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Exploiting Delay Budget Flexibility for
Efficient Group Delivery in the Internet of Things

Yuhui Yao, Yan Sun, Chris Phillips, Yue Cao, Member, IEEE and Jichun Li

Abstract—Further accelerated by the Internet of Things (IoT)
concept, various devices are being continuously introduced into
diverse application scenarios. To achieve unattended updates
of IoT smart object(s), there remains a challenging problem
concerning how to efficiently deliver messages to specific groups
of target nodes, especially considering node mobility. In this
paper, the relay selection problem is investigated on the basis of
directional movement with randomness (e.g. typically associated
with the searching or migrating behaviour of animals). Unlike
numerous works tackling one-to-one communication, we focus
on efficient group delivery (one-to-many). A two-level delay
budget model is considered to reflect the flexibility of delay tol-
erance, which brings potential efficiency gains for group delivery
compared with using a single budget boundary. Following the
description of the system model, a combinatorial bi-objective
optimisation problem is formulated and solutions are proposed.
Simulation results show that the greedy algorithm can achieve
comparable performance to an evolutionary algorithm when the
delivery satisfaction outweighs efficiency. Furthermore, we show
that our proposed greedy scheme can outperform the state-of-the-
art when the delivery efficiency becomes increasingly important.

Index Terms—Internet of Things, group delivery, relay selec-
tion, delay budget, directional movement

I. INTRODUCTION

Along with the fast evolution of information technologies,
Internet services have now widely penetrated into our daily
lives. Further accelerated by the Internet of Things (IoT)
concept, various devices are being continuously introduced
into diverse application scenarios that promise a ubiquitous
means to sense and control everything [1]. In contrast with
the conventional Internet, a network node in this IoT context
could be different types of device embedded with network
interface(s), such as intelligent appliances [2], multimedia
sensors [3], and robotic actuators [4]. Within the context of
IoT, the term ‘smart object’ (interchangeably used with the
term ‘node’ in the remainder of this paper) is used to represent
any possible thing that can provide data and/or undertake
actions for IoT applications [5].

For long-term continuous operation of IoT systems, recon-
figurations and upgrades are usually inevitable. As discussed
in [6], it has been realised that the unattended updating of
smart object(s) can be achieved by disseminating a package
of updated instructions (called a code package). Without loss
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of generality, this paper assumes that code packages are sent
from the network gateway that serves as an interface to outside
networks. Because IoT smart objects are typically battery-
powered and rely on wireless multi-hop communications [7],
blind broadcasting/flooding is not a feasible way of package
delivery especially when some packages have a certain toler-
ance of delivery failure1 and are only aimed at a subset of
the nodes. Given specific package targets, how to efficiently
perform group delivery remains a challenging problem (espe-
cially considering mobility), which is the research focus of
this paper.

It is worth noting that delayed delivery of a code package
could be acceptable in many cases. Larger delay budgets can
result from either non-urgent packages or planned updates
(e.g. scheduled minutes or even hours in advance). Based
on research concerning Delay/Disruption Tolerant Networks
(DTNs) [8] and Mobile Opportunistic Networks (MONs) [9],
it is possible to facilitate the dissemination of delay-tolerant
information by making full use of node mobility. However,
as suggested in [8], most of the existing studies are limited
to individual deliveries where data is destined for a single
destination, and thus more studies are needed to address multi-
destination group delivery.

Based on knowledge of vehicular navigation, delay-tolerant
delivery has been utilised to reduce forwarding hops in the
literature such as [10] and [11]. Nevertheless, the exact
movement trajectory of mobile nodes can hardly be known
in advance with regard to some IoT scenarios (e.g. a sensor
deployed upon animals). Although our previous work [12] has
provided an analysis of directional movement (e.g. foraging
or migrating behaviour of animals [13]) for the delivery to
individual destinations, it has hitherto been an open issue
regarding how to take advantage of such random movements
with directional correlation for the group delivery.

In this paper, feasible exploitation of directional movement
is further investigated for efficient group delivery based on the
contact prediction model proposed in [12]. Compared with the
individual delivery, group delivery brings more optimisation
opportunities (relay sharing between targets) but introduces
more complexity (in terms of metrics and algorithms) for
making decisions. Considering delivery efficiency and reliabil-
ity, suitable selection of relay node(s) is a key challenge for
group delivery based on the delay-tolerant routing. With an

1Failure tolerance is related to factors such as package importance and/or
backup schemes. Possible backup schemes for delivery failure are out-of-scope
for this paper but could be researched in the future.
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awareness of directional correlation2, it is possible to leverage
random movement for optimised group relay selection, which
is beneficial for reducing energy consumption and prolonging
system lifetime. The main contributions of this paper are listed
as follows:

• An analytical framework is proposed to formulate the
group relay selection as a combinatorial bi-objective
optimisation problem. Our research considers a two-level
delay budget model to reflect the flexibility of delay
tolerance, which allows more optimisation opportunities
whilst maintaining delivery satisfaction within acceptable
bounds.

• Both an evolutionary approach and a greedy approach are
proposed to solve the formulated problem. Our proposed
evolutionary algorithm reveals a trade-off between deliv-
ery satisfaction and cost reduction, which approximates a
theoretical limit of delivery performance. Our greedy al-
gorithm can make better decisions than the existing state-
of-the-art to improve group delivery efficiency because
the two-level delay budget is considered in group relay
selection.

The rest of this paper is organized as follows. In Section
II, related works are reviewed and the research motivation
is summarised. In Section III, the system model is described
for later problem formulation and evaluation. In Section IV,
the research problem is formulated and the proposed solutions
are demonstrated. In Section V, the performance of proposed
solutions are further analysed and discussed. The paper finally
concludes in Section VI.

II. BACKGROUND AND MOTIVATION

A. Delivery Strategy

As surveyed in [8], the Store-Carry-Forward (SCF) strategy
has been widely researched for routing in DTNs. Two simplest
SCF schemes are: Direct Delivery (DD) [14], which requires
no replication and source node keeps the message until the
destination node is in proximity; and Epidemic [15], which
blindly replicates the message to every encountered node
without relay selection. Despite their simplicity, these two
basic schemes are usually not enough to meet the efficien-
cy/reliability of delivery requirements so many later works
have been proposed for replication control and relay selection,
such as [16], [17], [18].

