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ABSTRACT 

 

Reducing crash counts on saturated road networks is one of the most significant 

benefits behind the introduction of Autonomous Vehicle (AV) technology. To date, 

many researchers have studied how AVs maneuver in different traffic situations, but less 

attention has been paid to the car-following scenarios between AVs and human drivers. 

A mismatch in the braking and accelerating decisions in this car-following scenario can 

lead to rear-end near-crashes and therefore needs to be studied. 

This thesis aims to investigate the driving behavior of human-drivers that follow 

a designated AV leader in a car-following situation and compare the results with a 

scenario when the leader is a human-like driver. In this study, speed trajectory data was 

collected from 48 participants using a driving simulator. To estimate the near-crash risk 

between the participants and the leading vehicle, critical thresholds of six Surrogate 

Safety Measures (SSMs): Time to Collision (TTC), Inverse Time to Collision (ITTC), 

Modified Time to Collision (MTTC), Deceleration Rate to Avoid Crash (DRAC), 

critical jerk and Warning Index (WI), were used. The potential near-crash events and the 

safe driving events were classified using a random forest algorithm after performing 

oversampling and undersampling techniques. 

The results from the two-sample t-tests indicated a significant difference between 

the overall deceleration rates, braking speeds, and acceleration rates of the participants 

and the designated AV leader. However, no such difference was found between the 
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participants and the human-like leader while braking and accelerating at stop-controlled 

intersections. Out of six SSMs, MTTC detected near-crash events 10 seconds before 

their actual occurrence at a range of 11.93 m with 83% accuracy. The surrogate 

measures identified a higher number of near-crash (high risk) events when the 

participants followed the designated AV and made braking maneuvers at the stop-

controlled intersections. 

 Based on the number of near-crash (high risk) events, the designated AV's C-

3.25 speed profile (with the maximum deceleration rate of 3.25 m/s2) posed the highest 

crash risk to the participants in the following vehicle. For potential near-crash events 

classification, a random forest classifier based on undersampled data achieved the 

highest average accuracy rate of 92.2%. The deceleration rates of the designated AV had 

the highest impact on the near-crashes between the AV and the participants. However, 

shorter clearances during the braking maneuvers at intersections significantly affected 

the near-crashes between the human-like leader and the participants in the following 

vehicle. 
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NOMENCLATURE 

 

AV Autonomous Vehicle 

SSM Surrogate Safety Measure 

RF Random Forest 

NC-LR Near-Crash (Low Risk) 

NC-HR Near-Crash (High Risk) 

C-1 Speed profile with constant deceleration rate of 1 m/s2 

C-2.25 Speed profile with constant deceleration rate of 2.25 m/s2 

C-2.75 Speed profile with constant deceleration rate of 2.75 m/s2 

C-1 Speed profile with constant deceleration rate of 3.25 m/s2 

EF-1 Speed profile of experienced female driver 1 

EF-2  Speed profile of experienced female driver 2 

EM-1 Speed profile of experienced male driver 1 

EM-2 Speed profile of experienced male driver 2 
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1. INTRODUCTION 

 

This chapter describes the problem statement, objectives and an overview of the 

thesis. 

1.1 Problem Statement 

With a boom in the Autonomous Vehicle (AV) technology over the past few 

years, predictions have been made on the safety benefits as well as the safety risks 

associated with this technology. The benefits, such as decreasing the human error 

accounting for 94% of the total crashes, improved mobility, and fuel savings, 

supplement the idea of adopting the AV technology. On the other hand, crash reports 

involving rear-end collisions between non-autonomous vehicles and AVs of Google, 

Nissan North America, and GM Cruise have recently been reported (Schoettle and 

Sivak, 2015). These reports involving AVs have raised doubts on the public acceptance 

of the technology, which in turn started the chain of testing AVs for different scenarios 

and driving conditions.  

Since then, safety studies exploring the probability of failure of AV sensors 

leading to a complete vehicular failure, and measuring correlation between crashes and 

the number of miles travelled by an AV have been conducted by researchers to put 

forward the potential risks associated with this technology (Bhavsar et al., 2017; Favarò 

et al., 2017). A recent study by Rahmati et al. (2019) explored the influence of AV on 

the car-following behavior of human drivers and found a mismatch between the braking 
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decisions of AV and human drivers at intersections. This raised the question of 

analyzing collision risk of rear-end crashes for a car-following scenario with an AV as 

the leading vehicle (referred to as the leader or lead vehicle) and a human driver that 

follows the AV vehicle.  

Many studies have been conducted in the past using popular surrogate safety 

measures, such as Time to Collision (TTC), Modified Time to Collision (MTTC) to 

measure crash risks based on critical thresholds. However, limited research has 

evaluated the six surrogate measures to detect near-crashes in a car-following scenario 

10 seconds before the actual near-crash occurrence. Also, no safety studies have 

explored the distance at which a surrogate measure can accurately predict a near-crash or 

crash in a car-following situation based on critical thresholds. Therefore, this study 

makes use of the popular Surrogate Safety Measures (SSMs) to detect near-crashes in 

car-following scenarios and identify the significant factors influencing the crash risk 

using a random forest methodology, a powerful machine learning classification 

algorithm.  

Another issue that has failed to gain the attention of researchers is the imbalance 

in the near-crash data from a driving trip as only a minority of events account for near-

crashes whereas most of the driving time can be deemed as safe or very low risk based 

on these popular surrogate measures. Therefore, it is important to perform a risk analysis 

and classification on a balanced dataset with an equal number of safe as well as near-

crash data points to obtain fair and unbiased results. Novel data sampling techniques 
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have recently emerged that allow the replication of data points in the minority to 

generate a greater number of similar data points and sometimes reduce the number of 

data points from majority group to match the minority count. Using these techniques, 

fair and unbiased results can be achieved while modeling near-crashes and obtaining 

accurate information on significant factors causing near-crashes. So, this research not 

only focuses on analyzing the potential safety risks and different driving aspects in the 

car-following behavior of AV and human drivers at stop-controlled intersections using a 

driving simulator, but evaluates the performance of surrogate measures based on near-

crash detection rate, distance of detection and classifying near-crashes from safe-driving 

events using two sampling techniques with the help of random forest algorithm. 

1.2 Research Objectives 

The objectives of this thesis are to investigate the following: 

1. Examine the braking behavior of participants in the following vehicle behind two 

different types of lead vehicles (designated AV and Human-like) while stopping 

at a stop-controlled intersection. 

2. Analyze the acceleration behavior of test participants and the two kinds of 

leading vehicles after stopping at the stop-controlled intersection. 

3. Evaluate the performance of popular Surrogate Safety Measures (SSMs) in 

detecting potential near-crash events (low and high risk). 
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4. Classify the potential near-crash events from the safe events using a random 

forest classifier for two different data sampling techniques and examine 

significant factors influencing near-crashes. 

1.3 Thesis Organization 

This thesis is organized into seven chapters. Chapter 2 outlines important 

information from previous literature on AV technology and safety risks associated with 

automation. Chapter 3 describes the various tasks of the research, which involves the 

experiment design, data collection for the study, and analysis techniques used for 

estimating crash risk. Chapters 4 and 5 cover the analysis results from participants 

driving behaviors in two-car-following scenarios, near-crash risk estimation, and factors 

influencing the near-crashes. Next, Chapter 6 compares the results between the two-car-

following scenarios discussed in Chapters 4 and 5. Finally, Chapter 7 summarizes the 

results of the study and proposes recommendations for future research work. 
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2. LITERATURE REVIEW 

 

This chapter provides important background information about the AV 

technology and crash risks involving AVs for various traffic conditions. This chapter is 

organized into five sections. Section 2.1 introduces AVs through a brief history and 

evolution of automated driving in terms of levels of automation. Section 2.2 then 

reviews the studies related to traffic safety risks associated with automation. Section 2.3 

presents the analysis results on the braking maneuvers of the participants at stop-

controlled intersections. Section 2.4 discusses the near-crash risk estimation using 

different Surrogate Safety Measures (SSMs) proposed in the past. Finally, Section 2.5 

provides a summary for the chapter. 

2.1 History of Autonomous Vehicles  

Development of first real robot car was initiated in the early 1980s by Dickmanns 

and Zapp (1987) which evinced the ability to drive at high speeds but on empty streets. 

With the help of techniques involving convoy driving and tracking other vehicles, these 

vehicles were able to drive in busy traffic at speeds of 80 km/h (Dickmanns et al., 1994). 

In the early 1990s, Autonomous Land Vehicle in a Neural Network (ALVINN) gained 

attention due to its quick learning ability (few minutes) to drive on new types of the road 

after training from a human driver (Pomerleau, 1988).  

In 2004, the Defense Advanced Research Projects Agency (DARPA) launched a 

challenge with a $1 million award for the AV capable of navigating a 150-mile course 
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(Thrun et al., 2006). Despite an improvement in the abilities of GPS systems during this 

period, the best teams were able to navigate just 7 miles of the route (Thrun et al., 2006). 

However, five AVs were able to complete a 132-mile route in a challenge organized in 

the following year. This progress led to a new challenge in 2007 which demanded the 

AVs to maneuver in an urban setting, i.e. negotiate blocked routes, fixed and moving 

obstacles, and also obey the traffic rules. Six teams were able to finish this challenge and 

presented great potential for automated driving in an urban environment (DARPA, 

2014).  

These developments attracted the attention of various major enterprises and 

government institutes as the process of formulating frameworks to test AVs on the 

streets of different nations was initiated (Burns, 2013; Marks, 2012; Reuters, 2013). 

Following the full autonomous test vehicle’s introduction in 2017, Volvo aims to launch 

its unsupervised autonomous vehicle in the market by 2021. Initiating the development 

of a full AV, Google’s Waymo reached a milestone of driving three million miles by 

2017. Other giants such as BMW, Nissan, Audi, and Mercedes-Benz look forward to 

introducing their autonomous vehicle in their market by 2020 (Faisal et al., 2019). 

2.2 Traffic Safety Risks Associated with Automation 

With almost 90% of fatal crashes occurring in the US involve distracted driving, 

fatigue, alcohol or human error, autonomous vehicles are believed to be able to 

overcome these problems (Fagnant and Kockelman, 2015). Failure due to faulty 

hardware or software is often considered a major issue with the autonomous or complex 
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electronic system and the frequency of experiencing these has also been a matter of 

concern for many researchers (Litman, 2017).  

