/person, reducing the Total CV-RMSE from

391.7% to 330.6%.

• Interior Zone Percentage from 81% to 51.0%, reducing the Total CV-RMSE from 330.6%

to 233.1%.

• Conditioned Floor Area from 81818 ft2 to 74380 ft2, reducing the Total CV-RMSE from

233.1% to 209.1%.

• Constant Cooling Coil Set Point from 55◦F to 59.0◦F, reducing the Total CV-RMSE from

209.1% to 189.1%.

• Conditioned Floor Area from 74380 ft2 to 67618 ft2, reducing the Total CV-RMSE from

189.1% to 169.3%.

• Constant Cooling Coil Set Point from 59.0◦F to 63.0◦F, reducing the Total CV-RMSE from

169.3% to 146.9%.

• Zone Occupied Cooling Set Point from 76◦F to 79.0◦F, reducing the Total CV-RMSE from

146.9% to 136.5%.

• Constant Cooling Coil Set Point from 63.0◦F to 65.8◦F, reducing the Total CV-RMSE from

136.5% to 122.8%.

• Zone Occupied Cooling Set Point from 79.0◦F to 82.0◦F, reducing the Total CV-RMSE from

122.8% to 113.4%.
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• Constant Cooling Coil Set Point from 65.8◦F to 69.8◦F, reducing the Total CV-RMSE from

113.4% to 96.5%.

• Zone Occupied Cooling Set Point from 82.0◦F to 85.0◦F, reducing the Total CV-RMSE from

96.5% to 88.5%.

• Constant Cooling Coil Set Point from 69.8◦F to 71.7◦F, reducing the Total CV-RMSE from

88.5% to 84.5

• Minimum Occupied Supply Air Flow from 0.15 CFM/ft2 to 0.05 CFM/ft2, reducing the Total

CV-RMSE from 84.5% to 71.9%.

• Constant Cooling Coil Set Point from 71.7◦F to 72.9◦F, reducing the Total CV-RMSE from

71.9% to 63.6

• Zone Unoccupied Heating Set Point from 65◦F to 64.4◦F, reducing the Total CV-RMSE from

63.6% to 62.5%.

• Conditioned Floor Area from 67618 ft2 to 64763 ft2, reducing the Total CV-RMSE from

62.5% to 58.9%.

• Zone Unoccupied Heating Set Point from 64.4◦F to 63.0◦F, reducing the Total CV-RMSE

from 58.9% to 55.3%.

• Conditioned Floor Area from 64763 ft2 to 62029 ft2, reducing the Total CV-RMSE from

58.9% to 50.9%.

• Minimum Occupied Supply Air Flow from 0.05 CFM/ft2 to 0.00 CFM/ft2, reducing the Total

CV-RMSE from 50.9% to 48.1%.

• Conditioned Floor Area from 62029 ft2 to 60320 ft2, reducing the Total CV-RMSE from

48.1% to 45.4%.
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• Zone Occupied Heating Set Point from 70◦F to 67.0◦F, reducing the Total CV-RMSE from

45.4% to 44.0%.

• Conditioned Floor Area from 60320 ft2 to 58658 ft2, reducing the Total CV-RMSE from

44.0% to 41.9%.

• Zone Unoccupied Heating Set Point from 63.0◦F to 62.4◦F, reducing the Total CV-RMSE

from 41.9% to 40.0%.

• Conditioned Floor Area from 58658 ft2 to 57661 ft2, reducing the Total CV-RMSE from

40.0% to 38.7%.

• Zone Occupied Heating Set Point from 67.0◦F to 64.9◦F, reducing the Total CV-RMSE from

38.7% to 37.7%.

• Conditioned Floor Area from 57661 ft2 to 56681 ft2, reducing the Total CV-RMSE from

37.7% to 36.5%.

• Zone Unoccupied Heating Set Point from 62.4◦F to 61.8◦F, reducing the Total CV-RMSE

from 36.5% to 35.5%.

• Conditioned Floor Area from 56681 ft2 to 55119 ft2, reducing the Total CV-RMSE from

35.5% to 33.6%.

• Zone Occupied Heating Set Point from 64.9◦F to 61.9◦F, reducing the Total CV-RMSE from

33.6% to 32.3%.

• Conditioned Floor Area from 55119 ft2 to 54182 ft2, reducing the Total CV-RMSE from

32.3% to 31.0%.

• Zone Unoccupied Heating Set Point from 61.8◦F to 61.5◦F, reducing the Total CV-RMSE

from 31.0% to 30.4%.
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• Conditioned Floor Area from 54182 ft2 to 53261 ft2, reducing the Total CV-RMSE from

30.4% to 29.6%.

