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Executive Summary 
 
This report describes the results of an extreme value analysis of precipitation in and around 
Harris County, Texas, in order to determine whether the newly-promulgated NOAA Atlas 14 
rainfall design values are valid in a changing climate.  The analysis in this report is based on the 
original NOAA Atlas 14 data set as well as a set of composite stations for the Gulf and Southeast 
Coasts.  As of this writing, this report and its findings have not yet been peer-reviewed. 
 

• The recent upward trend in extreme precipitation in the Houston area has contributed 
to extreme rainfall design values in the area that far exceed those of comparable 
locations.  This is in part due to some stations not having a sufficiently lengthy set of 
observations and in part due to southeast Texas receiving more than its fair share of 
storms.  We assess that the design values of 100-year rainfall amounts would be 7% 
smaller if a longer period of record was available at all observation locations. 

• Coastal southeast Texas has the largest single-day and multi-day return values anywhere 
along the Gulf and Atlantic coasts for return periods of 100 years or more.  This is in part 
due to some recent storms that could have occurred anywhere along the Gulf coast 
concentrating their activity around Houston.  There is no known factor that would make 
storms such as Harvey more likely to happen in Texas than elsewhere along the 
northern Gulf Coast.  We assess that extreme rainfall risk in Southeast Texas should 
consider storms from a broader portion of the Gulf Coast, decreasing return values by an 
additional 1%-18%, with the larger values applying to the larger return periods. 

• A robust upward trend in extreme precipitation is present across the southern and 
southeastern United States.  The trend is larger in southeast Texas, but we have no 
reason to expect that climate change would cause trend variations on such a small scale.  
Using averaged trends across areas near the Gulf Coast, we assess the best estimate of 
the climate-driven trend in southeast Texas to be 11%-15% over the past 60 years, with 
the remainder of the observed trend caused by regionally unusual storms (like Harvey) 
that are not likely to recur in the same places.   

• The three factors listed above effectively cancel each other out for 2-year return values.  
We assess that the present-day nonstationary return values are approximately equal to 
the stationary estimates of NOAA Atlas 14 for 2-year return periods.   

• Because of the three factors listed above, the NOAA Atlas 14 100-year and 500-year 
return values generally overestimate the present-day and near-term future extreme 
rainfall risk in and around the Houston area.  We assess that for 100-year return periods, 
current nonstationary values are still about 10-12% below the NOAA Atlas 14 values.   

• The historic upward trend is very likely to continue with global warming.  Because of 
this, we assess that NOAA Atlas 14 return values underestimate the intensity of all future 
2-year rainfall events in the Harris County area.  We also assess that, depending on the 
rate of future warming, the nonstationary 100-year return values will exceed the NOAA 
Atlas 14 values around the middle of the 21st century. 
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1. Introduction and Scope 
 
The purpose of this report is to provide a statistical analysis of historic records of extreme 
rainfall amounts and trends in Harris County in the context of observations in neighboring areas 
and more general past analyses of extreme rainfall trends, with the goal of estimating the 
appropriate baseline and trend for current and future extreme rainfall amounts.  This report 
was sponsored by the Harris County Flood Control District (HCFCD); the opinions contained in 
this report are those of the author. 
 
The issue of probabilities of current and future extreme rainfall has grown in importance due to 
a succession of recent extreme rainfall events in and around Harris County, including the 
Memorial Day Flood (2015), the Tax Day Flood (2016), Hurricane Harvey (2017), and Tropical 
Storm Imelda (2019).  In 2018, the National Oceanic and Atmospheric Administration (NOAA), 
released Volume 11 of NOAA Atlas 14 (Perica et al. 2018, henceforth "NOAA Atlas 14"), which 
contains the latest official estimates of extreme rainfall amounts for design purposes.  Some of 
the largest 100-year rainfall amounts in the state of Texas are found in Harris County in the 
newest analysis, and the 1-day 100-year value is about 4" larger than the previous estimate in 
Technical Paper No. 40 (Hershfeld 1961).  This begs the question of whether the higher 
estimated values of extreme rainfall represent a long-term trend that should be expected to 
continue. 
 
Several analyses and projections of extreme precipitation in the United States indicate that an 
upward trend should be expected due to climate change and that such a trend is already 
underway.  Assuming these analyses and projections are correct, it is unclear whether 
increased extreme rainfall frequency or intensity should be expected beyond what has occurred 
in Harris County recently or, on the other hand, whether recent extreme rainfall events 
represent a statistical fluke that won't become a realistic expectation for many years. 
 
To address these issues, this report analyzes extreme rainfall using the same quality-controlled 
extreme rainfall dataset used by NOAA Atlas 14, with additional analyses of observations from 
the entire Gulf Coast and adjacent southeast Atlantic Coast.  The report evaluates evidence for 
the existence of a long-term trend in extreme rainfall frequency and intensity.  The report 
considers to what extent the large Atlas 14 estimates, calculated under the assumption of a 
stationary climate with unchanging extreme rainfall risk, are caused by or affected by an 
underlying long-term trend.  The report also considers evidence on whether such an underlying 
trend in extreme rainfall in Harris County is caused or affected by urbanization, coastal 
proximity, and climate change, or is merely a statistical artifact of random weather events.  
Lastly, considering all these potential influences, the report estimates the actual present-day 
and future risk of extreme rainfall. 
 
It is hoped that this report will inform flood protection and infrastructure management 
decisions and provide Harris County with an improved understanding of extreme rainfall risk.  
However, this report is not intended to be a substitute for NOAA Atlas 14 for assessment of 
current and future floodplain extent for regulatory or insurance purposes.  The author of this 
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report was an external reviewer of NOAA Atlas 14 Volume 11 and is satisfied that the 
underlying methods were sound, were applied appropriately, and reviewer comments were 
appropriately considered in the finalization of Volume 11.  While we believe this new report to 
be accurate, it relies on scientific research methods rather than firmly established engineering 
procedures and has not undergone peer review.  A version of this report is planned to be 
submitted to a scientific journal for peer review. 
 
Note on June 23, 2020 update: The June 23 update corrects the assignment of certain counties 
to the MS4 and GA2 regions (Appendix B), with minor changes to the figures in Fig. 5.  The 
values of some numbers in Table 8.6 change by 0.1%, but other tables are unaffected.  Figures 
8.1 and 8.2 are also changed by this correction; in addition for Figs. 8.1 and 8.2 the assignment 
of pooled regions to coastal and inland categories has been slightly amended.  Graphics 
depicting the identification of coastal and inland categories have been added to Figure 5.11.  
Finally, an incorrect figure in the original report (Fig. 5.10) was replaced with the correct figure; 
the original discussion applies to the correct figure. 
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2. Data 
 
This report includes analyses of two data sets, and each data set is processed in two different 
ways prior to analysis.  This results in four distinct sets of observations, referred to in this report 
as "raw", "ext", "ful", and "qcd".  
 
2.1 Raw and ext data for Texas 
 
The raw data is the same data set used by NOAA Atlas 14, downloaded from the 
Hydrometeorological Design Studies Center.  This data set has been extensively screened and 
quality-controlled; for details, see Perica et al. (2018).   
 
The raw data consists of annual block maxima of precipitation for durations ranging from 15 
minutes to 60 days.  This report analyzes durations of 6 hours, 1 day, and 4 days, but analyses 
for other durations can easily be generated using the same software. 
 
Each block maximum is designated with a particular date of occurrence in the raw data set.  It 
appears that the dates provided in the data set are the starting dates of the block maxima, 
while each observation is assigned to its block year according to the ending date of the block.  
For example, a four-day heavy rainfall event that begins on December 30, 1991 and ends on 
January 2, 1992 would appear in the data set dated as December 30, 1991 but would be the 
block maximum for the year 1992 instead of 1991.  This report follows the same convention, 
assigning block maxima to the year of the end of the event. 
 
The NOAA Atlas 14 data set runs through 2017, except that some 2018 data from South Texas 
were included in the analysis.  For internal consistency, this report excludes the 2018 data. 
 
The creation of the ext (short for "extended") data was motivated by the fact that many of the 
stations in Harris County used for NOAA Atlas 14 were HCFCD or airport stations with a 
relatively short period of record.  In order to improve the robustness of estimates of extreme 
rainfall trends, all missing block maxima were replaced by block maxima from nearby stations.  
The resulting data set covers the period 1895-2017 for durations of one day or longer and 1941-
2017 for durations of less than one day; the choice of starting year was guided by the 
availability of widespread data. 
 
Because of spatial variations in expected extreme rainfall magnitudes, rainfall data is not 
directly interchangeable across stations.  A station that normally receives more rainfall will 
typically have larger block maxima, and the use of block maxima from one station to fill the 
early part of the data record of another station can artificially influence the apparent extreme 
rainfall trend.   To avoid this problem, the replacements were made in such a way that the 
stations used to fill missing data are centered around the location of the station with missing 
data.  For details and examples, see Appendix A. 
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The NOAA Atlas 14 data set only includes stations within Texas.  The actual Volume 11 analysis 
made use of data from stations beyond the Texas border, but such data was not included in the 
published data archive and data from other volumes does not extend as far as 2017.   
 
2.2 Ful and qcd data for the Gulf and Southeast coastal regions 
 
In order to place the southeast Texas extreme precipitation into the context of larger scale 
weather and climate patterns, a second data set is created for the entire Gulf Coast and 
southeast Atlantic Coast.  For this regional-scale data set, data was selected to maximize the 
length of the period of record while maintaining a roughly even spatial distribution of stations.   
 
To accomplish these goals, composite stations were created for each county as follows: For 
each year, stations in a given county with no more than 31 missing days were identified.  If only 
one station met that criterion, data from that station were used to determine that year's block 
maximum.  If more than one station met that criterion, data from the station with the longest 
period of record were used to determine that year's block maximum.  If no station met that 
criterion, no block maximum was calculated for that county for that year. 
 
This method of creating composite stations assumes that all stations in a given county are in a 
sufficiently similar meteorological setting that they are approximately interchangeable.  
Because the purpose of this data set is to analyze regional-scale patterns and trends, exact 
interchangeability is not necessary as long as any inherent differences are random from county 
to county.   
 
The data for this analysis was obtained from the Applied Climate Information System (ACIS), a 
data set maintained by NOAA's Regional Climate Centers and synchronized with the National 
Centers for Environmental Information database.  The data presented in this report was 
downloaded on February 10, 2020.  Most, but not all, of this data has undergone automated 
quality control by the National Centers for Environmental Information (Menne et al., 2012).  
The automated quality control is designed to be lenient, so that data is erroneously flagged as 
incorrect only 1-2% of the time.   
 
The ful data set was generated from the full ACIS data using the methods described above.  The 
qcd data set is the result of an additional three-part screening process applied to the ful data 
set to eliminate erroneous extreme values.   
 
The first part of the screening process was designed to eliminate false outlier extreme 
precipitation events.  First, suspicious three-day block maximum data were flagged if their block 
maximum values exceeded the values reported in overlapping periods by any neighboring 
stations by a factor of two or more or if the values were low outliers compared to the 
population of block maximum values.  Next, each flagged case was investigated to determine 
whether the data should be considered to be accurate.  This step involved examination of 
original observer forms, radar observations, data from neighboring stations, and other weather 
information.  A quality control flag was assigned to each case on the basis of this examination: 
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"bad" if the data record is clearly erroneous; "suspicious" if there is evidence in addition to the 
buddy check that suggests that the data record is erroneous, "probably good" if there are no 
apparent problems with the original observer form and no other evidence that the data record 
is erroneous, and "good" if there is affirmative evidence that the data record is correct.  Any 
"bad" or "suspicious" observations affecting the 01d and 04d block maxima in any month were 
removed from the qcd data set.  Through this mechanism, a total of 16 data points were 
dropped.   
 
The second part of the screening process was designed to eliminate false reports of a lack of 
extreme precipitation.  First, a check was made for unusually low three-day block maxima 
outliers.  Then, the observations from any such stations were compared to those from 
neighboring stations.  Through this process, one station in Alabama was identified that was 
falsely underreporting precipitation for several years.  Through this mechanism, a total of 5 
data points were dropped.   
 
The third part of the screening process was designed to eliminate snowfall reports being 
incorrectly recorded as water equivalent precipitation.  Since a ten-inch snow accumulation 
typically contains about one inch of water when melted, four inches of snow (say) reported as 
four inches of precipitation would overestimate the actual precipitation amount by roughly a 
factor of ten.  Snow accumulation is reported to the nearest inch or tenth of inch while water 
equivalent is typically reported to the nearest hundredth of an inch, so snow reports are 
suggested when the precipitation report has no tenths or hundredths digit.  To check for this, 
all instances of no tenths or hundredths digit were counted and compared for extreme events 
occurring in winter versus the other three seasons.  Three states (North Carolina, South 
Carolina, and Louisiana) had anomalously high wintertime counts of round precipitation totals. 
Each of those reports were then checked against the reported temperatures.  If temperatures 
remained well above freezing, the precipitation must have fallen as rain.  If not, the reports 
were checked against the original observer forms and against neighboring reports.  As a result 
of this check, three precipitation reports were judged to be faulty and were dropped from the 
data set, and an additional report was found to be faulty for separate reasons and was also 
dropped.  Another case in Texas of snow reported as water equivalent was flagged and dropped 
during the first part of the screening process. 
 
2.3 Durations 
 
This report presents results for durations of six hours (06h), one day or 24 hours (01d), and four 
days (04d).  The 06h block maxima are not available for ful and qcd data because the underlying 
data set is daily. 
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3. Methods 
 
3.1 Outline of NOAA Atlas 14 procedure 
 
The NOAA Atlas 14 Volume 11 procedure for estimating return values is stated as follows 
(Perica et al. 2018; numbers in parentheses refer to sections in the report): 
 
Data processing 
1. Data collection (4.2) 
2. Block maxima extraction (4.3) 
3. Station screening (4.4) 
4. Outlier screening (4.5.1) 
5. Addition of extreme events (4.5.2) 
6. Identification of unconstrained extreme events (4.5.3) 
7. Application of correction factor for constrained observations (4.5.3) 
8. Duration consistency check (4.5.4) 
 
Statistical analysis 
9. Calculate L-moment statistics at each station (4.6.2) 
10. Calculate GEV distributions using local L-location and L-scale and regional averages of 
higher-order L-moment ratios (4.6.2, 4.6.3) 
11. Smooth GEV probabilities across durations (4.6.3) 
12. Convert to partial duration series probabilities (4.6.4) 
13. Estimate confidence intervals (4.6.5) 
 
Spatial analysis 
14. Create detailed maps of mean annual maximum precipitation (4.8.1) 
15. Create maps of longer return period precipitation and confidence intervals by applying 
spatial analysis of precipitation ratios with additional dynamic smoothing (4.8.2) 
 
3.2 Data processing for this report 
 
Except for step 7, all data processing steps are incorporated into the posted Atlas 14 data set 
and thus into raw and ext.  We apply step 7 to all four data sets used here prior to calculating 
return frequencies and values by multiplying the data values by the same correction factors as 
were used in NOAA Atlas 14.  For the durations relevant to this report (6h, 1d, and 4d), the 
correction factors are 1.01, 1.11, and 1.02, respectively.  
 
