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ABSTRACT 

 

 

Evaluation of L1 Residence for Perceptron Filter Enhanced Signature Path Prefetcher 

 

 

Alexander Staggs 

Department of Computer Science and Engineering 

Texas A&M University 

 

 

Research Advisor: Dr. Paul Gratz 

Department of Electrical and Computer Engineering 

Texas A&M University 

 

 

Rapid advancement of integrated circuit technology described by Moore’s Law [1] has 

greatly increased computational power. Processors have taken advantage of this by increasing 

computation rates, while memory has gained increased capacity. As processor operation speeds 

have greatly exceeded memory access times, computer architects have added multiple levels of 

caches to avoid penalties for repeat accesses to memory. While this is an improvement, architects 

have further improved access efficiency by developing methods of prefetching data from memory 

to hide the latency penalty usually incurred on a cache miss. Previous work at Texas A&M and 

their submission to the Third Data Prefetching Championship (DPC3) [2] primarily consisted of 

L2 cache prefetching. L1 prefetching has been less explored than L2 due to hardware limitations 

on implementation. In this paper, I attempt to evaluate the effect of L1 residence for Texas A&M’s 

Perceptron Filtered Signature Path Prefetcher (PPF) [3].  While an unoptimized movement of the 

PPF from the L2 to the L1 showed performance degradation, optimizations such as using the L1 

data stream to prefetch to all cache levels and updating table sizes and lengths have matched L2 

performance.  
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NOMENCLATURE 

 

 

SPP  Signature Path Prefetcher 

 

PPF  Perceptron Prefetch Filter 

 

L1  Level 1 Cache 

 

L2  Level 2 Cache 

 

LLC  Last Level Cache 

 

IPC  Instructions Per Cycle 

 

DPC3  Third Data Prefetching Championship 
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CHAPTER I 

INTRODUCTION 

 

 

 As processor execution speeds have outstripped memory access times in computers, 

architects have continually developed novel ways of increasing memory access efficiency to take 

full advantage of these processor performance gains and to prevent stalling. To try to hide memory 

latency of repeat accesses, processors contain data caches smaller and faster than main memory 

which hold recently used data. By doing so, repeat accesses only pay the latency penalty of the 

faster cache, rather than the slow main memory latency. To further improve computer performance 

and attempt to hide the latency penalty of first time accesses to a memory location, methods have 

been developed to guess these first accesses in advance and pull the respective data into the caches 

before their first requests in a field called “prefetching.”  If a prefetch guess is accurate and the 

data is prefetched before the access from the cache, the latency of going from the cache to DRAM 

is completely avoided.  

 Many new innovations in data prefetching are submitted to Data Prefetching 

Championships (DPCs). In the second of these competitions, a team from Texas A&M University 

submitted their Signature Path Prefetcher (SPP) [4]. At the most recent, the Third Data Prefetching 

Championship (DPC3) [2], they enhanced this SPP with a Perceptron Prefetch Filter (PPF) [3] to 

allow for a separation in mechanisms for gaining coverage and accuracy in prefetching.  

The rules of The Second Data Prefetching Championship (DPC2) [6] required submissions 

to reside only in the L2 cache. The rules of DPC3 opened the possibility of L1, L2, and Last Level 

Cache (LLC) prefetching. Out of all submissions to DPC3, the only submission to remain primarily 



4 

L2 resident was the PPF enhanced SPP. In this thesis, I evaluate the possibility of performance 

increases from an L1 resident SPP enhanced with PPF. 

The submission to DPC3 was optimized for L2 prefetching. A minimally modified version 

of the DPC3 submission was moved to the L1 cache but showed a performance degradation. This 

thesis details attempts to optimize PPF to work in the L1 cache and show performance impacts. 

