
Abstract— The vehicle instrument cluster is one of the most 

advanced and complicated electronic embedded control systems 

used in modern vehicles providing a driver with an interface to 

control and determine the status of the vehicle.  In this paper, we 

develop a novel hybrid approach called Hierarchical Spatial-

Temporal State Machine (HSTSM). The approach addresses a 

problem of spatial-temporal inference in complex dynamic 

systems. It is based on a memory-prediction framework and Deep 

Neural Networks (DNN) which is used for fault detection and 

isolation in automatic inspection and manufacturing of vehicle 

instrument cluster. The technique has been compared with 

existing methods namely rule-based, template-based, Bayesian, 

restricted Boltzmann machine and hierarchical temporal 

memory methods. Results show that the proposed approach can 

successfully diagnose and locate multiple classes of faults under 

real-time working conditions.  

 
Index Terms—Spatial-temporal inference, fault detection,  

fault isolation, neural networks, Restricted Boltzmann Machine, 

hierarchical spatial-temporal state machine, deep belief network, 

data analysis.  

I. INTRODUCTION 

Instrument Clusters (ICs) serves as the main interface to 

display a multitude of driver information and provide 

assistance systems within a vehicle. ICs like many other 

vehicle components are manufactured with the use of 

computer-based manufacturing systems. Such systems are 

equipped with a variety of different devices and control 

systems necessary to manufacture products capable of 

satisfying customer requirements. A modern computer based 

manufacturing system consists of a number of manufacturing 

cells performing a range of assembly operations and 

functional tests. The cells are controlled by custom built 

software for supervising a given production process. 

One of the most important tasks assigned to computers 

supervising manufacturing plants is to detect and diagnose 

product faults. The most common forms of fault detection 

used in many manufacturing plants include limit checking 

which is done using Statistical Process Control (SPC) [1]. SPC 

is simple, robust and reliable but slow to react to changes in a 

process characteristic. SPC fails to identify complex faults 

only found by observing patterns in data and how these 

patterns change over time. This approach disregards complex 

data patterns resulting from the spatial-temporal nature of 

manufacturing data limiting their usefulness and fault 

detection capabilities.   

Artificial Neural Networks (ANNs) have proven to be 

successful in achieving good performance on tasks such as 

image and speech recognition [2], [3]. ANN is a network of 

neurons, which learns very complex functions through a series 

of nonlinear transformation. Recent discoveries of deep 

learning techniques [4] can more efficiently learn and 

generalize to new data points. ANNs have been adopted to 

address fault diagnosis problem [5]. However, most previous 

work utilizes shallow neural networks concentrating mainly on 

supervised learning to achieve the Fault Detection and 

Isolation (FDI) functionality. Thus, existing methods cannot 

detect novel-unseen fault types.  

Hierarchical Temporal Memory (HTM) is a successful 

algorithm based on recent discoveries in neuroscience. HTM 

is a machine learning model inspired by the mammalian neo-

cortex consisting of hierarchically connected nodes where 

each node represents a simplified model of a single group of 

cortical columns [6]. It contrasts with more simplistic and 

mathematically understood implementations widely used in 

most ANN models. HTM has been successfully applied to 

several complex problems such as license plate recognition 

[7]. 

 This paper presents a novel approach to the problem of FDI 

in automatic computer-based inspection systems. The 

approach can identify correlations between spatial-temporal 

sequences of input patterns based on prediction based learning 

and optimisation aimed to minimise the distance between 

predicted and actual values of an input vector. The proposed 

approach improves the detection, isolation and prediction 

capabilities of existing FDI systems, reducing costs related to 

performance degradation and machine downtime, improving 

First Time Yield (FTY), reliability and quality. The 

conclusions are supported by experiments performed on a real 

production line in order to measure the system’s performance 

under different fault conditions including novel faults 

introduced to the system for the first time. The performance of 

the system is also compared with other widely used FDI 

techniques.  

The proposed approach is presented in the context of 

manufacturing systems; however, can be potentially applied in 

sensor fusion [8], intelligent vehicular communications [9], 

[10] localization [11], mobile data communication [12], driver 

support systems [13], data retrieval [14] among others. 

The rest of this paper is organised as follows. The literature 

review in Section II presents an overview of FDI methods 

currently used within automotive manufacturing systems. 

Section III describes the proposed automated inspection FDI 

systems and outlines the methods, system architecture and 

stages included in the process. Section IV presents the 

experiments and the results of the performance of the 

proposed system observed on a real production line. 
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Concluding remarks and future work considerations can be 

found in section V. 

II. LITERATURE REVIEW 

 

A conventional method for ensuring the fault free operation 

of manufacturing production lines is to periodically check the 

process variables. They include software configuration 

validation, sensor validation, measurement device calibration 

and preventive maintenance. This is performed in accordance 

with a periodic schedule and well-defined predetermined 

procedures. This method is not able to detect other type of 

faults which can only be detected by continuous assessment of 

variables such as incipient process faults. Owing to an 

increase in process complexity and sophistication of 

production equipment this method is no longer cost effective 

and in many cases impractical or impossible to implement on 

large scale computer based production lines [15]. That is why 

a significant investment has been made to develop new 

methods for a more systematic approach to this problem.  