In literature, a Forward-Wait-Deliver (FWD) strategy has
been proposed for efficient delivery [12]. The FWD strategy
delivers a package in three steps:

• Forward to stationary relay;
• Wait for mobile target;
• Deliver when target contacts the relay.

Similar to SCF routing, the FWD strategy relies on oppor-
tunistic contacts resulting from node mobility. However, the
FWD scheme is also supported by the multi-hop forwarding
over connectible nodes and the research focus is to achieve

2The directional correlation means the temporal dependency of movement
direction for each individual node. The correlation of movement direction
between different nodes is beyond the scope of this paper.

delivery by the shortest-possible forwarding route. To this end,
FWD research is distinct from the traditional DTN works and
is aimed at multi-hop wireless networking scenarios.

Compared with the approach of immediate delivery (via a
multi-hop route) to the package targets, shorter routes (i.e.
fewer hops) are most likely to be employed by the FWD
strategy, as it makes the full use of predictable contacts.
Consequently, the FWD strategy brings a potential efficiency
gain given tolerance of delivery delay. In [10], the FWD
strategy is adopted in a scenario where sensors send data to
a mobile sink moving according to a predefined trajectory.
The feasibility of the FWD strategy is further investigated
in [12] on the basis of directional movement with randomness.
However, it is worth noting that the possibility of relay sharing
is overlooked in the aforementioned works as each individual
delivery is assumed to be independent.

B. Group Delivery

In some recent works such as [19], [20], [11], the adoption
of the FWD strategy has been investigated for group delivery.
With the FWD strategy, it attempts to identify a shareable
relay for a (sub)group of targets, which further reduces trans-
mission times compared with treating each delivery separately.
In [19] and [20], the storage constraint is considered to
maximise the overall rate of successful delivery. In [11], the
maximum acceptable delay is given to minimise the overall
forwarding cost. However, these approaches all rely on exact
knowledge of the vehicular route in advance. Consequently,
they are not directly applicable to the scenarios where mobile
targets do not strictly follow predefined trajectories, such as
animals in the wild.

With regard to partially predictable mobility, further studies
are required to apply the FWD strategy for efficient group
delivery. Specifically, our research focus is on the scenario
where mobile nodes (e.g. deployed on animals) tend to move
with more-or-less directional correlation (e.g. searching or
migrating behaviour) while their movement trajectories cannot
be exactly predicted. In [12], the directional correlation of
random movement has been investigated for efficient delivery.
However, considering optimised group relay selection, the fea-
sible exploitation of directional movement for group delivery
is still an unsolved problem.

To exploit the optimisation opportunities in group de-
livery, algorithms are required to be designed. As proved
in [19] and [11], the group relay selection problem is at least
NP-hard (i.e. non-deterministic polynomial-time hardness) and
it is infeasible to search for an optimal solution [21]. Heuristic
algorithms are therefore proposed to find an approximation
to the optimum in a reasonably short time [22]. As a typ-
ical paradigm of heuristic algorithms, the greedy algorithm
is commonly considered to solve the group relay selection
problem, such as in [19], [20], [11]. However, none of these
existing works have evaluated the performance of their greedy
algorithms in multi-objective optimisation.

To this end, we propose to further investigate the feasibility
of the FWD strategy for efficient group delivery. Based on
directional correlation of random movements, the opportunity
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for relay sharing can be exploited to reduce the overall
forwarding hops. We make the first attempt to provide such
an analytical framework for group relay selection. Over many
literature works on the topological routing, our work also
contributes to the group delivery based on the geographic
routing (as node positions are considered for the contact
prediction), which is an issue overlooked by the existing
research [23]. Following the system model described in the
next section, our proposal will be further explained.

III. SYSTEM MODEL

A. Overview

In this section, the group delivery system model is described
from three aspects. Firstly, the package targets and candidate
relays are specified in Section III-B. Then a two-level delay
budget model is discussed in Section III-C as the delivery
requirement. Finally, the contact prediction model is briefly
introduced from [12] in Section III-D. Although this paper
mainly takes habitat monitoring [24] as an example IoT
system, the application of our research can be generalised to
other similar scenarios that involve directional movement with
randomness.

An illustrative example of the group delivery system is
provided in Figure 1 where three mobile nodes are the delivery
targets and twenty-five stationary nodes are the candidate
relays. With the consideration of acceptable delivery delay,
one or more candidate relays are to be selected as the relay
node, to deliver a package from the sink node to target nodes.
Based on contact prediction, the package is forwarded to the
selected relay for later delivery when the target node is directly
contactable. In this way, fewer overall forwarding hops need
to be employed leading to more efficient group delivery, as
the feasible opportunities of relay sharing can be exploited.

Fig. 1. Example scenario of the group delivery system

B. Node Deployment

Let N denote a finite set of smart objects (i.e. wireless
devices referred as nodes) and let n ∈ N denote a single node.
There is a special node that serves as the gateway (denoted
by ngw) and the remaining nodes are divided into two types
according their mobility:

• 1) stationary nodes (denoted by Nsn) which are motion-
less after deployment (e.g. fixed to environments);

• 2) mobile nodes (denoted byNmn) which can change their
positions over time (e.g. deployed on animals).

A self-organised network can be constructed with these nodes
without relying on additional communication infrastructures.
Given a constant transmission radius (denoted by R) for
each node, network connectivity depends on node positions
as defined by a unit disk model [25].

Consider a package from the gateway ngw to a group of
target nodes (denoted by Ntgt). To make the problem more
tractable, we narrow down our research to the case where only
mobile nodes are the package target, i.e. Ntgt ⊂ Nmn.

