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ABSTRACT

Investigating the Effect of Mixing Two Skinning Algorithms on Area Preservation

Feras Abdellatif Khemakhem
Department of Computer Science and Computer Engineering

Texas A&M University

Research Advisor: Dr. Shinjiro Sueda
Department of Computer Science and Computer Engineering

Texas A&M University

We propose to investigate the effects of by mixing weights between two vertex skinning

algorithms. The vertex skinning algorithms in discussion are Linear Blend Skinning (LBS) and

Dual Quaternion Skinning (DQS), each of which is not perfect if used in isolation. With our

proposed algorithm, a per-vertex mixing weight determines the linear combination with which

LBS and DQS are employed to find a deformed mesh that is neither lacking in volume due to LBS,

nor contains volume gain from DQS. Finding the best mixing weight will allow for more plausible

deformations, with respect to shape and volume of models. We will investigate previous attempts

to fix the flaws of LBS and DQS , which is important especially when many models are being

skinned.

This work extends the work by Yin [1], which was published in 2019, meaning this is still

a very novel approach to skinning, without much other published material building off it yet.

The expected outcome is an insight into the validity of Yin’s approach in specific setups

and how DQS and LBS can be combined at a per-vertex level to sustain mesh area and shape.
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CHAPTER I

INTRODUCTION

Skinning in the field of animation is what brings a mesh to life; after mapping bones to

different areas of a mesh, skinning enables the mesh to move with the movement of those bones.

1.1 Background and Previous Work

Previous work has found numerous techniques to achieve the goal of skinning, two popular

methods being Linear Blend Skinning and Dual Quaternion Skinning. These two methods have

relatively low computational cost and work well in an acceptable range of situations [1]. Where

these skinning algorithms fail is at bends in the mesh. Linear Blend Skinning (LBS) has an issue

of losing volume at bends, known as to yield a collapsing skin effect (see Figure 1 for reference)

[2]. This is due to the way LBS uses of linear combinations of matrices to blend transformations.

With LBS, transformations are represented as matrices, with each different sections of the matrix

representing translation, rotation, and scale. The interpolation of matrices does not preserve the

orthogonality of the rotational part of the matrix, inevitably resulting in this undesired effect [2].

Figure 1: Mesh Skinned by LBS with a Collapsing Joint, Part of Which is Shown in Green
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Dual Quaternion Skinning (DQS) has a similar issue, but with a different extreme. DQS

has a "bulging joint" effect that results from the same scenario as the collapsing joint effect of LBS

[3]. DQS blends rotations in non-linear fashion through the use of dual quaternions in intermediate

calculations, avoiding the limitation of LBS, but the bends in the mesh cause the mesh to have an

excess of volume, as seen in Figure 2 [4].

Figure 2: Mesh Skinned by DQS with a Bulging Joint, Part of Which is Shown in Green

More recent work has found a way of combining these two skinning algorithms to create

a cost-effective skinning solution that overcomes these limitations [1]. Yin discusses a method of

linearly combining LBS and DQS to create a bend with no bulging and no collapsing using a mix-

ing weight, or value between 0 and 1 that combines the resulting matrices of the LBS and DQS.

They leave it to future work to propose a scheme for distributing mixing weights, and I hope to do

that as a secondary aim of my thesis (mentioned in 1.2). More important than this is finding the

actual mixing weights needed to get the most out of Yin’s method, which leads me to my aim of

this thesis.
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1.2 Aims of This Thesis

The main aim of this thesis is to investigate different weights for each vertex in a mesh to

prevent loss or gain of volume at bends in a mesh, while still keeping computational cost relatively

low. Due to the complexity of this issue, the scope of this thesis will remain in two dimensions,

leaving future work to extend to the third dimension. A smaller-scale aim that must be solved first

is determining how to distribute weights amongst vertices. Should each vertex get its own weight,

or should each weight be assigned to a section of the mesh? How would we divide those sections?

These are questions that must be asked in our investigation.
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CHAPTER II

METHODS

In order to approach testing our theory, we have developed a simulation program. Due to

the uniqueness and need for customability, third party or open source simulations were not flexible

enough for our needs - this lead to a need for us to make our own software. The simulation software

uses the skinning methods we test and the combinations of those skinning methods. We are mainly

concerned with finding the optimal weights to preserve area and preserving the shape of the bend.

Consequently, analyzing data will be quantitatively collected by recording the area as bend angles

increase, and will be qualitatively collected with a visual comparison of the bends.

