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Sponsored search auctions are the main source of revenue for search engines. In such an auction, a set of
utility-maximizing advertisers compete for a set of ad slots. The assignment of advertisers to slots depends
on bids they submit; these bids may be different than the true valuations of the advertisers for the slots. Vari-
ants of the celebrated VCG auction mechanism guarantee that advertisers act truthfully and, under mild
assumptions, lead to revenue or social welfare maximization. Still, the sponsored search industry mostly
uses generalized second price (GSP) auctions; these auctions are known to be non-truthful and suboptimal
in terms of social welfare and revenue. In an attempt to explain this tradition, we study a Bayesian setting
where the valuations of advertisers are drawn independently from a regular probability distribution. In this
setting, it is well known by the work of Myerson [1981] that the optimal revenue is obtained by the VCG
mechanism with a particular reserve price that depends on the probability distribution. We show that by
appropriately setting the reserve price, the revenue over any Bayes-Nash equilibrium of the game induced
by the GSP auction is at most a small constant factor away from the optimal revenue, improving previous
results of Lucier et al. [2012]. Our analysis is based on the Bayes-Nash equilibrium conditions and on the
properties of regular probability distributions.
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1. INTRODUCTION
The sale of advertising space is the main source of income for information providers
on the Internet. For example, a query to a search engine creates advertising space
that is sold to potential advertisers through auctions that are known as sponsored
search auctions (or ad auctions). In their influential papers, Edelman et al. [2007] and
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0:2 I. Caragiannis et al.

Varian [2007] have proposed a (now standard) model for this process. According to
this model, a set of utility-maximizing advertisers compete for a set of ad slots with
non-increasing click-through rates. The auctioneer collects bids from the advertisers
and assigns them to slots (usually, in non-increasing order of their bids). In addition,
the auctioneer assigns a payment per click to each advertiser. Depending on the way
the payments are computed, different auctions can be defined. Typical examples are
the Vickrey-Clark-Groves (VCG), the generalized second price (GSP), and the general-
ized first price (GFP) auction. Naturally, the advertisers are engaged as players in a
strategic game defined by the auction; the bid submitted by each player is such that
it maximizes her utility (i.e., the total difference of her valuation minus her payment
over all clicks) given the bids of the other players. This behavior leads to equilibria,
i.e., states of the induced game from which no player has an incentive to unilaterally
deviate.

Traditionally, truthfulness has been recognized as an important desideratum in the
Economics literature on auctions [Krishna 2002]. In truthful auctions, truth-telling
is an equilibrium according to specific equilibrium notions (e.g., dominant strategy,
Nash, or Bayes-Nash equilibrium). Such a mechanism guarantees that the social wel-
fare (i.e., the total value of the players) is maximized. VCG is a typical example of a
truthful auction [Vickrey 1961; Clarke 1971; Groves 1973]. In contrast, GSP auctions
are not truthful [Edelman et al. 2007; Varian 2007]; still, they are the main auction
mechanisms used in the sponsored search industry adopted by leaders such as Google,
Microsoft, and Yahoo!

In an attempt to explain this prevalence, several papers have provided bounds on the
social welfare of GSP auctions [Lahaie 2006; Paes Leme and Tardos 2010; Caragiannis
et al. 2011; Lucier and Paes Leme 2011] over different classes of equilibria (pure Nash,
coarse-correlated, Bayes-Nash). The main message from these studies is that the social
welfare is always a constant fraction of the optimal one. However, one would expect
that revenue (as opposed to social welfare) maximization is the major concern from
the point of view of the sponsored search industry. In this paper, following previous
work by Lucier et al. [2012], we aim to provide a theoretical justification for the wide
adoption of the GSP mechanism by focusing on the revenue generated by (variants of)
these auctions.