The purpose of the step 7 correction is to statistically account for the fact that, for example, 
maximum 24-hour rainfall events will not necessarily begin and end at the exact daily 
observation times and will instead often be spread out across two daily rainfall totals.  Thus 
daily observations tend to underestimate the peak 24-hour rainfall totals.  Similar 
considerations apply when sub-daily precipitation is evaluated using stations that record rainfall 
totals every hour. 
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The unconstrained estimates in step 6 had been converted to the equivalent constrained 
estimates within the archived data set by dividing by the appropriate correction factor.  
Applying the step 7 correction factor to the entire data set restores those estimates to their 
original unconstrained values. 
 
For ful and qcd, station screening involved elimination of all composite stations with fewer than 
30 years of block maxima.  Outlier and error screening was as described in section 2.2.  The 
data was not enhanced with additional unconstrained extreme events; this includes not adding 
the additional unconstrained extreme events from raw into ful and qcd.  The same step 7 
correction factors were applied to ful and qcd.  No duration consistency check was necessary, 
since the 04d totals were calculated directly from 01d values. 
 
3.3 Statistical and spatial analysis for this report 
 
For emulation of NOAA Atlas 14, Step 9 (calculation of L-moments) is performed for this report 
using the lmoments3 software package (Hollebrandse et al. 2015).  Step 13 follows the same 
procedure as NOAA Atlas 14, using 1000 bootstrap samples.  Most new calculations in this 
report use the climextRemes software package, in the form of a Python wrapper to R routines 
(Paciorek et al., 2018).  The climextRemes package has been used by Risser and Wehner (2017) 
to analyze climate change impacts on Hurricane Harvey's rainfall.  Analysis software is written 
in Python within Jupyter notebooks.  A three-parameter Generalized Extreme Value (GEV) 
distribution is assumed to provide an appropriate characterization of the probability 
distribution under conditions of stationarity and nonstationarity throughout the analysis 
domain; after testing of several candidate distributions, NOAA Atlas 14 chose to use a GEV 
distribution throughout Texas.   
 
Steps 10, 11, 14, and 15 of the statistical and spatial analysis used in NOAA Atlas 14 are not 
described in sufficient detail to be exactly reproduced, and this report does not attempt to do 
so.  These four steps collectively have the effect of producing appropriately spatially smooth 
estimates of return values across Texas.  We present results in two ways: first, as individual 
station-based estimates, and second, as estimates derived from aggregated data.  The 
individual estimates will inherently be noisier than the NOAA Atlas 14 values, but it is 
instructive to see the underlying single-station values so that the effect of smoothing on the 
resulting maps can be discerned.  For the purposes of NOAA Atlas 14, smoothing is appropriate, 
and the smoothing applied to NOAA Atlas 14 improved the robustness of the results. 
 
This report uses two forms of aggregation: pooling and averaging.  For pooling, the individual 
observations from various stations in a region are treated as a single set of observations to be 
fitted by a single GEV distribution.  We apply this form of aggregation to the ful and qcd data, 
aggregating the individual county composite observations into regions of approximately ten 
counties each.  Harris County is part of a nine-county region that also includes Orange, 
Jefferson, Hardin, Liberty, Chambers, Galveston, Fort Bend, and Brazoria Counties.  Regions are 
defined a priori to encompass common extreme rainfall environments, for example by 
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separating more coastal stations from more inland stations.  Testing and implementing other 
forms of pooling (Requena et al., 2019) was beyond the scope of this study.  A complete list of 
the counties comprising each region is given in the Appendix. 
 
Averaging is performed on the return values produced by the GEV analysis for individual 
stations.  Averaging is applied to stations in and around Harris County to represent the three 
hydrologic regions defined by Yung (2019).  Stations were assigned to each region based on 
location.  Stations along the border between regions were assigned to the region with fewer 
stations to provide similar numbers of stations for each region.  Selected stations outside 
Regions 1 and 3 but with similar 1-day 100-yr precipitation amounts were added to Regions 1 
and 3 to improve robustness.  However, stations 41-5196 and 60-0011 turn out to be extreme 
event outliers compared to other stations in southeast Texas, so they were dropped from 
Region 3 so that the stations used for Region 3 were more representative of the area.  A map of 
the stations ultimately used for each region is shown in Figure 3.1. 
 

 
Figure 3.1: Stations used in NOAA Atlas 14 and assigned to the three hydrologic regions of the 
Harris County area.  Green: Region 1.  Brown: Border stations assigned to Region 1.  Purple: 
Region 2.  Yellow: Border stations assigned to Region 3.  Red: Region 3.  Light blue: Outlier 
stations dropped from Region 3. Map background: Yung (2019). 
 
The conversion to partial duration series probabilities (step 12) is performed here using the 
same method as NOAA Atlas 14.  For engineering applications, one desires to know the amount 
of precipitation that has a certain probability of being exceeded in any given year.  Annual block 
maximum data can exceed a particular value at most once in any given year.  Since instances of 
two or more exceedances in a given year are missed, the probability of exceeding a particular 
value is systematically underestimated.  In practice, this is dealt with by adjusting the return 
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period to obtain an appropriately larger return value.  To obtain a two-year return value, for 
example, the return value for annual exceedances is evaluated at a return period of 2.5415 
years.  

 
Figure 3.2: Station-by-station 2-year return values for 6-hour precipitation calculated for this 
report, overlaid on corresponding NOAA Atlas 14 map.  Black is greater than 4.2". 
 
To check whether the procedures have been properly implemented and to illustrate the 
variability of extreme precipitation thresholds across stations, we overlay our calculated return 
values onto NOAA Atlas 14 maps.  In these figures, each station is represented by a colored dot, 
with colors assigned according to return values using the same color table as the underlying 
NOAA Atlas 14 maps.  Black dots represent values beyond the maps' color scales. 
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Figure 3.3: Station-by-station 2-year return values for 1-day precipitation calculated for this 
report, overlaid on corresponding NOAA Atlas 14 map.  Black is greater than 5.75". 
 
The 2-year return values for individual stations (Figs. 3.2 and 3.3) match the NOAA Atlas 14 
pattern well.  There are about as many stations with higher values as lower values, consistent 
with the NOAA Atlas 14 map intended to be a fairer representation of the smoother underlying 
extreme rainfall probabilities for future events.  There are a few interesting deviations.  In 
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particular, the band of higher return values along the Balcones Escarpment from Austin to Del 
Rio is more prominent in the individual station values, suggesting the possibility that the local 
topography is locally enhancing extreme rainfall to an even greater extent than is depicted on 
the NOAA Atlas 14 maps. 
 

 
Figure 3.4: Station-by-station 100-year return values for 6-hour precipitation calculated for this 
report, overlaid on corresponding NOAA Atlas 14 map.  Black is greater than 13.0". 
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Figure 3.5: Station-by-station 100-year return values for 1-day precipitation calculated for this 
report, overlaid on corresponding NOAA Atlas 14 map.  Black is greater than 19.0". 
 
As would be expected, the 100-year station-based return values are even noisier than the 2-
year station-based return values.  Nevertheless, the overall pattern of station values is 
consistent with the smoother NOAA Atlas 14 pattern, indicating that the individual station data 
processing steps have been properly reproduced here. 
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3.4 L-moments and Maximum Likelihood Estimation 
 
There are various techniques available for estimating the parameters of probability 
distributions from data.  NOAA Atlas 14 uses the L-moment method (Hosking and Wallis, 1997), 
which has become quite popular for spatial analysis of rainfall extremes.  However, there are no 
established methods for calculating nonstationary or time-dependent statistics using L-
moments.  Except for the emulation of NOAA Atlas 14 presented above, we use maximum 
likelihood estimation (MLE) as implemented by the climextRemes software package.   
 
Various studies have assessed the reliability of MLE for stationary and nonstationary hydrologic 
time series.  For stationary time series, the L-moment method tends to be more robust for 
sample sizes less than about 100, primarily because it is less influenced by outliers (Martins and 
Stedinger, 2000).  For nonstationary time series, a semi-Bayesian method has been developed 
for MLE that constrains the GEV shape parameter to physically plausible values and avoids the 
outlier problem (El Adlouni et al., 2007).  As with stationary series, the performance of ordinary 
MLE suffers at smaller sample sizes.  
 
In this study, we use ordinary MLE but take precautions to avoid instability associated with 
small sample sizes.  We make use of the ext data rather than the raw data whenever possible, 
which extends the data record for local stations to provide 123 data points for 1-day and 4-day 
rainfall and 77 data points for 6-hourly rainfall (section 2.1).  For the ful and qcd data, we rely 
on combined pooled regional data sets, which typically contain several hundred data points but 
with some dependence among the pooled data.    
 
We now compare return value estimates based on L-moments and MLE to determine whether 
MLE introduces a bias in return value estimates when considered against NOAA Atlas 14.  The 
percentage differences in 2-year and 100-year return values for 1-day rainfall are shown in Figs. 
3.6 and 3.7, respectively. 
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Figure 3.6: Percentage difference between MLE and L-moment estimates of 2-year return value 
for 1-day precipitation.  Positive percentages indicate that the MLE estimate is higher. 
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Figure 3.7: Percentage difference between MLE and L-moment estimates of 100-year return 
value for 1-day precipitation.  Positive percentages indicate that the MLE estimate is higher.  
The circled stations are Valley Junction (41-9280, brown) and Cleveland (41-1810, green). 
 
There is a slight tendency for the 2-year return values to be smaller with MLE, and conversely 
the 100-year return values tend to be larger with MLE.  This is true for Harris County (2-year 
values about 1% smaller, 100-year values about 3% larger) as well as the entire plotted domain.  
More specifically, almost all stations have a 2-year return value difference that is the opposite 
sign of the 100-year return value difference, indicating a difference in the shape of the GEV fits 
to the observed distributions. 
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In order to investigate how the different GEV fits are produced by different patterns of data, we 
focus on two stations in southeast Texas with large but opposing differences between the L-
moment and MLE estimates: Valley Junction and Cleveland (see Fig. 3.7 for locations).  For both 
stations, we plot the observed cumulative distribution of 1-day block maximum precipitation 
values, the L-moment and MLE GEV fits to the observed cumulative distribution, and the 90% 
bootstrapped confidence intervals for the GEV fits.  Figure 3.8 shows most of the cumulative 
distribution, while Figure 3.9 focus on the extreme upper tail.  The distributions are shown and 
calculated without adjustment for constrained observations or partial duration series (see 
Sections 3.2 and 3.3). 

 
Figure 3.8: Plot of observed cumulative distribution of annual maximum 1-day precipitation 
amounts, along with L-moment and MLE GEV fits (solid) and 90% bootstrapped confidence 
intervals for the fits (dotted).   
 
Return values may be read directly from such figures.  For example, a cumulative probability of 
0.5 corresponds to a 2-year return value for annual exceedances.  The Valley Junction observed 
data hits the 0.5 cumulative probability line at about 3", meaning that the 2-year return value is 
3".  The L-moment method produces a GEV fit with a 2-year return value of 3" as well, while the 
MLE method yields a 2-year return value of about 3.2".  In this instance, the MLE fit has 
systematically higher values than the L-moment fit near the middle of the distribution, and the 
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L-moment fit tends to more closely match the data.  At Cleveland, the MLE fit has systematically 
lower values near the middle of the distribution, and the L-moment fit appears to more closely 
match the data as well.  At both stations, the sign of the difference changes near probabilities 
of 0.2 and 0.85, so that the tails have an oppositely signed difference than the middle of the 
distributions. 

 
Figure 3.9: Plot of observed cumulative distribution of annual maximum 1-day precipitation 
amounts, along with L-moment and MLE GEV fits (solid) and 90% bootstrapped confidence 
intervals for the fits (dotted).   Only return values above 8" are shown.  
 
At the upper end of the distribution, the two sets of observations have strikingly different 
observed distributions.  Valley Junction has only two observed annual maximum daily rainfall 
totals over 8" after the adjustments described in sections 3.2 and 3.3 are applied: a remarkable 
30.0" on June 30, 1899 during the Hearne (Brazos River) flood, and 11.0" on May 13, 2004.  
Cleveland, by contrast, has five observed annual maximum daily rainfall totals over 8": 10.63" 
on July 30, 1954, 9.06" on May 19, 1989, 13.17" on October 17, 1994, 9.00" on November 18, 
2004, and 14.90" on August 28, 2017.  Neither station has an extreme tail that resembles a GEV 
distribution, with Valley Junction having a single extreme outlier and Cleveland having several 
extreme events clustered around similar amounts.  The differences in return values for the two 
fits are large, with the 100-year return value (cumulative probability 0.99) about 4" larger with 
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L-moments than with MLE at Valley Junction and about 2" smaller with L-moments than with 
MLE at Cleveland. 
 
We cannot know whether any of these fits accurately reflects the future chances of extreme 
rainfall.  But based on meteorological experience, a 30" one-day event seems much more likely 
to occur in the future near Cleveland than near Valley Junction.  (Tropical Storm Imelda came 
close to achieving this in 2019.)  In that context, it is remarkable that the L-moment fits for the 
two stations cross, so that according to the L-moment fits the chance of a one-day rainfall 
exceeding 15" in a given year are larger at Valley Junction than at Cleveland.  On the other 
hand, according to the MLE fits, the chance of a one-day rainfall exceeding 15" in a given year 
are several times as large at Cleveland than at Valley Junction.  At the extreme tail, for these 
two stations, the MLE fits appear to better reflect the difference in underlying probabilities of 
extreme rainfall. 
 
To investigate to what extent the difference in fits is driven solely by the extreme outlier 30" 
rainfall event at Valley Junction, we repeat the above analysis with the 30" event removed from 
the Valley Junction record and added to the Cleveland record. 

 
Figure 3.10: As in Fig. 3.8, but with an extreme outlier rainfall event removed from Valley 
Junction and added to Cleveland.  See text for details.   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Cu
m

ul
at

ive
 p

ro
ba

bi
lit

y

1-day 100-year return value

Comparison of Maximum Likelihood Estimation and L-Moments

VALLEY JUNCTION CLEVELAND
VALLEY JUNCTION MLE CLEVELAND MLE
VALLEY JUNCTION L-MOMENTS CLEVELAND L-MOMENTS



 

 22 

 
Figure 3.11: As in Fig. 3.9, but with an extreme outlier rainfall event removed from Valley 
Junction and added to Cleveland.  See text for details.   
 