Researchers have also pointed out the potential risk compensation or offsetting 

behavior which can be seen in cases where drivers or travelers tend to over-trust the 

autonomous vehicle technology, leading to drivers taking additional risks (Ackerman, 

2017; Millard-Ball, 2018). The potential threat of crashes due to human drivers joining 

platoons of autonomous vehicles has also been identified by a few researchers in the 

recent past. An increase in crash exposure by increasing the total vehicle travel is also 

thought of as a side effect of greater use of autonomous vehicles (Dawson, 2017).  

A recent report by eight companies testing autonomous vehicles in 2017 to 

California DMV (Department of Motor Vehicles) brought the issue of disengagements 

into the light as humans often had to take over the control from the automated driving 

system during critical situations (Edelstein, 2018). Problems such as failure to brake 

adequately at a stop sign, difficulty in identifying vehicles in opposing lanes, inability to 

maintain GPS signals, failure to detect items indicating construction zones, failure to 

detect a signal saying no right turn on red, were found in the report in addition to 

hardware and software issues (Edelstein, 2018). Difficulty in designing an autonomous 

vehicle system which can perform safely in critical situations has been put forward as a 

demanding task by a few researchers (Campbell et al., 2010). 

Mixed traffic streams involving human-driven and self-driving cars are also seen 

as a potential safety threat as autonomous cars often try to merge into traffic with 
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inadequate gaps or space (Edelstein, 2018). These problems made researchers 

summarize that autonomous or self-driving cars might not be safer per mile than an 

average human driver and might also result in a greater proportion of crashes in mixed 

traffic streams (Schoettle and Sivak, 2015). Some researchers also argue that the 

introduction of autonomous vehicles would be a benefit for transport industry if they 

reduce crash rates by 10% but would be a concern if the total vehicle travel increases 

(Kalra et al., 2017). On the other hand, few researchers support the concept of 

autonomous technology by calling them ‘crash-less cars’ (Silberg et al., 2013). 

Researchers have also stressed for the safety of automated driven systems 

through insufficient crash data available till date involving autonomous vehicles. Recent 

studies conducted by UMTRI (University of Michigan Transportation Research 

Institute) in 2015 and VTTRI (Virginia Tech Transportation Research Institute) in 2016 

found much lower crash rates for self-driving systems as compared to conventional 

vehicles. However, these studies also quoted the insignificance of the obtained results 

due to a small number of crashes involving automated driving systems (Blanco et al., 

2016; Schoettle and Sivak, 2015). For more accurate results on automated systems 

safety, miles traveled by these systems are required to increase proportionally to 

illustrate their harmless nature (based on fatality rate and injuries) (Kalra and Paddock, 

2016). 
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2.3 Understanding Braking Behavior in Critical Events 

Studying braking events of human-drivers at stop-controlled intersections have 

been a popular topic over the last few decades. However, identifying a braking profile 

which leads to comfortable braking before coming to a complete stop has posed serious 

challenges to researchers. The initial speed of the driver significantly affects their 

deceleration and acceleration at stop signs whereas time-of-day and driver demographics 

are not statistically significant (Haas et al., 2004). Modeling braking behavior using the 

coefficient of friction between pavement and car has been done to identify the comfort 

level of occupants during deceleration events (Wu et al., 2009). On the other hand, 

mathematical modeling of deceleration patterns which closely resemble those of an 

expert driver to achieve comfortable braking is also formulated by a few researchers 

(Wada et al., 2008).  

However, a single threshold value accurately depicting an event of deceleration 

is still not agreed upon. A threshold deceleration rate of 0.3g, i.e. 2.94 m/s2, is believed 

to depict emergency braking and a rate of 2 m/s2 for comfortable braking (Miyajima et 

al., 2011; Naito et al., 2009; Wu et al., 2009). AASHTO sets the threshold deceleration 

rate at 3.4 m/s2 for comfortable braking (Maurya and Bokare, 2012). To study 

emergency braking, learning about the maximum deceleration a vehicle can achieve is 

very important. (Kudarauskas, 2007) studied emergency braking of a vehicle and 

maximum longitudinal deceleration axn based on cohesion of vehicle’s tires with the 

pavement coating. Utilizing the following formulas, theoretical value deceleration during 

braking was found: 



 

 

 

 

10 

 𝑎𝑥𝑛 = 𝜑𝑥. 𝑔 
(1) 

 𝑎𝑥𝑛 ≥ [0.1 + 0.85(𝜑𝑥 𝑚𝑎𝑥 − 0.2)]. 𝑔 
(2) 

Where, 

φx=coefficient of longitudinal cohesion of tire with road coating 

g=acceleration due to gravity, i.e., 9.8 m/s
2
 

For roads with dry asphalt coating, φx = 0.8 resulted in a deceleration of 6.0-7.85 

m/s2 of a vehicle with tires in good condition. An emergency braking of 0.7g was 

assumed by (Anderson et al., 2013) while studying the effectiveness of Autonomous 

Emergency Braking (AEB) systems. In a previous study by (Glassco and Cohen, 2001), 

a braking level of 0.75g was used as a warning trigger during critical events in urban 

driving scenarios. Recently, (De Ceunynck, 2017) considered a maximum deceleration 

rate of 8 m/s2 to be conservative which all vehicles can achieve. On the other hand, 

(Cunto, 2010) believed that a vehicle can achieve braking rate of 12.7 m/s2 which was 

later considered to be a radical value. Therefore, a single value of maximum deceleration 

during critical events and emergency braking is still debated. 

2.4 Collision Risk Between AV and Human Driver 

 (Rahmati et al., 2019) identified a mismatch in the braking decisions of AVs and 

human drivers and proposed a need for a detailed study on the associated risk of rear-end 

collisions. A Safety Surrogate Measure (SSM) is a traffic conflict indicator of the 

situation where there is a collision risk between vehicles (Ghanipoor Machiani and 
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Abbas, 2016). To accurately capture and detect traffic conflicts, many researchers have 

proposed using a combination of SSMs rather than just relying on one indicator 

(Johnsson et al., 2018; Zheng et al., 2019). Popular surrogate measures such as Time to 

Collision (TTC), Inverse Time to Collision (ITTC), Modified Time to Collision 

(MTTC), Deceleration Rate to Avoid Crash (DRAC), critical jerk and Warning Index 

(WI) have been very frequently used in risk analysis capturing different types of crash 

risks. 

TTC can be explained as “the time required for two vehicles to collide if they 

continue at their present speeds and on the same path” (Hayward, 1971) and is calculated 

using the following equation: 

 
𝑇𝑇𝐶𝑡 =  

𝑥𝐿,𝑡 − 𝑥𝐹,𝑡 −  𝐷𝐿

𝑣𝐹,𝑡 −  𝑣𝐿,𝑡
;  ∀ (𝑣𝐹,𝑡 − 𝑣𝐿,𝑡) > 0 (3) 

 

Where, xL,t and xF,t are positions of the lead and following (ego) vehicle at time t, 

respectively; vL,t and vF,t are the vehicle speeds at t instant; DL is the lead vehicle’s 

length. Fixing the problematic assumption of constant speed assumption during the 

collision trajectory, MTTC was proposed with more advantages such as the inclusion of 

vehicles acceleration while evaluating the risk (Ozbay et al., 2008). It is calculated as 

follows: 

 

 𝑀𝑇𝑇𝐶𝑡 =
∆𝑣𝑡 ±  √∆𝑣𝑡

2 + 2∆𝑎𝑡(𝑥𝐿,𝑡 − 𝑥𝐹,𝑡 −  𝐷𝐿)

∆𝑎𝑡
  

(4) 
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Where, ∆𝑣𝑡 =  𝑣𝐹,𝑡 −  𝑣𝐿,𝑡 is the relative speed of vehicles at risk at time t, and ∆𝑎𝑡 =

 𝑎𝐹,𝑡 −  𝑎𝐿,𝑡 is the relative acceleration. As there are two outcomes of the equation, 

minimum MTTC is considered when both of the outcomes are positive; when one 

outcome is positive and the other is negative, yet, the positive outcome is selected as 

MTTC (Ozbay et al., 2008; Zheng et al., 2019).  Deceleration Rate to Avoid Crash 

(DRAC) is defined as the required rate by the following vehicle to avoid a collision with 

the lead vehicle (Cooper and Ferguson, 1976; Gettman and Head, 2003) and calculated 

as follows: 

 𝐷𝑅𝐴𝐶𝐹,𝑡 =  
(𝑣𝐹,𝑡 − 𝑣𝐿,𝑡)2

2(𝑥𝐿,𝑡 − 𝑥𝐹,𝑡 −  𝐷𝐿)
 

(5) 

 

Another surrogate measure known as jerk, which is the rate of change of 

acceleration, has recently gained popularity in detecting safety-critical events (Mousavi, 

2015). Jerk is calculated as: 

 𝑗 =
𝑑𝑎𝐹

𝑑𝑡
 

(6) 

 

Where, 𝑑𝑎𝐹 is the change in the acceleration between successive observations of the 

following vehicle in (m/s2). Lastly, warning index (WI) is used in collision warning-

algorithms makes use of factors such as tire-road friction, system delay with a lower 
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value indicating a higher risk (Moon et al., 2009; Mullakkal-Babu et al., 2017). WI is 

calculated as: 

 𝑤 =
𝑠𝑛 − 𝑑𝑏𝑟

𝑑𝑤 − 𝑑𝑏𝑟
; 𝑑𝑏𝑟 = ∆𝑣𝐹𝑡𝑠 + 𝑓(𝜇) (

𝑣𝐹
2 − 𝑣𝐿

2

2𝑎𝑚𝑎𝑥
)  

(7) 

 𝑑𝑤 = ∆𝑣𝐹𝑡𝑠 + 𝑓(𝜇) (
𝑣𝐹

2 − 𝑣𝐿
2

2𝑎𝑚𝑎𝑥
) +  𝑣𝐹𝑡ℎ 

(8) 

 

Where, 𝑑𝑏𝑟 is the required braking distance; 𝑑𝑤= required warning distance; f(.) is the 

friction scaling function, 𝜇 is the estimated value of tire-road friction, and ts is the system 

delay. 

Many studies have been conducted on risk analysis using critical thresholds of 

these surrogate measures individually and proposed respective critical thresholds in the 

risk estimation during car-following situations, but no studies have tested/validated has 

compared these measures based on their thresholds and their ability to detect near-

crashes 10 seconds before the actual occurrences.  