Our simulation, written in C++ and using programming interface OpenGL, will be an all-

in-one solution that will allow us to record our multiple types of data. Due to constant changes in

our approach, the program has experienced multiple iterations and improvements throughout the

course of our research process, which we will also discuss.

2.1 LBS and DQS Skinning Program

The first iteration of our simulation program simulates LBS and DQS (independently) on

a bend in a rectangular mesh. We used C++ for mathematical calculations and graphical setup,

and the programming interface OpenGL for visualizing our graphical simulation. The program

allowed freedom to create bends at angles from 0 to 180 degrees, in 5 degree intervals. There

were many steps toward this iteration and many obstacles were faced in the development of this

program, primarily with the influence distribution of bones on each vertex, and the overlapping of

vertices.

2.1.1 Developing a Mesh and Rigging It

The first step to bend a mesh was the make a mesh. We created a 2D rectangular using
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recursive programming. The number of vertices in the mesh and the dimensions of the mesh

depend on user input, and an orthogonal view of the mesh is rendered using OpenGL. Rigging was

the next immediate step. Since the number of bones was to also be a possible user input for the

simulation, and the dimensions of the rectangle could also change by user input, rigging was not so

simple as to be hard-coded. However, all bones were to all be on the z=0 line, meaning the height

of the rectangle would not influence the locations of bones.

The bones were placed equidistant from their neighbors, as well as edge bones taking the

same distance from the edges of the rectangle. This design choice was made because of the nature

of our mesh and the fact that we are trying to isolate one bone per bend, so spatially condensing

bones is unnecessary. Bone locations in the mesh were dependent on the width of the mesh and

the total number bones. Additionally, bones were organized in a hierarchy so that the bone 0 is a

parent to bone 1, bone 1 is a parent to bone 2, et cetera. Figure 3 shows the result of this phase.

Figure 3: Wireframe of a Mesh Of 20 By 5 Units Rigged With 3 Bones

2.1.2 Rotating the Bones

In order to form a bend on our rectangular mesh, we had to bend some bones. Due to the

bones being set up in a hierarchical structure, all rotations made by children bones were based on

the rotations of previous bones. Bones were divided into 3 different categories for this simulation.

The first category was the parent bone, which was the first bone in every simulation. This bone

acted as an angle setter for the first rotation in the bone. The parent bone assumed the angle of one
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side of the first . The second category was the bending bone, which categorized all bones at bends.

These bends had the most extreme rotations and were at the middle of bends. They were placed at

angles opposing the previous bone to make bends from the difference in angle. For example, a 90

degree angle in a bend would come from a 90 degree difference in angles between a parent bone

and a bending bone, or two bending bones. The final category of bones was the child bone. This

bone was the last bone in every mesh, and assumed the same angle as its parent, effectively acting

as an extension of the previous bone. This allowed for better fullness and continuity in the mesh’s

bends, making it easier to visually analyze bends. These bend types are shown in Figure 4.

Figure 4: Types of Bones Displayed on a 3-Bone Mesh

2.1.3 Using LBS and DQS

The final component of our first iteration was the use of LBS and DQS to skin, or to move

the vertices in accordance with the bones they are mapped to. Both LBS and DQS were pro-

grammed using C++. Due to their popularity, many resources provided sufficient information on

the details of LBS, meaning only the task of implementation remained. DQS required a deep un-

derstanding of dual quaternions and how they can be used to represent transformations. Due to

the original program working with transformation matrices, an additional step of transforming the

rotation into quaternion form was required before calculating with DQS. Algorithms 1 and 2 show
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the structures of LBS and DQS for further context.

Algorithm 1: Linear Blend Skinning
Input: vertex: v; vertex v’s bind location: v0

bind matrix for bone j: B

distance from bone j to vertex v: distjv

transformation matrix applied to bone j: Tj

Output: vertex v’s new location: vf

1 wjv =
1

distjv∑
j

1
distjv

2 vf =
∑

j wjvv
0TjB

−1
j

Note that the bind matrix B and bind location v0 represent matrix and location at the rest

position for the mesh. In our case, this rest position is when the angle is 0 and the rectangle is not

deformed at all.