Let N c
rly denote a set of candidate relay nodes. To avoid

the costly maintenance of topological dynamics caused by
node mobility, the relay candidates are limited to stationary
nodes, i.e. N c

rly ⊂ Nsn. It is assumed that the delivery can be
accomplished when the target node is directly in contact range
of the selected relay(s).

To reach candidate relay nodes from the gateway, hop-
by-hop forwarding is required. The topology knowledge of
stationary nodes is assumed to be available at the gateway ngw,
as the positions of stationary nodes are certain once deployed.
A hop distance function fhd (ni) denotes the minimum number
of forwarding hops from the gateway to any stationary node
ni ∈ Nsn.

C. Delay Budget

Traditionally, the delivery is simply required to be fin-
ished before a maximum acceptable delay in previous works
such as [11]. However, for many package delivery scenarios,
there exists more-or-less flexibility regarding acceptable delay,
which brings optimisation opportunities that are overlooked by
existing works. To this end, our research describes the delay
sensitivity by a two-level budget model:

• The first-level budget (called the main budget) has a soft
boundary and any earlier delivery is considered to be a
fully satisfied delivery.

• The second-level budget (called the extra budget) has a
firm boundary and any later delivery is considered to be
a fully unsatisfactory delivery.

• For the delivery delay between these two boundaries (i.e.
within the range of the extra budget), it contributes to
decreasing satisfaction of delivery.

This two-level budget model describes the relationship
between delivery satisfaction and delivery delay, called a delay
budget function. Although factors such as buffer limitation can
be considered in the budget modelling (e.g. a stricter budget
results from more limited storage), this paper assumes that the
budget function is only related to the message delay tolerance,
as our research focus is on investigating the utilisation of
directional movement. In other word, all relay candidates are
considered to have sufficient resource to support the delay-
tolerant relaying mechanism.

Theoretically, the delay budget function can be any type of
monotonically decreasing function. In this paper, we focus on
the sigmoid curve (a special case of the logistic function [26])
which allows smooth transition to reflect a realistic tolerance
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of acceptable delay. Thus, the raw delay budget function is
given as

f∗
db (τ) =

1

1 + eµ(τ−
τ1+τ2

2 )
(1)

where τ > 0 denotes the delivery delay3, τ1 > 0 denotes the
first-level budget boundary, τ2 > τ1 denotes the second-level
budget boundary4, and µ denotes a functional factor.

Given τ1 and τ2, the functional factor µ determines the curve
shape. To calculate the value of µ, we consider f∗

db (τ1) =
1 − ϵ, where ϵ ∈ (0, 1). A smaller ϵ brings more accuracy
(because the budget function can have fewer decrements before
τ1) and ϵ is set to be 0.001 which is sufficiently accurate for
our research. Then the functional factor µ can be calculated
as

µ =
2 ln

(
(1− ϵ)

−1 − 1
)

τ1 − τ2
. (2)

Let the delivery satisfaction be a degree value between 0
and 1, so the budget function is further normalised as

fdb (τ) =
1 + e−µ( τ1+τ2

2 )

1 + eµ(τ−
τ1+τ2

2 )
(3)

In Figure 2, the delay budget function is illustrated for
the example where the main budget is 500 seconds. To
keep this figure concise, only one case of extra budget is
indicated (which can be shown similarly for the other two
example cases). This figure shows that the delivery satisfaction
starts to decrease from the first-level budget boundary and
becomes zero at the second-level budget boundary. With such
a transition range, a larger delivery delay is still allowed
(but less encouraged) even if the main budget is exceeded,
which provides more flexibility in relay selection. For instance,
the possibility of 510 seconds delay can be considered for
making a possible better offer in other respects (e.g. much
fewer forwarding hops). The optimisation opportunity brought
by this flexible delivery delay requirement will be further
investigated in the remainder of this paper.

D. Contact Opportunity

An analytical model referred from [12] is used to describe
the contact opportunity between mobile target and stationary
relay. This contact model is derived from an analysis of cor-
related random walks, which reflects the opportunistic contact
caused by random movements with directional correlation.

Based on the random walk mobility model [27], the mobile
target is assumed to take successive steps (each step has a
constant length denoted by L = V · T , where V denotes an
average movement speed and T denotes a constant step period)
and takes a random turn after each step. The random turning
angle between two successive steps is assumed to follow the
zero-centred Normal distribution, where the Standard Devia-
tion of the Turning Angles (SDTA) is denoted by σ. When the

3As the delivery delay of FWD strategy is dominated by the waiting time
at the stationary relay, the transmission delay is considered to be negligible
in our research, and the case of zero delay represents direct delivery without
waiting.

4When the two budget boundaries are close enough ((τ2 − τ1) < 0.001
for this paper), it is treated as no extra budget as mentioned in Section V.
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Fig. 2. Delay budget function when the main budget is 500 seconds

directional correlation is strong (i.e. σ is small), the mobile
target tends to keep moving in the current direction, which
results in a directional movement.

The contact certainty between a mobile target and a s-
tationary relay is formulated on the basis of a geometric
relationship. As shown in Figure 3, their relative position is the
key modelling aspect. Given the relative distance (denoted by
r) from the original position of the mobile target, the minimum
required number of steps is calculated as λ = r−R

L (λ = 0 if
r 6 R). Given a relative angle (denoted by φ) measured with
respect to the initial movement direction of the mobile target,
a range of directional coverage is calculated as{

φcover
min = φ− sin

(
R
r

)
φcover

max = φ+ sin
(
R
r

) (4)

where φcover
min , φcover

max ∈ [−π, π] denotes the minimum/maximum
coverage angle and R denotes the radius of contact range.

Fig. 3. Illustration of the geometric relationship for contact modelling

Finally, the contact certainty function can be given as

f (σ)
cc (r, φ) =

∫ φcover
max

φcover
min

fpdf (δ, σ, λ) dδ (5)
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where fpdf denotes the parametric function obtained from
simulations referring [12], which reflects the probability dis-
tribution of displacement angle after λ steps given certain σ.

IV. RELAY STRATEGY FOR EFFICIENT GROUP DELIVERY

Given the underlying schemes that are already described in
Section III, the research problem now focuses on the optimi-
sation of the relay strategy. The relay strategy is considered
to be a decision (made by the gateway) that determines relay
selection and target assignment for achieving a group delivery.