• Zone Unoccupied Heating Set Point from 61.5◦F to 61.2◦F, reducing the Total CV-RMSE

from 29.6% to 28.8%.

• Conditioned Floor Area from 53261 ft2 to 52760 ft2, reducing the Total CV-RMSE from

28.8% to 28.5%.

• Zone Unoccupied Heating Set Point from 61.2◦F to 60.9◦F, reducing the Total CV-RMSE

from 28.5% to 27.9%.

• Conditioned Floor Area from 52760 ft2 to 51863 ft2, reducing the Total CV-RMSE from

27.9% to 27.5%.

• Minimum Unoccupied Outside Air from 25% to 20.3%, reducing the Total CV-RMSE from

27.5% to 26.7%.

• Zone Unoccupied Cooling Set Point from 85◦F to 94.0◦F, reducing the Total CV-RMSE

from 26.7% to 25.4%.

• Zone Occupied Cooling Set Point from 85.0◦F to 85.3◦F, reducing the Total CV-RMSE from

25.4% to 25.1%.

• Conditioned Floor Area from 51863 ft2 to 50981 ft2, reducing the Total CV-RMSE from

25.1% to 23.8%.

• Static Pressure Set Point from 0 inH2O to 0.15 inH2O, reducing the Total CV-RMSE from

23.8% to 23.3%.

• Zone Unoccupied Cooling Set Point from 94.0◦F to 103.0◦F, reducing the Total CV-RMSE

from 23.3% to 22.7%.
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• Conditioned Floor Area from 50981 ft2 to 50780 ft2, reducing the Total CV-RMSE from

22.7% to 22.5%.

• Zone Occupied Heating Set Point from 61.9◦F to 61.0◦F, reducing the Total CV-RMSE from

22.5% to 22.2%.

• Conditioned Floor Area from 50780 ft2 to 50303 ft2, reducing the Total CV-RMSE from

22.5% to 21.9%.

• Minimum Unoccupied Outside Air from 20.3% to 16.5%, reducing the Total CV-RMSE

from 21.9% to 21.5%.

• Conditioned Floor Area from 50303 ft2 to 49830 ft2, reducing the Total CV-RMSE from

21.5% to 21.2%.

• Minimum Unoccupied Outside Air from 16.5% to 13.4%, reducing the Total CV-RMSE

from 21.2% to 20.9%.

• Conditioned Floor Area from 49830 ft2 to 49362 ft2, reducing the Total CV-RMSE from

20.9% to 20.7%.

• Minimum Unoccupied Outside Air from 13.4% to 9.3%, reducing the Total CV-RMSE from

20.7% to 20.4%.

• Conditioned Floor Area from 49362 ft2 to 48898 ft2, reducing the Total CV-RMSE from

20.4% to 20.1%.

• Minimum Unoccupied Outside Air from 9.3% to 6.5%, reducing the Total CV-RMSE from

20.1% to 19.9%.

• Zone Unoccupied Cooling Set Point from 103.0◦F to 106.0◦F, reducing the Total CV-RMSE

from 19.9% to 19.8%.
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E.3 Heavy Mass Building

• Night Electric Load Ratio from 0.00 to 0.15, reducing the Total CV-RMSE from 5765% to

2851.0%.

• Peak Occupancy from 150 ft2/person to 10 ft2/person, reducing the Total CV-RMSE from

2851.0% to 480.1%.

• Minimum Unoccupied Supply Air Flow from 0.15 CFM/ft2 to 0.00 CFM/ft2, reducing the

Total CV-RMSE from 480.1% to 441.5%.

• Peak Occupancy from 10 ft2/person to 16 ft2/person, reducing the Total CV-RMSE from

441.5% to 339.8%.

• Overall U-Value from 0.07 Btu/ft2·◦F·hr to 0.05 Btu/ft2·◦F·hr, reducing the Total CV-RMSE

from 339.8% to 265.1%.

• Conditioned Floor Area from 90000 ft2 to 74380 ft2, reducing the Total CV-RMSE from

265.1% to 217.5%.

• Constant Cooling Coil Set Point from 55◦F to 63.0◦F, reducing the Total CV-RMSE from

217.5% to 176.5%.

• Conditioned Floor Area from 74380 ft2 to 67618 ft2, reducing the Total CV-RMSE from

176.5% to 162.7%.

• Interior Zone Percentage from 81% to 71.9%, reducing the Total CV-RMSE from 162.7%

to 145.1%.

• Peak Occupancy from 16 ft2/person to 22 ft2/person, reducing the Total CV-RMSE from

145.1% to 122.1%.