In order to model the inherent uncertainty in advertisers’ beliefs, we consider a
Bayesian (or incomplete information) setting [Harsanyi 1967] where the advertisers
have random valuations drawn independently from a common probability distribu-
tion. This is the classical setting that has been studied extensively since the seminal
work of Myerson [1981] for single-item auctions (which is a special case of ad auc-
tions). The results of [Myerson 1981] carry over to our model as follows. Under mild
assumptions, the revenue generated by a player in a Bayes-Nash equilibrium depends
only on the distribution of the click-through rate of the ad slot the player is assigned to
for her different valuations. Hence, two Bayes-Nash equilibria that correspond to the
same allocation yield the same revenue even if they are induced by different auction
mechanisms; this statement is known as revenue equivalence. The allocation that op-
timizes the expected revenue is one in which low-bidding advertisers are excluded and
the remaining ones are assigned to ad slots in non-increasing order of their valuations.
Such an allocation is a Bayes-Nash equilibrium of the variation of the VCG mechanism
where an appropriate reserve price (henceforth called Myerson reserve) is set in order
to exclude the low-bidding advertisers. Revenue maximization in Bayesian auctions is
extensively covered in the recent survey article of Hartline [2013].

GSP auctions may lead to different Bayes-Nash equilibria [Gomes and Sweeney
2013] in which a player with a higher valuation is assigned with positive probabil-
ity to a slot with lower click-through rate than another player with lower valuation.
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This implies that the revenue is suboptimal. Our purpose is to quantify the revenue
suboptimality over all Bayes-Nash equilibria of GSP auctions by proving worst-case
revenue guarantees. A revenue guarantee of ρ for an auction mechanism implies that,
at any Bayes-Nash equilibrium, the revenue generated is at least a 1/ρ fraction of the
optimal one.

Following Myerson’s revenue equivalence statement (see also [Lucier et al. 2012]
for a concrete example), the use of reserve prices together with GSP is absolutely
necessary in order to obtain non-trivial revenue guarantees. Furthermore, it is not
clear whether the Myerson reserve is the choice that minimizes the revenue guar-
antee in GSP auctions. This issue is the subject of experimental work by Ostrovsky
and Schwarz [2011]. Revenue maximization in variants of GSP auctions with reserve
prices is studied (analytically and experimentally) in recent papers by Roberts et al.
[2013] and Thompson and Leyton-Brown [2013].

Lucier et al. [2012] provide revenue guarantees for GSP auctions. Among other re-
sults for full information settings, they consider two different Bayesian models. When
the advertisers’ valuations are drawn independently from a common probability distri-
bution with monotone hazard rate (MHR), they show that GSP auctions with Myerson
reserve have a revenue guarantee of at most 6. This bound is obtained by compar-
ing the utility of players at the Bayes-Nash equilibrium with the utility they would
have by deviating to a single alternative bid (and by exploiting the special properties
of MHR distributions). The class of MHR distributions is wide enough and includes
many common distributions (such as uniform, normal, and exponential). In the more
general case where the valuations are regular, the same bound is obtained using a dif-
ferent reserve price. This reserve is computed using a prophet inequality [Krengel and
Sucheston 1977]. Prophet inequalities have been proved useful in several Bayesian
auction settings in the past [Hajiaghayi et al. 2007; Chawla et al. 2010].

In this work, we consider the same Bayesian settings with [Lucier et al. 2012], signif-
icantly extend their analysis and improve their results. We show that when the players
have i.i.d. valuations drawn from a regular distribution, there is a reserve price so that
the revenue guarantee is at most 4.72. For MHR valuations, we present a bound of 3.46.
In both cases, the reserve price is either Myerson’s or another one that maximizes the
revenue obtained by the player allocated to the first slot. The latter is computed by
developing new prophet-like inequalities that exploit the particular characteristics of
the valuations. Furthermore, we show that the revenue guarantee of GSP auctions
with Myerson reserve is at most 3.90 for MHR valuations. In order to analyze GSP
auctions with Myerson reserve, we extend the techniques developed in [Caragiannis
et al. 2011; Lucier and Paes Leme 2011] (see also [Caragiannis et al. 2012]) for bound-
ing the inefficiency of GSP auctions (without reserves) in terms of the social welfare.
In particular, the Bayes-Nash equilibrium condition implies that the utility of each
player does not improve when she deviates to any other bid. This yields a series of in-
equalities which we take into account with different weights. These weights are given
by families of functions that are defined in such a way that a relation between the
revenue at a Bayes-Nash equilibrium and the optimal revenue is revealed; we refer to
them as deviation weight function families.