This is not only an evaluation of how best to build PPF in the L1 cache, but also a test to see if the 

implementation challenges of designing a hardware constrained L1 resident PPF are worth 

pursuing. While an initial unoptimized PPF moved to the L1 cache showed a performance 

degradation, optimizations to learning thresholds and reconfiguring SPP parameters have shown 

an L1 resident PPF to be at least equal in performance to an L2 resident PPF.  
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CHAPTER II 

BACKGROUND 

 

 

Modern Computing Problems 

 Modern computers are designed using the Von Neumann Architecture, where a central 

processing unit (CPU) reads and execute commands from a memory unit and stores results back 

in the memory unit. A trend in semiconductor technology advancement known as Moore’s Law 

[1] notes that the number of transistors that can be fit into a given area of an integrated circuit chip 

double approximately every 2 years.  

 Processors have taken advantage of this by adding more complex structures that can 

execute instructions more quickly while memory has gained increased storage space. Increased 

storage space in memory generally comes at the tradeoff of longer access times. Additionally, in 

modern computers, processors are executing instructions so quickly that they often must stop 

execution while waiting for incoming data from DRAM. This problem is exaggerated by growth 

described by Moore’s Law such that the problem is only getting worse and newer methods for 

improving memory performance are needed. This problem between memory and processing 

speeds is described as the “Memory Wall” [5]. 
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Data Prefetching 

 

Figure 1: Caching and Prefetching Diagram 

 

 To help reduce this performance degradation caused by the Memory Wall, computer 

architects have devised systems of caching, where small and fast blocks of memory are placed 

near the processor to hold on to recently used pieces of data. As shown in Figure 1, modern 

computers typically implement 3 levels of caches between the Core and the Main Memory or 

DRAM. These caches take advantage of temporal locality, a trend where recently used pieces of 

data are likely to be used again soon. In a cached processor, the program can call for a load to a 

piece of data not already in the cache. This is called a cache miss, and the program must then wait 

to retrieve data from main memory. 
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Figure 2: Prefetching Timing 

 

 These cache misses incur a large latency penalty, as the time to retrieve data from main 

memory can take dozens or hundreds of process or cycles, which wastes compute time and slows 

down program execution speed. To hide this latency, modern architects have developed methods 

for adding hardware to the processor to predict what data will be needed to be prefetched into the 

cache before the program looks to load it.  

 Figure 2 shows how the timing of a prefetch hides this latency. In the top “without 

prefetching” timelines, the work for prefetching in the memory is performed after the load 

instruction. The time between “Load A” and “Exec A,” the execution instruction, is a stall, where 

the processor isn’t working. The lower example “With Prefetching” shows how a good prediction 

can load the memory before it is requested, meaning that the time between the load and the execute 

can be shortened so that there are few or no stall cycles.  

 Figure 1 shows a diagram of an L2 resident prefetcher, as it takes information from the 

access stream to the L2 and uses it to make fetches to the L2 and LLC. A perfect prefetch, where 

the data is brought into the cache right before it is needed effectively removes the entire latency 

penalty usually incurred on a cache miss. 



8 

Signature Path Prefetcher (SPP)  

 

Figure 3: SPP Structure 

 

 The Signature Path Prefetcher (SPP) [4] was Texas A&M’s submission to the Second Data 

Prefetching Championship (DPC2) [6]. Submissions to DPC2 were only L2 resident prefetchers 

with no L1 or LLC prefetchers. L2 prefetchers are those trained by L2 cache accesses, or L1 cache 

misses. As shown in Figure 3, SPP receives data from accesses to the L2 cache and uses it to 

generate prefetches to the L2 cache and LLC. Prefetches pull data from Main Memory to the cache. 
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Figure 4a: SPP Confidence Update 

 

Figure 4b: SPP Prefetch 

 

 SPP predicts future accesses by constructing a signature table (ST) indexed by the physical 

page number stores signatures corresponding to previous access patterns. Figure 4a shows how 

the signature is used to index into a pattern table (PT), which stores future access patterns and a 

confidence for each pattern. Actual accesses to memory and prediction results train SPP by 

incrementing pattern table values. 
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 Figure 4b show how prefetches are generated.  If the access to the pattern table shows a 

confidence higher than a set threshold, then a prefetch is made according to the pattern. Otherwise 

no prefetch is made. If the prefetch was useful, the confidence is incremented. If not, it is 

decremented. Using the first generated prefetch, SPP also speculates the next prefetch by indexing 

the signature of the previous accesses concatenated with the previous prefetch. This occurs 

recursively if the products of all confidences in the speculated path is above the threshold. 