• Interior Zone Percentage from 71.9% to 58.0%, reducing the Total CV-RMSE from 122.1%

to 97.9%.
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• Constant Cooling Coil Set Point from 63◦F to 65.8◦F, reducing the Total CV-RMSE from

97.9% to 84.8%.

• Zone Occupied Cooling Set Point from 76◦F to 79.0◦F, reducing the Total CV-RMSE from

84.8% to 76.9%.

• Conditioned Floor Area from 67618 ft2 to 61471 ft2, reducing the Total CV-RMSE from

76.9% to 65.9%.

• Zone Occupied Cooling Set Point from 79.0◦F to 82.0◦F, reducing the Total CV-RMSE from

65.9% to 56.5%.

• Zone Occupied Heating Set Point from 70◦F to 67.0◦F, reducing the Total CV-RMSE from

56.5% to 51.5%.

• Constant Cooling Coil Set Point from 65.8◦F to 68.6◦F, reducing the Total CV-RMSE from

51.5% to 47.1%.

• Zone Occupied Cooling Set Point from 82.0◦F to 85.0◦F, reducing the Total CV-RMSE from

47.1% to 41.2%.

• Minimum Occupied Supply Air Flow from 0.15 CFM/ft2 to 0.12 CFM/ft2, reducing the Total

CV-RMSE from 41.2% to 38.2%.

• Constant Cooling Coil Set Point from 68.6◦F to 70.5◦F, reducing the Total CV-RMSE from

38.2% to 33.8%.

• Minimum Occupied Supply Air Flow from 0.12 CFM/ft2 to 0.10 CFM/ft2, reducing the Total

CV-RMSE from 33.8% to 31.1%.

• Constant Cooling Coil Set Point from 70.5◦F to 71.2◦F, reducing the Total CV-RMSE from

31.1% to 29.5%.
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• Minimum Occupied Supply Air Flow from 0.10 CFM/ft2 to 0.08 CFM/ft2, reducing the Total

CV-RMSE from 29.5% to 28.1%.

• Constant Cooling Coil Set Point from 71.2◦F to 72.4◦F, reducing the Total CV-RMSE from

28.1% to 25.6%.

• Minimum Occupied Supply Air Flow from 0.08 CFM/ft2 to 0.06 CFM/ft2, reducing the Total

CV-RMSE from 25.6% to 23.0%.

• Maximum Primary Flow from 1 CFM/ft2 to 1.50 CFM/ft2, reducing the Total CV-RMSE

from 23.0% to 22.1%.

• Constant Cooling Coil Set Point from 72.4◦F to 72.6◦F, reducing the Total CV-RMSE from

22.1% to 21.5%.

• Zone Unoccupied Cooling Set Point from 85◦F to 88.0◦F, reducing the Total CV-RMSE

from 21.5% to 21.2%.

• Maximum Primary Flow from 1.50 CFM/ft2 to 2.00 CFM/ft2, reducing the Total CV-RMSE

from 21.2% to 20.9%.

• Minimum Occupied Supply Air Flow from 0.06 CFM/ft2 to 0.05 CFM/ft2, reducing the Total

CV-RMSE from 20.9% to 20.3%.

• Constant Preheat Coil Set Point from 35◦F to 35.4◦F, reducing the Total CV-RMSE from

20.3% to 19.9%.

• Zone Unoccupied Cooling Set Point from 88.0◦F to 94.0◦F, reducing the Total CV-RMSE

from 19.9% to 19.5%.

• Zone Occupied Heating Set Point from 67.0◦F to 66.1◦F, reducing the Total CV-RMSE from

19.5% to 19.3%.
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• Conditioned Floor Area from 61471 ft2 to 60893 ft2, reducing the Total CV-RMSE from

19.3% to 19.0%.

• Minimum Occupied Supply Air Flow from 0.05 CFM/ft2 to 0.04 CFM/ft2, reducing the Total

CV-RMSE from 19.0% to 18.5%.

• Conditioned Floor Area from 60893 ft2 to 60321 ft2, reducing the Total CV-RMSE from

18.5% to 18.2%.

• Minimum Occupied Supply Air Flow from 0.04 CFM/ft2 to 0.03 CFM/ft2, reducing the Total

CV-RMSE from 18.2% to 17.9%.

• Constant Cooling Coil Set Point from 72.6◦F to 72.7◦F, reducing the Total CV-RMSE from

17.9% to 17.5%.

• Zone Occupied Heating Set Point from 66.1◦F to 65.2◦F, reducing the Total CV-RMSE from

17.5% to 17.4%.