The change in assignment of the outlier makes both observed distributions more closely 
resemble GEV distributions.  As a result, the L-moment and MLE fits for Cleveland become 
almost identical, and the fit difference for Valley Junction becomes half as large.  It appears that 
the remaining differences in the Valley Junction fits may be driven by two or three observations 
at the lower tail, which likewise do not conform to a GEV distribution. 
 
As would be expected, differences arise between L-moment and GEV fits when the underlying 
data does not fit a GEV distribution well.  In these two examples, the L-moment fit seemed 
better behaved near the middle of the distribution, while the MLE fit seemed better behaved 
near the tails of the distribution.  Neither is clearly superior overall.  Most importantly, the MLE 
approach is suitable for representing the stationary extreme value distributions observed in 
Texas and thus is interpreted as being suitable for investigating nonstationarity. 
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3.5 Nonstationary Analysis 
 
The same climextRemes package is used for nonstationary analysis of the block maxima.  In 
nonstationary analysis, one or more of the GEV parameters are assumed to be a linear (or log-
linear in the case of scale) function of one or more covariates, and the best GEV fit is 
determined iteratively via the MLE method.   
 
The choice of covariate is arbitrary but should be driven by knowledge of the underlying 
physical processes causing a change in probability of extreme rainfall.  One possible covariate is 
time (year), which is how trends are usually conceptualized, but rainfall is not physically 
affected by the year.  Instead, temporal trends emerge because other factors that affect 
precipitation change over a long period of time. 
 
With climate change, two basic drivers of extreme precipitation changes have been identified.  
The first is known as "thermodynamic" changes: in a given storm system, all else being equal, 
warmer air contains more water vapor and produces heavier rain when it rises.  The 
relationship between temperature and water vapor capacity is approximately 7% per one 
degree Celsius change in temperature, or 4% per one degree Fahrenheit.  The second is known 
as "dynamic" and represents changes in storm frequency due to changes in global and regional 
weather patterns.  Dynamic changes are much more variable globally, but research suggests 
that the thermodynamic factor should be dominant in the central United States (Pfahl et al. 
2017). 
 
Given this, a logical covariate would be global mean temperature, regional mean temperature, 
or local temperature. However, on an interannual basis, wetter conditions during the warm 
season are associated with cooler temperatures, so the relationship between temperature and 
extreme precipitation probably changes sign depending on time scale.   Also, modes of natural 
variability such as El Niño affect Texas precipitation and temperature simultaneously.  
Temporally-smoothed global or regional temperature may provide a more consistent 
relationship with extreme precipitation; global temperature was used by van Oldenborgh et al. 
(2017) in their study of Hurricane Harvey and regional temperature was used by Russell et al. 
(2019).   
 
Another way of avoiding this problem is to use climate forcing.  Variations in forcing tend to be 
much smoother than variations in temperature.  However, volcanic forcing can be large on an 
interannual basis and is expected to affect precipitation differently than other types of forcing, 
which appear to have more consistent effects (Mascioli et al. 2016).  Using a subset of forcing, 
such as the natural logarithm of atmospheric carbon dioxide concentrations (lnCO2), which is 
roughly proportional to the radiative forcing caused by carbon dioxide (Myrhe et al. 1998) may 
isolate the longer-term, climate-driven relationships.  This covariate was used by Risser and 
Wehner (2017), along with a measure of El Niño. 
 
Once one or more covariates has been chosen, the next step is to decide which parameters 
describing the GEV distribution should be allowed to depend on the covariates.  As a general 
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rule, the higher-order moments require a greater amount of data in order to be reliably 
estimated; reliably estimating trends in the higher-order moments requires even greater 
amounts of data.  Allowing everything to be covariate-dependent runs the risk of overfitting. 
Consider, for example, a station with 30 years of annual maxima.  Any model with 30 
imperfectly correlated parameters will fit the data perfectly, even if the model is absurd.  (One 
could create a model that perfectly predicts the past 30 years of global temperatures based on 
the sales of 30 brands of beer.  Such a model would likely produce a nonsense forecast for the 
31st year, maybe even worse than the forecast one would make after drinking 30 bottles of 
beer.) 
 
Generally, only location and scale parameters are allowed to vary.  If they vary simultaneously, 
the distribution of extreme rainfall can expand or contract over time.  If only the location 
parameter varies, the shape of the PDF would remain constant, that is, its width would not 
change even if the magnitude of extreme rainfall changes.  If 100-year rainfall increases from 
15" to 18", 2-year rainfall would increase, say, from 3" to 6".  This seems unrealistic. A more 
plausible single-parameter model assumes a linear fit to the location parameter for the 
logarithm of precipitation.  Under such a model, if the 100-year rainfall increases from 15" to 
18", the 2-year rainfall would increase from 3" to 3.6". 
 
To choose the most parsimonious models, this report applies the Akaike Information Criterion 
(AIC), which penalizes models with a greater number of parameters or with a poorer agreement 
with the data.  Five different configurations are considered: stationary, a location parameter 
(describing the logarithm of precipitation) dependent on year or lnCO2, or two parameters 
(location and the logarithm of the scale parameter) dependent on year or lnCO2.  Resulting 
delta-AIC values (differences from the lowest AIC for a given block maximum time series) are 
averaged for each station within a dataset.  The lowest AIC value corresponds to the most 
parsimonious model, with the fewest number of parameters needed to fit the observed data.   
 

Variable Precip ln(Precip) ln(Precip) Precip Precip 
Nonstationary 
Parameters 

0 1 1 2 2 

Covariate n/a year ln(CO2) year ln(CO2) 
mean d-AIC 
(ful) 

1.83 1.52 1.41 2.56 2.42 

mean d-AIC 
(ful pooled) 

16.05 8.36 6.81 5.34 3.02 

Table 3.1: Akaike Information Criterion analysis of candidate statistical models for stationary 
and nonstationary GEV models.  Delta-AIC values are calculated for each block maximum time 
series and model and averaged across all stations.  The models with the lowest AIC values are 
chosen as the most parsimonious description of the data. 
 
A recent nonstationary extreme rainfall analysis of recent major rainfall events including 
Hurricane Harvey by Vu and Mishra (2019) tested twenty candidate statistical models, also 
using AIC to choose models.  For each station and duration, they chose the model with the 
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lowest AIC value.  We feel that this amounts to overfitting, as there is little physical justification 
for expecting the long-run precipitation values to be governed by different large-scale 
processes in different ways from one station to another.  Here we take the opposite approach 
and choose the same model structure for all stations of a similar type.   
 
For the ext station data, a single nonstationary parameter (the location parameter of the 
logarithm of precipitation dependent on the logarithm of carbon dioxide concentrations) 
produces on average the lowest AIC.  For the pooled ful data, the logarithm of carbon dioxide 
affecting both the location and scale parameters produces on average the lowest AIC.  Year 
performs more poorly than lnCO2 as a covariate for both data sets, while the stationary model 
tends to perform worst of all.  Based on these AIC results, our nonstationary analysis of the 
annual maxima of individual stations uses a GEV fit to the logarithm of precipitation with a 
location parameter covarying with lnCO2, while our nonstationary analysis of pooled data uses 
a GEV fit to precipitation with both location and scale parameters covarying with lnCO2. 
 
Historic lnCO2 values are based on the CMIP mid-year CO2 historical concentrations through 
2005, and on annual average Mauna Loa concentrations up to the present day.  Trend 
magnitudes are quantified as the percentage difference between the return values at CO2 
levels corresponding to 1960 and 2020, with the mean CO2 for 2020 estimated using recent 
CO2 trends.  Future projections are discussed in Section 10. 
 
Graphical examples of the nonstationary analysis are shown in Figs. 3.12-3.15 for the qcd data 
set.  The annual maximum return values are shown rather than the partial duration series 
return values for ease of interpretation: roughly half of the events are expected to be above the 
estimated 2-year return value, and for a 100-year period of record there would most likely be 
zero or one event above the estimated 100-year return value.   
 
The solid lines show the MLE return value estimates at 2 years (brown) and 100 years (blue).  
The 50% and 95% confidence intervals are shown with darker and lighter shading, respectively.  
The confidence intervals are constructed using the bootstrap method with 10,000 draws.  The 
proper interpretation of these confidence intervals is as follows: if you randomly picked 130 
annual maximum events and their associated lnCO2 values out of this set, with some events 
randomly included multiple times and others not at all, and calculated the MLE nonstationary 
fit, the resulting return values would have a 50% (95%) chance of lying within the 50% (95%) 
confidence interval.   
 
Figure 3.12 shows the time series of annual maxima for the Harris County composite station, 
which consists of the downtown Houston station (Houston WB City; COOP number 414305) 
through 1989 and Hobby Airport thereafter.  This composite station managed to miss the more 
intense parts of the most notable extreme rainfall events of the past fifty years, such as 
Claudette 1979, October 1994, and Allison 2001.  Even Hurricane Harvey, because of the timing 
of the event and the use of calendar days for daily rainfall totals, ended up producing relatively 
low single-day totals at Hobby compared to other stations in the area: 12.07" on Aug 26, 10.99" 
on Aug 27, and 9.41" on Aug 28.  Because of this, most other stations in the area have much 
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higher calculated 100-year return values (see for example Figs. 3.13-3.14), and the NOAA Atlas 
14 return value estimates for Harris County are much larger than the 100-year return values 
calculated from this time series.    
 
This illustrates that the confidence intervals are not statements about the likelihood that the 
true return value lies within the confidence interval.  Here, for reasons just given, evidence 
from surrounding stations indicates that the true return values likely lie well above the 50% 
confidence intervals, and probably above the 95% confidence intervals as well. 
 

 
Figure 3.12: Annual maximum 1-day precipitation values for the Harris County composite 
station, along with nonstationary MLE fits and bootstrapped 50% and 95% confidence intervals. 
 
The nonstationary analysis in Fig. 3.12 shows a very large trend in extreme precipitation at both 
the 2-year and 100-year return values.  For the MLE fits, the 2-year and 100-year trends are 
coupled: with only one nonstationary parameter, the 2-year and 100-year trends must rise and 
fall by the same percentage.  Because the analysis is nonstationary, the confidence intervals at 
the beginning and end of the period of record are wider than the confidence intervals near the 
middle of the period of record.  This is due to uncertainty in the trend, which affects the extent 
to which the endpoints differ from the middle values.   
 
Consistent with expectations, about half the points lie above the 2-year return value line.  Note 
that the positive trend in the 2-year return values is consistent with the trend apparent visually 
in the run-of-the-mill annual maxima during the past 30 years.  This serves to illustrate that the 
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trend in this area is not driven solely by one or two extreme events but is instead reflective of a 
trend in the overall event population.   
 

 
Figure 3.13: Annual maximum 1-day precipitation values for the Brazoria County composite 
station, along with nonstationary MLE fits and bootstrapped 50% and 95% confidence intervals. 
 
Figure 3.13 shows the nonstationary GEV analysis for the composite Brazoria County station.  
Unlike the composite Harris County station, which had just one annual maximum 1-day 
precipitation value above 10 inches, the Brazoria County station had seven.  The highlight is the 
25.75 inches at Alvin from Tropical Storm Claudette in 1979.  This outlier event results in wide 
confidence intervals for the 100-year return values, much wider than those at the Harris County 
composite.  This reflects the fact that the bootstrap resampling will sometimes not include 
Claudette, sometimes it will, and sometimes it will even include two or more Claudettes.  But 
since Claudette occurred while carbon dioxide values were relatively low, it doesn't influence 
the nonstationary trends, which are only weakly upward. 
 
Figure 3.14 features the nonstationary GEV analysis for the composite Liberty County station.  
Liberty received one-day precipitation of 15 inches or greater three times in the past thirty 
years.  The overall trend in the nonstationary fit is positive, and the confidence intervals for 
100-year return values are narrower than for Brazoria because the historical record doesn't 
include an outlier. 
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Figure 3.14: Annual maximum 1-day precipitation values for the Liberty County composite 
station, along with nonstationary MLE fits and bootstrapped 50% and 95% confidence intervals. 
 
The overall nine-county composite for Southeast Texas (consisting of Orange, Jefferson, Hardin, 
Liberty, Chambers, Harris, Galveston, Fort Bend, and Brazoria Counties) is shown in Fig. 3.15.  
With a total of 924 data points, about 8-10 annual maxima ought to lie above the 100-year 
return value line.  This provides a much stronger constraint on the 100-year return values than 
does data from a single composite station, and so the confidence intervals for the pooled 
composite are much narrower than for the individual composite stations in Figs. 3.12-3.14. The 
2-year confidence intervals are so small as to be barely visible.  
 
The regional composite fit has an upward trend at both 2-year and 100-year return periods.  
The overall shapes of the two return value curves are constrained to be similar because a single 
covariate (lnCO2) is used to represent nonstationarity.  However, because the pooled 
composite fit allows both the location and scale parameters to be nonstationary, the 2-year and 
100-year fits are not constrained to change by the same percentage.  In this instance, 
differences in the percentage change are nonetheless too small to detect visually in Fig. 3.15. 
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Figure 3.15: Annual maximum 1-day precipitation values for the nine-county Southeast Texas 
region, along with nonstationary MLE fits and bootstrapped 50% and 95% confidence intervals. 
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4. Previous Research on Harris County Extreme Rainfall Trends 
 
The assessment of trends in extreme rainfall depends on several aspects of the analysis: the 
definition of extreme rainfall, the statistical model, the period of the data record, and the 
spatial aggregation.  Longer periods of record, larger aggregation areas, and less stringent 
definitions yield more tightly constrained trends, but larger aggregation and less stringent 
definitions come at the expense of providing information specific to Harris County and relevant 
to HCFCD.  Nonetheless, studies have consistently found observed upward trends in extreme 
rainfall in regions that include Texas.   
 
The Fourth National Climate Assessment (Easterling et al. 2017) reported an increase of 13% 
over 115 years in the magnitude of 2-day, 5-year block maxima averaged over Texas, 
Oklahoma, and Kansas.  More recently, Wright et al. (2019) examined trends in the number of 
exceedances of NOAA Atlas 14 design values across the United States for 47, 67, and 87-year 
periods ending in 2017.  For a region spanning Texas, Oklahoma, Kansas, Arkansas, Louisiana, 
and Mississippi, the overall trend in 1-day exceedance counts over 67 years was 8% for 2-year 
events and 6% for 100-year events; 4-day exceedances were similar but were not statistically 
significant.  Considering the United States east of 100 °W, Wright et al. (2019) found robust 
trends of 7-9% per decade for 2-year return thresholds and 8-21% per decade for 100-year 
return thresholds.  Kunkel et al. (2020) examined trends in observed exceedance values in the 
same six-state region as Wright et al. (2019) and found trends of about 5% per decade, mostly 
not statistically significant.  Sub-daily extreme precipitation in the southern and southeastern 
United States was examined by Brown et al. (2020), who did not aggregate beyond the station 
level and found few statistically significant trends, although those that were significant were 
mostly positive. 
 
