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ABSTRACT 

 
 

Dimpler Detection Using Facial Landmarks in Videos 
 
 

Shuaifang Wang 
Department of Computer Science and Engineering 

Texas A&M University 
 
 

Research Advisor: Dr. Anxiao Jiang 
Department of Computer Science and Engineering 

Texas A&M University 
 
 
 

Dimpler is one of the body languages that contributes to the emotion contempt when the 

action appears unilaterally, and to boredom. It is one of the subtle expressions that people did in 

everyday life. Although the universal seven microexpressions are clear signs of concealed 

emotions, subtle expressions such as dimple probably occur much more frequently than universal 

expressions. The dimpler muscle pulls the lip corners to the side and creates a dimple in the 

cheek. This study developed a dimpler detection model using 2D facial landmarks. 3 videos of 

totally 6 minutes were recorded while each video involved dimple and non-dimple expressions. 

Cheek and lip landmark were detected from each frame of the video using the Face-Alignment 

facial landmark detector. Features such as horizontal lip distance, vertical lip distance and lip 

ratio served as inputs to a linear Support Vector Machine (SVM) model. The SVM approach 

achieved a performance of accuracy 82.37%, sensitivity 86.58% and specificity of 84.29%.The 

results suggest that horizontal lip distance, vertical lip distance and lip ratio are useful features 

for the detection of dimpler in videos.  
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CHAPTER I 

INTRODUCTION 

 
 

Dimpler refers to lip corners tightened and pulled inwards as shown from figure 1. It is 

action 14 in the Facial Action Coding System (FACS).[1] In this paper, we detect dimpler in the 

following way. For each image frame in the video, we first obtain the facial landmarks for the 

face in the frame. (There are totally 68 facial landmarks as shown in Figure 1. The method to 

extract facial landmarks from a video is shown in the Appendix.) We then define three features 

based on the facial landmarks: horizontal lip distance, vertical lip distance as well as lip ratio.    

 

Figure 1: An illustration of dimple. 
 

Horizontal Lip Distance  

Consider the 68 facial landmarks as illustrated in Figure 1. For i = 1,2…68, let(xi, yi) 

denote the coordinates of the ith facial landmark in the image. For facial landmarks 

corresponding to lips, we define the horizontal lip distance as the below formula (xl for the left 

most point and xr for the right most point). 

          Dh = ||l1l – l1r|| = �(𝑥𝑥64 − 𝑥𝑥48)2 + (𝑦𝑦64 − 𝑦𝑦48)2  

 (point 64 is the right most point on the lip and point 48 is the left most point on the lip).  
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Vertical Lip Distance  

        We define the vertical lip distance Dv as  

       Dv = ||p1l – p1r|| = �(𝑥𝑥57 − 𝑥𝑥50)2 + (𝑦𝑦57 − 𝑦𝑦50)2  

 

Lip Ratio 

   We define the lip ratio as the ratio of horizontal lip distance and vertical lip distance.  

        R = ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 

 

 

 
 

                       Figure 2: An illustration of the 68 facial landmarks for a human face. 
 

We then train the model that detect dimple for a frame in the video. For the SVM model, we 

let Mi be their input, and let li be their target output. To simplify the training process for the 

model, we impose the constraint that the labels l1, l2, … have the same value. A classification 

accuracy of 82.37%, sensitivity of 86.58% and specificity of 84.29% were achieved.  

    There has been a number of related works on detecting facial actions in the Facial Action 

Coding System. The action units and related references are given in Table 1.  
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 The lip landmarks are detected for every frame in a video. The degree of dimpling differs 

every time, and the time of dimpling lasted also varies every time a subject dimples. Dimpler 

involves lip corners tighten and pull inwards. During pulling of lip corners, the upper and lower 

lips come close to each other, while the distance between the left most and right most corner of 

the lips get larger. It was observed that other portion of the lips do not move much so the position 

of those points don’t change significantly during dimpling. Therefore, it was decided to use Dh 

and Dv as features along with ratio R to detect dimpler.  