• Conditioned Floor Area from 60321 ft2 to 60084 ft2, reducing the Total CV-RMSE from

17.4% to 17.2%.

• Zone Unoccupied Cooling Set Point from 94.0◦F to 100.0◦F, reducing the Total CV-RMSE

from 17.2% to 17.0%.
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APPENDIX F

COMPARISON TABLES FOR EACH CITY FROM 6 CLIMATES

Table F.1: Annual Consumption for Chicago: Type 1 Building

WinAM Total Cooling (MMBTU) 2913
WinAM Total Heating (MMBTU) 1344

RC LightMass Total Cooling (MMBTU) 2614
RC LightMass Total Heating (MMBTU) 389

RC MediumMass Total Cooling (MMBTU) 2563
RC MediumMass Total Heating (MMBTU) 353
RC HeavyMass Total Cooling (MMBTU) 2546
RC HeavyMass Total Heating (MMBTU) 343

EnergyPlus LightMass Total Cooling (MMBTU) 2462
EnergyPlus LightMass Total Heating (MMBTU) 420

EnergyPlus MediumMass Total Cooling (MMBTU) 2460
EnergyPlus MediumMass Total Heating (MMBTU) 418
EnergyPlus HeavyMass Total Cooling (MMBTU) 2458
EnergyPlus HeavyMass Total Heating (MMBTU) 416
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Table F.2: Annual Consumption for Chicago: Type 2 Building

WinAM Total Cooling (MMBTU) 2891
WinAM Total Heating (MMBTU) 1531

RC LightMass Total Cooling (MMBTU) 2473
RC LightMass Total Heating (MMBTU) 677

RC MediumMass Total Cooling (MMBTU) 2431
RC MediumMass Total Heating (MMBTU) 636
RC HeavyMass Total Cooling (MMBTU) 2410
RC HeavyMass Total Heating (MMBTU) 616

EnergyPlus LightMass Total Cooling (MMBTU) 2352
EnergyPlus LightMass Total Heating (MMBTU) 747

EnergyPlus MediumMass Total Cooling (MMBTU) 2348
EnergyPlus MediumMass Total Heating (MMBTU) 744
EnergyPlus HeavyMass Total Cooling (MMBTU) 2344
EnergyPlus HeavyMass Total Heating (MMBTU) 742

Table F.3: Comparison Between Models for Chicago: Type 1 Building

Building Construction WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and Ener-
gyPlus Heat-
ing

Light Mass 11.48% 245.80% 18.33% 220.30% 6.15% 7.96%
Medium Mass 13.67% 281.00% 18.43% 221.76% 4.18% 18.41%
Heavy Mass 14.44% 291.89% 18.51% 223.38% 3.55% 21.19%

Table F.4: Comparison Between Models for Chicago: Type 2 Building

Building Construction WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and Ener-
gyPlus Heat-
ing

Light Mass 16.92% 126.09% 22.95% 104.87% 5.15% 10.35%
Medium Mass 18.94% 140.76% 23.13% 105.80% 3.53% 16.99%
Heavy Mass 19.97% 148.44% 23.35% 106.32% 2.81% 20.41%
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Table F.5: Annual Consumption for Denver: Type 1 Building

WinAM Total Cooling (MMBTU) 2657
WinAM Total Heating (MMBTU) 1412

RC LightMass Total Cooling (MMBTU) 2305
RC LightMass Total Heating (MMBTU) 339

RC MediumMass Total Cooling (MMBTU) 2239
RC MediumMass Total Heating (MMBTU) 287
RC HeavyMass Total Cooling (MMBTU) 2223
RC HeavyMass Total Heating (MMBTU) 275

EnergyPlus LightMass Total Cooling (MMBTU) 2040
EnergyPlus LightMass Total Heating (MMBTU) 204

EnergyPlus MediumMass Total Cooling (MMBTU) 2037
EnergyPlus MediumMass Total Heating (MMBTU) 202
EnergyPlus HeavyMass Total Cooling (MMBTU) 2035
EnergyPlus HeavyMass Total Heating (MMBTU) 200

Table F.6: Annual Consumption for Denver: Type 2 Building

WinAM Total Cooling (MMBTU) 2627
WinAM Total Heating (MMBTU) 1592

RC LightMass Total Cooling (MMBTU) 2161
RC LightMass Total Heating (MMBTU) 625

RC MediumMass Total Cooling (MMBTU) 2111
RC MediumMass Total Heating (MMBTU) 564
RC HeavyMass Total Cooling (MMBTU) 2096
RC HeavyMass Total Heating (MMBTU) 545