Algorithm 2: Dual Quaternion Skinning
Input: vertex: v; vertex v’s bind location: v0

unit dual quaternion based on skinning transformation: q̂

distance from bone j to vertex v: distjv

Output: vertex v’s new location: vf

1 wjv =
1

distjv∑
j

1
distjv

2 vf =
∑

j wjv q̂j

|
∑

j wjv q̂j |

At this point, the program could either show a mesh bending up to 180 degrees per bend,

using either LBS or DQS. We were still unable to draw conclusions on mixing the two, and no

quantitative data was available.

2.2 LBS-DQS Mixing Simulation Program

Similar to our LBS and DQS skinning simulation program, this next iteration on our simu-
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lation uses C++ and OpenGL; however, Python was also added to help collect data. At the end of

this iteration, our program was able to collect quantitative and qualitative data that reflects effec-

tiveness of mixing LBS and DQS in different proportions. Additional features were added as we

saw the need to customize our approach.

2.2.1 Weight Mixing of LBS and DQS

The most significant difference in this iteration was that LBS and DQS were being used in

combination to replace what each skinning method previously did individually. Using a modified

version of the approached specified by Yin [1] to fit our already calculated LBS and DQS values,

the following algorithm was utilized:

Algorithm 3: LBS-DQS Mixing Weights Algorithm
Input: transformation matrix corresponding to the LBS transformation of vertex v: T

transformation matrix corresponding to the DQS transformation of vertex v: Q

mixing weight for vertex v: w

Output: mixed transformation matrix: M

1 M = (1− w)T + wQ

This algorithm takes a linear combination of the transformation matrices that LBS and DQS

would have multiplied with vertex v in isolation, to ideally reach a happy medium between area

loss and area gain from these skinning methods, respectively. The resulting mixed matrix M was

applied to the vertex and its normal in this iteration. At this point, we can visually test the rectangle

with LBS, DQS, and a linear combination applied to all vertices.

2.2.2 Mixing Distribution Across Vertices

One immediate shortcoming of applied the mixed weights algorithm to all vertices was that

it was more expensive than using LBS or DQS in isolation. Each vertex had to effectively perform

the calculations of both LBS and DQS. Both skinning methods are relatively cheap independently,

and one goal is to keep our proposed solution cheap as well, so we started exploring applying our
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algorithm only to a "critical segment" of the bending rectangle.

The limitation LBS and DQS had that we were attempting to exploit only occur at bends in

a mesh, which means that the far ends of our rectangle, beyond the influence of the bend, would not

require a mixing of skinning methods as their have no flaws. Thus, the code was further developed

to only apply the mixing weights algorithm to a programmable segment that lied between the two

bones surrounding the rotating bone.

Another consideration we had was that the mixing weight might not be uniform across the

entire critical segment. Consequently, an additional set of parameters we added to our tests was

two values, w0 and w1, where the former was the mixing weight at the ends of our critical segment.

Figure 5 shows where w0 and w1 would have the largest influence if the critical segment spanned

from the middle bone to the midpoint between itself and adjacent bones. The red lines represent

w0’s largest influence, and the green w1’s largest influence. All mixing weights between w0 and

w1 would linearly interpolate between those values, and the critical segment’s bounds are defined

by the red lines.

Figure 5: The Locations of Maximum Influence of w0 and w1 on a Rectangular Mesh

This model holds some assumptions, the main ones being the following:

1. All vertices sharing a vertical space in the base mesh share the same mixing weight

2. Our bend is symmetrical

Our first assumption entailed that in the original mesh, all vertices that lined up vertically

have the same mixing weight. This assumption enables our algorithm to be used in lower complex-
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ity, especially in our case, since we only calculated mixing weights once per column of vertices.

This meant our calculations saved us an order of O(c) in computational time, where c is the num-

ber of vertices in each column. The symmetry of weight distribution about the bending bone was

designed with the assumption that the same corresponding vertex on either side of the bend would

have the same optimal mixing weight, due to its symmetry. This assumption may limit the usage

of this algorithm as the ideal mixing weight on one side could possibly be different than on the

other side in an asymmetrical bend, but tests were made with this assumption in mind.

2.2.3 Data Collection

The last phase of our simulation was to encode a testing suite, in order to properly determine

which approach and combination of mixing values holds the most success. Our main methods of

quantifying data are the following:

• The area of the rectangle for each angle the bending bone takes (quantitative)

• The change in area between angles (quantitative)

• The way a bend looks (qualitative)

The way a bend looks could already be measured in our previous iteration with the use

of OpenGL, but the other two methods did not have any support in the program. Our simulation

added the ability to calculate the area of the rectangle, by measuring the summation of areas of each

triangle made of 3 surrounding vertices. Measuring the area of each triangle allowed for the most

precise measure of total area. The angle of the mesh and area of the mesh at that angle were both

recorded in a temporary text file. In order to more easily digest the data, a Python solution using

the numpy and matplotlib libraries processed the temporary text files, and plotted them on graphs.

