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ABSTRACT 

 

 

Designing and Testing a Quench Heater for a 6T CIC Dipole 

 

 

Michael Erickson 

Department of Physics 

Texas A&M University 

 

 

Research Advisor: Dr. Peter McIntyre 

Department of Physics 

Texas A&M University 

 

 

The purpose of this project is to create and design a quench heater for the 16 T Cable-in-

Conduit (CIC) superconducting magnet. This magnet will be used to create stronger and more 

cost-effective particle accelerators. The quench heater is a device that is designed to protect the 

magnet from an unexpected quench. In order to achieve this, the quench heater must be able to 

produce enough heat to heat the superconducting wires in the CIC cable to approximately 9K 

over the course of 10 ms. To design a quench heater in this way, it is required to find the 

dimensions needed using simulations. After finding the required dimensions, a Computer 

Assisted Design (CAD) file was created so the design could be machined to the exact 

specifications. Then, using liquid helium and one cable, we tested if the heater would properly 

heat the cable. Thermocouple wires were integrated into the cable to measure the temperature of 

the wires during the experiment. This physical experiment has not yet been conducted and thus 

the results are still unknown. It is expected that the quench heater will be able to properly heat 

the cable over the 10 ms timeframe. If this experiment is successful, this design for a quench 

heater will be used for the 16 T CIC cable. 
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NOMENCLATURE 

 

 

CIC  Cable-in-Conduit 

 

K  Kelvin 

 

T  Tesla 

 

CAD  Computer Assisted Design 

 

LHC             Large Hadron Collider 

 

EDM  Electrical Discharge Machine 
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CHAPTER I 

INTRODUCTION 

 

 

This project involves the development and testing of a quench heater design for the 16 T 

CIC superconducting dipole magnet. The predecessor to this magnet is the 3 T CIC dipole 

superconducting magnet. The 16 T magnet will improve upon the design by allowing a second 

layer of wire in the cable and utilize better superconductors. The creation of this magnet will 

allow the production of higher energy and more cost-effective particle accelerators. 

The LHC is currently the world’s strongest particle accelerator, producing collisions at an 

energy of 13 TeV. Currently, the dipoles used at the LHC are 8.3 T. This particle accelerator 

allowed for the discovery of the Higgs-Boson particle (CERN) This new magnet would allow for 

the construction of a particle accelerator that could produce collision an order of magnitude 

greater. This theoretical particle accelerator could allow for new discoveries to be made similar 

to those made from the LHC. 

The Role of a Quench Heater 

The Quench Heater serves a very important role in a superconducting magnet. In the 

event of an unexpected quench in a magnet, the quench heater will fire off, saving the magnet 

from the quench. A quench is a term used to describe when a superconductor transitions out of 

the superconducting phase. The superconducting phase occurs when the resistivity of a material 

drops to a near zero value. The transition results in a jump in the resistance of the material. The 

following equation shows the relationship between power and resistance. 

𝑃 = 𝐼𝑅2 



4 

In a superconducting magnet, the current is so great that when only a small part of the 

magnet quenches, the area may be severely damaged and could make the magnet non-

operational. In order to prevent this, quench heaters will be utilized to cause the rest of the 

magnet to quench. This distributes the power over the entire magnet and prevents damage. 

The three quench catalysts in a magnet are the temperature, current, and the magnetic 

field. The quench heater that is discussed in this paper uses temperature to heat the magnet. By 

using the same formula shown above, a resistor heater can be created. By knowing the resistance 

of the heater, we can pulse a current through the resistor to heat the magnet to the desired 

temperature.  

We know when to activate the heaters by constantly measuring the voltage across the 

entire magnet. Since the magnet is superconducting, the voltage across the magnet will be close 

to zero. Once the voltage reaches a certain threshold, we will know that part of the magnet has 

quenched. At this point, the heaters are activated.  

 

Figure 1: Above shows the superconducting phase for a Type I and Type II superconductor. This shows the relationship 

between the magnetic field and temperature for the superconducting state (Rigamonti). 