Different from individual delivery, relay nodes can be shared
by multiple target nodes, and therefore more optimisation is
possible. Based on knowledge of predictable node contact and
tolerable delivery delay, how to identify feasible opportunities
for relay sharing is the key issue to be addressed. In this
section, the research problem is formulated and solutions are
proposed.

A. Problem Formulation

Two optimisation objectives are considered to formulate
the research problem: 1) maximise the cost reduction of
group delivery; 2) maximise the requirement satisfaction of
group delivery. To reflect potential conflicts between these two
objectives, this optimisation problem is required to be formally
formulated for further analysis.

Let xij denote a binary indicator of the target assignment
decision, such that

xij =
{
1 if relay ni is responsible for target nj

0 otherwise (6)

where ni ∈ N c
rly denotes a candidate relay node and nj ∈ Ntgt

denotes a target node. For the sake of simplicity, it is assumed
that N c

rly = Nsn and Ntgt = Nmn in the remainder of this paper.
Then a relay strategy matrix (denoted by X) can be repre-

sented as

X =


x11 x12 x13 . . . x1J

x21 x22 x23 . . . x2J

...
...

...
. . .

...
xI1 xI2 xI3 . . . xIJ

 = (xij)I×J (7)

where I denotes the number of candidate relay nodes, and J
denotes the number of delivery target nodes.

For the strategy matrix X , each row represents the relay
node selection for a specific target node nj and each column
represents the target node assignment for a specific candidate
relay node ni. The whole set of selected relays can be
represented as

Nrly = {ni|xij = 1} , nj ∈ Ntgt (8)

Note that multiple target nodes may have the same relay
node, which is equivalent to sharing a relay node for a sub-
group of targets. The subgroup of targets which are assigned
to ni can be represented as

Ntgt|ni
= {nj |xij = 1} , ni ∈ N c

rly (9)

Referring Section III-D, let ρ⃗ij = (rij , φij) denote the
relative position between stationary node ni and mobile node

nj . The contact delay between ni and nj (denoted by τij)
can be estimated given the minimum required steps so that
τij = λ · T . For each nj ∈ Ntgt, its best selected relay is
denoted as n∗ = argmaxni∈Nrly (fcc (ρ⃗ij) · fdb (τij)), subject
to nj ∈ Ntgt|ni

. Pairing nj with its best selected relay, ρ⃗∗j
denotes their relative position and τ∗j denotes their estimated
contact delay.

Under the relay strategy X , let C∗
X denote the overall

reduction5 of forwarding hops and D∗
X denote the overall

satisfaction6 of delivery requirement, i.e.

C∗
X = H −

∑
ni∈Nrly

fhd (ni) (10)

D∗
X =

∑
nj∈Ntgt

(fcc (ρ⃗∗j) · fdb (τ∗j)) (11)

where H denotes the sum of least forwarding hops for group
relay selection based on immediate delivery (i.e. no movement
prediction).

Then two optimisation objectives are defined as

f obj
1 (X) =

H −
∑

ni∈Nrly
fhd (ni)

H
= CX (12)

f obj
2 (X) =

∑
nj∈Ntgt

(fcc (ρ⃗∗j) · fdb (τ∗j))

J
= DX (13)

where J denotes the number of targets, CX is called the
reduction degree of overall cost (the objective denoted by the
function f obj

1 ), and DX is called the satisfaction degree of
group delivery (the objective denoted by the function f obj

2 ).
The optimisation problem can finally be formulated as

max
X∈Ω

(
f obj (X)

)
(14)

subject to
|Nrly| 6 J (15)∑

ni∈Nrly

fhd (ni) < H (16)

where Ω denotes the feasible strategies under the subject
condition, and f obj (X) = [f obj

1 (X) , f obj
2 (X)] denotes the

vector of two objectives. Equation (15) is the constraint that
the number of selected relays (denoted by |Nrly|) should be
no more than the number of targets. Equation (16) is the
constraint that the sum of forwarding hops should be less than
employing the strategy of immediate delivery.

Referring [11], the formulated problem for efficient group
delivery is NP-hard. To solve this problem, algorithms are
designed and evaluated in the remainder of this paper. With
the consideration of a two-level delay budget model in bi-
objective combinatorial optimisation, our study is distinct from
the existing research.

5Multicast tree construction is not considered in this paper but further
research can be conducted from this basic case.

6It is assumed that each individual delivery independently contributes to the
group delivery, so the overall satisfaction is a sum of individual satisfaction.
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B. Group Relay Selection (Evolutionary Approach)

As a popular approach to solving multi-objective optimisa-
tion problems, evolutionary algorithms can produce a number
of potential solutions for making further decisions. When
these solutions are Pareto optimal (i.e. an improvement in
any objective requires a degradation in other objective(s)), a
Pareto front (i.e. the set of all Pareto optimal solutions) can be
approximated to analyse the trade-off between objectives [28].

In our research, the Multi-Objective Genetic Algorithm
(MOGA) [29] is adopted because it is a standard evolutionary
algorithm which is suitable for solving combinatorial opti-
misation problems. Based on the MOGA implementation7,
the group relay selection is considered from following three
aspects:

1) Population: The main issue to be addressed in the
evolutionary approach design is to reduce the solution space
for better and faster searching. Without such reduction, it is
found hard to obtain a suitable solution in limited time due to
the existence of too many possibilities.

Therefore, instead of using the strategy matrix X , a chro-
mosome is proposed to be a binary selection vector (denoted
by z⃗) as

z⃗ =


z1
z2
...
zI

 = (zi)I (17)

Then a combination of selected relays can be indicated by

Nrly = {ni|zi = 1}, ni ∈ N c
rly (18)

Let Z denote a population which consists of a number
of chromosomes. An initial population (generation zero) is
generated randomly8 as

Z(0) = {z⃗1, z⃗2, . . . , z⃗K} (19)

where K denotes the number of chromosomes in the popula-
tion.