EnergyPlus LightMass Total Cooling (MMBTU) 1926
EnergyPlus LightMass Total Heating (MMBTU) 584

EnergyPlus MediumMass Total Cooling (MMBTU) 1921
EnergyPlus MediumMass Total Heating (MMBTU) 578
EnergyPlus HeavyMass Total Cooling (MMBTU) 1920
EnergyPlus HeavyMass Total Heating (MMBTU) 575

Table F.7: Comparison Between Models for Denver: Type 1 Building

Building Construction WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and Ener-
gyPlus Heat-
ing

Light Mass 15.27% 316.57% 30.26% 592.18% 13.01% 66.16%
Medium Mass 18.67% 391.61% 30.46% 599.08% 9.93% 42.20%
Heavy Mass 19.51% 413.99% 30.57% 604.25% 9.25% 37.02%
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Table F.8: Comparison Between Models for Denver: Type 2 Building

Building Construction WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and Ener-
gyPlus Heat-
ing

Light Mass 21.56% 154.53% 36.37% 172.33% 12.19% 6.99%
Medium Mass 24.44% 182.33% 36.77% 175.36% 9.91% 2.53%
Heavy Mass 25.34% 192.14% 36.82% 176.70% 9.16% 5.58%

Table F.9: Annual Consumption for El Paso: Type 1 Building

WinAM Total Cooling (MMBTU) 3551
WinAM Total Heating (MMBTU) 872

RC LightMass Total Cooling (MMBTU) 3246
RC LightMass Total Heating (MMBTU) 81

RC MediumMass Total Cooling (MMBTU) 3187
RC MediumMass Total Heating (MMBTU) 62
RC HeavyMass Total Cooling (MMBTU) 3170
RC HeavyMass Total Heating (MMBTU) 59

EnergyPlus LightMass Total Cooling (MMBTU) 3076
EnergyPlus LightMass Total Heating (MMBTU) 21

EnergyPlus MediumMass Total Cooling (MMBTU) 3073
EnergyPlus MediumMass Total Heating (MMBTU) 21
EnergyPlus HeavyMass Total Cooling (MMBTU) 3074
EnergyPlus HeavyMass Total Heating (MMBTU) 20

Table F.10: Annual Consumption for El Paso: Type 2 Building

WinAM Total Cooling (MMBTU) 3558
WinAM Total Heating (MMBTU) 949

RC LightMass Total Cooling (MMBTU) 2994
RC LightMass Total Heating (MMBTU) 182

RC MediumMass Total Cooling (MMBTU) 2930
RC MediumMass Total Heating (MMBTU) 154
RC HeavyMass Total Cooling (MMBTU) 2911
RC HeavyMass Total Heating (MMBTU) 144

EnergyPlus LightMass Total Cooling (MMBTU) 2695
EnergyPlus LightMass Total Heating (MMBTU) 182

EnergyPlus MediumMass Total Cooling (MMBTU) 2690
EnergyPlus MediumMass Total Heating (MMBTU) 177
EnergyPlus HeavyMass Total Cooling (MMBTU) 2692
EnergyPlus HeavyMass Total Heating (MMBTU) 174
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Table F.11: Comparison Between Models for El Paso: Type 1 Building

Building Construction WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and Ener-
gyPlus Heat-
ing

Light Mass 9.38% 971.49% 15.45% 4040.95% 5.55% 286.47%
Medium Mass 11.43% 1302.73% 15.53% 4146.21% 3.68% 202.71%
Heavy Mass 12.00% 1386.18% 15.52% 4249.81% 3.15% 192.68%

Table F.12: Comparison Between Models for El Paso: Type 2 Building

Building Construction WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and Ener-
gyPlus Heat-
ing

Light Mass 18.87% 422.44% 32.02% 420.24% 11.07% 0.42%
Medium Mass 21.43% 517.11% 32.28% 437.43% 8.94% 14.83%
Heavy Mass 22.26% 560.65% 32.17% 445.71% 8.11% 21.06%

Table F.13: Annual Consumption for Juneau: Type 1 Building

WinAM Total Cooling (MMBTU) 1850
WinAM Total Heating (MMBTU) 1681

RC LightMass Total Cooling (MMBTU) 1558
RC LightMass Total Heating (MMBTU) 525

RC MediumMass Total Cooling (MMBTU) 1519
RC MediumMass Total Heating (MMBTU) 474
RC HeavyMass Total Cooling (MMBTU) 1507
RC HeavyMass Total Heating (MMBTU) 460

EnergyPlus LightMass Total Cooling (MMBTU) 1416
EnergyPlus LightMass Total Heating (MMBTU) 652