2.5 Summary 

In summary, this chapter has presented a review of literature on the potential 

safety risks associated with autonomous vehicles and human drivers and previous 

methods used to understand the driving behavior in a car-following situation and 

quantify the corresponding collision risk. As the literature on car-following scenario 

between AVs and human drivers is limited, it is necessary to better understand the 
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driving behavior for this condition. The discussed SSMs have been widely used to detect 

actual near-crashes using field data but the performance of these SSMs in detecting near-

crashes before their occurrences have not yet received adequate attention. This includes 

evaluating the accuracy rate of individual SSM in predicting a near-crash using a critical 

threshold and the distance at which a near-crash can be predicted using a single SSM. 

Therefore, the objective of this thesis is to bridge the gap in the literature on driving 

behavior of AVs and human drivers in car-following and the collision risks associated 

with it. The next chapter describes the methodology used for accomplishing the study 

objectives. 
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3. METHODOLOGY 

 

This chapter describes the methodology used to achieve the study objectives. 

Section 3.1 briefly discusses the driving simulator equipment used in this study. Section 

3.2 describes the experiment design adopted in this study. The data collection procedure 

and recorded variables are summarized in Section 3.3. The analysis technique adopted 

for near-crash risk estimation and factors affecting the near-crashes are explained in 

Section 3.4. Finally, Section 3.5 summarizes the key elements of this chapter.  

3.1 Equipment                  

Figure 1 shows the equipment and the driving simulator setup used in this study. 

The simulator is composed of a 49-inch ultra-wide curved monitor display with a 

resolution of 3840 x1080 pixels and gas/brake pedals from Logitech. It also consisted of 

a PlayStation’s steering wheel which was in full accordance with a real vehicle. The 

curved monitor displayed a speedometer indicating the driving speeds in mph.  The 

experiment setup did not provide any rear-view mirrors or gearbox to the participants. 

No sounds of the car engine or surroundings were played during the experiment.      
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Figure 1. Driving Simulator Setup and Lead Vehicle in Car-Following Scenario 

 

3.2 Experiment Design            

Two car-following scenarios were designed using Unity-3D software to test the 

participants car-following driving behaviors. The test road was set up with straight 

alignment and a length of 4000 m or 2.48 miles. The test road with two lanes, each for 

one direction was separated by two parallel, solid yellow lines, to restrict the participants 

from overtaking the lead vehicle. Eight stop-controlled intersections were arranged on 

the test segment, each uniformly placed at 500 m apart. The speed limit during the entire 

segment was set at 30 mph (13.41 m/s). To adequately test the driving behavior of 

participants on the test segment during car-following, no other traffic was provided on 

the road. Two similar car-following scenarios were designed with the only difference 

being the assignment of the speed profiles of the lead vehicle in each scenario. Firstly, 

the design and assignment of speed profiles are discussed below.  
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3.2.1 Designing Speed Profiles 

A total of eight different speed profiles for two kinds of the leading vehicle were 

tested in this study. Each car-following scenario tests four different speed profiles 

designated to the leading vehicle. The characteristics of the speed profiles used in the 

two test scenarios are explained below:   

i) When the leader is an AV: (AV-HUMAN scenario)  

Four-speed profiles with four different types of constant deceleration profiles, i.e. 

1 m/s2, 2.25 m/s2, 2.75 m/s2 and 3.25 m/s2, were manually designed (see Figure 2). 

However, the profiles shared a common acceleration rate of 0.5 m/s2 to depict a safe 

driving pattern by the designated AV leader. The speed profiles were split into three 

periods as follow:  

Period 1: The lead car would accelerate at 0.5 m/s2 until the speed of 30 mph 

(13.41 m/s)  

Period 2: The lead car would maintain a constant speed of 30 mph (13.41 m/s) 

Period 3: The lead car would decelerate at stop-controlled intersection at 

assigned deceleration rate of either 1 m/s2 or 2.25 m/s2 or 2.75 m/s2 or 3.25 m/s2, 

respectively 

Period 4: The lead car would stop for 3 seconds after coming to a full stop and 

then accelerate again.  
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The speed profiles were assigned names based on their respective deceleration 

rates, i.e., C-1 means that the designated AV leader would decelerate at a constant 

deceleration rate of 1 m/s2 and so on. Periods 1, 2, and 4 were kept the same for these 

four-speed profiles which can be seen in Figure 2.  However, the only change was in 

Period 3, where the designated AV leader decelerates according to the assigned 

deceleration rate. The designated AV leader's maximum speed was limited to 30 mph 

(13.41 m/s), which was equal to the posted speed limit (see Table 1). 

 

Figure 2. Four Speed Profiles for Designated AV Leader  
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Table 1. Key Features of Designated AV Leader Speed Profiles 

 

Features C-1 C-2.25 C-2.75 C-3.25 

Avg. Speed (mph) 15.97 (7.14) 17.67 (7.90) 18.30 (8.18) 18.33 (8.19) 

Max. Speed (mph) 30.00 (13.41) 

Min. Speed (mph) 0.00 0.00 0.00 0.00 

Avg. Acceleration (m/s2) 0.50 0.50 0.50 0.50 

Max. Acceleration (m/s2) 0.50 0.50 0.50 0.50 

Min. Acceleration (m/s2) 0 0 0 0 

Avg. Deceleration (m/s2) -0.96 -1.92 -2.24 -2.68 

Max. Deceleration (m/s2) -1.00 -2.25 -2.75 -3.25 

Min. Deceleration (m/s2) -0.60 -0.06 -0.85 -0.77 

 

Note: C-1 refers to speed profile with constant deceleration rate of 1 m/s2; C-2.25 refers to speed profile with constant deceleration 

rate of 2.25 m/s2; C-2.75 refers to speed profile with constant deceleration rate of 2.75 m/s2; and C-3.25 is the speed profile with 

constant deceleration rate of 3.25 m/s2; speeds in ( ) are in m/s units.  

ii) When the leader is HUMAN-like: (Human-Human scenario) 

 

For modeling a human-like leader in the other car-following situation, four 

experienced drivers (two males and two females) were asked to drive on the test segment 

without any other traffic on the road.  Their respective driving speeds were used to 

create four different speed profiles resembling their braking and acceleration behaviors. 

These drivers had at least five years of driving experience and a mean age of 25 years. 

Figure 3 and Table 2 illustrate the driving speeds of each profile before stopping at the 

first stop-controlled intersection. 
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Note: EF-1 refers to experienced female driver profile 1; EF-2 refers to experienced female driver 2 profile; EM-1 refers to 

experienced male driver 1 profile, and EM-2 is the experienced male driver 2 speed profile.  

Figure 3. Four Speed Profiles of Human-like Leader  

 

Table 2. Key Features of Speed Profiles 

 

Feature EF-1 EF-2 EM-1 EM-2 

Avg. Speed in mph (m/s) 20.75 (9.28) 21.91(9.79) 24.33 (10.88) 23.28 (10.41) 

Max. Speed in mph (m/s) 31.70 (14.17) 30.40 (13.59) 33.51(14.98) 34.47 (15.41) 

Avg. Acceleration (m/s2) 0.41 0.42 0.50 0.46 

Max. Acceleration (m/s2) 2.48 2.07 3.16 3.08 

Min. Acceleration (m/s2) 0.03 0.03 0.03 0.03 

Avg. Deceleration (m/s2) -0.63 -0.74 -0.90 -0.89 

Max. Deceleration (m/s2) -2.68 -1.68 -2.38 -3.73 

Min. Deceleration (m/s2) -0.02 -0.02 -0.02 -0.02 

 

Note: EF-1 refers to experienced female driver profile 1; EF-2 refers to experienced female driver 2 profile; EM-1 refers to 

experienced male driver 1 profile, and EM-2 is the experienced male driver 2 speed profile; speeds in ( ) are in m/s units.   
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3.2.2 Car Following Scenarios 

Scenario 1: AV-HUMAN 

In this scenario, the designated AV leader drove in front of the participants' 

vehicle based on the designed driving speeds in 4 profiles (C-1, C-2.25, C-2.75, and C-

3.25), as discussed in the previous section. 24 participants (12 males and 12 females) 

were asked to follow the designated AV on the driving simulator. Each speed profile was 

assigned to the designated AV for one intersection and switched to a different profile for 

the next intersection. In this manner, the four-speed profiles were tested twice on a total 

of eight stop-controlled intersections.  

The complete speed profile of the designated AV leader during the experiment 

can be seen in Figure 4.  The lead car’s (AV) assigned speed profile for each intersection 

is shown in Table 3. 
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Table 3. Leader (AV) Speed Profile Assignment at Each Intersection 

 

Intersection Leader’s Assigned Speed Profile 

#1 C-1 

#2 C-3.25 

#3 C-2.25 

#4 C-1 

#5 C-2.75 

#6 C-3.25 

#7 C-2.25 

#8 C-2.75 

 

 

Figure 4. Designated AV Leader Speed Profile in Scenario 1 

 

Scenario 2: HUMAN-HUMAN                         

   In this scenario, the lead car was assigned with four-speed profiles extracted 

from four experienced human drivers (EF-1, EF-2, EM-1, and EM-2) discussed in the 
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previous section. A new set of participants (12 males and 12 females) were asked to 

follow the lead car (Human-like) on the driving simulator. Except for the lead car’s 

(Human-like) speed profiles at each intersection, all other conditions were unchanged in 

this scenario. The speed profile of the lead car (Human-like) during the experiment can 

be seen in Figure 5.  Lead car’s (Human-like) assigned speed profile for each 

intersection is shown in Table 4. 

Table 4. Human-like Leader Speed Profile Assignment at Each Intersection 

 

Intersection Leader’s Assigned Speed Profile 

#1 EF-1 

#2 EM-1 

#3 EM-2 

#4 EF-2 

#5 EM-1 

#6 EF-1 

#7 EF-2 

#8 EM-2 
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Figure 5. Human-like Leader’s Speed Profile in Scenario 2 

    

3.3 Data Collection   

In this experiment, a total of 48 participants (24 males and 24 females) were 

recruited through a recruitment email as per Institutional Review Board (IRB) 

guidelines. Each participant with age between 18 to 30 years, was required to hold a 

valid US driver’s license and at least one year of driving experience. The participants 

were compensated with USD 25 for their participation after completing the experiment. 

For the first scenario, the average age of the participants was 24.8 years, and a standard 

deviation of 2.43 years. For the second scenario, the average age of the participants was 

25.3 years, and a standard deviation of 2.12 years. 
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3.3.1 Experiment Procedure 

Upon arrival, each participant signed an informed consent form and completed a 

pre-test questionnaire. The pre-test questionnaire inquired the participants about their 

age, gender, years of driving experience, and any visual impairments. The participants 

were also checked for their valid permanent US driving license. Then, the participants 

were given a short introduction to the controls and functioning of the driving simulator. 