2) Calculation: Although the searching space can be re-
duced by using the selection vector z⃗, a strategy matrix is
still required to evaluate the chromosome fitness (i.e. the two
optimisation objectives). For generating the strategy matrix
from a selection vector, a default assignment matrix is defined
as X̂ = (x̂ij)I×J such that,

x̂ij =
{
1 if fcc (ρ⃗ij) · fdb (τij) > 0
0 otherwise. (20)

which means that each target node is assigned to all possible
relay candidates.

Given a selection vector z⃗, corresponding raw strategy
matrix (denoted by X∗) based on the default assignment can
be generated as

X∗ =
(
x∗
ij

)
I×J

= z⃗ · X̂ (21)

7A controlled, elitist genetic algorithm (a variant of NSGA-II [29]) provided
by the MATLAB Global Optimization Toolbox. The algorithm follows default
settings of this standard implementation unless otherwise stated.

8For Section V-D, the solutions found by four greedy schemes are included
in the initial population to ensure the searching performance.

Note that the raw strategy matrix brings redundant assign-
ments (i.e. a target node is assigned to more than one relays).
Although this redundancy can improve the delivery reliability,
our research focuses on the analysis of the relay sharing
opportunity to reduce the delivery cost and therefore a basic
case is considered that one target is only assigned to one relay
(but further research can be conducted from this basic case).
Based on Algorithm 1, the raw strategy matrix is adjusted to
eliminate the redundancy and then corresponding fitness values
can be calculated.

Algorithm 1 Raw Strategy Matrix Adjustment and Evaluation
1: input: ni ∈ N c

rly, nj ∈ Ntgt, X∗

2: (xij)I×J ← (0)I×J //initialise an I-by-J matrix of zeros
3: for each nj do
4: var ← 0 //initialise a variable for finding maximum
5: for each ni do
6: if x∗

ij = 1 and fcc (ρ⃗ij) · fdb (τij) > var then
7: record ni as the best relay for nj

8: var ← fcc (ρ⃗ij) · fdb (τij) //record a bigger value
9: end if

10: end for
11: xi′j ← 1, where ni′ denotes the recorded best relay for

nj // the target is assigned to only one best relay
12: end for
13: X ← (xij)I×J // obtain the strategy matrix
14: calculate CX based on Equation (12)
15: calculate DX based on Equation (13)
16: return X , CX , DX

3) Iteration: Given an initial population and the specified
fitness calculation, the algorithm leads later generations to e-
volve towards the optimal solutions iteratively. The production
of a new generation follows a general procedure as:

• select parents from the current population;
• create children by using genetic operators (crossover and

mutation) on the selected parents;
• calculate fitness using the Algorithm 1 and eliminate

inferior chromosomes to retain a fixed size of population.

The iterative mechanism finally terminates when the process
reaches a specified generation/time limit or there is sufficient
convergence in the solutions. A set of Pareto optimal solutions
is provided when the algorithm terminates along with their
achieved fitness values.

C. Group Relay Selection (Greedy Approach)

Because evolutionary algorithms always require iterative
computation which can be inefficient, the relay selection
based on a greedy algorithm is proposed as an alternative.
The principle of a greedy algorithm is choosing the best
solution for each sub-problem until the whole problem can be
solved [22]. It is a straightforward approach which is fast and
simple especially when solving complex problems. Despite its
simplicity, the performance of a greedy algorithm should be
carefully evaluated because greedy searching towards a local
optimum may not lead to global optimisation.
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In [11], a greedy algorithm is proposed for trajectory-based
group message delivery. With the relay selection performed
by this algorithm, relay sharing opportunities can be exploited
for group delivery so that the overall forwarding hops can be
reduced for a given delay budget. Specifically, the problem
of group relay selection is solved in two phases (as shown in
Algorithm 2):

• For the first phase, the serving list is identified as a list of
targets who can be served by a certain stationary relay.

• For the second phase, one stationary relay is selected each
round until the serving lists of the selected relays can
cover all mobile targets.

Algorithm 2 Greedy Algorithm for Group Relay Selection

1: input: ni ∈ N
η|nj

rly , nj ∈ Ntgt, τ̂
//Initialisation

2: Sed ← ∅ //initialise an empty set of covered targets
3: (xij)I×J ← (0)I×J //initialise an I-by-J matrix of zeros
4: for each pair of ni and nj do
5: Sij ← {nj} //initialise its serving list
6: end for

//The first phase: serving list identification
7: for each pair of ni and nj do
8: for each nj′ ̸= nj do
9: if tij 6 tij′ and tij′ 6 τ̂ then

10: Sij = Sij ∪ nj′ //add this target node to the list
11: end if
12: end for
13: end for

//The second phase: group relay selection
14: while |Sed| < |Ntgt| do
15: var ←∞ //initialise a variable for finding minimum
16: Snew ← ∅ //an empty list to record newly covered targets
17: for each pair of ni and nj do
18: Sdiff ← ((Sij∪Sed)−Sed) //find newly covered targets
19: if fmc(ni,Sdiff) < var then
20: record ni as the relay to be selected this round
21: var ← fmc(ni,Sdiff), Snew ← Sdiff
22: end if
23: end for
24: Sed ← Sed ∪ Snew //update the set of covered targets
25: xi′j ← 1 for nj ∈ Snew, where ni′ denotes the recorded

relay to be selected this round
26: end while
27: X ← (xij)I×J // obtain the strategy matrix
28: return X

However, it is highlighted that the algorithm in [11] is not
directly applicable to our research scenario in regard to the
following two aspects:

• Firstly, accurate trajectory knowledge, assumed by [11],
is unavailable so the serving list cannot be explicitly
known.

• Secondly, an exact budget boundary may not exist due
to the existence of the extra budget. This situation is not
considered by [11].

In order to achieve greedy relay selection based on direc-
tional movement with awareness of extra budget, we decouple
the problem solving into two complementary steps:

• The method of Delay Boundary based Relay Selection
(DBRS) is proposed for the scenario where mobile nodes
randomly move with directional correlation. The DBRS
is considered as the performance benchmark because it
has no awareness of the extra delay budget as with the
method proposed in [11].