Hurricane Harvey inspired several studies into the changing probability of extremely heavy 
precipitation in the Houston area.  All such papers have identified positive historic changes in 
certain aspects of very extreme rainfall in the Houston area (Risser and Wehner 2017, van 
Oldenborgh et al. 2017, Russell et al. 2019) or model projections of certain aspects of very 
extreme rainfall (van Oldenborgh et al. 2017, Emanuel 2017, Wang et al., 2017), even when 
Hurricane Harvey is omitted from the trend analysis.  However, the quantitative results are very 
sensitive to choices of historic period, event definition, and other aspects of the problem.  A 
recent attribution analysis of rainfall from Tropical Storm Imelda (September 2019) found a 
similarly positive trend for rainfall intensities commensurate with Imelda (van Oldenborgh et al. 
2019).  Unlike the more general studies of extreme rainfall trends in the previous paragraph, 
the Harvey-related studies tend to examine the connection between climate change metrics 
and extreme precipitation rather than simply assuming a linear trend over time. 
 
As Fischer and Knutti (2016) describe, global climate models were predicting, and climate 
scientists were expecting, a global and regional increase in extreme precipitation intensity even 
before an observed trend was detectable.  Given the early success of primitive climate models, 
studies with modern global climate models provide indications of what to expect, and why, as 
the observed record continues to grow and the climate continues to change.  Extreme 
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precipitation is expected to increase in general in both dry and wet regions of the globe (Donat 
et al., 2016).  Subdaily rainfall is also observed and expected to generally increase, possibly 
more rapidly than daily or multi-day durations (Westra et al., 2014).  Models also robustly 
predict that the change in frequency of extreme precipitation will be larger for the more 
extreme events (Pendergrass and Hartmann, 2014; Fischer and Knutti, 2016; Feng et al., 2019; 
Giorgi et al., 2019).  There is tentative evidence that the change in frequency of extreme 
precipitation may also be larger for shorter precipitation durations (Zhang et al., 2017). 
 
Models have been used to investigate more local characteristics of possible future extreme 
rainfall trends.  Sanderson et al. (2019) analyzed extreme precipitation projections for the Gulf 
Coast region using quantile mapping and found projected increases of 3-day 100-year 
precipitation events of 3% to 9% per degree Celsius of global warming, but with large variability 
among models.  Li et al. (2019) identified upward trends in precipitation intensity for global 
climate model output downscaled to the Clear Creek watershed.  Global or regional climate 
models do not simulate precipitation at such a small scale; relating such model output to local 
precipitation extremes involves making assumptions about the relationship between local 
extreme precipitation and larger-scale precipitation that may or may not be sound (Li et al. 
2020). 
 
One aspect of the observed and simulated increase in extreme precipitation is the simple 
principle that warmer air can contain more water vapor and thus produce a greater amount of 
precipitation, all else being equal.  However, large-scale weather patterns, such as jet stream 
locations and preferred tropical cyclone tracks, can also change with a warming climate, and 
the enhanced precipitation production can also affect the structure and intensity of individual 
storms, in turn altering the storm's ability to produce extreme precipitation (Pfahl et al. 2017; 
Chen et al. 2019).  Studies indicate that the simple principle is also the dominant one in most of 
the United States, but such conclusions are tentative since changes in weather patterns and 
storm structure are much more uncertain. 
 
An occasionally important weather phenomenon for extreme rainfall along the Gulf Coast is the 
tropical cyclone.   About 10%-15% of the annual maximum daily precipitation along the upper 
Texas coast is attributable to tropical cyclones (Villarini and Smith 2013; Aryal et al. 2018; 
Dhakal and Jain 2019), with the Houston area at greater risk than most other Texas coastal 
areas (Zhu et al. 2013) and widespread extreme precipitation being a particular threat (Kunkel 
and Champion, 2019).  There is general agreement among experts that the precipitation rates 
associated with tropical cyclones are increasing globally due to climate change (Knutson et al. 
2020), and that climate change has increased the odds of Harvey-like precipitation along the 
Texas Gulf Coast (Knutson et al., 2019).  A recent study of observed tropical cyclone 
precipitation in China is consistent with this upward trend (Liu and Wang, 2020).  Tropical 
cyclones have been observed to be more likely to stall along the North American coast in recent 
years, but it is unclear whether that trend should be expected to continue (Hall and Kossin, 
2019).  Because tropical cyclone precipitation is both rare and extreme, accurate assessment of 
extreme precipitation may require treating tropical cyclone precipitation separately from other 
types of precipitation (Chin et al. 2019). 
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Taken together, recent scientific studies and assessments are unanimous that extreme rainfall 
has been increasing in general in the Texas area and should be expected to continue to 
increase.  Given that trend, how much spatial variation should be expected in the magnitude of 
the climate-driven trend? 
 
Considerable variation might be expected where changes in weather patterns alter the effect of 
topographic variations on extreme weather.  For example, in areas with large topographic 
relief, where changes in large-scale wind direction can influence the relative prevalence of 
upslope or downslope conditions on either side of a mountain range.  Likewise, locations whose 
extreme precipitation has a large influence from tropical cyclones might see different trends 
than other locations if climate change affects the frequency or intensity of tropical cyclones 
differently from extreme rainfall in general. 
 

 
Figure 4.1: Relative increase in the amount of the 1-day annual returning precipitation event 
between 100-yr simulations with climate forcings corresponding to the year 1990 and 
simulations with doubled CO2.  Panel b uses the FLOR model with 1/2 degree lat-lon resolution, 
while panel c uses the HiFLOR model with 1/4 degree lat-lon resolution.  Reproduced from 
Figure 5 of van der Weil et al. (2016).  Copyright 2016 American Meteorological Society. 
 
Van der Wiel et al. (2016) examined CO2-driven changes in annual maximum 1-day rainfall in 
the United States with three separate models of varying spatial resolution.  The simulations of 
local changes in extreme rainfall are shown in Fig. 4.1 for the two higher-resolution models.  
Both models depict spatial variations in maximum 1-day rainfall over spatial scales smaller than 
typical Gulf Coast states.  However, it is notable that, despite identical experimental conditions, 
the locations of maximum precipitation change are often opposite in the two simulations.  For 
example, FLOR simulates large changes in western Texas, with a secondary maximum in the 
Coastal Bend area; while HiFLOR has the maximum extreme precipitation changes in between 
these two areas.  FLOR has greater extreme precipitation change in Mississippi than in Alabama 
or Louisiana; HiFLOR has less extreme precipitation change in Mississippi than in Alabama or 
Louisiana.  The only patterns that might be reliable are the overall tendency for extreme 
precipitation increases and the greater increases in general in the eastern US than the western 
US.  Those patterns are also found in the lowest-resolution simulation and in 1-day rainfall with 
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five year return periods (not shown).  Since changes in weather and climate patterns are similar 
across the two models, we conclude that the details of spatial extreme rainfall changes at the 
state or sub-state scale are produced by the random occurrence of extreme events at different 
specific locations. 
 
A similar tendency (greater extreme precipitation trends in the eastern US and increased 
precipitation overall) were also found by Wright et al. (2019).  The robustness of these findings 
and agreement with observations leads us to treat trends that are consistent across several 
states as robust and possibly driven by climate change, while localized trend variations are 
likely to lack a large-scale climate driver and would instead be produced by clusters of 
individual events that inevitably happen more over a given period of time in one place than 
another.  Projections of future trends should rely on multi-state consistent trends unless there 
is a local topographic or similar influence that would cause a different location-specific 
response to climate change or that would separately drive a trend in extreme precipitation. 
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5. Regional Amounts and Trends 
 
5.1 Regional return values 
 
The pooled one-day stationary 100-yr rainfall amounts for the coastal and near-coastal 
southeastern United States are shown in Figs. 5.1 and 5.2.  The two figures are nearly 
indistinguishable, indicating that the differences between the ful and qcd data sets are of little 
consequence.  Henceforth, all regional plots will use the qcd data. 

 
Figure 5.1: Pooled 1-day 100-year rainfall amounts (inches), ful data, stationary model. 

 
Figure 5.2: As in Fig. 5.1 but for qcd data. 
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The region including Harris County features the largest one-day 100-yr rainfall amount by far, 
16.92" for the qcd data and 16.86" for the ful data.  The 100-year amounts on either side of 
that region along the coast are over 3" smaller.  The next largest value is 14.35" for the qcd data 
and 14.31" for the ful data in southeastern Florida.  The 100-year rainfall amounts also 
generally decrease with distance from the coast. 
 
The 16.92" seems anomalous.  One could hypothesize that this particular region of Texas is 
especially susceptible to the combination of upper-level weather disturbances traveling 
eastward over northern Mexico and deep moisture along the western margin of the Bermuda 
High, but then one would expect heavily elevated precipitation totals in the next row of regions 
farther inland.  Instead, the inland values are only a few tenths of an inch higher than their 
neighbors, and the largest inland pooled value is in Louisiana. 
 
Another possible explanation for the 16.92" is Hurricane Harvey and the other recent extreme 
rainfall events listed earlier.  To determine whether these events are responsible for the 
elevated 1-day 100-yr amount, the data is truncated at the end of 2014 and a similar analysis is 
performed.  The result, in Fig. 5.3, is a reduction of the 100-yr rainfall amount by 1.40" and a 
similarly-sized reduction in the extent to which the value in coastal southeast Texas exceeds 
those of its neighbors.  So while recent extreme rainfall events did contribute to the high 100-yr 
rainfall amount seen in Fig. 1 in southeast Texas, they are not the sole cause. 
 

 
Figure 5.3: Pooled 1-day 100-year rainfall amounts (inches), qcd data through 2014, stationary 
model. 
 
The percentage difference in 100-yr rainfall amounts for periods ending in 2014 and 2019 is 
shown in Fig. 5.4.  While the estimates increased by 9% in parts of southeast Texas, other 
substantial increases in the estimated 100-yr rainfall amount occur elsewhere.  In particular, 
the parts of Louisiana most affected by the 2016 flood increase by 4% to 5%, and parts of North 
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and South Carolina affected by Joaquin, Florence, Matthew, and Dorian saw a 6% to 11% 
increase in the estimated 100-yr rainfall amount. 
 

 
Figure 5.4: Percentage increase in stationary estimate of 1-day 100-year return value due to 
data in years 2015-2019. 
 

Figure 5.5: Composite station 1-day 100-year rainfall amounts (inches), qcd data, stationary 
model. 
 
The 1-day 100-year return values for the individual composite stations (Fig. 5.5) are somewhat 
noisier than the pooled values (Fig. 5.2).  This county-level data emphasizes the high values 
near the coast.  Some additional details of structure are more apparent as well.  There appears 
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to be a tendency of the Louisiana Delta and Florida to provide a bit of protection against heavy 
rainfall for southern Mississippi and Georgia, respectively. 

 
Figure 5.6: Composite station 1-day 2-year rainfall amounts (inches), qcd data, stationary model 
 
The 2-year return values (Fig. 5.6) are considerably smoother than the 100-year return values 
(Fig. 5.5) at the individual county level, reflecting the smaller uncertainty near the middle of the 
GEV cumulative distribution.  The pooled value for the region including Harris County is 5.17"; 
this is exceeded slightly by coastal Louisiana and nearly equaled by southeastern Florida.  This 
return value is only about 5% larger than the average of the two surrounding coastal regions, 
whereas the 100-year return value was about 20% larger than the average.  This indicates that 
southeast Texas is unusual in the context of very large return periods but not smaller return 
periods. 
 
5.2 Regional trends 
 
The trend in rainfall amounts (Fig. 5.7), expressed as the percentage change in expected 100-
year return values between 1960 and 2020, shows a large trend for coastal southeast Texas, 
with a 27% increase in the maximum likelihood amount over the 60-year period.   Larger 
increases are found in parts of Louisiana and North Carolina, as well as farther inland in eastern 
and northeastern Texas.  Of the pooled trends, 40 out of 47 are positive.  Across the entire 
region, the average best-fit increase is 13.2%. 
 
Note that the 1960 return value is not calculated from the data up to the year 1960.  It, like the 
2020 return value, is based on the entire data set, assuming that certain characteristics of the 
probabilities are smoothly changing according to the temporal pattern of the CO2 radiative 
forcing, with the sign and magnitude of the change dictated by the entirety of the data. 
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Figure 5.7: Percentage changes in nonstationary pooled estimates of 1-day 100-year return 
values between 1960 and 2020, qcd data. 
 
Are these trends statistically significant?  Collectively, they are.  If one assumes that the 
observed trends represent spatial variations of an underlying average trend, the confidence 
interval for the estimated average trend depends on the extent to which individual weather 
events simultaneously lead to block maxima in multiple regions.  If the extreme events in each 
region are independent of those in the others, the underlying trend and 95% confidence 
interval would be 13.2% +/- 3.7%.  If a high degree of interdependency is assumed, such that 
there are effectively only six independent regions, the underlying trend would be 13.2% +/- 
10.2%.  We choose an intermediate value, 12, as our best estimate of the number of effective 
degrees of freedom, which yields 13.2% +/- 7.2%. 
 
Trends exist in the 2-year return periods as well.  Figures 5.8 and 5.9 compare the county-level 
trends in 100-year and 2-year return periods.  The trends have more station-to-station 
variability than the stationary return values.  Also notice that the pattern of trends is identical in 
Figures 5.8 and 5.9.  This is because, with only one nonstationary parameter in the GEV fit, all 
return values are constrained to change simultaneously by similarly proportional amounts.  If 
there is a difference in the trends of 2-year and 100-year return values, it is necessary to turn to 
the pooled GEV fit with two nonstationary parameters.  A nonstationary shape parameter 
literally allows the shape of the extreme value distribution to change with time (or with 
ln(CO2)). 
 
The pooled 2-year return value trends (Fig. 5.10) turn out to be slightly smaller and 
considerably smoother than the pooled 100-year return value trends (Fig. 5.7), even at the 
state scale.  The mean 2-year trend is 11.3%, slightly smaller than the 100-year trend, while the 
standard deviation of the trends is only 8.0% compared to 12.8% for the 100-year trends.  The 
smaller standard deviation implies a narrower confidence interval as well, making the overall 
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trend estimate for our preferred number of degrees of freedom 11.3% +/- 4.5%.  The trend in 
Harris County's region is 20.2%, tenth-largest among all regions. 

 
Figure 5.8: Percentage changes in nonstationary composite station estimates of 1-day 100-year 
return values between 1960 and 2020, qcd data. 
 

 
Figure 5.9: As in Fig. 5.8, but for 2-year return values. 
 
If heavy rainfall over the past five years has increased the stationary return value estimates, it 
should also have increased the estimated trend magnitudes.  Figure 5.11 shows the difference 
in estimated trend magnitudes using only data through 2014 compared to using the full data 
set.  The change in the trend in southeast Texas is very large: 3.8% using data through 2014, 
and 27.1% using data through 2019.  The trend in the region immediately to the northwest, 
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which includes Waller and Washington Counties, is even larger.  Somewhat smaller changes in 
the trend estimates are found in the Carolinas.  Averaged across the entire region, though, 
there is a 5% difference: 8.1% +/- 6.7% using data through 2014, compared to 13.2% +/- 7.2% 
using data through 2019.  The change in the trend estimates is within the confidence interval 
for the trend estimates. 