These graphs also allowed for the change in area between angles to be measured more easily, as

this measure was just the slope of a plot between two angles. Finally, a bash script automated the

processing of running multiple simulations that recorded areas for multiple angles, with varying

values of w0 and w1.
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CHAPTER III

RESULTS

The simulation software developed in methodology was used to develop a set of qualitative

and quantitative tests, in order to determine the efficacy of mixing LBS and DQS in skinning the

bend of a rectangle. By testing with multiple values of w0 and w1, we can compare our parameters

to see how much of an improvement we can create from the original LBS and DQS. The weight

in the uniform regions outside of the critical segment, wu, is also a variable that becomes critical

to change as we realize soon. All tests are done with a 3-boned rectangle of 10 units width and 2

units height, where the middle bone is the bending bone. This means the ideal area of our mesh

is 20 units. All graphs are made with 1000x100 vertex rectangle simulations, but all figures are

100x10 vertices for easier visual interpretation. Finally, our critical segment’s bounds are at the

midpoints between the rotating bone and adjacent bones.

3.1 Our Baseline: LBS and DQS

Data collected from the second iteration of our simulation software was used in conjunction

with the skinning in our first iteration to create a controlled baseline with which to compare per-

formance in determining whether or not improvements were made when mixing weights. Figures

6 and 7 show our rectangle bending at 90◦angle using LBS and DQS, respectively.
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Figure 6: Mesh at 90◦Angle Bend Using LBS

Figure 7: Mesh at 90◦Angle Bend Using DQS

The difference between Figures 3 and 4 show us the extremes in the issue of changing area

at bends. Figure 6’s small curve on the outer end of the bend reflects the collapsing joint issue that

is unique to LBS. Figure 7’s much larger and rounder outer curve shows the contrasting bulging

joint effect that leads to an excess of area. The areas of the rectangles using LBS and DQS are also

recorded below, in Figure 8.
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Figure 8: Change in Area of LBS and DQS Over Different Bend Angles

It should be noted that DQS’s area does not increase nearly as much as LBS’s area de-

creases, but the visual deformation of DQS is the parameter that requires DQS to be modified.

3.2 Weight Mixing Results

Using our second iteration of our simulation software, data was collected for meshes utiliz-

ing the mixing of weights in the critical segment. Different combinations of w0 and w1 were each

tested in 0.25 increments between 0 and 1. The resulting areas of each combination is reflected in

Figure 6 below. Note for Figure 9, the first value of each name in the legend corresponds to the

value of w0, and the second w1.
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Figure 9: Change in Area of Mesh with Varying w0 and w1 Values Over Different Bend Angles
and wu = 0

The control line represents a constant area of 20 units, which is the ideal area in all cases.

All values of wu used in Figure 9 were 0, signifying that all skinning outside the critical segment

was done with LBS. For reference, 0, 0 reflects LBS, and 1, 1 reflects DQS. The values 0.75, 0.5

have the closest values to 20 at the full angle; however, DQS has the most area preservation over

time. This means that w0 and w1 of 0.75 and 0.5 works the best when bent at a higher angle,

whereas DQS works best in the process of bending a mesh, at the area changes less and thus it

looks more natural. Unfortunately, further investigation into the way the meshes look trails us to a

problem, as highlighted in the next section.
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3.3 Smoothness of Mixing Weights

3.3.1 The Problem

One issue with our data arises when looking at the meshes that result from some of these

combinations of w0 and w1. By setting the bounds of the critical segment to be the midpoints

between adjacent bones and the bending bone, an assumption is made that the deformations caused

by DQS and LBS is only limited to the vertices with more influence from the bending bone than

other bones.

Although the numbers may look nice after making this assumption, further investigation

shows that the assumption was wrong to make. The collapsing and stretching of the mesh in

Figure 10 and Figure 11 reflect that this assumption’s flaws as seen below, respectively. By setting

w0 and w1 to 0, Figure 10 works exactly like LBS in the critical segment, and setting the variables

1 to allows Figure 11 to effectively use DQS in the critical segment.