• A new method of Satisfaction Degree based Relay Se-
lection (SDRS) is proposed to consider the extra delay
budget in group relay selection. Based on the design
of DBRS, the SDRS has additional awareness so better
performance can be expected.

1) DBRS Design: The main issue to be addressed in the
DBRS design is the identification of the serving list in the
first phase of the problem solution. Without accurate trajectory
knowledge, it becomes hard to identify a list of targets who
can be served by a certain stationary relay.

To overcome the difficulty brought about by the randomness
of node movement, a threshold (denoted by η) of contact
certainty is proposed to qualify a set of candidate stationary
relays as

N η|nj

rly = {ni|fcc (ρ⃗ij) > η} , ni ∈ N c
rly (22)

With the qualified candidates, a serving list (denoted by Sij)
can be found for each pair of Stationary Relay ni and Mobile
Target nj (called the SRMT pair) according to the condition
that

Sij = {nj′ |τij 6 τij′ 6 τ̂} nj ∈ Ntgt, nj′ ∈ Ntgt (23)

where τ̂ denotes a budget boundary to identify a serving list.
Then, the second phase of problem solution starts from an

empty set of covered targets. After each evaluation round, one
stationary relay will be selected and the number of covered
targets will increase (added from corresponding serving list).
The procedure of relay selection ends when the selected relays
can cover all mobile targets.

Given the current set of covered targets, each SRMT pair
can be evaluated by a cost metric (the hop distance averaged by
the number of newly covered targets). The calculation of this
cost metric is same as the cost calculation proposed by [11]
as

fDB
mc (ni,Sdiff) =

fhd(ni)

|Sdiff|
(24)

where fDB
mc denotes the metric calculation used in DBRS, fhd

denotes the hop distance function (hops from the gateway)
defined in Section III-B, Sdiff denotes a list of newly covered
targets (obtained from line 18 in Algorithm 2), and |Sdiff|
denotes the size of this list.

Note that this DBRS scheme relies on the assumption that
all deliveries before a given delay τ̂ contribute the same degree
of delivery satisfaction. However, in our research scenario,
the satisfaction degree gradually decreases after the first-level
budget boundary is exceeded. Without this awareness in the
algorithm, optimisation opportunities can be overlooked and
therefore the SDRS design is proposed.
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2) SDRS Design: The main issue to be addressed in the
SDRS design is the consideration of the extra delay budget
in the second phase of the problem solution. During the first
phase, it is similar to our DBRS design except that the budget
boundary is fixed to the second-level budget boundary (i.e.
τ̂ = τ2) to provide all possible candidate stationary relays.

After the first phase, all the contactable targets within the
second-level budget boundary are included in the serving list.
Thus the cost metric should reflect the difference in delivery
satisfaction. Instead of treating all the newly served targets
the same, the hop distance is averaged by the sum of their
satisfaction degree as

fSD
mc (ni,Sdiff) =

fhd(ni)∑
nj∈Sdiff

fdb (τij)
(25)

where fSD
mc denotes the metric calculation used in SDRS and

fdb denotes the delay budget function defined in Section III-C.
Compared with DBRS, a more generalised form of cost

calculation is provided by SDRS. Because the delivery sat-
isfaction is considered in relay selection, SDRS can make
improved decisions and therefore better delivery performance
can be achieved. In the next section, DBRS and SDRS will
be compared and evaluated, together with the evolutionary
approach proposed in Section IV-B.

V. SIMULATION AND EVALUATION

In Section IV, the research problem is formulated and
solutions are proposed to select relay node(s) for group de-
livery. Now, we further evaluate the performance of proposed
solutions in simulation scenarios.

A. Scenario Description

Figure 4 shows a scenario where a number of stationary
nodes (denoted by squares) are deployed over a geographical
area. Without loss of generality, a base scenario is defined for
our simulations that stationary nodes are uniformly distributed
over 10000*10000 metre area as a 21*21 grid. At certain time
point during network operations (treated as the current time), a
package is planned to be delivered to a group of mobile nodes
(denoted by circles) which are randomly located within the
base scenario area. For the sake of simplicity, it is assumed
that the package source (i.e. the gateway) is the stationary node
at the bottom right corner. Although a group can include any
number of targets, we focuses on a moderate size of the target
group (around 20 mobile nodes) because neither unicast and
broadcast is efficient in such range.

In our research, the radio coverage is considered to be
limited (e.g. subject to device size and/or surrounding en-
vironment such as forest or underwater) and therefore the
package delivery mainly relies on multi-hop forwarding. It is
assumed that the stationary nodes can form a grid topology
to perform forwarding. Considering the base scenario used for
our simulations, the communication radius of wireless nodes
is set to be 750m (which is a feasible range referring [30])
so that each stationary node is able to contact its neighbour
nodes.
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Fig. 4. Example simulation scenario (relay sharing without movement
prediction)

With the FWD strategy (referring Section II-A), it is typ-
ically possible to achieve group package delivery by fewer
forwarding hops. Instead of immediate delivery to each target,
the package can be forwarded (via routes shown as solid
lines) to the selected relay nodes (denoted by asterisks) and
wait to be delivered when the target comes within the relay
node coverage (indicated by dash-dot lines). By exploiting
predictable contact and delay budget, the FWD strategy brings
the opportunity of relay sharing to further reduce the overall
forwarding hops. For the instance shown in Figure 5, only ten
relay nodes are used for twenty targets (instead of fifteen relay
nodes used in Figure 4) and therefore the overall forwarding
hops can be reduced, by exploiting movement prediction in
relay selection.
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Fig. 5. Example simulation scenario (relay sharing with movement prediction)

Due to the contact uncertainty caused by movement ran-
domness, proper selection of relay nodes is necessary to ensure
delivery satisfaction. For the example simulation scenario (as
shown in Figure 4 and 5), the trade-off between two objectives
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can be reflected by the plot of the Pareto front (as shown in
Figure 6) which is obtained by MOGA (i.e. the evolutionary
approach). Figure 6 shows that the cost reduction can firstly be
improved without much loss of delivery satisfaction but then
the delivery satisfaction will degrade rapidly with little further
increase in the cost reduction. This means a further reduction
of the delivery cost (beyond a certain point) notably impacts
on the delivery satisfaction and the two objectives are then
indeed conflicted.