 
Figure 5.10: Percentage changes in nonstationary pooled estimates of 1-day 2-year return 
values between 1960 and 2020, qcd data. 
 

 
Figure 5.11: Difference in nonstationary pooled trend estimates of 1-day 100-year return values 
between estimates using data through 2014 and through 2019, qcd data. Blue and orange lines 
identify pooled coastal and inland stations, respectively, for Figs. 8.1 and 8.2. 
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The combination of a large stationary return value and a large trend produces an especially 
large estimate of the nonstationary 100-year return value for the year 2020 in southeast Texas: 
20.06".  The next highest pooled value is 16.53" in the adjoining coastal region of Louisiana.  
The adjoining Texas coastal region to the southwest has a pooled value of 14.16".  The 
adjoining inland regions in Texas have pooled values of 13.25" and 14.11".  The corresponding 
2-year nonstationary return values for 2020 are 6.02" for southeast Texas, 6.11" to the east, 
5.05" to the southwest, and 5.30" and 4.80" in the adjoining inland regions.  In the 2-year 
context, southeast Texas is somewhat higher than most of its neighbors but is not an outlier. 
 
In summary, coastal southeast Texas has a 1-day 100-year rainfall amount that is considerably 
higher than its neighbors.  While recent heavy rain in the Houston area contributed somewhat 
to that anomalous value, the recent rain had a much larger influence on the nonstationary 
trend fit.  Compared to other regions, the recent extreme rainfall events have helped to elevate 
the return values in coastal southeast Texas and, because most of those events were recent, 
they also have had an outsized effect on the local extreme rainfall trend analysis. 
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6. Stationary Analysis for Harris County 
 
Figure 6.1 shows the 1-day 100-year amount for eastern Texas, based on the MLE GEV fit to the 
NOAA Atlas 14 data.  Each dot represents one of the stations used in the NOAA Atlas 14 
analysis.  Aside from a different color scheme, the map is similar to that in Fig. 3.5, since the 
MLE method produces similar GEV fits to the L-moments method used in NOAA Atlas 14 and 
demonstrated in Section 3. 
 

 
Figure 6.1: 1-day 100-year stationary return values, raw data 
 
In addition to being noisier than the NOAA Atlas 14 map (Fig. 3.5), the raw 1-day 100-year 
return periods are also noisier than the composite county station data (Fig. 5.5).  The reason for 
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this is the improved robustness of the county composites, which piece together data from 
multiple individual stations to obtain as long a period of record as possible. 
 
The purpose of the ext data is to reproduce that statistical robustness with the NOAA Atlas 14 
data set.  Figure 6.2 shows the corresponding return values for the ext data set.  As intended, 
the ext data set does not have the extreme outliers of the raw data set and there is much more 
consistency in return values from station to station. 

 
Figure 6.2: 1-day 100-year stationary return values, ext data 
 
Figures 6.3 and 6.4 show closeups of southeast Texas.  The closeups make it possible to discern 
each of the 25 or so stations in Harris County.  The closeup reveals that some stations have a 
historical data record that implies a 1-day 100-yr return amount of 30" or more.   The median 
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value of return values in Harris County appears to be around 16".5, in line with the median for 
NOAA Atlas 14.  So the GEV fit here is a reasonable reproduction of the NOAA Atlas 14 
statistical analysis. 

 
Figure 6.3: 1-day 100-year stationary return values, raw data, southeast Texas 
 
A GEV analysis of the period of record of the stations used by NOAA Atlas 14 in the Houston 
area includes three stations whose 1-day 100-year return value is literally off the charts: greater 
than 30".  When the period of record for each station is extended back to 1895 using 
neighboring stations, all such 1-day 100-year return values reduce to 20" or less. 
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Figure 6.4: 1-day 100-year stationary return values, ext data, southeast Texas 
 
Figure 6.5 shows the difference between the raw and ext 1-day 100-year stationary return 
values.  The map is a patchwork of positive and negative differences, depending on whether 
rainfall in the distant past was especially heavy.  The positive changes northeast of Austin may 
be at least partially attributable to the extreme rainfall events in 1899 and 1921.  Conversely, 
Harris County did not have many epochal rainfall totals early in the climate data record (at 
least, compared to more recent rainfall events), so extending the data record tends to reduce 
the extreme precipitation estimates. 
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Figure 6.5: Difference in 1-day 100-year stationary return values, raw vs ext data.  Positive 
differences correspond to higher ext values. 
 
Figure 6.6 shows the difference within Southeast Texas.  Harris County receives a larger 
downward adjustment to its 1-day 100-year stationary value than any other county in the area, 
with the largest adjustments at precisely those stations that had the largest 1-day 100-year 
stationary return value in the raw data set.  Had NOAA Atlas 14 been based on the ext data set, 
its return values would have been smaller in the Harris County area.  Note that the difference 
would be smaller than Fig. 6.6 suggests, since NOAA Atlas 14 is smoothed and the change in 
return value estimates would be smoothed too.  But to the extent that the ext data produces 
smoother return value estimates, its resulting return values should approximate what NOAA 
Atlas 14 would have deduced from the ext data. 
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Fig. 6.6: Difference in 1-day 100-year stationary return values for southeast Texas, raw vs ext 
data.  Positive differences correspond to higher ext values. 
 
Figures 6.7 through 6.9 show the ext return values for other durations or return periods.  In all 
cases, including Fig. 6.4, the Harris County values seem representative of the broader 
geographical context.  We therefore interpret the ext return values averaged across each of the 
three regions of Harris County as the approximate return values that NOAA Atlas 14 would have 
estimated if it had used the ext technique to extend the period of record of each time series. 
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Figure 6.7: 6-hour 2-year stationary return values, ext data, southeast Texas 
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Figure 6.8: 6-hour 100-year stationary return values, ext data, southeast Texas 
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Figure 6.9: 1-day 2-year stationary return values, ext data, southeast Texas 
 
Table 6.1 compares the NOAA Atlas 14, raw, ext, and qcd return values.  In all cases, the ext 
values are lower than the raw values.  Also, in ten out of twelve cases, the raw values are higher 
than the NOAA Atlas 14 values, and in all twelve cases, the ext values are lower than the NOAA 
Atlas 14 values.  At the one-day time scale, the qcd pooled data provides an additional point of 
comparison.  Since Harris County is slightly farther inland than the average location within the 
region, the true pooled values would be expected to be slightly higher than the true Harris 
County values.  We find that the qcd pooled values are close to the NOAA Atlas 14 values at the 
2-year return period and tend to exceed it at the 100-year return period, implying that NOAA 
Atlas 14 is an overestimate of return values relative to the qcd benchmark. 
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Region Dataset 6-h 2-year 1-d 2-year 6-h 100-year 1-d 100-yr 
1 Atlas 14 3.58 4.83 10.7 16.3 
1 raw stat 3.67 4.86 10.77 17.27 
1 ext stat 3.58 4.63 9.58 15.03 
2 Atlas 14 3.75 5.11 11.3 16.9 
2 raw stat 4.06 5.09 11.45 15.89 
2 ext stat 3.79 4.92 10.58 14.99 
3 Atlas 14 3.87 5.30 12.5 18.0 
3 raw stat 4.11 5.48 15.61 19.26 
3 ext stat 3.85 5.10 11.09 16.73 

SE TX qcd stat n/a 5.17 n/a 16.86 
Table 6.1: Comparison of stationary return values for the three watershed regions of Harris 
County. 
 
The apparent explanation for the tendency of ext data to yield smaller stationary return values 
in the Harris County area lies in the fact that many of the Harris County stations have shorter, 
recent record periods.  Section 5 illustrated that there is an observed long-term upward 
extreme precipitation trend in the region, and also illustrated that the Harris County area has 
received a large increment of extreme rainfall over the past few years.  Both of those factors 
would lead to stations with a short, recent period of record having a larger estimated return 
value than a station with a longer period of record.  NOAA Atlas 14 weighted longer periods of 
records more heavily, which would have reduced but not eliminated the bias. 
 
The results in this section also imply that a more robust stationary analysis than NOAA Atlas 14 
would have yielded smaller return values.  On average, the difference between the Atlas 14 and 
ext return values is 0.2% for 6-h 2-year values, -3.9% for 1-d 2-year values, -9.4% for 6-h 100-
year values, and -8.7% for 1-d 100-year values.  The grand mean difference is -5.5%. 
 
This does not mean that NOAA Atlas 14 overestimates the return values that should be 
expected today by 5.5%.  If there is a long-term trend, stations with a shorter, more recent 
period of record will be sampling from a climate more similar to the present-day climate and 
thus will yield extreme rainfall estimates that are closer to the present-day reality.  The 
artificially enhanced 100-yr precipitation estimates over Harris County may mean that the 
precipitation estimates for Harris County are closer to the actual rainfall risk compared to 
county-scale precipitation estimates from the north and west.  We will quantify this effect in 
subsequent sections. 
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7. Trend Analysis for Harris County 
 
7.1 Trend magnitudes 
 
Figure 7.1 shows the trend (1960 to 2020) for the extended data set across eastern Texas, while 
Fig. 7.2 shows the trend close-up around Harris County.  Overall, trends are generally consistent 
with the regional analyses shown in Section 5.  Positive trends dominate.  In Harris County, the 
trends are larger than for almost any other county in the region. 

 
Figure 7.1: The trend in 1-day 100-year exceedance values, expressed as the difference between 
the 1960 value and the 2020 value, using ext data. Positive values imply an upward trend. 



 

 53 

 
Figure 7.2: The trend in 1-day 100-year exceedance values, as in Fig. 7.1, but for southeast 
Texas. 
 
The corresponding maps for 6-hour 100-year trend are given in Figs. 7.3 and 7.4.  Since the 
nonstationary GEV model for individual stations uses a single nonstationary parameter and 
assume logarithmic precipitation dependence, the percentage trends in 2-year exceedance 
values are constrained to closely match the percentage trends in 100-year exceedance values, 
so they are not separately shown here. 
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Figure 7.3: The trend in 6-hour 100-year exceedance values, expressed as the difference 
between the 1960 value and the 2020 value, using ext data. Positive values imply an upward 
trend. 
 
In both Fig. 7.3 and Fig. 7.4, the unusual size of the trend in and around Harris County is readily 
apparent.  No other area in central or eastern Texas features so many large positive trends.  
These trends reflect the long-term lived experience of Harris County residents: extreme 
precipitation has been more frequent and more intense in recent years. 
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Figure 7.4: The trend in 6-hour 100-year exceedance values, as in Fig. 7.3, but for southeast 
Texas. 
 
In summary, even with the ext data set, Harris County has a larger trend in the return values for 
extreme precipitation than any neighboring areas. Whether this trend should be expected to 
continue depends on the specific cause of the trends.  Four possible causes for the enhanced 
Harris County trend will now be considered: coastal proximity, urbanization, climate change, 
and natural variability. 
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7.2 Analysis of relationship between coastal proximity and amounts/trends 
 
Figure 6.2 illustrates that the highest 1-day 100-year return values are typically found within 
about one county of the coast, with Harris County intermediate between the coastal band with 
high values values farther inland.  There appears to be nothing special about the return values 
at Harris County's distance from the coast in Harris County or in other areas. 
 
Figure 7.1 shows the trend in 1-day 100-year return values.  In this case and for trends in other 
return values, the trend in Harris County is larger than the trend both closer to the coast and 
farther inland.  But Figure 7.1 shows that this pattern is unique to Harris County.  Nowhere else 
along the Texas coast is there a maximum in the trend one or two counties inland from the 
coast.  Indeed, the overall impression from Figure 7.1 is that of a random patchwork of larger 
and smaller trends overlaid on a general tendency for larger trends to the east and smaller 
trends to the west.   
 
In summary, Harris County's proximity to the coast enhances its vulnerability to extreme 
rainfall, but there is no evidence that the effect of coastal proximity is changing over time or is 
contributing to the large trends in extreme rainfall experienced by Harris County. 
 
7.3 Analysis of Relationship Between Urbanization and Amounts/Trends 
 
Urbanization has been linked to extreme rainfall.  For example, Yin et al. (2020) simulated a 
rainstorm over Guangzhou, China, that produced over 20 inches of rainfall in 12 hours, and 
found that the urban heat island and associated wind convergence was an important trigger for 
the event.  So we now examine whether there is any consistent relationship between 
urbanization and extreme rainfall trends across Texas. 
 
The same Figure 6.2 fails to provide any prima facie evidence that Harris County possesses 
anomalous return values due to urbanization.  The return values in Harris County lie along a 
continuum from smaller values to the north and west and larger values to the south and east. 
 
Figure 6.2 shows that the return values for other urban areas are a mixed bag.  San Antonio lies 
along a gradient between smaller values to the south and larger values to the north, probably 
influenced by the local topography of the Balcones Escarpment.  Austin has locally higher 
values, while Dallas-Fort Worth has locally lower values.  Thus there is no direct evidence that 
urban areas are having an influence on the overall estimates of extreme return values in Texas. 
 
Many previous studies have examined a possible urban influence on precipitation in Houston 
(such as Shepherd et al. 2010 and Orville et al. 2001), but few have investigated urban impacts 
on very extreme precipitation.  Two recent Harvey-oriented studies examined this question, 
one directly and the other indirectly.  Zhang et al. (2018) performed a baseline simulation of 
Harvey with a simple urban area parameterization and a second simulation with the urban 
areas replaced by cropland.  Although the paper claims that urbanization enhanced the rainfall, 
a closer look at the results reveals that the rainfall was similar in magnitude but displaced 
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eastward in the simulation with the urban area.  The model ensemble size (five members) may 
have been too small to robustly reveal the urban influence.  Also, the urban parameterization 
would not have reflected the unique and varied urban cityscape of Houston.  Pan et al. (2018) 
performed Harvey simulations with a giant offshore wind farm and found that the obstacle 
created by the wind farm enhanced precipitation offshore.  The Houston urban core should 
similarly act as an obstacle and locally enhance precipitation during Harvey. 
 
Urbanization might be more likely to manifest itself as an influence on trends, since 
urbanization has increased dramatically over the past several decades.  But Figure 7.3 also 
presents a mixed bag.  None of the other major cities in Texas have a localized, relatively high 
trend like Houston.  Austin and Dallas-Fort Worth feature near-zero or even negative trends.  
The trends in Fig. 7.3 are organized neither by coastline nor urbanization. 
 
7.4 Analysis of relationship between climate change, trends, and natural variability 
 
As already noted, there is a robust upward trend in extreme rainfall across the southern and 
southeastern coastal United States.  Section 4 reviewed the extensive evidence that such a 
trend is caused by global warming.  But what about the specific trend in Harris County? 
 