The rest of the paper is structured as follows. We begin with preliminary definitions
in Section 2. Our prophet-type bounds are presented in Section 3. The role of deviation
weight function families in the analysis is explored in Section 4 with two technical
proofs appearing in appendix. Then, Section 5 is devoted to the proofs of our main
statements. We conclude with open problems and a discussion in Section 6.
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2. PRELIMINARIES
We consider a Bayesian setting with n players and n slots1 where slot j ∈ [n] has a
click-through rate αj that corresponds to the frequency of clicking an ad in slot j. We
add an artificial (n + 1)-th slot with click-through rate 0 and index the slots so that
α1 ≥ α2 ≥ · · · ≥ αn ≥ αn+1 = 0. Each player’s valuation (per click) is non-negative and
is drawn from a publicly known probability distribution.

The GSP auction mechanism we consider uses a reserve price t and assigns slots to
players according to the bids they submit. Player i submits a bid bi(vi) that depends on
her valuation vi; the bidding function bi is the strategy of player i. Given a realization of
valuations, let b = (b1, . . . , bn) denote a bid vector and define the permutation π so that
π(j) is the player with the j-th highest bid (breaking ties arbitrarily). The mechanism
assigns slot j to player π(j) whenever bπ(j) ≥ t; if bπ(j) < t, the player is not allocated
any slot. In such an allocation, let σ(i) denote the slot that is allocated to player i. This
is well-defined when player i is assigned a slot; if this is not the case, we follow the
convention that σ(i) = n + 1. Given b, the mechanism also defines a payment pi for
each player i that is allocated a slot σ(i) ≤ n. This payment is defined as the maximum
between the reserve price t and the next highest bid bπ(σ(i)+1) (following the convention
that bπ(n+1) = 0). Then, the utility of player i is ui(b) = ασ(i)(vi − pi). A set of players’
strategies is a Bayes-Nash equilibrium if no player has an incentive to deviate from
her strategy in order to increase her expected utility. This means that a bid vector b is
a Bayes-Nash equilibrium if for every player i and every possible valuation x,

E[ui(b)|vi = x] ≥ E[ui(b
′
i,b−i)|vi = x]

for every alternative bid b′i. Note that the expectation is taken over the randomness of
the valuations of the other players and the notation (b′i,b−i) is used for the bid vector
where player i has deviated to b′i and the remaining players bid as in b. The revenue
generated by the mechanism at a Bayes-Nash equilibrium b is

Rt(b) = E[
∑
i

ασ(i)pi].

We focus on the case where the valuations of players are drawn independently from a
common probability distribution D with probability density function f and cumulative
distribution function F . Given a distribution D over players’ valuations, the virtual
valuation function is

ϕ(x) = x− 1− F (x)

f(x)
.

We consider regular probability distributions where ϕ(x) is non-decreasing. The work
of Myerson [1981] implies that the expected revenue from player i at a Bayes-Nash
equilibrium b of any auction mechanism is E[ασ(i)ϕ(vi)], i.e., it depends only on the
allocation of player i and her virtual valuation. Hence, the total expected revenue is
maximized when the players with non-negative virtual valuations are assigned to slots
in non-increasing order of their virtual valuations and players with negative virtual
valuations are not assigned any slot. A mechanism that imposes this allocation as a
Bayes-Nash equilibrium (and, hence, is revenue-maximizing) is the celebrated VCG
mechanism with reserve price t such that ϕ(t) = 0. We refer to this as Myerson reserve
and denote it by r in the following. We use the notation µ to denote such an allocation.
Note that, in µ, players with zero virtual valuation can be either allocated slots or not;

1Our model can simulate cases where the number of slots is smaller than the number of players by adding
fictitious slots with zero click-through rate.
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such players do not contribute to the optimal revenue which we denote by

ROPT = E[
∑
i

αµ(i)ϕ(vi)].