To further evaluate the overall delivery performance, the
weighted sum of two objectives is calculated and shown in
Figure 7. For an easier understanding, it is worth noting that
Figure 7 transforms the two objectives into one weighted
sum value. So the two-dimensional plot shown by Figure 6
becomes multiple one-dimensional (vertically aligned aster-
isks) plots in Figure 7, given different weights of the cost
reduction (the weight of the delivery satisfaction can be
known at the same time as the sum of weights given as 1).
With different weight values of the cost reduction, Figure 7
shows the limit of overall delivery performance is a curve
and there is a concave region around the value where two
weights are similar. This concave region indicates the two
objectives cannot be simultaneously achieved, which results
in a performance limit. It is also shown that the concave
region is biased to the higher weight for cost reduction, which
means it is harder to achieve cost reduction than the delivery
satisfaction.
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Fig. 6. Trade-off between cost reduction and delivery satisfaction shown
by Pareto front for the example simulation scenario (main budget is 2000s
without extra budget)

B. Simulation Settings

To evaluate the delivery performance, simulation results are
obtained from random scenarios. As described in Section V-A,
the scenario randomness comes from the mobile targets (i.e.
the initial location and direction are randomly chosen for
each simulation run). The obtained results are the average of
multiple simulation runs (50 random seeds used).

By considering two optimisation objectives as metrics, this
part investigates how the simulation is influenced by three re-
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Fig. 7. Weighted sum of Pareto front over different weight values

lated factors, including the certainty threshold η, the Standard
Deviation of the Turning Angles (SDTA) σ, and the target
node number J . The extra budget is set to 0 for this part so
there is no difference between DBRS and SDRS. The main
budget is the control variable and the default value for other
settings are η = 0.9, σ = 5, and J = 20 (obtained from our
investigations).

1) Certainty Threshold: With different values of certainty
threshold, Figure 8 shows that a lower threshold does not
improve the cost reduction much but sightly degrades the
delivery satisfaction. Therefore the default value of certainty
threshold is set to 0.9 for the remaining simulations unless
otherwise stated.
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Fig. 8. Investigation of certainty threshold (no extra budget)

2) Target Node Number: With different values of main
budget, Figure 9 shows that the cost reduction increases with
target number. Given the number of target nodes, higher
reduction degree can be achieved by a larger delay budget,
because there are more opportunities of relay sharing. The
satisfaction degree is relatively steady but reflects a similar
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trend, due to the trade-off between the cost reduction and
delivery satisfaction. As our research focus is on the group
delivery, a relative large group is considered and the default
value of target number is set to 20 for remaining simulations
unless otherwise stated.
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Fig. 9. Investigation of target node number (no extra budget)

3) SDTA: Figure 10 shows that different values of the main
budget can lead to different delivery performance especially
when SDTA is relatively small. With increasing SDTA, the
influence of the main budget decreases as the movement is
less predictable for exploitation. Meanwhile, after the decrease
when the SDTA is set to certain value (e.g. 10 degrees in
this case), the delivery satisfaction increases again and even
surpasses the satisfaction when the SDTA is lower. This
concave region shown in the delivery satisfaction is a result
of less opportunistic forwarding (i.e. a stronger tendency to
deliver immediately instead of waiting for later contact), when
less contact opportunities can be identified by the prediction
model (referring to Section III-D). As our research focuses on
directional movement with strong correlations, a small SDTA
is considered and the default value of SDTA is set to be 5
degrees for the remaining simulations unless otherwise stated.

C. Performance Comparison of Greedy Schemes

This section provides a performance comparison of relay
selection based on different greedy schemes. Referring the
delay budget model described in Section III, three kinds of
budget boundary are considered for the DBRS: no delay
budget (DBRS-N), first-level budget boundary (DBRS-F), and
second-level budget boundary (DBRS-S). As mentioned in
Section IV-C, SDRS is the proposed scheme with extra budget
awareness and is highlighted for comparison focusing on the
benefit of the extra budget term. As discussed in Section V-B,
the following default settings are adopted for the factors:
η = 0.9, σ = 5, and J = 20.

1) Zero Main Budget: In Figure 11, the DBRS-N and
DBRS-F schemes have the same performance as when the
main budget is set to be zero. Furthermore, the performance
of DBRS-N and DBRS-F do not vary with extra budget
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Fig. 10. Investigation of SDTA (no extra budget)

due to none awareness of this factor. With increasing value
of extra budget, DBRS-S and SDRS both have increasing
cost reduction degree and decreasing9 delivery satisfaction
degree. Although more cost reduction can be achieved by
DBRS-S, SDRS can have much less effect on the satisfaction
given a similar cost reduction as the delay budget function is
considered in relay selection.
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Fig. 11. Comparison of greedy schemes for zero main budget

2) Small Main Budget: For Figure 12, a small main budget
is provided (set to 500 seconds). DBRS-F can achieve a higher
cost reduction degree than DBRS-N because the main budget
brings more relay candidates into consideration and more
opportunity of relay sharing. Due to the strong directional

9For the DBRS-S, the delivery satisfaction degree slightly increases when
the extra budget is larger than certain value. The reason is that the delay
budget function (i.e. delivery requirements) is changed with the changing
value of extra budget. Then the same delivery delay (if within the range of
extra budget) contributes more delivery satisfaction and therefore the overall
satisfaction is increased. Because the delivery delay tends to be larger with
a higher value of main budget, this effect becomes even more significant in
Figure 12, 13, 14, and SDRS is also affected in Figure 14.
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correlation reflected by the small SDTA in the simulation
settings, a small main budget rarely introduces uncertainty
and therefore the satisfaction of DBRS-F is almost the same
as with DBRS-N. In addition, the performance of DBRS-N
and DBRS-F do not vary with extra budget due to their lack
of awareness of this factor. DBRS-S and SDRS are similar in
terms of their performance in Figure 11, because a small value
of main budget does not introduce much difference compared
with a zero main budget.
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Fig. 12. Comparison of greedy schemes for small main budget (500s)