EnergyPlus MediumMass Total Cooling (MMBTU) 1415
EnergyPlus MediumMass Total Heating (MMBTU) 651
EnergyPlus HeavyMass Total Cooling (MMBTU) 1415
EnergyPlus HeavyMass Total Heating (MMBTU) 650
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Table F.14: Annual Consumption for Juneau: Type 2 Building

WinAM Total Cooling (MMBTU) 1783
WinAM Total Heating (MMBTU) 1926

RC LightMass Total Cooling (MMBTU) 1569
RC LightMass Total Heating (MMBTU) 925

RC MediumMass Total Cooling (MMBTU) 1550
RC MediumMass Total Heating (MMBTU) 864
RC HeavyMass Total Cooling (MMBTU) 1543
RC HeavyMass Total Heating (MMBTU) 841

EnergyPlus LightMass Total Cooling (MMBTU) 1549
EnergyPlus LightMass Total Heating (MMBTU) 1076

EnergyPlus MediumMass Total Cooling (MMBTU) 1548
EnergyPlus MediumMass Total Heating (MMBTU) 1072
EnergyPlus HeavyMass Total Cooling (MMBTU) 1547
EnergyPlus HeavyMass Total Heating (MMBTU) 1072

Table F.15: Comparison Between Models for Juneau: Type 1 Building

Building Construction WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and Ener-
gyPlus Heat-
ing

Light Mass 18.72% 219.95% 30.65% 157.91% 10.05% 24.05%
Medium Mass 21.81% 254.37% 30.72% 158.20% 7.31% 37.25%
Heavy Mass 22.72% 265.54% 30.77% 158.51% 6.56% 41.40%

Table F.16: Comparison Between Models for Juneau: Type 2 Building

Building Construction WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and Ener-
gyPlus Heat-
ing

Light Mass 13.66% 108.22% 15.07% 78.90% 1.24% 16.39%
Medium Mass 15.05% 122.83% 15.20% 79.54% 0.13% 24.11%
Heavy Mass 15.57% 128.89% 15.25% 79.58% 0.28% 27.46%
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Table F.17: Annual Consumption for Las Vegas: Type 1 Building

WinAM Total Cooling (MMBTU) 3705
WinAM Total Heating (MMBTU) 814

RC LightMass Total Cooling (MMBTU) 3421
RC LightMass Total Heating (MMBTU) 74

RC MediumMass Total Cooling (MMBTU) 3349
RC MediumMass Total Heating (MMBTU) 57
RC HeavyMass Total Cooling (MMBTU) 3333
RC HeavyMass Total Heating (MMBTU) 55

EnergyPlus LightMass Total Cooling (MMBTU) 3323
EnergyPlus LightMass Total Heating (MMBTU) 24

EnergyPlus MediumMass Total Cooling (MMBTU) 3320
EnergyPlus MediumMass Total Heating (MMBTU) 23
EnergyPlus HeavyMass Total Cooling (MMBTU) 3320
EnergyPlus HeavyMass Total Heating (MMBTU) 23

Table F.18: Annual Consumption for Las Vegas: Type 2 Building

WinAM Total Cooling (MMBTU) 3756
WinAM Total Heating (MMBTU) 902

RC LightMass Total Cooling (MMBTU) 3206
RC LightMass Total Heating (MMBTU) 168

RC MediumMass Total Cooling (MMBTU) 3130
RC MediumMass Total Heating (MMBTU) 143
RC HeavyMass Total Cooling (MMBTU) 3109
RC HeavyMass Total Heating (MMBTU) 134

EnergyPlus LightMass Total Cooling (MMBTU) 2919
EnergyPlus LightMass Total Heating (MMBTU) 199

EnergyPlus MediumMass Total Cooling (MMBTU) 2911
EnergyPlus MediumMass Total Heating (MMBTU) 195
EnergyPlus HeavyMass Total Cooling (MMBTU) 2911
EnergyPlus HeavyMass Total Heating (MMBTU) 192

Table F.19: Comparison Between Models for Las Vegas: Type 1 Building

Building Construction WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and Ener-
gyPlus Heat-
ing

Light Mass 8.30% 993.22% 11.48% 3282.34% 2.94% 209.39%
Medium Mass 10.61% 1319.43% 11.57% 3367.96% 0.87% 144.32%
Heavy Mass 11.15% 1388.02% 11.57% 3461.36% 0.38% 139.34%
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Table F.20: Comparison Between Models for Las Vegas: Type 2 Building

Building Construction WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and Ener-
gyPlus Heat-
ing