Perceptron Prefetch Filtering (PPF) 

 

Figure 5: PPF Structure 

 

 Texas A&M’s submission to DPC3 was the Perceptron Prefetch Filter (PPF) Enhanced 

SPP [3]. This filter is used to separate the accuracy and coverage components of prefetching into 

separate components. As shown in Figure 5, PPF takes information from L2 cache accesses and 

SPP to generate prefetches. SPP no longer generates prefetches directly but instead suggests 
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prefetches to PPF. SPP is tuned to aggressively suggest prefetches to increase coverage. PPF filters 

out low confidence suggestions to increase accuracy. The confidence mechanism of SPP is no 

longer used to determine if a prefetch should be made but is used as a feature for the perceptron.  

  

Figure 6a: Perceptron Filter Operation 

 

 

Figure 6b: Perceptron Learning 

 

 PPF takes data from the prefetch, including the prefetch location, signature, SPP 

confidence, etc. to build hash tables. These tables are shown labeled “Feat N” in Figure 6. The 

tables are indexed by the feature value and store a confidence value, as shown in Figure 6a. For a 
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given prefetch, PPF determines the confidence by summing the output of the hash tables. This 

perceptron confidence then determines if a prefetch is made using a given threshold. PPF learns 

by adjusting table weights based on the correctness of previous predictions. This is displayed in 

Figure 6b. 

The Third Data Prefetching Championship (DPC3) 

 Of the other prefetchers submitted to DPC3, PPF was the only submission that was 

primarily L2 resident. Other prefetchers submitted to this competition were either primarily L1 

resident [8,9] or contained complex prefetching mechanisms at multiple levels [7,10]. By 

comparison, PPF only included a next line prefetcher in the L1 cache, which is comparatively 

simpler. The primary avenue at improving PPF that my research tries to test is what performance 

gains can be brought out of L1 residence. 
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CHAPTER III 

METHODS 

 

 

ChampSim Simulator 

 Evaluation of prefetching structures were performed using the ChampSim simulator. It is 

a trace-based simulator used in DPC3 [2].  Traces are recordings of instructions seen by the 

processor while a program is running. These instructions have the information about the time and 

location of memory accesses while the program is running. From this information, the simulator 

is able to run through the instructions and simulate if execution could be improved if a prefetcher 

were present.  

 An L1 prefetcher is much harder than an L2 prefetcher to implement in a real-life processor 

as the timing constraints are very tight. Memory accesses to the L1 must be fast enough to be 

accessed in one cycle, so this time dictates the clock rate of the prefetcher. ChampSim is not built 

to simulate many of these hardware constraints, rather giving an idea of how effective the 

algorithm for prefetching is. This is beneficial to this study as an L1 resident PPF [3] can be built 

and evaluated in effectiveness to get an idea of performance gain to help decide if a more low-

level hardware implementation of it is worthwhile. 

Prefetcher Implementation 

 Prefetchers and ChampSim are both written in C++. The prefetchers use functions that are 

part of ChampSim to perform prefetching operations and to get information about the current state 

of the machine. The process of using this information to determine a location in memory to 

prefetch is written as a normal C++ program and then returned to the simulator. My 
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implementations of improvements are modifications to the implementation of PPF submitted to 

DPC3. 

Evaluation 

 Prefetcher performance is generated by the simulator as instructions per cycle (IPC). This 

metric records the number of instructions the processor has executed during the program and 

divides it by the number of clock cycles needed to execute it. To compare prefetcher 

implementations to one another, the speedup over a no prefetching baseline is used, shown in 

Equation 1.  