FDI methods can be mostly categorised into two main 

groups: hardware redundancy and analytical redundancy [16]. 

The main idea behind redundancy based methods is to 

generate a signal which represents a difference between the 

normal and actual measured behaviour of a system under 

inspection. By considering this signal and how it changes 

during the normal operation of a machine, a fault occurrence 

can be detected. Based on this description it can be easily 

inferred that hardware or parallel redundancy is based on 

creating a residual signal through the use of hardware 

implementations [17].  

The general idea behind hardware redundancy method is to 

measure a given process variable with more than one sensor 

and detect a fault by performing consistency checks. This FDI 

technique relies on a voting scheme performing consistency 

checks of the redundant component in order to determine a 

fault occurrence and location [18].  

An alternative approach to hardware redundancy is 

analytical redundancy. Instead of using an additional hardware 

a mathematical model of the monitored process is created and 

compared with mathematically derived relationships between 

the different variables of the model which are used as a 

reference with actual system outputs [19], [20]. Any variation 

between measurements of these relationships and the outputs 

of the system is called a residual and can constitute a failure in 

a system. In a fault free system, the residual signal should 

ideally be equal to zero. This is however seldom the case, and 

often even when there is no observed fault, residuals are 

different to zero. That situation is caused by measurement 

uncertainties and noise [21]. To deal with this issue a 

threshold on the residual signal is often set to avoid false 

alarms. The analytical redundancy based FDI systems consists 

of residual generation (necessary to create the residual signal) 

and residual evaluation (performed to infer the fault status of 

the system). Fault detection systems based on analytical 

redundancy are often called model based systems and do not 

require costly installation and maintenance of additional 

hardware, a clear advantage over hardware redundancy based 

FDI [22].  

 The three most common frameworks to realise these models 

are mathematically-based, expert-system based, and 

Computational Intelligence (CI) based frameworks as shown 

in Figure 1. In mathematically-based frameworks, residual 

generation is achieved by a physics-based mathematical model 

of the process. The framework aims to find the discrepancies 

between the expected behaviour of the system produced by the 

model and the actual system output [23].  

Expert-based frameworks on the other hand use an expert 

knowledge of the system to recognise the symptoms and infer 

the state of the system [24]. Finally CI-based frameworks use 

historical data about the process measured by the sensors to 

generate the residual signal and check for process faults [25], 

[26].  

 

 
Fig. 1. Categorization of fault detection and isolation methods based on a 

priori knowledge. 

 

III. HIERARCHICAL SPATIAL-TEMPORAL STATE MACHINE 

(HSTSM) MODEL FOR FAULT DETECTION AND ISOLATION 

Here we describe the novel spatial-temporal generative 

model for FDI called the hierarchical spatial-temporal state 

machine. The proposed approach integrates four soft 

computing techniques: Deep Belief Networks (DBN), auto-

encoders, agglomerative hierarchical clustering and the n-

order Markov chain. The functional steps of the HSTSM can 

be viewed using an information hierarchy model (see Table 1) 

such as DIKW (Data, Information, Knowledge, Wisdom) 

pyramid [27] representing the structural and functional 

relationship between data, information, knowledge and 

understanding. 

 



 
 

 
Fig. 2. Overview of proposed method. 

 

A graphical illustration of HSTSM’s steps is presented in 

Figure. 2, where each step is described below.9 

A. Data acquisition 

 With respect to the real world system presented in this 

article the following data has been identified as the source of 

information about the process:  

 

• Statistical process data generated by individual parts of 

the IC production process. 

• Raw input data generated by various sensors monitoring 

the different characteristics of the IC process. 

• Discrete I/O signals from digital sensors monitoring the 

process. 

• Sequential and timing behaviour of a device (individual 

task time, relative performance time, test execution time, 

etc.) 

 

The combination of data can be considered to represent a 

unique point in a multidimensional input space. The raw data 

is transformed into a binary vector using the SPC data encoder 

to build an understanding of complex relations between the 

inputs and outputs of the underlying process. 

B. SPC Data encoder  

To make meaningful use of the data acquisition process 

described previously, the data output needs to be specifically 

encoded. This encoding is used to uniquely represent symbols 

from one or a more source alphabets to a target alphabet. In 

this case the target alphabet has the following imposed 

constraints: the encoded strings have to be binary, sparsely 

distributed and have to represent different physical 

characteristics in a meaningful and easily interpretable way. 

During manufacturing the product undergoes a number of 

assembly and test operations executed by a combination of 

manual labour and automated processes. The operations can 

be thought of as a set of discrete events occurring over time. 

Each of the events generates some associated process data. 