A classical analysis of the statistical significance of the Harris County trend would not settle the 
question.  The trend in Harris County is higher than just about anywhere else in the southern 
and southeastern United States.  Because 5% of all trends are expected to be statistically 
significant at the p=0.05 level, we can assume that the Harris County trend is statistically 
significant, but that tells us nothing since a few places are likely to be randomly statistically 
significant. 
 
An alternative approach is to question whether the trend specific to Harris County can be 
caused by climate change.  This is unlikely, since the same climate change processes that might 
hypothetically lead to an enhanced trend in Harris County ought to lead to an enhanced trend 
across most of the Gulf Coast.  Figure 5.7 shows a smoothly varying trend along the Gulf Coast, 
but the spatial scale of even those variations seems too small to be robustly produced by global 
climate change, as discussed in Section 4. 
 
We are aware of no research investigating the characteristic spatial scale of climate change 
trends in the absence of special topographic influences.  The null hypothesis would be that the 
observed spatial variations are a consequence of natural variability: the specific history of 
extreme rainfall events in the area.  If the weather of the past 125 years were to be re-started, 
the locations receiving extreme rainfall events such as Harvey and Imelda may well have been 
different, or the storms may not have existed at all.  Given the absence of evidence that the 
spatial patterns of trends in extreme rainfall are deterministic, the appropriate minimum 
assumption is that the underlying trend is uniform across the entire region.   
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8. Estimation of Future Extreme Rainfall Likelihood 
 
With the above analyses in mind, the report now considers likely return values for future 
extreme precipitation at the 6-hour and 1-day durations. 
 
As an initial matter, if there were no trends in extreme rainfall and actual extreme rainfall 
events were evenly distributed in time, the NOAA Atlas 14 analyses would provide valid and 
accurate estimates of extreme rainfall risk.  But the presence of an underlying positive trend 
and the additional clustering of extreme rainfall events near the end of the historical record in 
the Houston area, combined with the uneven distribution of periods of record of available 
stations, causes the NOAA Atlas 14 analysis to be suboptimal. 
 
The remainder of this section makes quantitative estimates of the impact of various aspects of 
extreme rainfall in Harris County that were not fully considered in the NOAA Atlas 14 analysis.  
The starting point is the NOAA Atlas 14 analysis (Table 8.1); the three numbers in each cell 
correspond to regions 1, 2, and 3 of Yung (2019). 
 
Table 8.1: NOAA Atlas 14 regional return values. 
 

 2-YEAR RETURN 
PERIOD 

100-YEAR RETURN 
PERIOD 

500-YEAR RETURN 
PERIOD 

6 HOUR 1 DAY 6 HOUR 1 DAY 6 HOUR 1 DAY 
 

NOAA ATLAS 14 
3.58 
3.75 
3.87 

4.83 
5.11 
5.30 

10.7 
11.3 
12.5 

16.3 
16.9 
18.0 

15.9 
16.7 
18.2 

21.7 
22.9 
24.5 

 
 
8.1 Adjustment for Short Record Lengths 
 
At the county scale, the irregular and nonstationary distribution of historical precipitation and 
the use of shorter-duration stations in the Harris County area means that, for Harris County in 
particular, return values are unusually large because events are preferentially sampled from 
nearer the end of the data record when extreme rainfall happened to be plentiful.  When data 
is extended back to 1895 by substituting nearby observations for missing values, the 
anomalously larger return values in Harris County disappear. 
 
The changes in estimates (Table 6.1) were somewhat erratic from region to region within the 
county.  NOAA Atlas 14 uses a larger spatial footprint to estimate return values.  To more 
robustly estimate an adjustment for the extended record lengths, we average the three 
regional precipitation values before computing percent changes. We then compare those 
changes to changes relative to the original NOAA Atlas 14 values. 
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Table 8.2: Record length and MLE differences in return values 
 

 2-YEAR RETURN 
PERIOD 

100-YEAR RETURN 
PERIOD 

500-YEAR RETURN 
PERIOD 

6 HOUR 1 DAY 6 HOUR 1 DAY 6 HOUR 1 DAY 
RAW REGIONAL 

L-MOMENT 
ESTIMATES 

3.67 
4.07 
4.17 

4.90 
5.12 
5.50 

10.66 
11.36 
14.01 

16.21 
15.52 
18.75 

15.39 
15.94 
22.19 

24.73 
22.57 
29.29 

RAW AVERAGE 3.95 5.17 12.01 16.83 17.84 25.53 
EXT REGIONAL  

MLE ESTIMATES 
3.58 
3.79 
3.85 

4.63 
4.92 
5.10 

9.58 
10.58 
11.09 

15.03 
14.99 
16.73 

13.29 
15.01 
16.12 

23.02 
22.63 
25.89 

EXT AVERAGE 3.74 4.88 10.42 15.58 14.81 23.85 
PCT CHANGE -5.3% -5.6% -13.2% -7.4% -17.0% -6.6% 

NOAA ATLAS 14 
AVERAGE 

3.73 5.08 11.50 17.07 16.93 23.03 

PCT CHANGE +0.2% -3.9% -9.4% -8.7% -12.5% +3.5% 
 
The average percent difference from the raw L-moment values to the ext MLE values is -9.2%, 
whereas the average percent difference from the NOAA Atlas 14 values to the ext MLE values is 
-5.1%.  The differences do not vary systematically across durations and return periods, so we 
identify a uniform best value to apply to all estimates.  The spatial statistical smoothing applied 
during the NOAA Atlas 14 process probably contributed some of the statistical value provided 
by the ext approach.  So -9.2% is an estimate of an upper bound of the adjustment that needs 
to be applied to the NOAA Atlas 14 data, while -5.1% is an estimate of the lower bound.  We 
use as a best estimate the average of the two, which is -7.2%.  The revised return values are 
given in Table 8.3. 
 
Table 8.3: NOAA Atlas 14 regional return values with MLE/ext adjustment. 
 

 2-YEAR RETURN 
PERIOD 

100-YEAR RETURN 
PERIOD 

500-YEAR RETURN 
PERIOD 

6 HOUR 1 DAY 6 HOUR 1 DAY 6 HOUR 1 DAY 
 

NOAA ATLAS 14 
3.58 
3.75 
3.87 

4.83 
5.11 
5.30 

10.7 
11.3 
12.5 

16.3 
16.9 
18.0 

15.9 
16.7 
18.2 

21.7 
22.9 
24.5 

MLE/EXT ADJ -7.2% 
RETURN VALUES 

THROUGH 
SECTION 8.1 

3.32 
3.48 
3.59 

4.48 
4.74 
4.92 

9.93 
10.5 
11.6 

15.1 
15.7 
16.7 

14.8 
15.5 
16.9 

20.1 
21.3 
22.7 
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8.2 Spatial Variations in Stationary Analyses 
 
While Harris County itself doesn't stand out in the ext data, the southeastern Texas coast in 
general has what seems to be an anomalously large set of 100-year return values compared to 
neighboring locations.  This issue was discussed in Section 5; here we examine this particular 
issue in more detail. 
 
Figure 8.1 compares the 2-year and 100-year return values for durations of 1 day and 4 days.  
The specific coastal and inland (adjacent to coastal) regions are listed in Appendix B and are 
depicted in Fig. 5.11.  The Florida Peninsula is excluded. 

 
Figure 8.1: Stationary coastal and inland return values, qcd lumped data set, plotted left to right 
from southern Texas to northern North Carolina.  In this and similar plots, the dashed lines 
correspond to 2-year return values while the solid lines correspond to 100-year return values.  
Blue and green represent coastal regions, with blue being 1-day accumulations and green being 
4-day accumulations.  Orange and yellow represent inland regions adjacent to coastal regions, 
with orange being 1-day accumulations and yellow being 4-day accumulations.  The thick lines 
use the complete data set while the thin lines use data through 2014. 
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The 2-year return values are generally spatially smooth, with values increasing along the Texas 
coast to the northern Gulf Coast where they plateau at a high level.  Lower values are found 
along the southeast Atlantic coast, although they rise toward North Carolina.  Coastal and 
inland regions are generally consistent, rising and falling together as one progresses along the 
coast, with inland regions having lower return values. 
 
The 100-year return values, being more sensitive to extreme events, are more spatially erratic 
than the 2-year return values.  Nonetheless, the same overall pattern as in the 2-year return 
values is apparent: increasing along the Texas coast, generally high along the northern Gulf 
Coast, lower along the southeast Atlantic coast, and rising toward North Carolina.   
 
The erraticness of the 100-year return values manifest themselves in two ways.  First, each line 
tends to be less smooth.  The mean percent difference between a given return value and that 
of adjacent regions along the same line is 4% for 2-year return values and 9% for 100-year 
return values.  Second, the highest 1-day and 4-day return values are found in the southeast 
Texas coastal region, as already noted for 1-day values in Section 5, while the adjacent inland 
regions do not possess a sharp peak.     
 
The thin lines on Fig. 8.1 show the stationary return periods calculated using data through 
2014.  Large differences are found at both coastal and inland locations in southeast Texas, 
illustrating how the recent very heavy rain events have substantially altered the return value 
estimates at long return periods throughout the region.  At inland locations, this had the effect 
of smoothing the previous spatial variations in return values, while at the coastal region, this 
had the effect of amplifying a peak that was already there. 
 
The other area with large return value updates is the Carolinas.  The succession of hurricanes 
there has produced substantial fractional increases in return values, as noted in Section 5. 
 
Figure 8.2 is similar to Figure 8.1, except it shows the 500-year return values along with the 2-
year return values.  The 500-year return values have a similar appearance as the 100-year 
values, except that they are even noisier (12% using the same metric as before).  The southeast 
Texas coastal peak is even more dramatic, as is the change from the 2014 estimate.   
 
The lack of consistency with inland return values, with return values for shorter periods, and 
with neighboring coastal return values all suggest that the southeast Texas coastal peak is a 
statistical aberration, a result of storms such as Hurricane Harvey that might have happened 
anywhere along the northern Gulf Coast striking southeast Texas.   Such events should not be 
ignored, since they clearly can happen, but it does not seem appropriate to assign their 
probabilities entirely to southeast Texas rather than distributing their probabilities along the 
Gulf Coast. 
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Figure 8.2: Stationary coastal and inland return values, qcd lumped data set, plotted left to right 
from southern Texas to northern North Carolina.  Colors, line styles, and line widths are as in Fig. 
8.1, except that the dotted lines show 500-year return values.   
 
A rigorous analysis of this issue could be made by treating precipitation associated with tropical 
cyclones as being driven by tropical cyclone strike probabilities and envelopes of historic 
tropical cyclone motion rather than treating all tropical cyclone precipitation as location-
specific.  In the absence of such an analysis, we estimate regionally consistent return values for 
southeast Texas by taking averages of groups of lumped return values.  One method uses the 
average of the southeast Texas coastal region and the two adjacent coastal regions, while the 
other also includes the other Louisiana coastal region, the Alabama coastal region, and the 
westernmost Florida coastal region.  All of these regions are similarly situated with respect to 
exposure from weather arriving from the Gulf of Mexico. 
 
The results are shown in Table 8.4.  The differences at 2-year return periods are small, but the 
100-year return period differences range from 13%-18% and the 500-year return period 
differences range from 18%-25%.  The differences are only slightly larger at 4-day durations 
than at 1-day durations, suggesting that differences at 6-hour durations would be slightly 
smaller than at 1-day durations. 
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Table 8.4: Local coastal southeast Texas return values and average return values including 
nearby coastal regions (three and six regions in total), using lumped qcd data.   
 

 2-YEAR RETURN 
PERIOD 

100-YEAR RETURN 
PERIOD 

500-YEAR RETURN 
PERIOD 

1 DAY 4 DAYS 1 DAY 4 DAYS 1 DAY 4 DAYS 
SE TX (REG. 3) 5.17 6.87 16.92 23.14 26.01 35.65 

3-REG AVG  5.04 6.62 14.68 19.82 21.24 28.85 
% DIFFERENCE -2.5% -3.6% -13.3% -14.3% -18.3% -19.1% 

6-REG AVG 5.09 6.73 14.08 18.90 19.93 26.93 
% DIFFERENCE -1.5% -2.0% -16.8% -18.3% -23.4% -24.5% 

 
We conservatively choose the smaller adjustment of the two that are tested here, and assume 
that the difference between 6-hour adjustments and 1-day adjustments equals the difference 
between 1-day adjustments and 4-day adjustments.  Table 8.5 shows the updated return 
values, taking into account both adjustments discussed so far. 
 
Table 8.5: NOAA Atlas 14 regional return values with MLE/ext adjustment and adjustment for 
unrepresentative spike in southeast Texas coastal return values. 
 

 2-YEAR RETURN 
PERIOD 

100-YEAR RETURN 
PERIOD 

500-YEAR RETURN 
PERIOD 

6 HOUR 1 DAY 6 HOUR 1 DAY 6 HOUR 1 DAY 
 

NOAA ATLAS 14 
3.58 
3.75 
3.87 

4.83 
5.11 
5.30 

10.7 
11.3 
12.5 

16.3 
16.9 
18.0 

15.9 
16.7 
18.2 

21.7 
22.9 
24.5 

MLE/EXT ADJ -7.2% 
RETURN VALUES 

THROUGH 
SECTION 8.1 

3.32 
3.48 
3.59 

4.48 
4.74 
4.92 

9.93 
10.5 
11.6 

15.1 
15.7 
16.7 

14.8 
15.5 
16.9 

20.1 
21.3 
22.7 

SETX SPIKE ADJ -1.0% -1.5% -12.3% -13.3% -17.7% -18.4% 
RETURN VALUES 

THROUGH 
SECTION 8.2 

3.29 
3.45 
3.56 

4.42 
4.67 
4.85 

8.71 
9.20 
10.2 

13.1 
13.6 
14.5 

12.1 
12.8 
13.9 

16.4 
17.4 
18.6 

 
We note that the revised return values still include the influence of Hurricane Harvey, but that 
influence (and the influence of other storms) is distributed over a broader area.  We also note 
that a similar region to the 6-region average was chosen by van Oldenborgh et al. (2017) for 
their estimates of return periods associated with Hurricane Harvey. 
 
8.3 Nonstationary historical analysis 
 
The same factors that make the NOAA Atlas 14 estimates too high as a stationary estimate 
invalidate the use of the revised stationary estimate for assessment of present-day or future 
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risk.  To the stationary estimate it is necessary to apply an estimate of the long-term trend.  
Evidence presented in Section 4 suggests that a trend estimate calculated from the local Harris 
County values is unrepresentatively large and that long-term trends calculated over small 
geographical areas are unreliable in general.   
 