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑃𝑟𝑒𝑓𝑒𝑡𝑐ℎ𝑒𝑟 𝐼𝑃𝐶

𝑁𝑜 𝑃𝑟𝑒𝑓𝑒𝑡𝑐ℎ𝑖𝑛𝑔 𝐼𝑃𝐶
 

Equation 1: IPC Speedup 

Better prefetchers are those with a higher speedup. The IPC speedup of a prefetcher over a set of 

multiple program traces is used test performance across different workload types. These workloads 

are the same used in DPC3. The geometric mean of the speedup of a prefetcher over all traces is 

calculated and used to compare to other prefetchers. 
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Residence Changes 

 

Figure 7: L1 Resident PPF Structure 

 

 My initial attempts at improving PPF were to move it from the L2 cache to the L1. 

Compared to the L2 PPF shown in Figure 5, the L1 resident PPF in Figure 7 takes information 

from the L1 access stream, rather than the L2, and prefetches to all three levels of the cache, rather 

than just the largest two. Following the trend set by other prefetchers submitted to DPC3, my initial 

assumption was that there may be some performance benefit to be gained by moving the 

prefetching engine to the L1. L1 resident prefetchers are able to see all demand accesses generated 

by the program, while L2 prefetchers only see accesses that miss in the L1. This give a much larger 

data stream from which PPF can learn from.  
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 The original L2 PPF filled to either the L2 cache or LLC depending on confidence in a 

prefetch. Two thresholds are set to be compared against the sum of the perceptron feature weights 

shown on Figure 6a. If the sum of all perceptron weights is above the high threshold, a L2 prefetch 

is generated. If the sum is below the high threshold but above the low threshold, an LLC prefetch 

is made. If the sum is below the low threshold, no prefetch is made. Moving PPF to the L1 

prompted me to add an additional threshold to PPF so that it can fill to all 3 levels of the cache.  

Prefetcher Tuning 

 The movement PPF to the L1 cache and the addition of another threshold meant that the 

old perceptron thresholds were likely not suited for the new configuration. To determine 

appropriate new thresholds, runs of the new PPF configuration were run with varying values for 

the thresholds. The thresholds were systematically tested from the lowest to the highest perceptron 

sum value with a difference of 10 per test. This wide step test was used to find a high performing 

region where a more narrowed test could be performed. Within this region a more fine-tuned test 

could be performed. 

 In addition to threshold testing, tests were performed to see if changing some parameters 

of the PPF tables would produce a positive benefit. Not all tables in the original PPF were of the 

same size. Initial tests scaled all tables to be larger and smaller by the same scaling factor without 

changing how large one table is proportionally to a second. This limited how small we could make 

the largest tables, so all tables were then set to the same, largest size and then tests were performed 

to see how small this size could be before performance was severely degraded. 

 Another attempt at tuning the L1 PPF was to modify SPP parameters. As the density of the 

information stream given to the L1 cache is much greater than that of the L2, the amount of history 
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needed to record all the accesses in a recent time period would be greater. A search for an optimal 

SPP signature length was run from one entry (3 bits), doubling every test to 96 bits. 
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CHAPTER IV 

RESULTS 

 

 

Residence Changes 

 Initial tests to see how an L1 resident prefetcher would perform without great tuning 

changes consisted of varying the fill levels. While the prefetcher would still receive the L1 access 

stream, it would prefetch to 2 of the 3 fill levels. 

 

Figure 8: Fill Level Test Results 

 

Figure 8 shows that none of the of the fill level configurations surpassed the baseline L2 PPF, but 

this is mostly attributable to the parameters of PPF being tuned for an L1 context. L1 to L1 and 

L2, L1 to L2 and LLC, and L1 to all levels were very close to one another in performance. Because 
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L1 to all other levels allowed some greater flexibility in tuning thresholds, as there are 3 fill levels 

rather than 2, it was selected to improve upon. Updates to this prefetcher would likely also cause 

a performance gain if applied to the other two close performing configurations, but this has not 

been tested. 