All participants were given at least a 5-min trial run on the driving simulator to gain 

familiarity with the setup and learn about the driving environment. After being 

familiarized with the simulator, the participants were given no strict instructions which 

could potentially influence their driving behavior during the experiment. However, the 

participants were instructed to “always be behind the lead vehicle”. The participants 

were not given any information about the purpose of the experiment. Each participant 

was randomly assigned to one of the two car-following scenarios, i.e., AV-HUMAN or 

HUMAN-HUMAN. No participant took part in both test scenarios to minimize the risk 

of bias in driving behavior. In each scenario, the subject’s vehicle or ego vehicle was 

initially kept at 6 m from the lead car to allow safe speeding. A speed limit sign with a 

posted speed limit of 30 mph (13.41 m/s) was also visible to the participants before 

starting the experiment. Once the simulation began, the participants could watch their 

driving speeds on the on-screen speedometer and were allowed to choose the speed they 

wanted to. 
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3.3.2 Variables Recorded        

The simulator enabled the researchers to record the time taken by each 

participant to complete the experiment, the ego vehicle's lateral and longitudinal 

position, ego and lead vehicle speeds, and finally the input of accelerator/brake pedals. 

The clearance between vehicles, i.e., the distance from the front bumper of the ego 

vehicle to the rear bumper of the lead vehicle was also recorded in the output file. The 

simulator captured the driving data every 1 second.  

The applied pressure on the accelerator and brake pedal ranged between -1 to +1 

where -1 meant maximum possible brake application and +1 meant maximum possible 

acceleration input. The maximum deceleration rate was set to 0.81g or -8 m/s2 and the 

maximum achievable acceleration to +3 m/s2.   

3.4 Risk Analysis 

To estimate the collision risk during the two different car-following scenarios, 

six widely popular Surrogate Safety Measures (SSMs) were utilized in this study: Time 

to Collision (TTC), Modified Time to Collision (MTTC), Inverse Time to Collision 

(ITTC), Deceleration Rate to Avoid Crash (DRAC), critical jerk and Warning Index 

(WI). The procedure is shown in Figure 6. This approach allowed a high detection rate 

of traffic conflicts and near-crashes in the trajectory data obtained from 48 participants.  
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Figure 6. Risk Analysis Procedure 

 

In this study, a time instant was characterized as a traffic conflict event when the 

assigned threshold of any one or more surrogate measures was violated. The critical 

thresholds of each surrogate measure were chosen from previous literature, which has 

been universally tested to capture accurate traffic conflicts (see Table 5). A potential 

traffic conflict may or may not lead to a near-crash, so these conflict events were used as 

an initial indication of near-crashes. If the clearance between vehicles drops to less than 

Risk Analysis

Iden t i fy ing  Po ten t i a l  Conf l i c t s  Us ing  6  Sur roga t e  
S a fe ty  Me asu re s  (SSMs)

De tec t ing  Nea r - Crashes  

P e r fo rma n ce  o f  E ach  S S M

Random Fore s t  C la s s i f i c a t i on  o f  Sa fe  and  Nea r -
Crashes  Us ing  2  Sampl ing  Me thods  

Quan t i fy ing  S ign i f i can t  Fac to r s
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4 m in the next 10 seconds of driving after a traffic conflict event is detected, then the 

event is called a near-crash (low risk) event.   

Table 5. Thresholds Adopted for Each Surrogate Measure 

 

SSMs Thresholds 

Time to Collision (TTC) 2 s 

Inverse TTC (ITTC) 0.5 s-1 

Modified TTC (MTTC) 4 s 

Deceleration Rate to Avoid Crash (DRAC) -3.40 m/s2 

Critical Jerk -9.9 m/s3 

Warning Index (WI) < 0 or Negative Value 

 

If the clearance between vehicles drops to less than 2 m in the next 10 seconds of 

driving after a traffic conflict event is detected, then the event is called a near-crash 

(high risk) event. Figure 7 illustrates an example of a participant experiencing a near-

crash (high risk) occurring at 112th sec after the start of the experiment. The figure shows 

that the participant driving at 34 mph (15.20 m/s) following the designated AV leader 

with an initial clearance of 29.69 m suddenly brakes at 108th sec to as hard as -5.11 m/s2 

deceleration rate. During this maneuver, the clearance between the vehicles dropped to 

1.38 m at 112th sec, which classified the event as near-crash (high risk). 

Therefore, the traffic conflict event identified by MTTC at 108th sec resulted in a 

near-crash (high risk). Another important application of this approach was the detection 

range, i.e., the distance at which a surrogate measure can accurately identify a near-crash 
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and alert the driver if a forward-collision warning system is developed with this feature. 

Surrogate measure with high accurate detection rate and considerable detection distance 

could be influential in reducing the near-crashes in car-following scenarios. 

 

Figure 7. Example of Detected Near-Crash (High Risk) Event  

 

The study used Random Forest (RF) algorithm to classify the detected near-crash 

events from safe driving events. As these detected near-crash events were rare events 

that occurred during car-following, so there was a significant imbalance in the 

distribution of safe and detected near-crash events. Hence, it was essential to balance the 

classes to apply the random forest classifier as performing classification on unbalanced 

dataset leads to biased results. Figure 8 shows the steps of the class balancing and RF 

classification algorithm.  
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Figure 8. Classification of Safe and Near-Crash Events Using Random Forest 

 

The ROSE library in R (Lunardon et al., 2014) used two sampling techniques to 

balance the number of events: minority oversampling and majority-class undersampling. 

Both undersampling and oversampling was performed to obtain the best performance 

measures from the random forest (RF) classifier. Finally, for validating the results, 

logistic regression was performed on the data (either oversampled or undersampled) 

based on the accuracy results achieved in the random forest classification algorithm. The 

training and test split remained constant at 70/30 during the classification process. 

3.5 Summary  

This chapter described the methodology adopted in this study for the design of 

the simulation environment using Unity software and the procedure used for data 
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collection from 48 test participants. Near-crash risk estimation method using six 

surrogate measures and classification of near-crash events from safe driving events using 

the RF algorithm was also described. The next chapter presents the analysis results of 

braking and acceleration behaviors and near-crash risk estimation performed in Scenario 

1 (when the leader is a designated AV).  
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4. ANALYSIS RESULTS: AV-HUMAN 

 

The chapter presents results based on the driving behavior of 24 participants 

using the methodology discussed above. It is divided into five sections. Section 4.1 

presents the descriptive analysis of the measured variables using histograms and two-

sample t-tests. Sections 4.2 and 4.3 show the results from braking and acceleration 

pattern analysis of participants and the designated AV leader. Section 4.4 describes the 

risk analysis results using the surrogate measures and the random forest algorithm. 

Finally, Section 4.5 summarizes the findings from this chapter. 

4.1 Descriptive Analysis         

Table 6 presents the descriptive statistics of the measured variables. 

Table 6. Descriptive Statistics of Measured Variables  

 

Variables Units N Mean Std. Dev. Min. Max. 

Ego Speed mph (m/s) 10934 18.48 (8.26)  11.21(5.01) 0 47.65 (21.30) 

Leader Speed mph (m/s) 10934 19.20 (8.58) 10.88 (4.86) 0 30.00 (13.41) 

Clearance m 10934 24.64 23.36 -6.77 135.53 

Ego Acc./Dec. m/s2 10934 -0.17 1.04 -8.00 3.00 

Leader Acc./Dec. m/s2 10934 0.02 0.79 -3.25 1.00 

 

Table 6 shows a high standard deviation in the average speed of the participants 

and the designated AV. During the experiment, the participants were a little bit slower 

than the designated AV (see Figure 9). The AV leader reached a maximum speed of 30 
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mph (13.41 m/s); however, the maximum speed recorded from a participant was 47.65 

mph (21.30 m/s). The analysis revealed a considerable average clearance of 24.64 m 

between the participants in the following vehicle and the AV leader. In some occasions, 

the participants did achieve the maximum acceleration rate of +3 m/s2 as compared to +1 

m/s2 of the designated AV. Similarly, the participants occasionally applied emergency 

brakes (deceleration rate of -8 m/s2) while performing braking maneuvers at the 

intersections.  

 Table 7 shows the correlation matrix of the five measured variables. The 

correlation test on measured variables showed a serious (uphill) positive correlation of 

+0.85 between the participants’ and the AV leader’s average speed. In other words, an 

increase in the leader speed would result in higher ego speed in this car-following 

scenario. Due to this serious correlation, the leader speed variable was omitted from the 

analysis and the relative speed variable was introduced. Table 8 shows that the serious 

correlation among measured variables was eliminated as no variable shared a significant 

correlation. 
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Figure 9. Histograms of Measured Variables 

 

Table 7. Correlation Matrix of Measured Variables 

 

Variables 
Ego 

Speed 

Leader 

Speed 

Ego 

Acc./Dec. 

Leader 

Acc./Dec. 
Clearance 

Ego Speed 1.00 0.85 0.18 -0.30 0.32 

Leader Speed 0.85 1.00 0.28 -0.10 0.33 

Ego Acc./Dec. 0.18 0.28 1.00 0.29 0.15 

Leader Acc./Dec. -0.30 -0.10 0.29 1.00 -0.17 

Clearance 0.32 0.33 0.15 -0.17 1.00 
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Table 8. Correlation Matrix of Filtered Variables 

 

Variables 
Ego 

Speed 

Relative 

Speed 

Ego 

Acc./Dec. 

Leader 

Acc./Dec. 
Clearance 

Ego Speed 1.00 0.32 0.18 -0.30 0.32 

Relative Speed 0.32 1.00 -0.16 -0.38 0.00 

Ego Acc./Dec. 0.18 -0.16 1.00 0.29 0.15 

Leader Acc./Dec. -0.30 -0.38 0.29 1.00 -0.17 

Clearance 0.32 0.00 0.15 -0.17 1.00 

 

4.2 Braking Behavior of Participants 

Analysis of 192 average speed profiles from 24 participants (12 males and 12 

females) depicted how participants began to decelerate or brake before coming to a stop 

at 8 stop-controlled intersections. Figure 10 illustrates a mismatch in the braking patterns 

of 24 participants and the designated AV as the participants decelerated to slow speeds 

of approximately 5 mph (2.23 m/s) and then slowly stopped at the stop-sign. Two-

sample t-test also indicated a significant difference in the overall deceleration rates of 

participants and AV leader with two-tailed p-value of 0.04 (t=2.10, std. error =0.286) at 

the significance level of 5%.  