 

                                        Table 1: Facial Action Units 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Action unit (AU)  AU name  

AU1 Inner Brow Raiser 

AU2 Outer Brow Raiser 

AU4 Brow Lowerer 

AU5 Upper lid Raiser 

AU6 Cheek Raiser 

AU10 Upper Lid Raiser 

AU13 Cheek Puffer 

AU14 Dimpler 

AU15 Lip Corner Depressor 

AU16 Lower Lip Depressor 

AU17 Chin Raiser 

AU18 Lip Puckerer 

AU20 Lip Stretcher 
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CHAPTER II 

METHODS 

 

Classification 

During the data collection, it was noted that whenever the subject dimples, its presence is 

seen in at least three frames of the video. Also, dimpler occurs while the subject had been 

dimpling for a certain amount of time. [3] had experimentally found that for each frame, using a 

13-dimensional feature obtained by concatenating Os of its ±6 neighboring frames have notable 

impact in dimpler detection. This concept has been adopted in this study. Here for each frame, a 

feature was computed, considering ±6 neighboring frames for each of the three features. In this 

study, support vector machines(SVM) algorithm were used to implement the dimple detection 

and their performance were evaluated. Similarly, ground-truth dimples with “1” labels were 

considered as positive samples and frames with “no dimple” label whose ±6 neighboring frames 

also had no dimple “0” labels were considered as negative samples during training. [4]&[5] It 

was experimentally observed that the selection of negative samples per the above method helps 

the classifier perform better while testing.  

 

Classification Metrics 

In this study, we have used metrics such as accuracy, specificity and sensitivity to 

evaluate the classification models. We define the terms used in estimating the metrics below: 

• True Positives(TP) : The total number of accurate predictions that were “positive” 

or “1”. In our study, this is the total number of samples correctly predicted as 

dimples. 
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• False Positives(FP): The total number of inaccurate predictions that were 

“positive” or “1”. In our study, this is the total number of samples incorrectly 

predicted as dimples. 

• True Negatives (TN): The total number of accurate predictions that were 

“negative” or “0”. In our study, this is the total number of samples correctly 

predicted as “not dimple”. 

• False Positives(FN): The total number of inaccurate predictions that were 

“negative” or “0”. In our study, this is the total number of samples incorrectly 

predicted as “not dimple”. 

Now we are able to define the classification metrics such as accuracy, sensitivity and specificity 

and present their mathematical expressions.  

• Accuracy: It is a measure of all the instances that are correctly classified. It is the ratio of 

the number of correct classifications over the total number of predictions.  

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 

• Sensitivity: It is the proportion of instances that were predicted as positive with respect to 

all the instances that are actually positive.  

Sensitivity = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 

 

• Specificity: It is a measure of the fraction of all instances that are correctly classified. It is 

the ratio of the number of correct negative classifications to the total number of negative 

instances.  

Specificity = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
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Figure 3: Calculated three features for every frame in the training set. (xdis stands for horizontal 
lip distance and y stands for vertical lip distance).  
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CHAPTER III 

RESULTS 

 

The training dataset contains 3367 frames taken from two videos. The testing data-set 

contains 2256 frames taken from one video. Facial landmarks for the lip were estimated using 

face-alignment model.[2] A threshold of 0.80 gave the best classification metrics for the SVM 

model. The classification metrics is shown in Table 2. The output video was successfully 

generated as expected, where each frame contains text overlapped on the video to indicate the 

predicted results.(“1” stands for dimple and “0” stands for non-dimple) 

Table 2: Classification Metrics 

Accuracy  82.37% 

Sensitivity 86.58% 

Specificity  84.29% 

                                                             

 
 

Figure 4: frame where the model predict dimpler accurately. 
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Figure 5: Frame where the model predict non-dimpler accurately. 

 
 

  
 

Figure 6: Frame where the model failed to predict dimple accurately. 
 

The model failed to predict dimple when there is subtle widening of horizontal lip 

distance and no significant narrowing of vertical lip distance. There were also fluctuations in 

predicting several dimples which may be due to the poor resolution of the images. The example 

of the situation where the model did not perform well is shown in figure 7.  
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CHAPTER IV 

CONCLUSION 

 
 

A synchronous dimpler detection algorithm has been developed in this study. The 

dimpler detection model using 2D facial landmark detectors have proven to be competent in 

terms of performance on unseen data. This algorithm runs in real-time and the model proposed in 

this study can be improved by using 3D landmarks and replace shallow network (SVM) with 

Deep Neural Network (DNN).[8] The biggest limitation in this study is data collection involves a 

single subject only. A future progress will be collecting data from multiple subjects and using 

deep neural network for detection.  Another future work may include further analysis of features 

of the expression. Additionally, the study could be improved by detecting multiple expressions at 

the same time, with a likelihood of the percentage of each expression overlapped on top of the 

video.[11] These findings will be able to help people read the emotions of the subject while 

watching videos. Therefore, if users are curious about the emotion of those people giving TED 

talks, they could apply this algorithm on those videos and read out their minds.  
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Detect_dimpler.py Part 2 
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Detect_dimpler.py Part 3 
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Detect_dimpler.py Part 4 
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Detect_dimpler.py Part 5 

 

 

 