This data can be measured, monitored and logged by a number 

of dedicated sensors. Although this sequence of events is 

continuous and infinite, a unit of time ti can be identified in 

which the set of events β is finite and can be discretised. By 

unit of time in this context we mean a measurable value which 

is a function of time f(t). For most manufacturing processes 

one noticeable unit of time can be a sequence of test and 

assembly events which can be further divided into individual 

tests. The most natural way of discretising a manufacturing 

process would therefore be to divide it into a repeatable 

sequence of individual tests or operations. The great advantage 

of defining a unit of time in this way is that the set of tests for 

a particular process E is finite, and easily definable. At each ti 

step a fixed number of parameters (signals) can be identified 

for this model. Let ∑   N be a set of all possible tests, φ   R 

be a set of all possible values for a corresponding test at time ti 

, T    R a test time expressed in seconds as a difference 

between ti+1- ti and Z   {0,1}
n 

be a set of all possible discrete 

I/O signals for a particular device before and after the test 

execution. An input to the encoder at time ti is of the form 

(s,v,c,z) where s  ϵ ∑ is a test , v ϵ  φ is a value for a particular 

test at time ti, c  ϵ T is a cycle time for a test, and zi ϵ[z1,z2 ,… 

,zn]
T
 a vector of all discrete I/O signals generated by a device 

before and after the test execution. The main function of the 

TABLE I 

HIERARCHICAL SPATIAL-TEMPORAL STATE MACHINE  - STEPS INVOLVED  

N

o 
Method Purpose  

DIKW hierarchy 

component 

1 Data Acquisition Acquiring raw data from 
manufacturing machines. 

Data 

2 SPC Data Encoder Encoding the raw data 
into  a vector of sparsely 

distributed representations 

Information 

3 Deep belief network 
with Auto-encoder 

Feature extraction and 
data compression , 

dimensionality reduction 

Knowledge 

4 Hierarchical 

clustering into n-

classes 

Spatial pooling of data Knowledge 

5 State encoding with 

the use of n-order 

Markov model 

Temporal inference Knowledge 

6 Residual vector 

acquisition 

Fault detection with the 

use of distance function 
applied to input vector 

and predicted vector 

Understanding 

7 Fault inference and 
isolation 

Fault isolation with the 
use of MLP 

Understanding 

 



encoder is to map the inputs defined above to discrete signals 

which can be understood by the HSTSM. Some of the 

parameters of the input are discrete by their nature, the 

remaining parameters (s,v,c) must be mapped to a space of 

discrete translations. First to be considered is test s ϵ ∑.  

In order to discretise value t into a binary vector containing 

n ϵ N elements where n is equal to |∑|, the value of i-th 

element representing the corresponding test is set to 1 and all 

other elements of that vector to 0. For v ϵ φ representing an 

output value for a corresponding test this operation is more 

complicated. It must be remembered that the process of 

discretisation always introduces an error to the data. In this 

method of discretisation for real valued numbers the scale of 

the error is a function of the resolution used. The bigger 

resolution used the less the error in the data and vice versa. By 

resolution we mean the number of intervals into which the 

range of a given attribute is divided. In this research 40 

intervals for each value of a test were used. Each interval 

represents an element in a binary vector X = ( x1 , x2 , , … , x40 

)ϵ {0,1}
40

 .  

The intervals for each test are calculated in the following 

way. A random number of samples proportional to n number 

of measurements are taken and both mean value µ and 

standard deviation σ are calculated. The width of the interval 

W is calculated as follows: W = 1/4 σ. For each element xi in 

vector X the binary value is set to 1 if input value v ϵ [ µ-(20-

i)W, µ-(21-i)W ]. For all other elements the value is set to 0. If 

the value v < µ-20W then x1  = 1 and x2  = 0,  x3  = 0 , … , x40  

= 0 , if v > µ-40W then x40  = 1 and x1  = 0,  x2  = 0 , … , x39  = 

0. For all values of c- cycle time an encoder defined above is 

used to encode c into C = ( c1, c2 , … , c40) ϵ {0,1}
40

. An 

example of an input encoded in this way can be found in 

Figure. 3. 

 

 
Fig.3. Data encoder. 

 

The example shows a decomposition of a manufacturing test 

into individual components and their corresponding output 

values after encoding. The output values are concatenated to 

create an input vector. The example presented is simplified for 

easier visualization. A typical test contains greater number of 

digital and analogue signals.   

    All the individual vectors generated by the encoder are 

concatenated to create a binary input vector v = ( s1, s2 , … , sk 

,  v1 , v2 , … , vn , c1, c2 , … , cm , z1 , z2 , … , zl )   which is used 

as an input to the HSTSM. To handle any missing information 

in the dataset the encoded mean values of a given property 

were used, which ensures a minimal bias for the system. 