As it has been observed in [Gomes and Sweeney 2013], GSP may not admit the
allocation µ as a Bayes-Nash equilibrium. This immediately implies that the revenue
over Bayes-Nash equilibria would be suboptimal. In order to capture the revenue loss
due to the selfish behavior of the players, we use the notion of revenue guarantee.

Definition. The revenue guarantee of an auction game with reserve price t is
maxb

ROPT

Rt(b)
, where b runs over all Bayes-Nash equilibria of the game.

A particular subclass of regular probability distributions are those with monotone
hazard rate (MHR). A regular distribution D is MHR if its hazard rate function h(x) =
f(x)/(1 − F (x)) is non-decreasing. These distributions have some nice properties (see
[Barlow and Marshall 1964]) such as F (r) ≤ 1 − 1/e and ϕ(x) ≥ x − r for every x ≥ r;
we will use these properties in our analysis.

In our proofs, we use the notation σ to refer to the random allocation that corre-
sponds to a Bayes-Nash equilibrium. Note that, a player with valuation strictly higher
than the reserve always has an incentive to bid at least the reserve and be allocated
a slot. When her valuation equals the reserve, she is indifferent between bidding the
reserve or not participating in the auction. For auctions with Myerson reserve, when
comparing a Bayes-Nash equilibrium to the revenue-maximizing allocation µ, we as-
sume that a player with valuation equal to the reserve has the same behavior in both
σ and µ (this implies that E[

∑
i ασ(i)] = E[

∑
i αµ(i)]). This assumption is without loss of

generality since such a player contributes zero to the optimal revenue anyway. In our
proofs, we also use the random variable o(j) to denote the player with the j-th highest
valuation (breaking ties arbitrarily). Hence, µ(i) = o−1(i) if the virtual valuation of
player i is positive and µ(i) = n + 1 if it is negative. When the virtual valuation of
player i is zero, it can be either µ(i) = o−1(i) or µ(i) = n+ 1.

When considering GSP auctions, we make the assumption that players are conser-
vative: whenever the valuation of player i is vi, she only selects a bid bi(vi) ∈ [0, vi] at
Bayes-Nash equilibria. This is a rather natural assumption since any bid bi(vi) > vi is
weakly dominated by bidding bi(vi) = vi [Paes Leme and Tardos 2010].

In the following, we use the notation x+ to denote max{x, 0} while the expression
x1{E} equals x when the event E is true and 0 otherwise.

3. ACHIEVING MINIMUM REVENUE GUARANTEES
Our purpose in this section is to show that by appropriately setting the reserve price,
we can guarantee a high revenue from the advertiser that occupies the first slot at any
Bayes-Nash equilibrium. Even though this approach will not give us a “standalone”
result, it will be very useful later when we combine it with the analysis of GSP auc-
tions with Myerson reserve. These high revenue guarantees from the advertiser that
occupies the first slot are similar in spirit to prophet inequalities in optimal stopping
theory [Krengel and Sucheston 1977] as well as revenue guarantees from single-item
auction mechanisms that use posted prices (see [Chawla et al. 2010] for more general
results in this direction).

The analysis in this section will make extensive use of the following lemma.
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LEMMA 3.1. Consider n random valuations v1, ..., vn that are drawn i.i.d. from a
regular distribution D. Then, for every t ≥ r, it holds that

E[max
i

ϕ(vi)
+] ≤ ϕ(t) +

n(1− F (t))2

f(t)
.