In the absence of compelling evidence for robust long-term change-driven local trend 
enhancement, it seems prudent to choose a trend estimate based on precipitation over a broad 
region.  Section 5 presented trend estimates using all 47 regions included in the lumped qcd 
data.  However, it is possible that rainfall with large return periods may be influenced by 
climate driven trends in hurricane tracks, which tend to fluctuate between greater prevalence 
along the Gulf Coast and greater prevalence along the southeast Atlantic coast.  So we also 
consider a smaller Gulf Coast region consisting of all regions from the Florida Panhandle and 
western Georgia westward.   
 
The trends, expressed as the change between return values in the year 1960 and the year 2020, 
are shown in Table 8.6.   
 
Table 8.6: Region-wide precipitation trends from 1960 to 2020.  For 95% confidence intervals, 
twelve degrees of freedom are assumed for the Gulf Coast & Southeast region and eight degrees 
of freedom are assumed for the Gulf Coast region. 
 

 2-YEAR RETURN 
PERIOD 

100-YEAR RETURN 
PERIOD 

500-YEAR RETURN 
PERIOD 

GULF 
COAST 
AND SE 

GULF 
COAST 
ONLY 

GULF 
COAST 
AND SE 

GULF 
COAST 
ONLY 

GULF 
COAST 
AND SE 

GULF 
COAST 
ONLY 

MEAN TRENDS, 
1-DAY DURATION 

11.2% 
+/- 4.5% 

12.2% 
+/- 5.5% 

13.2% 
+/- 7.2% 

13.4% 
+/- 8.5% 

13.5% 
+/- 7.8% 

13.6% 
+/- 9.1% 

MS2, MS3, TX2, 
TXC, TXE (1-DAY) 

12.4% 
(11.1% to 13.8%) 

13.1% 
(8.7% to 15.6%) 

13.3% 
(8.0% to 16.5%) 

MEAN TRENDS, 
4-DAY DURATION 

10.7% 
+/- 5.3% 

11.6% 
+/- 6.5% 

13.3% 
+/- 8.4% 

14.0% 
+/- 9.3% 

13.7% 
+/- 9.0% 

14.5% 
+/- 9.8% 

MS2, MS3, TX2, 
TXC, TXE (4-DAY) 

11.8% 
(4.1% to 18.2%) 

15.0% 
(5.2% to 25.0%) 

15.5% 
(5.3% to 26.1%) 

 
The other rows of Table 8.6 shows the average trend and range of trends for five lumped 
regions in Texas and Mississippi that have been chosen to produce a similar average trend as 
the region-wide trends for 1-day durations.  The average trends across these five regions are 
similar for 1-day and 4-day durations, though there is greater variability at 4 days.   
 
The purpose of including these five regions is to be able to project percentage changes in Harris 
County return values using the nonstationary GEV fits of nearby regions that have historic 
trends similar to those inferred as appropriate for Harris County.  Using these five regions, we 
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compute the percentage difference between the stationary fits and the 1960 values of the 
nonstationary fits and apply a similar percentage difference to the Harris County return values.   
 
The 1960 2-year return value for 1-day durations is, on average across the five regions, 2.4% 
smaller than the stationary value.  This is similar to the 2.1% stationary-nonstationary return 
value difference averaged across all 47 lumped regions.  The 1960 100-year return values for 
the five regions average 3.0% smaller, compared to an overall average of 3.1%.  For 500-year 
return values, the reductions are 3.2% and 3.4%, respectively. So the 5-region conversion 
factors are consistent and applicable.   
 
After the adjustment from stationary to 1960, the percentage trends between 1960 conditions 
and present-day (2020) conditions for the Gulf Coast Only region are applied to the Harris 
County return values.  The similarity between mean percentage changes at 1 day and 4 days, 
along with the lack of evidence of differences in regional-scale trends at shorter precipitation 
durations, justifies applying the 1-day percentage changes to 6-hour durations.   
 
The results of the historical nonstationary analysis are given in Table 8.7. 
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Table 8.7: NOAA Atlas 14 regional return values with MLE/ext adjustment, adjustment for 
unrepresentative spike in southeast Texas coastal return values, and nonstationary analysis of 
return values for 1960 and 2020. 
 

 2-YEAR RETURN 
PERIOD 

100-YEAR RETURN 
PERIOD 

500-YEAR RETURN 
PERIOD 

6 HOUR 1 DAY 6 HOUR 1 DAY 6 HOUR 1 DAY 
 

NOAA ATLAS 14 
3.58 
3.75 
3.87 

4.83 
5.11 
5.30 

10.7 
11.3 
12.5 

16.3 
16.9 
18.0 

15.9 
16.7 
18.2 

21.7 
22.9 
24.5 

MLE/EXT ADJ -7.2% 
RETURN VALUES 

THROUGH 
SECTION 8.1 

3.32 
3.48 
3.59 

4.48 
4.74 
4.92 

9.93 
10.5 
11.6 

15.1 
15.7 
16.7 

14.8 
15.5 
16.9 

20.1 
21.3 
22.7 

SETX SPIKE ADJ -1.0% -1.5% -12.3% -13.3% -17.7% -18.4% 
RETURN VALUES 

THROUGH 
SECTION 8.2 

3.29 
3.45 
3.56 

4.42 
4.67 
4.85 

8.71 
9.20 
10.2 

13.1 
13.6 
14.5 

12.1 
12.8 
13.9 

16.4 
17.4 
18.6 

STATIONARY TO 
1960 FACTOR 

-2.4% -3.0% -3.2% 

1960 
NONSTATIONARY 
RETURN VALUES 

3.21 
3.36 
3.47 

4.31 
4.56 
4.73 

8.45 
8.92 
9.87 

12.7 
13.2 
14.0 

11.8 
12.4 
13.5 

15.9 
16.8 
18.0 

1960 TO 2020 
FACTOR 

+12.2% +13.4% +13.6% 

2020 
NONSTATIONARY 
RETURN VALUES 

3.60 
3.77 
3.89 

4.84 
5.12 
5.31 

9.58 
10.1 
11.2 

14.4 
15.0 
15.9 

13.4 
14.0 
15.3 

18.1 
19.1 
20.4 

 
 
8.4 Nonstationary future projections 
 
Present-day nonstationary estimates are important, but what is most relevant is nonstationary 
estimates for the future because risk going forward is what must be mitigated.  The historical 
analysis used the logarithm of carbon dioxide concentrations as a proxy for global warming 
intensity.  Global mean surface temperature (or some other surface temperature) was not used 
because phenomena such as El Niño and volcanic eruptions were expected to affect surface 
temperatures and extreme rainfall differently than how long-term radiative forcing is expected 
to affect surface temperature and extreme rainfall.  Carbon dioxide could be used because its 
long-term forcing is roughly similar to the total long-term forcing of all greenhouse gases and 
aerosols.   
 
For future projections, it would be desirable to use projections of global mean surface 
temperature, since the warming itself, rather than the radiative forcing, is what is understood 
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to drive changes in extreme rainfall frequency.  To do this, we scale future temperatures by the 
ratio of historic global warming and historic carbon dioxide changes and apply those scaled 
values to the nonstationary GEV results.   
 
The historical global temperature change to date from around the beginning of the 20th 
century is approximately 1.0 °C to 1.2 °C (Fig. 8.3).  We use a central estimate of 1.1 °C for 
warming to date, and project future return values for extreme rainfall corresponding to total 
global warming of 1.5 °C, 2.0 °C, 2.5 °C, and 3.0 °C.  We do not adjust for the slight mismatch 
between observation-based global mean surface temperature and model-based global surface 
air temperature (Richardson et al. 2018).  The Paris Accords call for global nations to keep 
global warming below 2.0 °C and to attempt to keep global warming below 1.5 °C.   

 
Figure 8.3: Global mean surface temperatures, with zero representing temperatures around the 
turn of the century (1850-1920).  The three data sets are GISTEMP (red, Lenssen et al. 2019, 
GISTEMP Team 2020), HadCRUT4 (green, Morice et al. 2012), and BEST (blue, Rohde et al. 
2012). 
 
Here is an example of the calculation of a precipitation return value for a warming of 1.5 °C 
since the beginning of the 20th century.  The present-day warming is 1.1 °C, so 1.5 °C 
corresponds to additional warming of 0.4 °C.  The warming between 1960 and 2020 was about 
0.8 °C, and that corresponded with an increase of ln(CO2) of 0.229.  Additional warming of 0.4 
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°C would be a factor of (0.8 + 0.4)/0.8 = 1.5 increase since 1960, equivalent to a 0.229*1.5 = 
0.435 increase of ln(CO2).  We apply a ln(CO2) increase of 0.435 to each of the Gulf Coast  
regions and compute the fractional increase of return value in each region.  We then apply the 
average fractional increase to the 1960 Harris County return values, thereby obtaining return 
values that correspond to a total global warming of 1.5 °C. 
 
Table 8.8 presents the original NOAA Atlas 14 return values and the nonstationary return values 
for the present day and for total warming of 1.5-3.0 °C. 
 
Table 8.8: NOAA Atlas 14 original return values and nonstationary analysis of return values for 
1960, 2020, and temperatures of 1.5-3.0 °C above preindustrial (0.4-1.9 °C above present-day). 
Values larger than NOAA Atlas 14 are bolded. 
 

 2-YEAR RETURN 
PERIOD 

100-YEAR RETURN 
PERIOD 

500-YEAR RETURN 
PERIOD 

6 HOUR 1 DAY 6 HOUR 1 DAY 6 HOUR 1 DAY 
 

NOAA ATLAS 14 
3.58 
3.75 
3.87 

4.83 
5.11 
5.30 

10.7 
11.3 
12.5 

16.3 
16.9 
18.0 

15.9 
16.7 
18.2 

21.7 
22.9 
24.5 

 
1960 VALUES 

3.21 
3.36 
3.47 

4.31 
4.56 
4.73 

8.45 
8.92 
9.87 

12.7 
13.2 
14.0 

11.8 
12.4 
13.5 

15.9 
16.8 
18.0 

1.1 °C INCREASE 12.2% 13.4% 13.6% 
 

2020 VALUES 
3.60 
3.77 
3.89 

4.84 
5.12 
5.31 

9.58 
10.1 
11.2 

14.4 
15.0 
15.9 

13.4 
14.0 
15.3 

18.1 
19.1 
20.4 

1.5 °C INCREASE 18.0% 20.4% 20.8% 
 

1.5 °C VALUES 
3.79 
3.97 
4.10 

5.09 
5.38 
5.58 

10.2 
10.7 
11.9 

15.3 
15.9 
16.9 

14.2 
14.9 
16.3 

19.2 
20.3 
21.7 

2.0 °C INCREASE 25.5% 30.1% 31.0% 
 

2.0 °C VALUES 
4.03 
4.22 
4.36 

5.41 
5.72 
5.94 

11.0 
11.6 
12.8 

16.6 
17.2 
18.3 

15.4 
15.2 
17.6 

20.8 
22.0 
23.5 

2.5 °C INCREASE 33.4% 41.2% 42.7% 
 

2.5 °C VALUES 
4.28 
4.49 
4.63 

5.75 
6.08 
6.31 

11.9 
12.6 
13.9 

18.0 
18.6 
19.8 

16.8 
17.6 
19.2 

22.7 
24.0 
25.6 

3.0 °C INCREASE 41.7% 54.0% 56.2% 
 

3.0 °C VALUES 
4.55 
4.77 
4.92 

6.11 
6.46 
6.70 

13.0 
13.7 
15.2 

19.6 
20.3 
21.6 

18.4 
1893 
21.0 

24.9 
26.2 
28.1 
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The return values in Table 4.8 are dependent on historic CO2 concentrations, historic 
temperatures, and observed extreme precipitation.  To convert them into projections of future 
return values, it is necessary to project when the global mean temperature will attain those 
temperature values in a typical year.  Such a projection depends on the scenario of future 
greenhouse gas emissions and other anthropogenic factors, the sensitivity of the climate to 
those changes, and variations in solar output, volcanic activity, and other forms of natural 
variability.  Those projections will be refined over time as knowledge of the climate system 
improves and societal paths are laid out, but the return values in Table 8.8 are independent of 
those factors. 
 
For reference, we provide the years at which these thresholds are achieved according to the 
average of CMIP5 model simulations for the RCP 2.6, RCP 4.5, and RCP 8.5 scenarios (Knutti and 
Sedlacek, 2013).  RCP 8.5 is a high-end business-as-usual scenario, while RCP 2.6 would involve 
massive removal of carbon dioxide from the atmosphere.  We consider something intermediate 
between RCP 4.5 scenario to be best for planning purposes: it reflects some action to constrain 
climate change but not nearly enough to meet the Paris targets.  We label this projection 
'Planning'.  It projects a total global warming of 3.0 °C by the year 2100.  Allowance is made in 
the Planning scenario for the fact that present-day temperatures are slightly lagging the model 
projections, which led the IPCC AR5 Report to project that temperatures over the next few 
decades were likely to continue to lag model projections (Kirtman et al. 2013).   
 
Table 8.9: Years in which CMIP5 climate model consensus projects certain global temperature 
thresholds to be achieved.  For thresholds that are never exceeded, the maximum achieved 
temperature is listed. 
 

T ABOVE 
PREINDUSTRIAL 

ACTUAL RCP 2.6 RCP 4.5 RCP 8.5 PLANNING 

1.1 °C 2020 2015 2015 2015 2020 
1.5 °C ? 2035 2032 2028 2035 
2.0 °C ? max 1.65 °C 2052 2042 2052 
2.5 °C ? max 1.65 °C 2100 2052 2070 
3.0 °C ? max 1.65 °C max 2.6 °C 2065 2100 

 
As future scenarios and climate sensitivity become clearer and more precisely estimated, the 
years corresponding to the various temperature thresholds can be updated.  For example, 
output from the newest generation of climate models (CMIP6) is becoming available, but the 
model output includes a wide range of potential future warming rates.  Also, more data and 
improved methods will in the future permit better estimates of the dependence of local 
extreme rainfall on changing global temperatures. 
 
8.5 Final comments 
 
The assumptions in this analysis are many.  For example, this analysis has lumped all forms of 
extreme precipitation together.  There is evidence that tropical cyclone precipitation is 
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increasing in the United States at a faster rate than other forms of extreme precipitation 
(Kunkel et al. 2010; Dhakal and Jain 2019), so a more comprehensive assessment of future risk 
ought to treat the time-dependent risk from tropical cyclone rainfall separately from the time-
dependent risk from other forms of extreme rainfall.  Also, the assessment that local-scale 
trend variations are purely random needs greater statistical support.  Analyses with different 
techniques for obtaining statistical fits to the data may yield different results.  Lastly, some 
natural variability may be aliased onto the long-term trends, even when averaged across the 
entire Gulf Coast region. 
 