Perceptron Sum Threshold Tests 

 

Figure 9: Wide-Step Threshold Test 

 

 The initial test of PPF Thresholds showed a region of interest where the high threshold is 

10 and the middle threshold is -20. High and middle thresholds near these values were then used 

to make a more specific search with a shorter increment between threshold values. Figure 9 shows 

the results of this test. 
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Figure 10: Narrowed Threshold Test 

 

From the results in Figure 10, the top performing threshold values in this region were near a high 

of 20 and a middle of 10. There were other areas of the chart with different threshold values that 

achieved similar results. The changes in performance between these thresholds is very small, 

meaning that changes to thresholds seem to make little impact on overall performance. PPF seems 

to be insensitive to fine changes in thresholding, so long as the thresholds are not too far to either 

the high or low extremes for perceptron sums. 
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Perceptron Table Size Tests 

 

Figure 11: Larger Perceptron Table Size Tests 

 

 Increasing the size of the perceptron table produced some small variation in performance. 

There is no clear trend in how performance changes with table size. Figure 11 shows that the best 

performing test was with 262,144 entries which is more space to give a table than is practical. 

These differences were only in the range of fractions of a percent. This led to the idea to test the 

opposite direction to see if space could be saved in reducing perceptron table sizes. The original 

table depth of 4096 entries used in the DPC3 submission was chosen as it filled the space budget 

of the competition rules. Space savings here could be better not only for a practical building of 

PPF, but also allow for performance benefits in expanding storage of other structures. 
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Figure 12: Smaller Perceptron Table Size Tests 

 

 Remarkably, the performance degradation, shown in Figure 12, of significantly reducing 

the perceptron table sizes is very low for exponentially more space saved. Losing only 1% 

performance for reducing the tables to only 8 entries deep could prove useful in adapting a 

prefetcher to use a smaller perceptron table and using this space gain to boost performance in other 

ways. This test was replicated in original prefetcher submitted to DPC3 and the results closely 

matched in an L2 context. 
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Signature Size Tests 

 

Figure 13: Signature Size Tests 

 

 Increasing the signature size of the SPP made a significant impact on performance, as 

shown in Figure 13, increasing it by almost 2% over the originally used 4 entry signatures. This 

increased performance comes at the cost of increased table space but given the results of the 

perceptron table size tuning, this space can be saved by reducing the length of perceptron tables. 

This test was duplicated in the L2 and it was found that a signature of 4 entries is optimal for an 

L2 context. This is likely different because the L1 data stream is much more dense than that which 

goes to the L2. L2 cache accesses are only L1 cache misses, so a large proportion of requests 

coming from the processor are filtered out before reaching a L2 PPF.  
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Final Comparison 

 

Figure 14: Final Comparison of Prefetchers 

 

 The results of all tuning runs, displayed in Figure 14, show that except for tuning of the 

signature, all other attempts at modifying a L1 PPF fail to beat the standalone L2 PPF, let alone 

the version submitted to DPC3. The signature updated PPF outperforms the L2 PPF but does not 

outperform it. Overall, this shows that it is highly likely that the extra effort needed to implement 

a L1 resident PPF are not worth undergoing. There is some possibility in gaining increased 

performance in the L1 through the changing of the features used by the perceptron or perhaps 

building a PPF at each level, but these have not been tested yet. 

 The absence of any meaningful performance gain by tuning the PPF perceptron sum 

thresholds indicates that PPF is fairly insensitive to confidence threshold values so long as the 

values are not too close to the extremes for perceptron weight sums. 
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 In summary, this testing has indicated that PPF is likely not going to benefit much from 

being moved from the L2 to the L1. The initial goal of trying to outperform the DPC3 submission 

with an L1 resident PPF was not met despite tuning revisions. Some lessons learned from this can 

be applied to the L2 prefetcher though. Shortening the perceptron tables produced little impact on 

the performance in the L1 and a duplicated test in the L2 showed a similar result. This could 

possibly allow for some changes to the L2 PPF in which the perceptron tables are reduced to make 

room for other structures or tables that could have a better performance impact. Additionally, the 

perceptron sum thresholds produce small performance impacts so long as the values chosen are 

not toward the extremes. This likely applies to the L2 PPF but has not yet been tested. 
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