PROOF. We will first prove that E[(ϕ(vi)− ϕ(t))+] = (1−F (t))2

f(t) . Indeed, we can easily
verify that ∫ ∞

t

(1− F (x)) dx =

∫ ∞

t

(x− t)f(x) dx,

and, hence,

E[(ϕ(vi)− ϕ(t))+] =

∫ ∞

t

(
x− 1− F (x)

f(x)
− t+

1− F (t)

f(t)

)
f(x) dx

=

∫ ∞

t

(x− t) f(x) dx−
∫ ∞

t

(1− F (x)) dx+

∫ ∞

t

1− F (t)

f(t)
f(x) dx

=
(1− F (t))2

f(t)

for every player i. Now, using this last equality, we obtain that
E[max

i
ϕ(vi)

+] ≤ ϕ(t) + E[max
i

(ϕ(vi)− ϕ(t))+]

≤ ϕ(t) +
∑
i

E[(ϕ(vi)− ϕ(t))+]

= ϕ(t) + nE[(ϕ(vi)− ϕ(t))+]

= ϕ(t) +
n(1− F (t))2

f(t)
,

and the proof of the lemma is complete. Note that the second inequality follows since
(ϕ(vi)− ϕ(t))+ is non-negative and by linearity of expectation.

We are ready to present a first application of Lemma 3.1. In particular, we will show
(in Lemma 3.2) that, by appropriately setting the reserve price, the revenue obtained
from the first slot is at least a constant fraction of the optimal revenue α1E[maxi ϕ(vi)

+]
among single-item auctions in which the first slot is auctioned off.

LEMMA 3.2. Let b be a Bayes-Nash equilibrium for a GSP auction game with n
players with random valuations v1, ..., vn drawn i.i.d. from a regular distribution D.
Then, there exists r′ ≥ r such that

Rr′(b) ≥ (1− 1/e)α1E[max
i

ϕ(vi)
+].

PROOF. Let t ≥ r and observe that ϕ(t) ≥ 0. By the definition of the virtual valuation
we have t = ϕ(t) + 1−F (t)

f(t) . By multiplying both sides with 1− Fn(t), which denotes the
probability that at least one player has valuation at least t and is therefore allocated
a slot, we get

t(1− Fn(t)) =

(
ϕ(t) +

1− F (t)

f(t)

)
(1− Fn(t))

=

(
ϕ(t) +

n(1− F (t))2

n(1− F (t))f(t)

)
(1− Fn(t)) . (1)

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 0.



Revenue Guarantees in Generalized Second Price Auctions 0:7

Note that the left-hand side of the above equality multiplied with α1 is a lower bound
on the revenue of GSP with reserve t. Let t∗ be such that F (t∗) = 1− 1/n (and, equiva-
lently, n(1− F (t∗)) = 1). If t∗ ≥ r, using (1), Lemma 3.1 (with t = t∗), and the fact that
(1− 1/n)n ≤ 1/e, we obtain

Rt∗(b) ≥ α1t
∗(1− Fn(t∗))

= α1

(
ϕ(t∗) +

n(1− F (t∗))2

f(t∗)

)
(1− Fn(t∗))

≥ α1E[max
i

ϕ(vi)
+](1− (1− 1/n)n)

≥ (1− 1/e)α1E[max
i

ϕ(vi)
+].

Otherwise (if t∗ < r), using (1), Lemma 3.1 (with t = r), as well as the facts that the
function g(y) = 1−yn

n(1−y) is non-decreasing in [0, 1] and (1− 1/n)n ≤ 1/e, we obtain that

Rr(b) ≥ α1r(1− Fn(r))

= α1
n(1− F (r))2

n(1− F (r))f(r)
(1− Fn(r))

≥ 1− Fn(r)

n(1− F (r))
α1E[max

i
ϕ(vi)

+]

≥ 1− Fn(t∗)

n(1− F (t∗))
α1E[max

i
ϕ(vi)

+]

≥ (1− 1/e)α1E[max
i

ϕ(vi)
+].

The lemma follows by setting r′ = t∗ when t∗ ≥ r and r′ = r otherwise.