Light Mass 17.16% 436.36% 28.67% 352.35% 9.83% 18.57%
Medium Mass 19.99% 531.78% 29.02% 363.08% 7.53% 36.43%
Heavy Mass 20.79% 574.42% 29.03% 370.25% 6.82% 43.42%

Table F.21: Annual Consumption for New York: Type 1 Building

WinAM Total Cooling (MMBTU) 3096
WinAM Total Heating (MMBTU) 1093

RC LightMass Total Cooling (MMBTU) 2785
RC LightMass Total Heating (MMBTU) 218

RC MediumMass Total Cooling (MMBTU) 2738
RC MediumMass Total Heating (MMBTU) 187
RC HeavyMass Total Cooling (MMBTU) 2721
RC HeavyMass Total Heating (MMBTU) 177

EnergyPlus LightMass Total Cooling (MMBTU) 2647
EnergyPlus LightMass Total Heating (MMBTU) 228

EnergyPlus MediumMass Total Cooling (MMBTU) 2646
EnergyPlus MediumMass Total Heating (MMBTU) 227
EnergyPlus HeavyMass Total Cooling (MMBTU) 2645
EnergyPlus HeavyMass Total Heating (MMBTU) 225

Table F.22: Annual Consumption for New York: Type 2 Building

WinAM Total Cooling (MMBTU) 3064
WinAM Total Heating (MMBTU) 1207

RC LightMass Total Cooling (MMBTU) 2628
RC LightMass Total Heating (MMBTU) 425

RC MediumMass Total Cooling (MMBTU) 2583
RC MediumMass Total Heating (MMBTU) 385
RC HeavyMass Total Cooling (MMBTU) 2562
RC HeavyMass Total Heating (MMBTU) 368

EnergyPlus LightMass Total Cooling (MMBTU) 2514
EnergyPlus LightMass Total Heating (MMBTU) 521

EnergyPlus MediumMass Total Cooling (MMBTU) 2510
EnergyPlus MediumMass Total Heating (MMBTU) 518
EnergyPlus HeavyMass Total Cooling (MMBTU) 2508
EnergyPlus HeavyMass Total Heating (MMBTU) 516
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Table F.23: Comparison Between Models for New York: Type 1 Building

Building Construction WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and Ener-
gyPlus Heat-
ing

Light Mass 11.16% 400.46% 16.93% 380.12% 5.19% 4.24%
Medium Mass 13.07% 485.18% 17.00% 382.19% 3.48% 21.36%
Heavy Mass 13.78% 517.67% 17.05% 386.39% 2.88% 26.99%

Table F.24: Comparison Between Models for New York: Type 2 Building

Building Construction WinAM and RC
Cooling

WinAM and RC
Heating

WinAM and
EnergyPlus
Cooling

WinAM and
EnergyPlus
Heating

RC and
EnergyPlus
Cooling

RC and Ener-
gyPlus Heat-
ing

Light Mass 16.60% 184.24% 21.89% 131.63% 4.54% 22.71%
Medium Mass 18.62% 213.45% 22.05% 133.01% 2.90% 34.52%
Heavy Mass 19.59% 228.44% 22.16% 133.87% 2.14% 40.44%
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APPENDIX G

COMPARISON TABLES FOR SAVINGS FROM NIGHT-TIME TEMPERATURE SETBACK

AND FROM TEMPERATURE DEADBAND
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Table G.1: Annual Energy Savings for each City with Temperature Setback

College Station Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 392 106 123 392 116 78 392 118 72
Heating 767 563 89 767 455 85 767 418 82

Chicago Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 396 129 27 396 122 61 396 121 58
Heating 782 705 122 782 584 113 782 539 111

Denver Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 398 136 81 398 133 78 398 132 71
Heating 787 756 120 787 624 114 787 574 108

El Paso Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 392 81 98 392 87 92 392 88 86
Heating 767 614 100 767 499 93 767 460 88

Juneau Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 399 149 53 399 131 53 399 125 51
Heating 790 819 125 790 682 123 790 629 121

Las Vegas Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 387 112 96 387 122 90 387 122 83
Heating 748 585 95 748 474 90 748 435 84

New York Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 396 121 60 396 115 58 396 113 56
Heating 781 661 107 781 542 105 781 499 104
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Table G.2: Annual Energy Savings for each City with Temperature Deadband

College Station Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 348 1565 1801 348 1545 1776 348 1548 1767
Heating 508 1504 1598 508 1465 1576 508 1458 1572

Chicago Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 309 1199 1393 309 1194 1380 309 1197 1377
Heating 553 1656 1753 553 1648 1741 553 1652 1740