C. Deep belief network with auto encoder for spatial 

dimensionality reduction 

Consider a set of tests each of them potentially correlated 

with each other in a specific way. One solution to the problem 

of incorporating this knowledge and embedding it into the 

model might be to devise a number of basic rules describing 

those correlations. This approach of using expert knowledge to 

model complex technical processes observed in most 

manufacturing plants is often inefficient and impractical. 

Rules have to be manually discovered through the process of 

data analysis which for most complex manufacturing 

processes requires extensive human effort. This effort has to 

be repeated every time a new process is introduced, while for 

existing processes, every time a change is introduced it is 

necessary to add or amend some of the rules resulting in a 

constant process of supervision. In this sense it might be 

necessary to consider a more automated approach. Over the 

last decade, a number of unsupervised machine learning 

techniques have been discovered which successfully 

contributed to achieving this goal in a number of applications. 

If the hidden causes of correlations between different tests are 

considered to be represented by latent features which need to 

be discovered, the task can be stated in terms of a feature 

extraction problem. A very efficient feature extraction method 

for multiple levels of representation is called a DBN which is 

a type of a generative graphical model composed of multiple 

levels of hidden units. This architecture of connected 

hierarchical layers creates a DBN. A DBN is a composition of 

simpler unsupervised models where each consecutive hidden 

layer serves as a visible layer for the next level. For the 

purpose of this research an Restricted Boltzmann Machine 

(RBM) model is used to form the DBN. The RBM enables a 

binary version of factor analysis to be performed to discover 

latent features that explain the underlying data and find 

complex regularities in the training data. The use of these 

latent features can help to find specific faults in the system. 

The RBM is a stochastic neural network consisting of one 

layer of hidden and one layer of visible units. It is an 

undirected graphical generative model where each visible unit 

is connected to all hidden units. It models the distribution of 

visible variables with the use of hidden variables. RBM is 

based on the energy term as described in [28]. Geoffrey 

Hinton proposed a training algorithms called constructive 

divergence (CD), which is an approximation to the gradient of 

the log-likelihood that uses Gibbs sampler initialised at the 

inputs. More infromation about RBM and its training methods 

can be found in [29]. Although an RBM is a powerful tool, a 

single layer of binary features is not capable of representing 

the regularities in data in the most optimal way. By stacking 



more than one RBM in a layer wise fashion a better model can 

be created capable of representing features in a hierarchical 

manner. It was proven that by adding additional layers of 

RBM a lower bound can be achieved on the log probabilities 

that is assigned by the model to the training data, provided that 

all the requirements stated in [28] are fulfilled. A structure 

created in this way is called a DBN and its graphical 

representation can be found depicted in Figure 4. The structure 

created by stacking multiple layers of RBM is trained in the 

following way. First the RBM is trained on the data as an 

input with one hidden layer. Then the signal is processed to 

another layer using the hidden activations of the first RBM as 

the input to the second RBM, the process is repeated until the 

final layer is reached. In this way multiple layers of feature 

representations are created where each consecutive layer is a 

higher-level representation of the input. 

 

 
Fig. 4. Bipartite graph of RBM. 

 

The DBN formed by the stack of RBMs creating a hybrid 

generative model can be used in conjunction with deep auto 

encoders for dimensionality reduction, to represent the data in 

a more compact way [30].  In this case a bottleneck has to be 

introduced in one of the layers. RBMs are used to pre-train the 

individual layers of deep auto-encoder (DAE). This approach 

ensures good approximations of the solution. The generated 

weight matrix is then used to initialize the DAE [31]. Pre-

training is followed by one of the many back-propagation 

techniques to fine-tune the auto-encoder. This procedure 

allows better, more compact representation of the data to be 

found. This step reduces the data dimensionality and ensures 

that the rest of the model works with better and more compact 

representations of the input data. 

D. Hierarchical clustering into n-classes 

The understanding of how the different input vectors 

correlate to each other is critical to the problem of novelty 

detection and more generally unsupervised fault detection. 

Cluster Analysis, also called data segmentation can help to 

build hierarchical representations of the underlying data. This 

is necessary to learn how the position of the individual data 

points varies and using a distance function some form of 

correlation can be assumed between them. By gaining this 

understanding the difference between a new input data point 

and ones used during training can be assessed.  

One of the main tasks in fault detection is to classify novel 

input data points seen for the first time by a model, 

considering at the same time the extent to which they differ in 

some respect from the points that were available during 

training. This task can only be successfully achieved when a 

good model of “normal” data can be constructed. Cluster 

analysis techniques can be used for constructing this kind of 

model and can also compensate for the insufficient amount of 

“abnormal” data necessary to construct explicit models for 

non-normal classes. In the proposed approach agglomerative 

hierarchical clustering [32] is used where the algorithm 

generates a dendrogram representing the hierarchical structure 

of the underlying data illustrating graphically how data points 

are organised in the high dimensional latent features space, 

generated by the DBN.  

In order to reduce the flat clustering of the dendrogram (i.e. 

the set of clusters that without any explicit structure would 

relate the clusters to each other), very often a threshold is 

selected on the distance which “cuts” the tree on that distance. 