Figure 11 presents a comparison between the average deceleration behavior of 24 

participants behind the AV leader at 8 stop-controlled intersections. Participants 

demonstrated very similar late braking characteristics when following the AV leader 

with C-2.25, C-2.75, and C-3.25 profiles. However, participants made more gradual and 

smooth braking maneuvers when the AV leader decelerated at 1 m/s2 (at C-1 profile).  
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Figure 10. Participants Average Braking Speeds behind AV Leader 

 

 

Figure 11. Participants Average Braking Speeds vs AV Leader Speed Profiles 

 

Figure 12 shows the braking speeds of the participants based on the speed profile 

of the designated AV leader. The figure shows that the participants were likely to brake 

in the same way as the designated AV. Table 9 summarizes the results from the two-

sample t-test comparing the means of participants and AV deceleration rates based on 

each profile. The table indicates that there was no significant difference in the braking 
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rates. Therefore, the t-tests revealed a mismatch during the braking maneuvers only 

based on the approach speeds of the participants and the designated AV. 

 

Figure 12. Participants Braking vs AV Leader Profile 

 

Table 9. Two-Sample T-Tests Results of Participants and AV Leader Deceleration 

Rates  

 

Comparison Pairs Mean 
Std. 

Dev. 
t-value p-value 

Different (p < 

0.05) 

Participants -0.49 0.46 
0.32 0.74 No 

Leader (C-1) -0.53 0.49 

Participants -0.54 0.68 
0.02 0.98 No 

Leader (C-2.25) -0.53 0.94 

Participants -0.52 0.68 
0.05 0.95 No 

Leader (C-2.75) -0.54 1.04 

Participants -0.51 0.67 
0.06 0.94 No 

Leader (C-3.25) 0.54 1.18 
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Figure 13 shows that the participants started decelerating from 30 m (approx.) to 

8 m (approx.) in ~15 s behind the AV at the stop sign. The average clearance maintained 

by the participants during the braking maneuvers were similar to each other. 

 

Figure 13. Average Clearance Between Participants and AV Leader During 

Braking Based on Speed Profiles 

 

4.3 Acceleration Pattern After Stopping 

The next topic deals with investigating how rapidly the participants accelerated 

after coming to a halt at a stop-controlled intersection and subsequently evaluate the 

mismatch in the acceleration rate of the participants and the designated AV. 

The participants average acceleration rates (0.55 m/s2) resembled the designed 

acceleration rate of the AV leader (0.5 m/s2). However, Figure 14 shows that for the 

initial 7 seconds of acceleration, the participants accelerated at 1.25 m/s2, i.e., 150% 

higher than the AV leader’s rate. This revealed the willingness of the participants to 

quickly accelerate behind a slow leading vehicle, which in turn led to higher acceleration 

rates. The two-sample t-test with a p-value < 0.0001 (t =5.80; std. error = 0.12) 
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confirmed the significant difference in the acceleration rates of the participants and the 

AV leader during the initial 7 seconds of speeding.  

For the next 18 seconds, the participants accelerated at slower rates (0.26 m/s2). 

A possible explanation could be the restriction faced by the participants while 

accelerating as the participants could not continue accelerating at 1.25 m/s2 due to the 

slower accelerating lead car (AV). This ongoing acceleration increased the likelihood of 

a front-end collision with the AV leader, which compelled the participants to reduce 

their acceleration rate (see Table 10). 

 

Figure 14. Participants Acceleration Behavior After Stopping at Intersection 

Behind AV Leader 
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Table 10. Summary-Acceleration Behavior (Scenario 1) 

 

Acceleration Rate (m/s2) 24 Participants 
Designated AV 

Leader 

Overall 0.55 

0.5 Initial 7 seconds 1.25 

Last 18 seconds 0.26 

 

 

Figure 15. Participants Acceleration Behavior Based on Gender 

 

The acceleration rates comparison between the 12 male and 12 female 

participants revealed slightly higher acceleration rates for the male drivers than for 

female drivers, as shown in Figure 15. Before achieving the free-flow speed, the male 

drivers accelerated at slightly slower rates than the female drivers. 

Due to higher initial acceleration rates, male drivers drove closer to the AV 

leader, increasing the probability of a front-end collision. Due to the short proximity 

with the AV leader, male drivers lowered their acceleration rates during the next 18 

seconds. On the other hand, the female drivers initially accelerated at a slightly slower 

rate than the male participants. The female drivers were relatively slower in accelerating, 
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but they did not reduce their accelerations significantly as much as the male drivers. 

However, both the male and female participants did accelerate at a higher non-uniform 

rate than with the AV leader. This finding shows the discrepancy between the AV 

leader's designed constant acceleration rate and the non-uniform acceleration rate of the 

participants. 

4.4 Risk Analysis 

This section describes the results of near-crash risk analysis. Section 4.4.1 

presents the characteristics of potential conflict and near-crash events detected by the 

surrogate measures. Section 4.4.2 outlines the performance of surrogate measures in 

detecting the near-crash events 10 seconds before their actual occurrence. Section 4.4.3 

presents the near-crash risk based on the four designated AV speed profiles. Finally, 

Section 4.4.4 covers the classification results from the RF algorithm. 

4.4.1 Potential Conflict and Near-Crash Events 

Out of 10,934 recorded events extracted from 24 participants' data, critical 

thresholds for the six SSMs collectively identified 670 potential conflict events (6.13%) 

summarized in Table 11. On these potential conflict events, the average speed of the 

participants (18.41 mph/8.23 m/s) was higher than the AV leader (12.51 mph/5.59 m/s). 

Also, the AV leader decelerated at an average rate (-1.23 m/s2) higher than the 

participants’ average rate (-0.65 m/s2). Higher relative speeds and harder leader 

deceleration rates indicate a potential front-end collision risk between the following 

vehicle and the AV leader vehicle. 
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Table 11. Summary of Potential Conflict Events 

 

Parameters 
Potential Conflict 

Events 
Safe Events 

Count 670 10264 

Avg. Ego Speed in mph (m/s) 18.41 (8.23) 18.49 (8.27) 

Avg. Leader Speed in mph (m/s) 12.51 (5.59) 19.64 (8.78) 

Avg. Ego Acceleration/Deceleration (m/s2) -0.65 -0.14 

Avg. Leader Acceleration/Deceleration (m/s2) -1.23 0.11 

Avg. Clearance (m) 12.19 25.46 

Avg. Long. Position (m) 2168.11 1953.39 

 

Out of 670 potential conflict events, a total of 378 near-crash events accounted 

for 56.4% of the total conflict events. Table 12 presents the summary of critical 

parameters at detected near-crash events using the thresholds of surrogate measures. 

Nineteen participants were involved in 233 near-crashes with low risk (nine males and 

ten females) and nine participants (three males and six females) in 145 near-crashes with 

high risk. Figure 16 depicts the higher count of detected near-crash events for female 

participants, indicating that the female drivers were more likely to involve in a near-

crash event while following the AV leader. 
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Figure 16. Number of Near-Crashes Based on Gender and Type (Scenario 1) 

 

Table 12. Brief Statistics of Detected Near-Crash Events 

 

Parameters 
Near-Crash (Low Risk) Near-Crash (High Risk) 

Mean Max. Min. Mean Max. Min. 

No. of observations 233 145 

Ego Speed (mph) 18.38 (8.22) 35.71 (15.96) 3.15 (1.41) 17.48 (7.81) 33.10 (14.80) 3.19 (1.43) 

Leader Speed (mph) 12.70 (5.68) 30.00 (13.41) 0.00 11.77 (5.26) 30.00 (13.41) 0.00  

Ego Acceleration (m/s2) -0.67 1.71 -5.99 -1.09 1.00 -7.25 

Leader Acceleration 

(m/s2) 
-1.46 0.50 -3.25 -1.51 0.50 -3.25 

TTC (s) 22.75 2435.95 1.21 6.56 132.51 -3.22 

Inverse TTC (s-1) 0.26 0.83 0.00 0.17 27.11 -32.98 

MTTC (s) 2.97 5.20 1.46 2.53 4.09 0.04 

DRAC (m/s2) 0.44 2.75 0.00 0.47 42.99 -42.97 

Jerk (m/s3) 0.15 7.15 -5.96 -0.22 7.22 -6.09 

Warning Index (WI) 1.11 5.58 -0.72 0.53 2.82 -4.02 
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4.4.2 SSMs Performance  

This section discusses the reliability and accuracy of each measure in detecting a 

near-crash event 10 seconds before its actual occurrence.  

Near-Crash Event Detection Ability of Each Surrogate Measure 

Table 13 shows how the near-crash event detection rate for each SSM is 

calculated, i.e., the number of accurate near-crash detections made by a single measure 

divided by the total number of detected near-crash events (378). MTTC outperformed all 

other surrogate measures by accurately identifying 84% of the total number of near-

crash events (319). The warning index (WI) with an accurate detection of only 21% 

implies that with the use of this measure, 79% of the near-crashes remained undetected. 

Table 13. Individual Near-Crash Detection Rate of Each SSM (%) 

 

SSMs 

Identified Near-

Crashes by Each 

SSM 

Total Number of 

Near-Crashes 

Individual Detection Rate of 

Each SSM (%) 

TTC 74 

378 

74/378 = 19.57% 

Inverse TTC 68 68/378 = 17.98% 

Modified TTC 319 319/378 = 84.39% 

DRAC 3 3/378 = 0.79% 

Critical Jerk 0 0% 

Warning Index 

(WI) 
81 81/378 = 21.42% 

 

The deceleration rate to avoid crash (DRAC) and critical jerk measures were less 

successful in detecting the near-crash events with the lowest detection rates of 0.79% 
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and 0%, respectively. The results were similar during near-crash (high risk) detection as 

the MTTC again outperformed other surrogate measures by correctly identifying 84% of 

the total near-crash (high risk) events (see Figure 17). 

 

Figure 17. Accurate Near-Crash (High Risk) Detection Rate of Individual SSM (%) 

 

Detection Range 

Figure 18 and Figure 19 show an average detection range of 12.45 m and 8.98 m 

when all six surrogate measures collectively detected a near-crash (low risk) and near-

crash (high risk) 10 seconds before their occurrence. Like the performance results 

reported in the previous section, MTTC again outperformed all other measures by 

detecting the near-crashes (high risk) at an average range of 13.34 m. For instance, if 

MTTC is used as a significant element in forward-collision warning systems (FCWs) in 

the real-world, a driver can be alerted to a possible near-crash at an average 

range/distance of 13.34 m in next 10 seconds of the car-following. 
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Figure 18. Near-Crash (Low Risk) Detection Range Using SSMs 

 

 

Figure 19. Near-Crash (High Risk) Detection Range Using SSMs 

 

Figure 20 shows the average range at which each SSM detected the near-crashes 

10 seconds before their actual occurrence. With a critical threshold of 4 sec, the MTTC 

measure detected the near-crash events at an average range of 11.57 m during the car-

following. This is a significant finding because if used in a forward-collision warning 

system, detecting near-crashes at such range may allow more time for the driver to make 

a maneuver to avoid it. However, TTC, which is a common ingredient in some of the 

popular FCWs, detected the near-crash (high risk) events at an average range of 5.24 m. 
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This short detection range could allow less time to the following driver to prevent the 

imminent near-crash event. 