3) Medium Main Budget: For Figure 13, a larger main bud-
get is introduced as 1000 seconds so the gap between DBRS-
N and DBRS-F (over the cost reduction degree) is increased.
Meanwhile, the delivery satisfaction of DBRS-F shows a slight
degradation because of the larger main budget brings more
uncertainty. Although more cost reduction can still be achieved
by DBRS-S and SDRS, the reduction gain brought about by
the extra budget becomes smaller when a medium main budget
is adopted, which reflects less opportunities for exploitation.
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Fig. 13. Comparison of greedy schemes for medium main budget (1000s)

4) Large Main Budget: As shown in Figure 14, DBRS-
F can nearly achieve the same cost reduction as DBRS-
S and SDRS, when the main budget is much larger (2000
seconds in this case). However, this brings a more obvious
difference between DBRS-N and DBRS-F in terms of delivery
satisfaction. The extra budget can hardly bring additional
benefit as the directional movement has been exploited by the
very large main budget.
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Fig. 14. Comparison of greedy schemes for large main budget (2000s)

5) Summary: Based on the above discussions, SDRS po-
tentially brings efficiency gains at reasonable cost. Focused
on the case of a small main budget, we further evaluate
the SDRS performance in Section V-D, by comparing the
solutions obtained from the evolutionary approach.

D. Performance Evaluation

In this part, the weighted sum of two objectives is con-
sidered as the performance metric (referring the explanation
of Figure 7 in Section V-A). As shown in Figure 7, the
limit of the achievable weighted sum can be approximated
by the evolutionary algorithm (i.e. the MOGA implementation
as referred to in Section IV-B). From the obtained limit, the
four schemes based on the greedy algorithm are evaluated
given different weight values for the two objectives. Based on
previous analysis and discussion, a small main budget (500
seconds in our case) is considered in these simulations and
the extra budget is the control variable. Default settings are
adopted for other factors (η = 0.9, σ = 5, J = 20) and the
weight of the cost reduction is varied from 0 to 1 in 0.1 steps.

Figure 15 shows how the weighted sum varies with the
weight value. Referring to the previous discussion of Figure 7,
the convex curve obtained from the MOGA reflects a perfor-
mance limit of the weighted sum and therefore this MOGA
curve is considered as the optimum. DBRS-S is far from the
optimum when the weight is zero, as it does not achieve a good
delivery satisfaction. However, it improves with increasing
weight and finally outperforms the other three greedy schemes
when the weight is one. The remaining three greedy schemes
are near the performance limit when the weight is small. With
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increasing weight value, DBRS-N is the first to move away
from the optimum. DBRS-F is more close because the main
budget is considered for the cost reduction. SDRS is closest to
the limit as it can exploit more opportunities for cost reduction
without notably influencing the delivery satisfaction.
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Fig. 15. Evaluation of weighted sum over different weight values (when main
budget is 500s and extra budget is 1000s)

Figure 16 further demonstrates the difference from the
performance limit (i.e. the MOGA curve) for the four greedy
schemes. This figure shows that when the weight value is
small (less than 0.3 in this case), the greedy schemes generally
have good performance (i.e. a small difference from the
optimum) except DBRS-S which considers the second-level
budget boundary and therefore introduces more uncertainty.
With increasing weight to the cost reduction factor (especially
when larger than 0.7 in this case), relay selection based on
the greedy algorithm becomes no longer suitable. It is worth
noting that SDRS outperforms both DBRS-F and DBRS-N
when the weight value is larger than 0.3, which confirms that
our proposed SDRS scheme can find a better solution when
the delivery efficiency becomes similarly (or more) important
relative to the delivery satisfaction.

Figure 17 provides another view of how the extra budget
affects the difference from the performance limit. It is shown
that neither DBRS-N and DBRS-S yield good performance
when there is an extra budget. With increasing extra budget,
the difference of DBRS-F increases while the difference of
SDRS decreases due to awareness of extra delay budget. As a
conclusion, the proposed SDRS scheme can exploit the extra
budget and therefore bring better performance.

VI. CONCLUSION

In this paper, the relay selection problem is investigated for
efficient group delivery, aimed at the IoT application scenarios
that involve directional movement with randomness (such as
animals in habitat monitoring). Following a review of the
current limitations, an analytical framework is proposed and a
combinatorial bi-objective optimisation problem is formulated.
To solve the formulated problem, group relay selection is
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Fig. 16. Difference of weighted sum over different weight values (averaged
for extra budget varying from 0s to 3000s in 500s steps where main budget
is 500s)

0 500 1000 1500 2000 2500 3000

Extra Budget (seconds)

0

0.05

0.1

0.15

0.2

0.25

D
iff

er
en

ce
 o

f W
ei

gh
te

d 
S

um
 (

C
om

pa
re

d 
w

ith
 M

O
G

A
)

DBRS-N DBRS-F DBRS-S SDRS

Scheme

Fig. 17. Difference of weighted sum over different extra budget values
(averaged for weight values varying from 0 to 1 in 0.1 steps where main
budget is 500s)

examined on the basis of an evolutionary approach and two
kinds of greedy methods. In addition, a scenario with an extra
delay budget is considered which reflects more flexibility of
acceptable delay and brings about more opportunities for op-
timisation. Simulation results show that relay selection based
on the greedy algorithm can achieve near-optimal performance
when the delivery satisfaction is highly desirable. However,
the performance of the greedy approach gradually becomes
far from optimal with increasing weight given to delivery cost
reduction. For cases where delivery efficiency becomes simi-
larly (or more) important than delivery reliability, our proposed
SDRS scheme is shown to be capable of finding more suitable
solutions, which results in better delivery performance.
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