This is necessary to reduce the number of clusters and at the 

same time add the structure to the set of clusters. Hierarchical 

clustering in the context of HSTSM is performed to encode 

the compressed representations (expressed as hidden features 

of the bottleneck layer of an auto-encoder) into one unique 

state (which is an element of a set of all the available states 

representing the underlying process). The number of elements 

in this set is equal to the number of discovered clusters and 

depends on the threshold of the distance used with the 

acquired dendrogram. Hierarchical clustering used with 

HSTSM is an element that pools the spatial correlations in the 

input vector, representing them in one unique state from the 

set of possible states that the underlying process can generate. 

E. State encoding with the use of n-order Markov model 

So far, the spatial aspects of the input data (which can also 

be referred to using HTM terminology as spatial pooling) have 

been described. The use of the N-order Markov model is 

proposed to tackle the problem of incorporating temporal 

knowledge of the causal relations of manufacturing data into 

the proposed model. By extending the method to incorporate 

the N-order Markov model both spatial and temporal 

regularities in the underlying data can be inferred. Patterns of 

activities occurring both in time and space can thus be 

learned.  In this way regularities in the sequence of events 

recorded from the data can be detected leading to an 

understanding of how the potential faults occur and help learn 

the temporal patterns which are generated by the underlying 

process. To achieve this, the multidimensional data needs to 

be encoded into a sequence of individual states. The clusters 

generated in the previous step are used explicitly for this task 

allowing individual data points to be encoded into one unique 

system state. These individual states follow one another in a 

sequential manner forming a Markov process. It is assumed 

that the underlying manufacturing process changes states 

according to some transition rules. The purpose of this step of 

HSTSM is to discover those transition rules with their 

probabilities and store those temporal patterns for a future 

inference and prediction process. The canonical probabilistic 

model for temporal data used within this work is called the N-

order discrete Markov chain. It assumes that the future state is 

independent of the past state when the present state is given. 

The N-order Markov model is very often used when the first 



order Markov chain is not sufficient to comprehensively 

describe the transitions between states. 

F. Residual vector acquisition 

Let Sin(t-1) be a previous state of the monitored process 

acquired by encoding an input vector Vin(t-1) at time t - 1. The 

encoding is performed in two stages. First a vector Vin(t-1) is 

processed through the trained DBN model to produce a vector 

of features Vdbn(t-1). Next a cluster which is closest in distance 

to the vector Vdbn(t-1) is selected as a previous state Sin(t-1). By 

using the transition matrix of the N-order Markov model the 

current most likely state of the monitored process Sin(t) can be 

predicted. The state Sin(t) can be decoded in the form of a 

prediction vector Vpred(t) representing a point in 

multidimensional feature space learned by the DBN. 

Consequently, if Vin(t) is a current input vector of the 

monitored process, Vin(t) can be mapped into the feature space 

using the DBN generating Vdbn(t). A new vector Vresidual can be 

created such that Vresidual = Vdbn(t) - Vpred(t). A sum of all 

elements in Vresidual would be a measure of the level of 

discrepancy between what the model believes the status of the 

input to be and the actual input. This vector can be used to do 

a basic inference of the fault occurrence. The results presented 

later show that by introducing a threshold on this measure a 

basic classifier can be created to successfully detect faults in 

the system. Better results however are achieved by using the 

whole Vresidual where all the individual elements of the vector 

are used as an input to a classifier. The use of Vresidual is also 

necessary for isolating a failure in the system. The approach of 

subtracting Vdbn(t) from Vpred(t) helps the regularities in the data 

to be disregarded, in other words, ignore what the model 

predicted correctly and concentrate only on the discrepancies 

thus making the classification of a fault easier. The difference 

between the two vectors expresses the irregularities between 

the normal behaviour of the system and the actual behaviour 

of the system. Vresidual can be used with any supervised 

machine learning classification algorithms to identify the type 

and occurrence of a fault. In this work an ANN algorithm 

called multi-layer perceptron (MLP) has been used for this 

purpose. The MLP consists of a single hidden layer and takes 

as an input Vresidual. For the activation function tanh has been 

used, and the network is trained with stochastic gradient 

descent. The objective function used isis negative log 

likelihood. For the multi-class classification problem, the 

softmax activation function isis used in the output layer of the 

neural network. This inference process is depicted in Figure. 5  

 

  
Fig. 5. Fault detection inference process. 