 

Figure 20. Average Detection Range (m) of Each SSM 

 

4.4.3 Near-Crash Risk vs AV Leader Speed Profiles 

Figure 21 illustrates the number of detected near-crash events participants 

involved based on the speed profile of the AV leader. Allocating the AV leader with C-

3.25 (constant deceleration of 3.25 m/s2) led to the highest number of near-crashes (high 

risk). This finding is in sync with the literature review finding as higher deceleration 

rates increase near-crash probability. The AV leader's C-1 speed profile with the lowest 

1 m/s2 deceleration rate had a significant number of near-crashes (high-risk). A possible 

explanation could be the close car-following of the participants at an average clearance 
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of 7.42 m when the surrogate measures detected an elevated risk of a potential near-

crash. 

 

Figure 21. Count of Near-Crashes Based on AV Leader Speed Profiles 

 

4.4.4 Classification Results 

Figure 22 and Figure 23 show that after splitting the near-crash data, a 

considerable imbalance in the two classes (safe events and potential/detected near-crash 

events) was still present. 

 

Figure 22. Initial Class Imbalance in Near-Crash Data 
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Figure 23. Class Distribution of Training and Test Set 

 

Performing oversampling technique on the minority class (potential near-crash 

events), the total number of potential near-crash events were increased from 257 to 7448 

in the training data. This technique created a 50/50 proportion of two classes in the data 

and doubled the total number of recorded events to 14,896 (See Figure 24). After 

undersampling of the majority class (safe events), 7448 safe events reduced to 257 in 

training set, i.e., equal to potential near-crashes count. 

 

Figure 24. Balanced Classes after using two Sampling Methods 
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Three random forest classifiers were used for this part of the analysis: first based 

on the unbalanced training set, second on undersampled training set and the third on 

oversampled set were used to make predictions on the test dataset. Table 14 shows the 

results from the predictions in the form of a confusion matrix. After undersampling the 

training data, the maximum number of true positive predictions for class 1 or detected 

near-crash events, i.e., 115 out of 121 was achieved. 

Table 14. Confusion Matrix of Predicted vs Actual Values of Near-Crash Events 

(RF) 

 

Prediction 

Unbalanced After Undersampling After Oversampling 

Reference 

0 1 0 1 0 1 

0 3098 62 2837 6 3082 51 

1 10 59 271 115 26 70 

 

Where 0 = Safe Driving Events, 1 = Potential Near-Crash Events 
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Table 15. Summary of RF Models on Near-Crash Data (AV Leader) 

 

 

The RF classifier based on undersampled data achieved higher sensitivity (95%), 

specificity (91.2%) and balanced accuracy rate of 93.10% (see Table 15). This result 

indicated that undersampling the majority class (safe events) leads to a more accurate 

prediction of the minority class or potential near-crash events in the test data. ROC 

curves and area under the curve (AUC) value of 0.931 also illustrated better performance 

of RF classifier after performing undersampling technique (See Figure 25).  

Figure 26 shows the importance of all the features or variables based on the 

Mean Decrease Gini or Gini index. AV leader's acceleration/deceleration and relative 

speeds came out as the most significant variables in predicting potential near-crash 

events (See Figure 26). In other words, a change in the AV leader deceleration rate did 

Statistics 

Results from Random Forest 

Unbalanced Undersampling Oversampling 

Accuracy 0.977 0.914 0.976 

P-Value [Acc > NIR] 6.824e-07 1 8.864e-06 

Kappa 0.610 0.420 0.633 

Sensitivity 0.487 0.950 0.578 

Specificity 0.996 0.912 0.991 

Balanced Accuracy 0.742 0.931 0.785 

Area Under the ROC 

Curve (AUC) 
0.746 0.931 0.785 
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have an impact on the count of potential near-crash events that occurred during the 

experiment. 

 

Figure 25. ROC Curves of Random Forest Classification vs Sampling Method 

 

 

Figure 26. Feature Importance in Near-Crash Classification Using Mean Decrease 

Gini 



 

 

 

 

53 

Performing logistic regression on the undersampled data (N = 514: 257 potential 

near-crash events and 257 safe events), a high R2 of 0.86 and 97.2% sensitivity indicated 

an improvement in the classification performance as the misclassification rate was as 

low as 0.04. The significance of AV leader's acceleration/deceleration and relative speed 

was again found with parameter estimates of -2.44 and +1.43 respectively. Results from 

Table 16 validated the high and accurate performance of RF classifier after 

undersampling the data. 

Table 16. Logistic Regression Results a) Summary of Results, b) Confusion Matrix, 

and c) Variable Importance  

a) 

Term Estimate Std Error Chi Square Prob>Chi Sq. 

Intercept 0.56861744 0.5313891 1.15 0.2846 

Long. Position 0.00024389 0.00017 2.06 0.1514 

Clearance -0.3908231 0.0478443 66.73 <.0001* 

Relative Speed 1.43818486 0.1853836 60.18 <.0001* 

Ego Acc. 0.90320181 0.1866967 23.40 <.0001* 

Leader Acc. -2.4457863 0.2842191 74.05 <.0001* 

Gender 0.95224009 0.4071718 5.47 0.0194* 

 

b) 

Actual Predicted Count 

Near-Crash 1 0 

1 250 7 

0 17 240 
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Table 16 Continued 

c) 

Predictor Contribution Portion Rank 

Leader Acc. 50.8467 0.3941  1 

Relative Speed 35.1829 0.2727  2 

Clearance 18.0660 0.1400  3 

Ego Acc. 12.5391 0.0972  4 

Long Position 9.8693 0.0765  5 

Gender 2.5092 0.0194  6 

 

4.5 Summary 

This chapter presented the results from braking/acceleration pattern analysis and 

near-crash risk analysis for the participants following the designated AV leader. A high 

positive correlation of 0.85 in the AV leader’s and participant’s speed during the car-

following indicated that the AV leader's driving speed had an impact on the participants' 

speed in the following vehicle. There was a higher discrepancy in the braking of human 

participants and the AV leader assigned with a constant rate of deceleration of 1 m/s2 (C-

1 speed profile) as compared to the other three test speed profiles. The average 

acceleration rate of 24 participants recorded as 1.25 m/s2 for the initial 7 seconds after 

stopping at the stop-controlled intersection was 150 percent higher than the AV leader’s 

acceleration of 0.5 m/s2. 

Assigning the AV leader to the C-2.75 speed profile encountered the highest 

number of near-crashes (100 out of 378). However, the AV leader braking with the C-
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3.25 profile experienced the highest number of near-crashes (high risk). Modified Time 

to Collision (MTTC) with a critical threshold of 4 sec outperformed five other surrogate 

measures in detecting 84% of the near-crashes at an average range of 13.34 m. Handling 

the unbalanced data with the majority of safe driving events and rare potential near-crash 

events, RF classifier based on the undersampled data achieved a 93.1% accuracy rate in 

classifying the potential near-crash events. 

Finally, the acceleration/deceleration of the AV leader with a negative parameter 

estimate (-2.44) came out to be the most significant factor in influencing and classifying 

the potential near-crash events. The next chapter presents the results based on the driving 

behavior of 24 participants following the human-like leader.  
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5. ANALYSIS RESULTS: HUMAN-HUMAN 

 

This chapter presents the results based on the driving behavior of 24 participants 

following the human leader. The chapter is divided into five sections. Section 5.1 

presents the descriptive analysis of the measured variables using histograms and two-

sample t-tests. Section 5.2 and 5.3 describe the results from braking and acceleration 

pattern analysis of the participants and the human-like leader. Section 5.4 describes the 

risk analysis results using surrogate measures. Section 5.5 compares the results from the 

two test scenarios. Finally, Section 5.6 summarizes the findings from this chapter. 

5.1 Descriptive Analysis 

Table 17 shows that the participants’ and human-like leader’s average speed, 

21.36 mph (9.55 m/s) and 22.11 mph (9.88 m/s), respectively, is not significantly 

different from each other.  A cluster of high-frequency count around 30 mph (13.41 m/s) 

ego and leader speeds is seen in the histograms in Figure 27. Ego speed above 45 mph 

(20.12 m/s) was a rare occurrence with a maximum speed of 63.45 mph (28.36 m/s). In 

this car-following situation, the participants maintained an average clearance of 46.06 m 

with the human-like leader. The clearance histogram illustrates a decreasing trend 

(towards the right) as the clearance increases from 20 m to 140 m. In contrast to the 

previous scenario, the average speed of the participants and the human-like leader share 

a moderate upward relationship with a correlation coefficient of 0.50. Table 18 shows 

that no other variable pair shared a high correlation. 
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Table 17. Descriptive Statistics of Recorded Variables 

  

Variables Units N Mean Std. Dev. Min. Max. 

Ego Speed mph (m/s) 8093 21.36 (9.55) 13.23 (5.91) 0.00 63.45 (28.36) 

Leader Speed mph (m/s) 8093 22.11(9.88) 11.31(5.06) 0.00 34.58 (15.46) 

Clearance m 8093 46.06 37.35 -1.70 139.94 

Ego Acc./Dec. m/s2 8093 -0.31 1.49 -8.00 3.00 

Leader Acc./Dec. m/s2 8093 0.00 1.23 -8.00 3.00 

 

 

Figure 27. Histograms of Recorded Variables 
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Table 18. Correlation Matrix of Variables 

 

Variables 
Ego 

Speed 

Leader 

Speed 
Clearance Ego Acc./Dec. Leader Acc./Dec. 