An alternative (and simpler) proof of Lemma 3.2 could first argue that the revenue
obtained by the first slot is lower-bounded by the revenue of a posted price mechanism
that auctions off the first slot and, then, use the much more general result of Chawla
et al. [2010] to reach the 1 − 1/e bound. We have selected to present this alternative
proof in order to introduce the use of Lemma 3.1 that we also exploit for the particular
case of MHR valuations.

LEMMA 3.3. Let b be a Bayes-Nash equilibrium for a GSP auction game with n
players with random valuations v1, ..., vn drawn i.i.d. from an MHR distribution D.
Then, there exists r′ ≥ r such that

Rr′(b) ≥ (1− e−2)α1E[max
i

ϕ(vi)
+]− (1− e−2)α1r(1− Fn(r)).

PROOF. We assume that E[maxi ϕ(vi)
+] ≥ r(1 − Fn(r)) since the lemma holds triv-

ially otherwise2. Let t∗ be such that F (t∗) = 1 − η/n where η = 2 − (1 − 1/e)n. We
distinguish between two cases depending on whether t∗ ≥ r or not.

We first consider the case t∗ ≥ r. We will use the definition of the virtual valuation,
the fact that the hazard rate function satisfies h(t∗) ≥ h(r) = 1/r, the definition of
t∗, Lemma 3.1 (with t = t∗), and the fact that F (r) ≤ 1 − 1/e which implies that

2Actually, E[maxi ϕ(vi)
+] is never smaller than r(1 − Fn(r)). To see why this is true, consider single-item

auctions of the first slot. Then, α1E[maxi ϕ(vi)
+] is the optimal revenue, while α1r(1−Fn(r)) is the revenue

obtained with a posted price equal to Myerson reserve.
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1− Fn(r) ≥ η − 1. We have

t∗(1− Fn(t∗)) =

(
ϕ(t∗) +

1

h(t∗)

)
(1− Fn(t∗))

=

(
ϕ(t∗) +

η

h(t∗)
− η − 1

h(t∗)

)
(1− Fn(t∗))

≥
(
ϕ(t∗) +

n(1− F (t∗))2

f(t∗)
· η

n(1− F (t∗))
− (η − 1)r

)
(1− Fn(t∗))

= (1− Fn(t∗))

(
ϕ(t∗) +

n(1− F (t∗))2

f(t∗)
− (η − 1)r

)
≥

(
1−

(
1− 2− (1− 1/e)n

n

)n)(
E[max

i
ϕ(vi)

+]− r(1− Fn(r))
)
.

Note that the left side of the above equality multiplied with α1 is a lower bound on
the revenue of GSP with reserve t∗. Also,

(
1− 2−(1−1/e)n

n

)n

is non-decreasing in n and
approaches e−2 from below as n tends to infinity. Furthermore, the right-hand side of
the above inequality in non-negative. Hence,

Rt∗(b) ≥ (1− e−2)α1E[max
i

ϕ(vi)
+]− (1− e−2)α1r(1− Fn(r))

as desired.
We now consider the case t∗ < r. We have

1− η/n = F (t∗) ≤ F (r) ≤ 1− 1/e,

which implies that n ≤ 5. Tedious calculations yield

1− Fn(r)

n(1− F (r))
=

1 + F (r) + ...+ Fn−1(r)

n
≥ 1− e−2

2− e−2

for n ∈ {2, 3, 4, 5} since F (r) ≥ 1− η/n. Hence,

Rr(b) ≥ α1r(1− Fn(r))

≥ (1− e−2)α1nr(1− F (r))− (1− e−2)α1r(1− Fn(r))

≥ (1− e−2)α1E[max
i

ϕ(vi)
+]− (1− e−2)α1r(1− Fn(r)),

where the last inequality follows by applying Lemma 3.1 with t = r. The lemma follows
by setting r′ = t∗ when t∗ ≥ r and r′ = r otherwise.