IV.  EXPERIMENTAL RESULTS 

The proposed approach was tested on real life production 

equipment performing the automated functional inspection of 

ICs over a period of one week. The production system used 

for this study was a BMW MINI F56 IC automated inspection 

system equipped with 57 digital input signals (connected to 

corresponding digital sensors), 34 digital output control 

signals, an automated vision system and a number of 

continuous signals (inspected by designated measurement 

equipment). All the samples had been automatically generated 

by the machine through a process of part inspection, 

calibration and machine operation. The overall process of 

inspection can be summarised as follows: Initially an operator 

loads a part into the automated inspection machine; the device 

recognises that the part is present and executes an appropriate 

test sequence which depends on the variant of the inspected 

part. The machine first connects to the IC using the Car 

Interface Network (CAN) protocol and initialises the 

connection between the IC and the tester. During the 

automated check a tester using the CAN interface sends a 

series of CAN messages to the IC. The messages are 

interpreted by special firmware in the IC’s microcontroller and 

appropriate actions are performed by the Instrument Cluster 

Unit (ICU). The inspection machine using several sensors and 

measurement devices checks the responses to the CAN 

messages and individual digital signals generated by the tester. 

Some of the tests performed by the inspection machine 

include: turning indication lamps on or off, checking their 

correct function with the use of a camera system, checking the 

shape and colour of the indicator lamps, moving the indicator 

gauge to a number of different positions, checking the 

correctness of the gauge position and checking a number of 

different electrical characteristics of the product (e.g. the 

outputs of stepper motor drivers and other audio, visual, 

mechanical and electrical characteristics).  

The data used to train the learning module was composed of 

15,000 samples, divided between train (70%), validation 

(15%) and test (15%) datasets. The training dataset was used 

to determine the weights and biases of the proposed generative 

model. To evaluate the classification and novelty detection 

capability of HSTSM, the generative capabilities of the model 

was evaluated in a static spatial domain to ensure good 

reconstruction of inputs. Hence a study was conducted to 

check the static reconstruction of the signals for each system 

state, as encoded by automatically learned features, derived 

from the deep auto-encoder, pre-trained with RBMs. The 

DNN used for this study was composed of two RBMs with the 

following configurations: RBM 1 – 120 hidden units, learning 

rate 0.004; together with RBM 2 – 80 hidden units, learning 

rate 0.01. The training algorithm used with the RBMs was 

Persistent Contrastive Divergence (PCD). The hyper-

parameters used for the model had been chosen using grid 

search optimization technique. The goal was to adjust the 

hyper-parameters based on a defined subset of the hyper-

parameter space to find the best set of hyper-parameters that 

minimized the test error [33]. The error function used to 

evaluate the fitness of reconstructions was the logarithm of the 

likelihood function for a Bernoulli random distribution. Figure 

6 shows how the error on reconstructions change as a function 

of the number of epochs used to train the deep auto-encoder 

with RBM pre-training. 



 
Fig. 6. Error on input reconstructions in sample vs out of sample as a 

function of epochs trained 
 

This study was performed to investigate both the in-sample 

and out-of-sample error of the trained deep auto-encoder to 

ensure the model could generalise well on unseen data, 

meaning that the model can encode the information for novel 

inputs with similar accuracy. The two errors (in-sample and 

out-of-sample) were represented as a function of the number 

of epochs in a form of a chart as shown in Figure 6. The figure 

clearly shows that there exists a point based on the number of 

epochs for which the model is trained, after which the 

reconstruction error for training samples goes down, but the 

reconstruction error on the validation set increases. This is due 

to the problem of model overfitting [34] where a model fits the 

input data too closely and does not generalise well on the 

unseen sample data.  

There are several solutions to this problem, one of them 

being the use of regularization techniques. Such techniques 

introduce additional information to the model, which prevents 

the selection of unreasonable parameters for the model given 

the context of a problem. A different approach recently 

suggested by [35] was the use of a technique called Dropout 

where the method of setting a random output of a given layer 

to 0, based on a given probability was implemented. Extensive 

experiments prove the usefulness of such a technique [36]. 

This technique is applied in this work and shown to improve 

the input reconstruction results as presented in Table II.   

Consequently, an application of a different technique based on 

learning rate adaptation called momentum was considered. 

The momentum value has been set to 0.9. This hyper-

parameter has been chosen using grid search optimization 

technique [34] with the objective to minimize the test error. 

The influence of momentum on the error of input 

reconstruction is measured and presented in Table II. 

 

 
 

This study shows a positive influence of the momentum 

technique on the reduction of error in input reconstruction. 

The next study was performed to analyse the influence of the 

different optimization methods on the input reconstruction and 

is presented in Table III. 

 

 
 

The model was trained using CUDA and a GeForce GTX 

760 GPU device which was proven to speed up the overall 

computation time by a factor of 3. Training the model with the 

support of GPU for 100 epochs and 10,500 samples took in 

total 1 hour and 26 minutes. The same model configuration 

executed with the use of CPU took 4 hours 14 minutes to 

complete. The maximum execution time of the method with 

the above configuration on a real-time system was equal to 

274 ms. The computational unit used for the study was 

ADLINK PXI-3980 Controller.   

Table IV presents the different error rates for input 

reconstructions for different number of layers used both with 

pre-training and random weight initialised RBMs. This study 

was performed with the use of the validation dataset. 