According to this analysis, nonstationary 2-year return values in Harris County already slightly 
exceed the NOAA Atlas 14 design values, while more extreme return values still lag the NOAA 
Atlas 14 design values.  Although it depends on the rate of future climate change, the 100-year 
return values are on track to exceed the current NOAA Atlas 14 design values around the 
middle of the 21st century, with 500-year return values exceeding the NOAA Atlas 14 design 
values a decade or two later. 
 
While there is large uncertainty in these estimates, they are more comprehensive than those 
produced by a traditional stationary analysis in which additional uncertainty is hidden in the 
simplified structure of the statistical model.   
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APPENDIX A: Creation of the ext Data Set 
 
This appendix describes the process for creating the ext data set from the NOAA Atlas 14 data 
set.  Examples are provided of the locations of observations that are used to extend the data 
record at particular locations. 
 
The conventional approach for pooling stations involves the use of an index storm, a common 
reference storm whose differences across stations are used to adjust the station precipitation 
values when combining or pooling data among stations.  This approach works when the (well-
constrained) index storm values are applicable to the (poorly constrained) large return period 
rainfall values.  We prefer not to make that assumption here, because (as recent storms such as 
Harvey and Imelda demonstrate) large return period rainfall values are often produced by 
individual tropical storms whose frequency and intensity are not reflected in common index 
storm types such as mean annual precipitation or median block maximum.  The approach we 
follow here makes no such assumption, instead assuming that whatever processes control 
extreme rainfall amounts vary continuously and smoothly (small second derivatives) across the 
region from which data are drawn to extend a particular station. 
 
The process proceeds chronologically from the starting year of the ext data set (1941 for less 
than 24-hour durations, 1895 for one day or longer).  If data is missing at a particular year and 
target station, a search is made of all surrounding stations for non-missing data.  At each such 
surrounding candidate station, a cost function is calculated.  The cost function is defined as the 
average distance between the mean location of all observations used at the target station, 
including the candidate observation, and the actual target station location. 
The observation that minimizes this cost function is added to the ext observation set for the 
target station. 
 
The reason for using this algorithm, rather than simply using observations from the closest 
available station, is that typically the closest available station will be subject to extreme rainfall 
to a greater or lesser extent than at the target station.  By choosing data whose average 
location is collectively as close as possible to the target station, the expected extreme rainfall is 
also as close as possible to that of the target station. 
 
At the stations used to calculate the regional averages in the Harris County drainage areas, 
approximately half of the data points in the ext data are from neighboring stations.  In other 
words, the nominal length of the data record is twice as long in the ext data as in the raw data. 
 
Three stations, one from each region, are chosen to illustrate the use of data from multiple 
stations.  At Waller (41-9448), the 6-hr data begins in 1987, making for 31 annual maxima.  The 
other 36 annual maxima from 1941 through 1986 are drawn from surrounding stations.  Figure 
A1 shows the station locations and the relative frequency of data used from them.  Single 
annual maxima are used from stations as far away as Galveston and Wheelock; distant 
observations from the northwest and southeast are used with equal frequency, as are distant 
observations from the northeast and southwest.   
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Both Houston Independent Heights and Armand Bayou have closer stations available to draw 
from, so the footprint of their ext data is not as large (Figs. A2-A3).  Both stations' ext data draw 
upon Houston WB City and Houston Intercontinental Airport frequently; Independent Heights 
balances them with data farther to the west, while Armand Bayou balances them with data 
farther to the southeast. 
 
A somewhat different set of stations drawn upon for the 1-day ext data at these three stations 
(Figs. A4-A6).  While the other stations have more than 70 years of annual maximum 1-day 
rainfall data, Armand Bayou only has 31 years of daily data and therefore its ext data includes 
92 years of annual maxima from nearby stations.  Nonetheless, there are several long-term 
stations nearby, so relatively little data needs to be drawn from more than 30 miles away. 
 

 
Figure A1: Locations of data used to create the Waller ext 6-hour annual maximum data set.  
The size of each circle is proportional to the number of observations used from each station. 
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Figure A2: Locations of data used to create the Houston Indep Hts ext 6-hour annual maximum 
data set.  The size of each circle is proportional to the number of observations used from each 
station. 
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Figure A3: Locations of data used to create the Armand Bayou at Genoa-Red Bluff Rd ext 6-hour 
annual maximum data set.  The size of each circle is proportional to the number of observations 
used from each station. 
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Figure A4: Locations of data used to create the Waller ext 1-day annual maximum data set.  The 
size of each circle is proportional to the number of observations used from each station. 
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Figure A5: Locations of data used to create the Houston Indep Hts ext 1-day annual maximum 
data set.  The size of each circle is proportional to the number of observations used from each 
station. 
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Figure A6: Locations of data used to create the Armand Bayou at Genoa-Red Bluff Rd ext 1-day 
annual maximum data set.  The size of each circle is proportional to the number of observations 
used from each station. 
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APPENDIX B: Definition of Regions  
 
Presented here is the state-by-state definition of counties comprising each region in the ful and 
qcd data sets, as it appears in the Jupyter Notebooks used for analysis. The regions designated 
'coastal' and 'inland' in Section 8.2 are: 
 
Coastal: TX9, TX5, TX3, LA1, LA2, MS2, AL1, FL1, FL2, GA3, SC1, SC2, NC2, NC3 
Inland: TX8, TX4, TX2, TX1, LA4, LA3, MS1, MS4, AL3, AL2, GA1, GA2, SC3, NC1 
 
regions['AL'] = {'Region 1':['Washington','Clarke','Monroe','Conecuh', 
  'Mobile','Baldwin','Escambia'], 
                'Region 2':['Butler','Crenshaw','Pike','Barbour','Covington', 
                            'Coffee','Dale','Henry','Geneva','Houston'], 
                'Region 3':['Sumter','Greene','Hale','Perry','Bibb', 
                            'Choctaw','Marengo','Wilcox','Dallas'], 
                'Region 4':['Chilton','Coosa','Tallapoosa','Autauga','Elmore','Macon', 
                            'Lee','Lowndes','Montgomery','Bullock','Russell']} 
 
regions['FL'] = {'Region 1':['Escambia','Santa Rosa','Okaloosa','Walton','Holmes','Jackson', 
                             'Washington','Bay','Calhoun','Gulf'], 
                 'Region 2':['Franklin','Liberty','Gadsden','Leon','Wakulla','Jefferson', 
                            'Madison','Hamilton','Taylor','Lafayette','Suwannee','Dixie'], 
                 'Region 3':['Columbia','Baker','Nassau','Duval','Union','Bradford', 
                            'Clay','Gilchrist','Alachua','Putnam','Levy','Marion'], 
                 'Region 4':['Citrus','Sumter','Hernando','Pasco','Pinellas', 
                            'Hillsborough','Polk','Manatee','Hardee','Sarasota'], 
                 'Region 5':['DeSoto','Highlands','Charlotte','Glades','Lee','Hendry','Collier','Monroe'], 
                 'Region 6':['Indian River','Okeechobee','St. Lucie','Martin', 
                             'Palm Beach','Broward','Miami-Dade'], 
                 'Region 7':['St. Johns','Flagler','Volusia','Lake','Orange', 
                             'Seminole','Osceola','Brevard']} 
 
regions['GA'] = {'Region 1':['Quitman','Randolph','Terrell','Lee','Worth','Clay','Calhoun', 
                             'Dougherty','Tift','Early','Miller','Baker','Mitchell','Colquitt', 
                             'Cook','Seminole','Decatur','Grady','Thomas','Brooks','Lowndes','Echols'], 
                'Region 2':['Turner','Irwin','Ben Hill','Telfair','Wheeler','Montgomery','Treutlen', 
                            'Emanuel','Jenkins','Berrien','Coffee','Jeff Davis','Toombs','Candler', 
                            'Lanier','Atkinson','Bacon','Appling','Tattnall','Evans','Bulloch','Screven','Burke'], 
                'Region 3':['Clinch','Ware','Pierce','Charlton','Brantley','Wayne','Long','Liberty', 
                            'Bryan','Effingham','Camden','Glynn','McIntosh','Chatham'], 
                'Region 4':['Troup','Meriwether','Pike','Lamar','Harris','Talbot','Upson','Monroe', 
                            'Muscogee','Chattahoochee','Marion','Taylor','Crawford','Bibb', 
                            'Schley','Macon','Peach','Houston','Stewart','Webster', 
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                            'Sumter','Dooly','Pulaski','Crisp','Wilcox'], 
                'Region 5':['Jones','Baldwin','Hancock','Taliaferro','Wilkes','Lincoln', 
                            'Warren','McDuffie','Columbia','Twiggs','Wilkinson','Washington', 
                            'Glascock','Jefferson','Richmond','Bleckley','Dodge','Laurens','Johnson']} 
 
regions['LA'] = {'Region 1':['Cameron Pari','Vermilion Pari','Calcasieu Pari','Jefferson Davis Pari', 
                             'Acadia Pari','Lafayette Pari','Beauregard Pari','Allen Pari', 
                             'Evangeline Pari','St. Landry Pari'], 
                'Region 2':['Iberia Pari','St. Martin Pari','St. Mary Pari','Assumption Pari', 
                            'Terrebonne Pari','Lafourche Pari','St. Charles Pari','Jefferson Pari', 
                            'Orleans Pari','St. Bernard Pari','Plaquemines Pari'], 
                'Region 3':['Iberville Pari','Ascension Pari','St. James Pari', 
                            'St. John the Baptist Pari','Washington Pari','Pointe Coupee Pari', 
                            'West Feliciana Pari','West Baton Rouge Pari','East Feliciana Pari', 
                            'East Baton Rouge Pari','St. Helena Pari','Livingston Pari', 
                            'Tangipahoa Pari','St. Tammany Pari'], 
                'Region 4':['Sabine Pari','Natchitoches Pari','Winn Pari','Grant Pari', 
                            'La Salle Pari','Vernon Pari','Rapides Pari','Avoyelles Pari'], 
                'Region 5':['Caddo Pari','De Soto Pari','Bossier Pari','Red River Pari', 
                            'Webster Pari','Claiborne Pari','Bienville Pari','Union Pari', 
                            'Lincoln Pari','Jackson Pari','Ouachita Pari'], 
                'Region 6':['Morehouse Pari','West Carroll Pari','East Carroll Pari', 
                            'Richland Pari','Madison Pari','Caldwell Pari','Franklin Pari', 
                            'Tensas Pari','Catahoula Pari','Concordia Pari']} 
 
regions['MS'] = {'Region 1':['Jefferson','Adams','Wilkinson','Franklin','Amite','Lincoln', 
                             'Pike','Lawrence','Walthall','Jefferson Davis','Marion'], 
                'Region 2':['Covington','Jones','Wayne','Lamar','Forrest','Perry','Greene', 
                            'Pearl River','Stone','George','Hancock','Harrison','Jackson'], 
                'Region 3':['Issaquena','Sharkey','Yazoo','Madison','Warren', 
                            'Hinds','Rankin','Claiborne','Copiah','Simpson'], 
                'Region 4':['Leake','Neshoba','Kemper','Scott','Newton', 
                            'Lauderdale','Smith','Jasper','Clarke']} 
 
regions['NC'] = {'Region 1':['Union','Stanly','Anson','Montgomery','Richmond','Moore', 
                            'Chatham','Lee','Harnett','Wake','Johnston','Franklin', 
                            'Nash','Wilson','Edgecombe'], 
                 'Region 2':['Scotland','Hoke','Cumberland','Sampson','Wayne','Greene', 
                            'Robeson','Bladen','Duplin','Lenoir','Columbus', 
                            'Brunswick','New Hanover','Pender','Onslow','Jones'], 
                 'Region 3':['Pitt','Craven','Beaufort','Pamlico','Carteret','Hyde', 
                            'Martin','Washington','Tyrrell','Dare','Bertie','Hertford', 
                            'Gates','Chowan','Perquimans','Pasquotank','Camden','Currituck']} 
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regions['SC'] = {'Region 1':['Barnwell','Orangeburg','Calhoun','Allendale','Bamberg', 
                            'Hampton','Jasper','Beaufort','Colleton','Dorchester', 
   'Berkeley','Charleston'], 
                'Region 2':['Sumter','Lee','Darlington','Marlboro','Clarendon','Florence', 
                           'Dillon','Williamsburg','Marion','Georgetown','Horry'], 
                'Region 3':['McCormick','Edgefield','Saluda','Newberry','Fairfield','Lancaster', 
                            'Aiken','Lexington','Richland','Kershaw','Chesterfield']} 
 
regions['TX'] = {'Region 1':['Shelby','Nacogdoches','San Augustine','Trinity', 
                             'Angelina','Sabine','Polk','Tyler','Jasper','Newton'], 
                'Region 2':['Lee','Burleson','Brazos','Madison','Grimes','Walker', 
                            'San Jacinto','Montgomery','Washington','Austin','Waller'], 
                'Region 3':['Orange','Jefferson','Hardin','Liberty','Chambers', 
                            'Harris','Galveston','Fort Bend','Brazoria'], 
                'Region 4':['Guadalupe','Caldwell','Bastrop','Wilson','Gonzales', 
                            'Fayette','Karnes','DeWitt','Lavaca','Colorado'], 
                'Region 5':['Bee','Goliad','Victoria','Jackson','Wharton','San Patricio', 
                            'Refugio','Aransas','Calhoun','Matagorda'], 
                'Region 6':['Llano','Burnet','Williamson','Gillespie','Blanco','Kerr', 
                            'Bandera','Kendall','Comal','Hays','Travis'], 
                'Region 7':['Kinney','Uvalde','Medina','Bexar','Maverick', 
                            'Zavala','Frio','Atascosa','Dimmit'], 
                'Region 8':['La Salle','McMullen','Live Oak','Webb','Duval','Zapata','Jim Hogg'], 
                'Region 9':['Jim Wells','Nueces','Kleberg','Brooks','Kenedy', 
                            'Willacy','Starr','Hidalgo','Cameron'], 
                'Region A':['Wood', 'Upshur', 'Marion', 'Harrison', 'Smith',  
                            'Gregg','Cherokee', 'Rusk', 'Panola'], 
                'Region B':['Falls', 'Limestone', 'Freestone', 'Anderson',  
                            'Milam', 'Robertson', 'Leon', 'Houston'], 
                'Region C':['San Saba', 'Mills', 'Hamilton', 'Bosque', 'Hill',  
                            'Lampasas', 'Coryell', 'McLennan', 'Bell'], 
                'Region D':['Lamar', 'Red River', 'Bowie', 'Delta', 'Hopkins',  
                            'Franklin', 'Titus', 'Camp', 'Morris', 'Cass'], 
                'Region E':['Fannin', 'Collin', 'Hunt', 'Rockwall', 'Rains',  
                            'Dallas', 'Kaufman', 'Van Zandt', 'Ellis', 'Navarro', 'Henderson'], 
                'Region F':['Montague', 'Cooke', 'Grayson', 'Wise', 'Denton',  
                            'Parker', 'Tarrant', 'Hood', 'Somervell', 'Johnson']} 
 