Ego Speed 1.00 0.50 0.37 0.14 -0.31 

Leader Speed 0.50 1.00 0.42 0.24 -0.13 

Clearance 0.37 0.42 1.00 0.27 -0.23 

Ego Acc./Dec. 0.14 0.24 0.27 1.00 0.09 

Leader Acc./Dec. -0.31 -0.13 -0.23 0.09 1.00 

 

5.2 Braking Behavior of Participants 

The participants braking behavior behind the human-like leader in Figure 28 does 

not reveal any potential mismatch while stopping at the intersection. Also, the results 

from two-sample t-tests on the braking speed of the participants, and the human-like 

leader in Table 19 and Table 20 show no significant difference at the significance level 

of 5% (t=0.19; p-value = 0.85). This finding seems realistic in general as the human-like 

leader in this scenario was designated with speed profiles extracted from actual human 

drivers. Thus, the similarity in the braking behavior of the human leader and the 

participants seems logical. The participants’ braking behind the human-like leader with 

the assigned EM-1 profile (green curve) were driving at a high speed before making the 

braking maneuver. This high speed, in turn, might be the potential reason behind the 

high average deceleration rate of participants (-1.76 m/s2) in the last 18 seconds of 

approaching the stop-sign. 
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Figure 28. Participants Braking Speeds Based on Human-like Leader Speed 

Profiles 

 

Table 19. T-Test Result on Avg. Dec. Rate of Participants vs Human-like Leader 

Profile 

 

Avg. Dec. 

Rate (m/s2) 
Participants 

Human-like 

Leader 
t-value p-value 

Different (p < 

0.05) 

Overall -0.56 -0.53 0.19 0.85 No 

 

Table 20. T-Test Results on Avg. Braking Speeds of Participants Based on Human-

like Leader Profile 

 

Comparison Pairs Mean 
Std. 

Dev. 
t-value p-value 

Different (p < 

0.05) 

Participants -0.53 0.53 
0.31 0.75 No 

Leader (EF-1) -0.47 0.73 

Participants -0.54 0.56 
0.22 0.82 No 

Leader (EF-2) -0.50 0.57 

Participants -0.59 0.64 
0.03 0.97 No 

 Leader (EM-1) -0.59 0.76 

Participants -0.58 0.49 
0.13 0.89 No 

Leader (EM-2) -0.56 0.85 
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Figure 29 illustrates the average clearance maintained by the participants during 

the braking maneuver based on the speed profile of the human-like leader. The 

participants maintained a greater clearance from the human leader with EM-1 and EM-2 

assigned speed profiles. However, the figure depicts relatively close clearance 

measurements for EF-1 and EF-2 leader profiles. A gradual application of brakes leading 

to a more gradual decline in the clearance values was also observed.  

 

Figure 29. Average Clearance Between Participants and Human-like Leader Based 

on Test Speed Profiles 

 

5.3 Acceleration Behavior of Participants 

After stopping at the intersections, the average acceleration rate of the 

participants strongly resemble the acceleration rate of the human-like leader, as shown in 

Figure 30 and Table 21. Results from the two-sample t-test indicate no significant 

difference in the overall acceleration rate of the participants and the human-like leader at 

the significance level of 5% (t=0.37; p-value = 0.70). 



 

 

 

 

61 

 

Figure 30. Participants Acceleration vs Human-like Leader 

 

Table 21. Summary-Average Acceleration Rates (Scenario 2) 

 

Acceleration Rate (m/s2) 24 Participants Leader (Human-like) 

Overall 0.93 0.88 

Initial 7 seconds 1.82 1.62 

Last 18 seconds 0.03 0.14 

 

Unlike the findings from the previous chapter, the acceleration rates of 12 male 

and 12 female drivers were found to be approximately equal in this scenario (See Figure 

31). The average acceleration rates recorded in the initial 7 seconds of speeding after the 

stop at the intersection were identical with a magnitude of 1.82 m/s2. Understandably, 

this acceleration was significantly reduced to as low as 0.06 m/s2 later on as the 

participants achieved a speed equivalent to the posted speed limit and therefore did not 

continue acceleration any further. 



 

 

 

 

62 

 

Figure 31. Comparison of Acceleration Rates Based on Gender  

 

5.4 Risk Analysis 

This section describes the results of near-crash risk analysis. Section 5.4.1 

presents the characteristics of potential conflict and near-crash events detected by the 

surrogate measures. Section 5.4.2 outlines the performance of surrogate measures in 

detecting the near-crash events 10 seconds before their actual occurrence. Section 5.4.3 

presents the near-crash risk based on the four human-like speed profiles and the 

classification results from the RF algorithm. 

5.4.1 Potential Conflict and Near-Crash Events 

In this scenario, 780 events were characterized as potential conflict events based 

on the thresholds of the surrogate measures. This count was higher than what was found 

in the previous scenario and higher driving speed of the participants and the human-like 

leader could be one of the factors in this identification. Again, the validity of surrogate 

measures and their respective thresholds could be seen as potential conflict events were 
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detected at 15.44 m range/distance against the safe events (49.33 m). A total of 114 near-

crash (high risk) events were detected in this scenario based on the clearance filter of 2 

m and are summarized in Table 22.  A slightly higher number of near-crash (high risk) 

events were observed for female participants as compared to the male participants. 

Table 22. Summary of Potential Conflict Events  

 

Parameters Potential Conflict Events Safe Events 

Count 780 7313 

Avg. Ego Speed in mph (m/s) 23.26 (10.40) 21.15 (9.45) 

Avg. Leader Speed in mph (m/s) 14.69 (6.57) 22.90 (10.24) 

Avg. Ego Acc./Dec. (m/s2) -0.70 -0.27 

Avg. Leader Acc./Dec. (m/s2) -0.82 0.09 

Avg. Clearance (m) 15.44 49.33 

 

 

Figure 32. Count and Type of Near-Crash Events based on Gender 
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Table 23. Summary of Near-Crash Events  

 

Parameters 
Near-Crash (Low Risk) Near-Crash (High Risk) 

Mean Max. Min. Mean Max. Min. 

No. of observations 292 114 

Ego Speed in mph (m/s) 19.21(8.59) 44.11(19.72) 3.17 (1.42) 19.98 (8.93) 63.45 (28.36) 3.33 (1.49) 

Leader Speed in mph (m/s) 12.02 (5.37) 31.59 (14.12) 0.00 12.22 (5.46) 34.47 (15.41) 0.00 

Ego Acc. (m/s2) -0.78 2.84 -8.00 -1.15 2.74 -8.00 

Leader Acc. (m/s2) -1.06 1.63 -4.50 -0.89 1.58 -3.73 

TTC (s) 6.40 492.30 0.96 4.22 66.29 -1.14 

Inverse TTC (s-1) 0.32 1.05 0.00 0.36 8.90 -16.65 

MTTC (s) 2.79 5.66 1.06 2.57 4.59 0.16 

DRAC (m/s2) 0.61 4.55 0.00 0.95 17.64 -5.38 

Jerk (m/s3) -0.21 7.68 -7.28 -0.38 6.40 -7.97 

Warning Index (WI) 0.72 5.97 -1.37 0.31 2.34 -2.73 

 

5.4.2 SSMs Performance 

Similarly, MTTC outperformed all other surrogate measures in accurately 

detecting both, the total number of near-crashes and near-crashes (high risk) with an 

82% accurate detection rate (See Figure 33).  

 

 



 

 

 

 

65 

 

Figure 33. Near-Crash Event Detection Contribution of Each Measure  

 

Measuring the detection range of these near-crashes, MTTC evinced capability of 

identifying a near-crash (high risk) at 12.22 m range, which was higher than any other 

surrogate measure (See Figure 34). 

 

Figure 34. Detection Distance/Range of Each Measure  

 



 

 

 

 

66 

5.4.3 Near-Crash Risk vs Human-like Leader Speed Profiles  

Figure 35 illustrates the number of detected near-crash events participants were 

involved in based on the speed profile of the human-like leader. Allocating the human-

like leader with EF-2 (profile of experienced female driver 2) experienced the highest 

number of near-crashes (high risk).  

 

Figure 35. Number of Near-Crashes Based on Human Leader Speed Profile 

 

Like the results documented in the previous chapter, the RF classifier on 

undersampled data achieved an accuracy rate of 91.30% in predicting the potential near-

crash events. The confusion matrix in Table 24 also supports this performance of RF 

classifier on undersampled data by predicting the highest number of potential near-crash 

events.  
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Figure 36. Imbalance in Near-Crash Data  

 

The AUC value of 0.913 shown in Figure 37 confirms the high performance of 

the random forest classifier after undersampling the data. 

Table 24. a) Confusion Matrix of Predicted vs Actual Values b) Summary of RF 

Models (0=Safe, 1=Potential Near-Crash) 

 

a) 

Prediction 

Unbalanced After Undersampling After Oversampling 

Reference 

0 1 0 1 0 1 

0 2273 61 2048 7 2253 45 

1 21 46 246 100 41 62 
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Table 24 Continued 

b) 

 

 

Figure 37. ROC Curves of RF vs Sampling Methods and Variable Importance  

 

The clearance variable was found to be most significant in the classification of 

potential near-crash events from safe driving events. Further, the logistic regression is 

Statistics 
Results from Random Forest 

Unbalanced Undersampling Oversampling 

Accuracy 0.965 0.913 0.964 

P-Value [Acc > NIR] 0.006 1 0.01 

Kappa 0.512 0.400 0.571 

Sensitivity 0.429 0.934 0.579 

Specificity 0.990 0.892 0.982 

Balanced Accuracy 0.710 0.913 0.780 

Area Under the Curve 

(AUC) 
0.710 0.913 0.780 
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performed on the undersampled data to acquire the parameter estimates and significance 

of each variable and validate the results from RF classification. 

Table 25. Variable Importance in Near-Crash Classification  

 

 

 

 

 

 

 

The logistic regression results also indicated clearance variable as most 

significant in the classification using independent uniform inputs with a parameter 

estimate of -0.296 (See Table 26). Human-like leader’s acceleration/deceleration was 

ranked second in influencing the potential near-crash events with a negative parameter 

estimate (-1.58). With a generalized R2 of 0.833 and higher accuracy rate of 92.14%, 

logistic regression on the undersampled data validated the results from RF classifier.  

Table 26 indicates that the logistic regression on undersampled data accurately 

classified 286 potential near-crash events out of the 299-potential near-crash events in 

the regression dataset. It also validates the significance of clearance variable in 

influencing the near-crash detection and classification.  