 

 
 

Considering the above the influence of the number of 

hidden units used when training the two models with three 

hidden layers was evaluated. Here the maximum execution 

time for real-time operation of the methods was measured. 

The results from Table V suggest that networks consisting 

of 350 hidden units (across the two layers of DNN 275-75) 

produced the smallest error on reconstructions. Worth noticing 

is the fact that like the previous study the same number of 

hidden units in the DNN works best for both types of network 

(with pre-training and random weight initialization). In both 

cases the best results are achieved with model pre-training. 

TABLE II 

PARAMETERS OF THE MODEL AND THEIR INFLUENCE ON INPUT 

RECONSTRUCTIONS 

 

Network type 
Error rate on 

input 
reconstructions 

With dropout 
Without momentum 0.0069 

With momentum  0.0047 

Without dropout 
Without momentum 0.0074 

With momentum 0.0071 

 

TABLE III 

SELECTED OPTIMISATION METHODS AND THEIR PERFORMANCE 
 

Optimisation algorithm used 
Error rate on input 

reconstructions 

SGD 0.0047 

Adam  0.0042 

RMSprop 0.0039 

Adadelta 0.0121 

 

TABLE IV 

ERROR RATE ON INPUT RECONSTRUCTION FOR DIFFERENT NUMBER 

OF HIDDEN LAYERS 
 

Network Error rate on 
input 
reconstructions Type 

Depth 
(Architecture) 

Deep Auto encoder + RBM pre-
training 

1 0.1436 

3 0.0081 

5 0.0523 

Deep Auto encoder + random 
weight initialisation 

1 0.2877 

3 0.1157 

5 0.0691 

 



 
 

The best overall results on input reconstructions have been 

achieved with the following network architecture: 664 – 275 – 

75 – 275 – 664. The model was pre-trained in a greedy layer 

wise fashion using RBMs. Dropout had been used as a 

regularisation technique. The learning rates used were 

respectively: RBM 1 = 0.006, RBM 2 = 0.02 and deep auto 

encoder = 0.07. Finally, the RMSProp optimisation algorithm 

was used to adjust network weights. The network was trained 

with the use of GPU for 1000 epochs and achieved the input 

reconstruction error of 0.0039. The reconstruction error of 

0.0039 as shown later in experiments is sufficient to encode 

the input data and represent it as a state for the N-order 

Markov chain to achieve good fault detection results of up to 

84% accuracy for faults in product. 

In the next study an analysis of the measure of the 

discrepancy between Vdbn(t) and Vprediction(t) generated by the 

proposed HSTSM model was performed to assess if simple 

linear classification on the distance measure could be used to 

detect a failure in a system. The following histogram shows 

the sum of all the elements of Vresidual expressed as an absolute 

value of normalised scalar value ¥ ϵ R for selected data 

samples. It can be concluded with high probability from 

Figure 7 that there exists a distinct point around ¥ = 0.3 where 

for all values ¥ are bigger than 0.3 and the existence of a fault 

in the system can be suspected. The diagram also indicates 

that a simple fault detection system can be achieved with the 

use of HSTSM and a linear classifier. This information gives 

some grounds to claim that Vresidual contains useful information 

about a potential failure and can be used, not only to detect an 

occurrence of a fault, but also allows the classification of the 

type of fault. Considering the above an investigation into the 

performance of a fault detection system based on HSTSM and 

MLP classifier was conducted. Firstly an HSTSM with the 

following architecture was trained: RBM(1)  664 – 275 ; 

RBM(2) 275-75; AE 664-275-75-275-664. 

 
Fig. 7. Histogram of normalised scalar value ¥ acquired from vector Vresidual. 

 

The HSTSM algorithm was trained on 15000 unlabeled 

samples. Consequently 1200 manually labelled samples were 

each assigned to one of the following classes: “OK” and 

“NG”, distributed in the ration of 60:40. The data was further 

divided into training data - 800 samples and validation data - 

400 samples equally distributed between the two classes. Next 

an MLP classifier was trained with a one hidden layer 75-120-

1 feed forward architecture using stochastic gradient descent. 

The selected cost function used for the purpose of optimisation 

was negative log likelihood and the transfer function - tanh. 

The inputs to the MLP classifier were all the elements from 

the Vresidual generated by subtracting the vector of HSTSM 

predictions from the actual vector of encoded input 

activations. To assess the performance of the classifier on a 

validation data a system was trained, results logged and 

presented in Figure 8 as a confusion matrix. From this 

performance matrix it can be identified that the overall 

accuracy of the proposed classifier is equal to 98%. 

Considering the calculated accuracy of 98% the 2% 

misclassification rate can be inferred. Other indicators derived 

from the confusion matrix are: the sensitivity of 97.9%, false 

positive rate - 1.8%, precision - 98.7% and Kappa indicator 

0.958. 