Previous Designs of Quench Heaters and Alternatives 

The design of this quench heater takes inspiration from a similarly designed quench 

heater made at the same lab. This quench heater was for the 3 T CIC superconducting dipole. 
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While the designs for the two heaters are very similar, the 16 T heaters must be able to heat a 

much larger cable over the same time period that the 3 T heaters were able to.  

An alternative to using a quench heater is using a Capacitive Limiting of Current (CLIQ). 

These work in a similar manner to a quench heater, however, rather than using temperature to 

quench a magnet, these devices use current. Stored current is released into the magnet when the 

magnet reaches a certain voltage. This current causes the superconductor to quench, and then has 

the same effect that the quench heater has. A CLIQ was not considered for this project since it 

has no major benefits and is harder to implement into a magnet. 
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CHAPTER II 

METHODS 

 

 

In order to construct the quench heater, we ran simulations to find the dimension for the 

quench heater. We then needed to construct a CAD file to produce the physical heater. This 

physical heater can now be used in a test to validate our simulation. The simulations are still 

enough on their own to get the results desired, even without completion of the physical test.  

Comsol Simulations 

The first step in designing the quench heater was constructing the simulation. For this 

process, I used the Comsol Multiphysics 4.3a simulation program. Using symmetry within the 

design of the cable, I designed a geometric model of the cable and the quench heater. After 

running this simulation multiple times, I was able to find the resistance and current needed for 

the quench heater.  

Figure 2: 2-D Model of 2 Layer CIC cable. The overlap between wires in the cable 

were measured from a sample of cable we made. 
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First, a 2-D model was designed. Next, we took into consideration the symmetries in the 

design of the cable. The cable has 21 wires on the outer layer and 15 wires on the inner wire. The 

greatest common divisor of 21 and 15 is 3. Knowing that that the wire has symmetry with itself, 

it is clear to see that the cable can be divided into 6 symmetric parts. This design can be seen in 

Figure 1. 

The 2-D model was extruded multiple times to produce a 3-D model. The thin extrusions 

represent the gaps in the quench heater. We used a 2.5-inch section to represent the lead ends of 

the cable. Each section in the design was assigned different material properties based on what 

they represented in the experiment. Since the heater has symmetry of its own, the 3-D model 

only represents half of the heater. 

When designing the quench heater, we worked with two changeable variables. These 

variables are the width of the strips and the width of the gaps. There is a restriction on the width 

of the strips and the gaps in the heater. This is that the total width of the quench heater must be 

under 4 inches. The other variables are being limited by each other. The resistance of the heater 

is determined by the widths of the quench heater, the width of the gaps, and the length of the 

quench heater. The pulse of the magnet must occur in over 40 ms. This adds further restrictions 

to our parameters since 40 ms must take place over 2-time constants for an RC circuit.  

𝜏 = 𝑅𝐶 
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In the above equation, 𝜏  represents the time constant of an RC circuit. The RC must be 

equal to 20ms given this equation. So, when finding the gap width and the strip widths, the 

voltage and the capacitance must give values for capacitors that are obtainable for the 

experiment. We found that the width of the strip would need to be 11/32 inches and the width of 

the gap has to be 5/32 inches. 

CAD 

Using the specifications found in the simulation, the exact width of the stainless-steel 

strips for the quench heater could be determined. Utilizing the width of the stainless steel, a CAD 

Figure 3: 3-D Model of the 2 Layer CIC cable used in the simulations to find the design of the quench heater. 
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file was created to match this design. The CAD file allows precise machining of the heater. This 

machining will be done by an EDM.  

Quench Heaters Design 

The quench heater is designed as a serpentine piece of stainless-steel foil placed between 

two layers of Kapton. Kapton is ideal for this purpose because it has high temperature 

conductivity, but low electric conductivity. This means that the heat generated from the quench 

heater will easily pass through the Kapton, but the current used to heat the heater will not. 

One of the sheets of Kapton has heat-activated adhesive which ensures that the quench 

heater does not come apart. In order to activate the adhesive, a T-Shirt press was used. This was 

able to achieve the desired heat of 400 K need to activate the adhesive. The adhesive would have 

to remain at this temperature for roughly 30 mins before becoming fully bonded. The soft surface 

of the T-Shirt press ensured that when the quench heater was being pressed together, no air 

bubbles would remain.   