4. DEVIATION WEIGHT FUNCTION FAMILIES
The main idea we use for the analysis of Bayes-Nash equilibria of auction games with
reserve price t is that the utility of player i with valuation vi = x ≥ t does not increase
when this player deviates to any other bid in [t, x]. This provides us with infinitely
many inequalities on the utility of player i that are expressed in terms of her valuation,
the bids of the other players, and the reserve price. Our technique combines these
infinite lower bounds by considering their weighted average. The specific weights with
which we consider the different inequalities are given by families of functions with
particular properties that we call deviation weight function families. These are defined
in the following.

Definition 4.1. Let β, γ, δ ≥ 0 and consider the family of functions G = {gξ : ξ ∈
[0, 1)} where gξ is a non-negative function defined in [ξ, 1]. G is a (β, γ, δ)–DWFF (devi-

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 0.



Revenue Guarantees in Generalized Second Price Auctions 0:9

ation weight function family) if the following two properties hold for every ξ ∈ [0, 1):

i)

∫ 1

ξ

gξ(y) dy = 1,

ii)

∫ 1

z

(1− y)gξ(y) dy ≥ β − γz + δξ, ∀z ∈ [ξ, 1].

The next technical lemma (proof in Appendix A) presents such a family of deviation
weight functions.

LEMMA 4.2. Consider the family of functions G1 consisting of the functions gξ :
[ξ, 1] → R+ defined as follows for every ξ ∈ [0, 1):

gξ(y) =

{
κ

1−y , y ∈ [ξ, ξ + (1− ξ)λ),

0, otherwise,

where λ ∈ (0, 1) and κ = − 1
ln(1−λ) . Then, G1 is a (κλ, κ, κ(1− λ))–DWFF.

The following lemma is used in order to prove two of our three bounds together with
the deviation weight function family presented in Lemma 4.2.

LEMMA 4.3. Consider a Bayes-Nash equilibrium b for a GSP auction game with
n players and reserve price t ≥ r. Then, the following two inequalities hold for every
player i.

E[ui(b)] ≥
∑
j≥c

E[αj(βvi − γbπ(j) + δt)1{µ(i) = j}], (2)

E[ασ(i)ϕ(vi)] ≥
∑
j≥c

E[αj(βϕ(vi)− γbπ(j))1{µ(i) = j}], (3)

where c is any integer in [n], β, γ, and δ are such that a (β, γ, δ)–DWFF exists, and µ is
any revenue-maximizing allocation3.

PROOF. Consider a Bayes-Nash equilibrium b. Since b is a Bayes-Nash equilib-
rium, we have

E[ui(b)|vi = x] ≥ E[ui(yx,b−i)|vi = x]

≥
∑
j≥c

E[ui(yx,b−i)1{µ(i) = j}|vi = x], (4)

for every y ∈ [t/x, 1] and every integer c ∈ [n].
Furthermore, when µ(i) = j and vi = x, player i occupies slot j (or a higher one)

when deviating to a bid b′i ∈ [t, x] provided that b′i > bπi(j), where πi(j) denotes the
advertiser with the j-th highest bid excluding advertiser i. In this case, the payment
of player i per click is at most b′i. Hence,

ui(yx,b−i) ≥ αj(x− yx)1{y > bπi(j)/x}
≥ αjx(1− y)1{y > bπ(j)/x}, (5)

for every y ∈ [t/x, 1].

3We remark that we have stated inequalities (2) and (3) in a more general form than what is required in the
proofs of Theorems 5.2 and 5.3 later. In particular, we will always invoke them with c = 2 and t = r.
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Now, let G be a (β, γ, δ)–DWFF and let g = gt/x ∈ G. Using its properties, as well as
the above two inequalities, we have

E[ui(b)|vi = x] =

∫ 1

t/x

E[ui(b)|vi = x]g(y) dy

≥
∫ 1

t/x

∑
j≥c

E[ui(yx,b−i)1{µ(i) = j}|vi = x]g(y) dy

=
∑
j≥c

E[
∫ 1

t/x

ui(yx,b−i)g(y) dy1{µ(i) = j}|vi = x]