 
Fig. 8. Confusion matrix for fault detection and isolation with HSTSM + MPL 

 

In order to perform more sophisticated fault isolation and 

identification the MLP classifier was trained with four unit 

SoftMax output layers each of them corresponding to one of 

the following classes: no fault, faults in a product, faults in 

inspection equipment, configuration faults. 

 

TABLE V 

ERROR RATE ON INPUT RECONSTRUCTION FOR DIFFERENT NUMBER 

OF HIDDEN UNITS 

 

Network  Error rate on 
input 
reconstructions 

Type 

Total 

number of 

hidden units 

in the DNN 

Maximum 

execution 

time (ms) 

Deep Auto encoder + RBM 
pre-training 

250 164 0.0126 

350 271 0.0074 

450 343 0.0089 

550 527 0.0096 

Deep Auto encoder + 
random weight initialisation 

250 164 0.2658 

350 271 0.1043 

450 343 0.3674 

550 527 0.4673 

 



 
 

The product quality defects defined here as faults in a product, 

are all faults that relate to a product and not a result of 

machine / operational malfunction. They are defined as 

products which do not fulfil the needs and expectations of the 

customer. As an example, the maximum current consumption 

of a car IC is measured by a digital multi meter. If the 

maximum current exceeds a level specified by the customer, it 

is defined as a product fault. Other examples are the brightness 

intensity of a pointer, or the force required to place a pointer 

on the motor shaft. Faults in inspection equipment on the other 

hand relate to faults which result in an abnormal behaviour of 

the inspection equipment or its capability to perform a normal 

operation. These occur for example when one of the sensors is 

faulty or when one of the actuators does not work. 

Configuration faults are those which are a result of either 

inadequate limit specification or system misconfiguration 

causing a part to fail despite being manufactured to the 

customer’s requirements. Those failures very often result in 

line downtime, and output loss. The result for those failures is 

an ambiguous variation in the process. Table VI presents the 

percentage of correctly classified faults in each of these three 

categories, where a performance comparison of the proposed 

hybrid model with other commonly used FDI methods has 

been shown to assess its effectiveness. It is however important 

to stress the difficulty of drawing a direct comparison between 

the different fault detection methods. Very often the level of 

work involved in modifying or adding rules to rule based 

methods can improve the classification results. The same is 

true for template based methods where results can vary 

depending on how good the templates are, and how much 

expert knowledge is involved in creating the templates. 

Therefore it is worth looking at these comparisons from the 

perspective of how much human effort-time is needed to 

achieve different levels of recognition rate. Figure 9 shows 

that by using basic fault detection methods, like, for example, 

rule-based, better recognition results can only be achieved in 

the initial phase. With the complexity of the underlying 

process growing, consideration should be given to using 

methods capable of learning, to automatically identify faults 

from examples. 

 

 
Fig. 9. Recognition rate for different fault detection methods. 

 

The proposed approach although initially requiring more 

human effort (for algorithm specification and features 

extraction) yields better classification results later. It can be 

concluded that to maximise the benefits of using a fault 

detection system it is important to assess the complexity of the 

process being modelled, to determine an appropriate method 

that matches the complexity of the chosen problem. 

 To further assess the system, there was a need to measure 

how the fault recognition rate changed as a function of the 

number of training samples. To achieve this, the number of 

training examples presented to the model was varied and the 

performance on the validation set checked, see Figure 10. 

 

 
Fig. 10. Recognition rate change with change in number of training samples. 

 

Figure 10 shows positive correlation between the number of 

samples used to train the model and the recognition rate for 

faults in a product. The recognition rate for faults in a product 

class steadily increases until a certain point, after which the 

increase in number of samples does not improve the 

recognition rate and starts oscillating around 84%. 

 

V. CONCLUSIONS AND FUTURE WORK 

This paper proposed a novel soft computing generative 

model called HSTSM. The model integrates several machine 

learning techniques to address the problem of automatic FDI 

in computer based automated inspection systems applied in 

the production of ICs.  

The overall results show that the proposed approach proves 

to be a valid alternative for other FDI systems where a need 

for systems capable of modeling complex manufacturing and 

control systems arises. A future study will concentrate on 

improving the recognition and input prediction rates of the 

approach. More studies have to be conducted on the stability 

of the model in respect of both missing data and data with 

different levels of noise. Finally further work will be done to 

TABLE VI 

PERCENTAGE OF CORRECTLY CLASSIFIED FAULTS FOR DIFFERENT FAULT 

CLASSES WITH DIFFERENT FAULT DETECTION METHODS 
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product 
84% 81% 61% 48% 48% 72% 

Faults in 

equipment 
72% 68% 59% 51% 51% 57% 

Configurat
ion fault 

59% 46% N/A 36% 36% N/A 

 



apply the HSTSM approach to other application domains such 

as healthcare for the prediction and diagnosis of diseases [37], 

[38], real stock market to analyse trends and potential 

undesired market behaviour as well as a number of different 

physical systems to predict the behaviors of those systems 

[39]. 
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