Figure 4 CAD file of the quench heater 
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When making the final product to use in the actual magnet, the EDM will be used. 

Unfortunately, the EDM malfunctioned when attempting to produce the test heater. Note that in 

Figure 4, the corners of the heater are rounded while in Figure 5, they are sharp. This is due to 

the change which occurred from the loss of the EDM. 

Future Testing and Measurements 

In future testing, we can validate the design of the quench heater. The preparation for the 

physical test has already begun but has not yet been completed. For the test, we created a quench 

heater and cable specially designed for an experiment. The design of test quench heater varied 

from the quench heater for the magnet because the test quench heater was only heating a single 

cable. This results in a smaller quench heater that has less resistance and needs a much larger 

current to heat the cable. 

The cable used for the experiment needed to be specially designed for this experiment. In 

order to record the temperature inside the cable, we needed to have thermocouples inside the 

cable with the wires. To accomplish this, we used hypodermic stainless-steel tubing. After 

placing the thermocouples inside the tubing, we vacuum impregnated the tubing with epoxy to 

Figure 5: This is the quench heater designed for the physical test. This heater 

was cut by hand resulting in the sharp corners instead of the curved corners 

whoen in the CAD file. 
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ensure that the thermocouples would not move around inside of the tubing. We then used the 

tubing as a surrogate for the wire in a standard handmade design of the CIC cable. We used three 

thermocouples in this design. One is located at the center of the cable on in the inner layer, the 

second one is located at the edge of the heater in the inner layer, and the final one is located at 

the center of the cable on the outer layer. 

We utilize capacitors in order to simulate the pulse that will occur in the quench heater. 

We can easily find the time constant of the RC circuit created for this experiment. Using this, we 

can find the power discharged over 2-time constants. 

The results are found by placing the cable and heater into liquid helium. Using the 

thermocouples from the cable, we can acquire a real time read of the temperature inside the cable 

as the heater is activated. Finally, we can compare these to the results found in the simulations to 

verify the accuracy of the simulation. 
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CHAPTER III 

RESULTS 

 

 

The physical test has not yet been conducted. The outer layer reaches a much higher 

temperature than the inner layer, as expected. The inner layer reaches the temperature we desired 

in an appropriate amount of time. The results from the simulations are shown in Figure 6. From 

the results, we can see that the strips of foil heat up the fastest. This is seen from the bumps in 

temperature along the flat line.  These bumps are much more pronounced in the outer layer than 

the inner layer. This fits with our expectations since the temperature should be much more 

dispersed on the inner layer. Only the four inches covered by the heater are heated from the 

quench heater, but this will be enough to protect the magnet. From the results shown below we 

see that the inner layer of the cable is heated to ~10 K in 50 ms. This meets requirements we 

placed on the quench heater. 

When compared with the simulations for the earlier quench heater, very similar results 

are found. This gives us confidence in our results. In the results, the x-axis is shown as an arc 

length, so it has no comparable units. 100 represents the center of the quench heater and 0 

represents the start of the lead. There for 100 is approximately 4.5 inches. The end of the heater 

will be around 55. This is reflected by the drop off seen in the results.  
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Figure 6: The figures above show the results from the simulation. The figure above shows the results for the outer layer 

and the figure below shows the results for the inner layer. Each line indicates a time step of 0.01 seconds with the final 

time step being 0.05 seconds. 
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CHAPTER IV 

CONCLUSION 

 

 

From what we have seen from the simulated results, we can construct a heater to protect 

the 16 T magnet. We were able to see that the test heater could quench the cable used in the test. 

The test has more steep requirements to quench the cable since resistance of the heater must be 

smaller than that for the entire magnet.  

The physical test of this experiment will be carried out and hopefully confirm the results 

found in the simulations. This confirmation will increase confidence in our quench protection. 

Once the physical test is complete, we will be able to finalize the design of the heater to be used 

in the magnet. 

The creation of the quench protection is an important step in the development of the 16 T 

dipole magnet. The development of this magnet will allow for the creation of stronger and more 

cost-effective particle accelerators. It is estimated that a 16 T dipole magnet would allow the 

creation of a particle accelerator that can produce higher energy particle of an order of magnitude 

higher than the LHC can currently produce. 
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