Figure 10: Mesh at 90◦Angle Bend With LBS in Critical Segment and DQS in Outer Regions
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Figure 11: Mesh at 90◦Angle Bend With DQS in Critical Segment and LBS in Outer Regions

The overlapping and spreading of the vertices on Figures 10 and 11 are due to a sudden

shift between skinning methods in an area where both act differently. The left side of the bending

bone (the middle bone) looks completely natural due to the equivalent functionality of LBS and

DQS on straight edges; however, the behavior of LBS and DQS differ so much at bends that the

right side of the bending bone fails to smoothly transition between skinning methods.

3.3.2 The Solution

Further investigation has shown that "smoothing" the edges of the critical segment will fix

this issue. By setting the same mixing weight wu outside the critical segment to the value w0

of the mixing weight at the edges of the critical segment, an effective smoothing of the vertices’

mixing weight will allow for the behavior at the critical segment’s edges to be less abrupt and

more seamless. Figure 12 shows an example of smoothing where wu and w0 are both 0 and w1 is

1, meaning the center has DQS behaviour and transitions to an LBS behaviour as it reaches out to

surrounding bones.
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Figure 12: Mesh with wu = w0 = 0 and w1 = 1

The same tests run earlier were re-run with wu values equaling w0, and their results can be

see in Figure 13. Further investigation with this smoothing might lead toward a a more natural-

looking bend with fully preserved area.
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Figure 13: Change in Area of Mesh with Varying w0 and w1 Values Over Different Bend Angles,
Where wu = w0

The difference between this graph and the graph presented when wu = 1. This graph’s

end bounds, which reflect LBS (0, 0) and DQS (1, 1), more accurately reflect the original LBS

and DQS graph mentioned in Section 3.1. Although the previous graph in Section 3.2 may "look

nicer", the unintentional visual deformation that existed in previous data invalidated any results.

Of all of these combinations, DQS has the best area preservation over changing angles and closest

area to to the original 20 units at the highest angle. With respect to the qualitative visual accuracy

of the bend. All bends in this set of data no longer have collapsed or scratched meshes; however,

determining the most "visually realistic" bend is subjective and up to the user.
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CHAPTER IV

CONCLUSIONS

4.1 Conclusion

Throughout this investigation, we have successfully developed a simulation software with

which different combinations of LBS and DQS may be applied to a 2D mesh. Of the values

tested that mix between DQS and LBS, none of them had the optimal effect except for values of

0, meaning DQS has the most success conserving area and keeping it close to the original area.

Consequently, the investigation led to some possible methods to mix the weights, but the validity

of these methods cannot be verified without further investigation. The current most viable usage

of this algorithm is to make bends seem more realistic, at the cost of losing area.

4.2 Limitations

The largest flaw with our evaluation is the way bones are modeled in our simulation. In

Yin’s work, it was shown that DQS’ bulging occurs when blending is done using the frames at

the bones [1]. Although our simulation does this too, Yin’s model (and a more standard model)

consists of long bones that connect at joints; however, our model treats bones at points, meaning

the joints between bones consists of a large gap. Additionally, we place a bone at each bend and

joints between bends, as opposed to a joint at each bend and a bone at between each bend.

4.3 Future Work

This investigation has formed some paths for future work. The first suggested future work is

to further investigate the point between the bending bone and adjacent bones at which the negative

effects of bulging joints and collapsing joints are no affected. This will likely depend on the way

the influence of bones on shared vertices is distributed or the type of bend the bone experiences, but
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our assumption that it would be between two bones was proven incorrect, as reflected in the first

set of our results. Determining this point in a bend could allow the use of weight mixing to only

have to exist within the critical area, accomplishing the goal of keeping the algorithm efficient.

Additionally, investigating with asymmetrical weight distributions would make for a good

next step. Our assumption that the bend would be symmetrical was obviously not true, and al-

though one side of our mesh seemed the same regardless of the mixing weight applied to it, other

situations when the both halves of the bone experience unwanted deformations might require an

additional weight w2 for the endpoint opposite to w0 in the critical segment.

Finally, extending this investigation to determine optimal mixing weights with a mathemat-

ical mode would make this approach more valid. Currently there is only slight improvements with

most combinations of numbers, as seen in Figure 13 of section 3.3, but developing a method to

determine the ideal mixing weight in any situation would allow this algorithm to become an option

used in practice.
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