Variables Importance (Mean Decrease Gini) 

Long. Position 21.90 

Clearance 95.80 

Gender 3.25 

Ego Speed 44.65 

Leader Speed 45.95 

Ego Acc./Dec. 21.88 

Leader Acc./Dec. 64.28 



 

 

 

 

70 

Table 26. Logistic Regression Results: a) Summary, b) Confusion Matrix, and c) 

Variable Importance 

 

a) 

Term Estimate Std Error Chi Square Prob>Chi Sq 

Intercept 1.174 0.446 6.919 0.0085* 

Long Position 0.000 0.000 0.913 0.3394 

Clearance -0.296 0.033 79.949 <.0001* 

Gender 0.081 0.335 0.059 0.8087 

Ego Speed 0.457 0.054 70.287 <.0001* 

Leader Speed -0.431 0.052 70.116 <.0001* 

Ego Acc./Dec. 0.554 0.097 32.378 <.0001* 

Leader Acc./Dec. -1.582 0.220 51.534 <.0001* 

 

b) 

Prediction 
Reference 

0 1 

0 265 13 

1 34 286 
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Table 26 Continued 

c) 

Predictor Contribution Portion Rank 

Clearance 29.7922 0.3026  1 

Leader Acc. 23.8478 0.2422  2 

Leader Speed 19.2116 0.1952  3 

Ego Speed 14.3613 0.1459  4 

Ego Acc. 7.5258 0.0764  5 

Long. Position 3.4342 0.0349  6 

Gender 0.2718 0.0028  7 

 

5.5 Results Comparison  

In Scenario 1, the participants followed the AV leader more closely than the 

participants following the human-like leader in Scenario 2. The slower speeds of the AV 

leader had a significant impact on lowering the average speed of the participants with a 

high correlation coefficient of 0.85.  However, the overall average speed of the 

participants did not share a high correlation with the human-like leader’s average speed 

in Scenario 2. Table 27 shows the results from two-sample t-tests, which confirm the 

significance of the difference in participants’ speed and clearance in the two scenarios at 

the significance level of 5%. 

While stopping at the intersections, the participants decelerated in a distinct 

pattern compared to the designated AV leader resulting in a mismatch. On the other 



 

 

 

 

72 

hand, the participants in Scenario 2 illustrated braking behaviors similar to the human-

like leader. Also, the participants accelerated faster while driving behind the human-like 

leader (in Scenario 2) as compared to the AV leader (see Table 28).  

Table 27. Comparison of Participants Overall Driving in Test Scenarios Using 

Two-Sample T-Tests 

 

Overall 
Participants 

Driving in 
Mean 

Std. 

Dev. 
t-value p-value 

Different (p 

< 0.05) 

Avg. Clearance 

(m) 

Scenario 1 24.64 23.36 
48.50 < 0.0001 Yes 

Scenario 2 46.06 37.35 

Avg. Ego Speed 

(mph) 

Scenario 1 18.48 11.21 
16.22 < 0.0001 Yes 

Scenario 2 21.36 13.23 

 

Where, Scenario 1: AV leader and Scenario 2: Human-like Leader 
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Table 28. Comparison of Participants Braking and Acceleration in Test Scenarios 

(Two-Sample T-Tests) 

 

Parameters 
Participants 

Driving in 
Mean S.D. t-value p-value 

Different  

(p < 0.05) 

Avg. 

Clearance 

During 

Braking (m) 

Scenario 1 19.56 10.10 

2.73 0.008 Yes 
Scenario 2 30.81 17.44 

Avg. Ego 

Speed During 

Braking 

(mph) 

Scenario 1 13.35 10.76 

1.25 0.21 No 
Scenario 2 17.27 11.29 

Avg. Dec. 

During 

Braking 

(m/s2) 

Scenario 1 -0.52 0.51 

0.08 0.93 No 
Scenario 2 -0.53 0.61 

Avg. Acc. 

After 

Stopping 

(m/s2) 

Scenario 1 1.25 0.64 

2.19 0.03 Yes 
Scenario 2 

1.67 0.71 

 

In Scenario 1, the participants encountered higher near-crashes (high risk) due to 

a mismatch in the braking maneuvers made by the participants and the designated AV. 

Shorter clearances also played a significant role in the occurrence of near-crash events. 

In both scenarios, MTTC outperformed other five popular surrogate measures by 

accurately detecting 82% of the near-crashes 10 seconds before their actual occurrence 

at `~12m range.  

The AV leader's speed profile with highest leader's deceleration rate (3.25 m/s2) 

experienced the highest number of near-crashes (high risk) which is in tandem with the 
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findings from previous literature indicating that high deceleration rates increase the 

probability of a near-crash. In Scenario 2, the highest number of near-crashes (high risk) 

were observed for the human-like leader designated with EF-2 speed profile with a 

maximum deceleration rate of -1.68 m/s2 which is lowest among all other leader profiles.  

The classification of potential near-crash events using random forest classifier 

achieved the best results after undersampling the majority class in the data (safe driving 

events) in both scenarios. Acceleration/deceleration of the AV leader and relative speed 

between the vehicles came out as the significant factors influencing the probability of 

near-crashes in Scenario 1. But, in Scenario 2, the relative speed and clearance had the 

highest importance in classifying the potential near-crash events. Logistic regression also 

validated the results of RF classification and variable importance after performing the 

undersampling and balancing the data. 

5.6 Summary 

This chapter presented the results from braking/acceleration pattern analysis and 

near-crash risk analysis for the participants following the human-like leader in Scenario 

2. It also compared the results from the two-test car-following scenarios. The speed of 

human-like leader in this car-following scenario did not possess any serious correlation 

with the participants’ driving speed. A noticeable similarity in the gradual braking and 

rapid acceleration behavior of 24 participants’ in this scenario adds to the validity of the 

experiment. Similar to findings in Scenario 1, MTTC outperformed other surrogate 
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measures by accurately detecting 82% of the near-crashes at a considerable average 

range of 12.22 m 10 seconds before their actual occurrences. 

Of the 114 high-risk near-crash events, 50 occurred when an EF-2 profile was 

assigned to the human-like leader, whereas the least occurred (20) when the speed 

profile was EF-1. After undersampling the data, RF classifier produced the highest 

precision rate of 91.3%. Also, in classifying potential near-crash events, the importance 

of clearance/distance is validated by performing logistic regression on the undersampled 

data. The following chapter presents the conclusions of this research based on the 

analysis results. 
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6. CONCLUSIONS 

 

This chapter provides the key summary conclusions of this research and provides 

further recommendations. 

6.1 Summary of Key Results 

This thesis provides valuable insights into different aspects of driving behavior of 

human drivers in two different car-following scenarios using a Unity-based driving 

simulator. Understanding how the participants decelerate behind two different types of 

leading vehicle (AV and human-like) at stop-controlled intersections and how quickly 

they accelerate after stopping were the key objectives of this study. Performing risk 

analysis by detecting near-crashes in car-following scenarios using six popular Surrogate 

Safety Measures was another vital aspect of this study. 

The results from braking behavior analysis indicated a mismatch in the overall 

braking pattern of the 24 participants and the designated AV leader. On the other hand, 

two-sample t-tests did not yield any significant difference in the braking behavior of 24 

participants and the human-like leader. 

After stopping at the stop-controlled intersection, the participants accelerated at 

faster rates while following the human-like leader due to a greater available clearance. 

Results from two-sample t-tests indicated a mismatch in the acceleration rates of 24 

participants (1.25 m/s2) and that of the AV leader (0.5 m/s2) at the significance level of 
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5%. However, there was no such mismatch in the scenario when the participants 

accelerated behind the human-like leader. 

Out of the six surrogate safety measures used in this study to detect near-crash 

events 10 seconds before their actual occurrences, the MTTC evinced the highest 

accuracy rate of 83% in the detection. This finding of anticipating a near-crash 10 

seconds before its real event at a range of 12.85 m in a car-following scenario using a 

critical threshold of 4 seconds would have significant safety advantages in near-crash 

avoidance. 

The participants showed a higher tendency of near-crash involvement while 

following the AV leader designated with C-3.25 profile and the human-like leader with 

EF-2 profile. To avoid potential biased results due to an imbalance in two classes (safe 

and potential near-crash events) undersampling and oversampling techniques were 

performed to achieve a balanced dataset. RF classifiers on the undersampled data 

achieved the highest accuracy rates of 93.1% and 91.3% in predicting and classifying the 

potential near-crash events. 

Variables, AV leader’s acceleration/deceleration in Scenario 1, and clearance 

between vehicles in Scenario 2 emerged as the most significant in classifying the 

potential near-crash events. Logistic regression successfully validated the results of RF 

classifiers on the undersampled data. The variable importance results were in sync with 

the characteristics of C-3.25, and EF-2 speed profiles as higher deceleration rates of the 

leader in these profiles increased the probability of near-crashes. The braking maneuvers 
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by participants at shorter clearances led to the majority of near-crash events (high risk) 

during the experiment. 

As the primary goal of the study was to study the safety risks associated with the 

car-following behavior of the participants under the influence of an AV, it was found 

that the participants were more likely to be involved in rear-end near-crashes involving 

high risk (145) with the designated AV leader in Scenario 1 as compared to human-like 

leader in Scenario 2 (112). The discrepancy in the participants' and the AV leader's 

braking behavior synchronizes with recent findings (Rahmati et al., 2019) indicating the 

potential disparity in the AV's and humans' decision making while braking at stop-

controlled intersections. 

6.2 Recommendations 

This study recommends that researchers test different types of car-following 

behaviors between an AV and a human driver. Since this study involved the 

participation of 48 human participants, research with a larger sample size could further 

validate the findings from this study. The research demonstrates the efficiency of MTTC 

in predicting a near-crash with enough time and range to alert the driver and prevent a 

near-crash. The designers of forward-collision warning systems should take this result 

into account to achieve safer near-crash avoidance systems. To further assess this, 

designing more car-following scenarios on driving simulators and the real-world 

environment will provide validation to the findings from this study. Studies for the latter 

are currently being conducted at Texas A&M University. 
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APPENDIX A  

RECRUITMENT FORM 
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Figure 38. Image of the Email used for Recruiting Participants for the Study 
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APPENDIX B 

PRE-TEST QUESTIONNAIRE AND CONSENT FORM 
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Figure 39. Pre-test Questionnaire used for Recruiting Participants 
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Figure 40. Informed Consent Form-Page 1 
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Figure 41. Informed Consent Form-Page 2 
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Figure 42. Informed Consent Form-Page 3 
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APPENDIX C 

POST-TEST QUESTIONNAIRE 
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Figure 43. Post-test Questionnaire 

 



 

 

 

 

96 

 

 

 

 

 

 

 

 

 

APPENDIX D 

IMAGES OF SIMULATOR  
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Figure 44. Image of the Driving Simulator During the Experiment 
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Figure 45. Image of the Following Vehicle Stopping at a Stop-Controlled 

Intersection 
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Figure 46. Image of the Participant Following the Leading Vehicle on the Driving 

Simulator 

 

 

 