Denver Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 303 1271 1346 303 1267 1324 303 1267 1316
Heating 549 1762 1792 549 1764 1767 549 1764 1759

El Paso Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 315 1349 1397 315 1327 1371 315 1326 1366
Heating 510 1583 1528 510 1544 1501 510 1534 1498

Juneau Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 284 974 1156 284 978 1150 284 979 1149
Heating 583 1773 1888 583 1791 1879 583 1803 1878

Las Vegas Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 318 1353 1406 318 1343 1380 318 1342 1371
Heating 494 1498 1530 494 1465 1503 494 1457 1497

New York Savings (MMBtu/year)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 311 1231 1438 311 1227 1427 311 1232 1425
Heating 544 1615 1746 544 1609 1735 544 1613 1736
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Table G.3: Savings Percentage for each City for Night-time Temperature Setback

College Station Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 7.7% 1.8% 2.1% 7.7% 2.0% 1.4% 7.7% 2.1% 1.3%
Heating 47.0% 34.7% 5.5% 47.0% 29.6% 5.4% 47.0% 27.4% 5.2%

Chicago Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 11.6% 3.4% 0.7% 11.6% 3.2% 1.6% 11.6% 3.2% 1.5%
Heating 34.2% 31.4% 5.6% 34.2% 26.7% 5.2% 34.2% 24.8% 5.1%

Denver Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 12.6% 3.8% 2.4% 12.6% 3.8% 2.3% 12.6% 3.8% 2.1%
Heating 33.4% 32.8% 6.0% 33.4% 28.0% 5.8% 33.4% 26.0% 5.5%

El Paso Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 9.6% 1.7% 2.2% 9.6% 1.9% 2.1% 9.6% 1.9% 1.9%
Heating 43.6% 35.0% 6.4% 43.6% 30.0% 6.1% 43.6% 27.9% 5.8%

Juneau Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 17.1% 5.8% 2.1% 17.1% 5.2% 2.0% 17.1% 4.9% 2.0%
Heating 29.7% 31.5% 4.9% 29.7% 26.6% 4.8% 29.7% 24.6% 4.8%

Las Vegas Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 9.2% 2.3% 2.0% 9.2% 2.6% 1.9% 9.2% 2.6% 1.8%
Heating 44.7% 35.2% 6.1% 44.7% 30.0% 5.9% 44.7% 27.8% 5.5%

New York Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 11.0% 3.0% 1.5% 11.0% 2.9% 1.4% 11.0% 2.9% 1.4%
Heating 38.6% 33.4% 5.4% 38.6% 28.1% 5.3% 38.6% 26.0% 5.3%
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Table G.4: Savings Percentage for each City for Temperature Deadband

College Station Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 6.8% 27.0% 31.3% 6.8% 27.1% 31.0% 6.8% 27.3% 30.9%
Heating 31.1% 92.9% 99.0% 31.1% 95.1% 99.0% 31.1% 95.6% 99.0%

Chicago Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 9.0% 31.3% 36.1% 9.0% 31.6% 35.9% 9.0% 31.8% 35.9%
Heating 24.2% 73.9% 80.4% 24.2% 75.3% 80.3% 24.2% 75.8% 80.4%

Denver Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 9.6% 35.3% 39.7% 9.6% 35.9% 39.4% 9.6% 36.0% 39.2%
Heating 23.3% 76.5% 89.6% 23.3% 79.3% 89.6% 23.3% 79.8% 89.7%

El Paso Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 7.8% 29.1% 31.2% 7.8% 29.2% 30.8% 7.8% 29.3% 30.8%
Heating 29.0% 90.3% 98.6% 29.0% 92.8% 98.6% 29.0% 93.1% 98.6%

Juneau Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 12.2% 38.0% 44.9% 12.2% 38.6% 44.8% 12.2% 38.7% 44.7%
Heating 21.9% 68.3% 74.0% 21.9% 69.9% 73.9% 21.9% 70.6% 73.9%

Las Vegas Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 7.5% 28.3% 29.7% 7.5% 28.6% 29.3% 7.5% 28.6% 29.2%
Heating 29.5% 90.1% 98.4% 29.5% 92.6% 98.4% 29.5% 93.1% 98.4%

New York Savings (%)
Light Mass Medium Mass Heavy Mass

WinAM RC EnergyPlus WinAM RC EnergyPlus WinAM RC EnergyPlus
Cooling 8.6% 30.5% 35.2% 8.6% 30.8% 35.0% 8.6% 31.0% 35.0%
Heating 26.9% 81.5% 88.3% 26.9% 83.4% 88.3% 26.9% 83.9% 88.4%
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