≥
∑
j≥c

E[αjx

∫ 1

bπ(j)/x

(1− y)g(y) dy1{µ(i) = j}|vi = x]

≥
∑
j≥c

E[αjx(β − γbπ(j)/x+ δt/x)1{µ(i) = j}|vi = x]

=
∑
j≥c

E[αj(βx− γbπ(j) + δt)1{µ(i) = j}|vi = x]. (6)

The first equality follows by the first property in Definition 4.1 for function g, the
first inequality follows by inequality (4), the second equality follows by linearity of
expectation, the second inequality follows by inequality (5) and since bπ(j) ≥ t when
µ(i) = j, and the third inequality follows by the second property in Definition 4.1 for
function g. Note that we have silently assumed that x > 0. In the extreme case where
this is not true (i.e., x = 0), inequality (6) clearly holds since µ(i) = n+1 (i.e., advertiser
i is not assigned to any slot in the revenue maximizing allocation) and the right-hand
side of inequality (6) is zero.

In order to prove inequality (2), we will bound the unconditional utility of player i
using inequality (6) and by integrating over her range of valuations that allow her to
participate in the auction.

E[ui(b)] ≥
∫ ∞

t

E[ui(b)|vi = x]f(x) dx

≥
∫ ∞

t

∑
j≥c

E[αj(βx− γbπ(j) + δt)1{µ(i) = j}|vi = x]f(x) dx

=
∑
j≥c

∫ ∞

t

E[αj(βx− γbπ(j) + δt)1{µ(i) = j}|vi = x]f(x) dx

=
∑
j≥c

E[αj(βvi − γbπ(j) + δt)1{µ(i) = j}]

as desired.
In order to prove inequality (3), we will first use the observation that the utility of

player i with valuation x ≥ t ≥ r is not higher than ασ(i)x, the fact that ϕ(x) ≤ x, and
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inequality (6) to obtain

E[ασ(i)ϕ(x)|vi = x] =
ϕ(x)

x
E[ασ(i)x|vi = x]

≥ ϕ(x)

x
E[ui(b)|vi = x]

≥ ϕ(x)

x

∑
j≥c

E[αj(βx− γbπ(j) + δt)1{µ(i) = j}|vi = x]

≥
∑
j≥c

E[αj(βϕ(x)− γbπ(j))1{µ(i) = j}|vi = x].

Again, we have assumed that x > 0. If this is not the case, the inequality clearly holds.
Using this inequality, we bound the (unconditional) expected revenue from player i by
integrating over her range of valuations that allow her to participate in the auction.

E[ασ(i)ϕ(vi)] ≥
∫ ∞

t

∑
j≥c

E[αj(βϕ(x)− γbπ(j))1{µ(i) = j}|vi = x]f(x) dx

=
∑
j≥c

∫ ∞

t

E[αj(βϕ(x)− γbπ(j))1{µ(i) = j}|vi = x]f(x) dx

=
∑
j≥c

E[αj(βϕ(vi)− γbπ(j))1{µ(i) = j}].

This completes the proof of the lemma.

4.1. A slightly different deviation weight function family
We now introduce a more complex family of deviation weight functions that we will
exploit for the case of MHR valuations and GSP auction games with Myerson reserve.

Definition 4.4. Let β, γ > 0 and consider the family of functions G = {gξ : ξ ∈ [0, 1)}
where gξ is a non-negative function defined in [ξ, 1]. G is a (β, γ)–DWFF (deviation
weight function family) if the following three properties hold for every ξ ∈ [0, 1):

i)

∫ 1

ξ

gξ(y) dy = 1,

ii)

∫ 1

z

(1− y)gξ(y) dy ≥ β − γz + (γ − β)ξ, ∀z ∈ [ξ, 1],

iii) (1− z)

∫ 1

z

gξ(y) dy ≥ β − (γ − β − 1)z + (γ − 2β − 1)ξ, ∀z ∈ [ξ, 1].

The next technical lemma (proof in Appendix B) presents such a family of deviation
weight functions.

LEMMA 4.5. Consider the family of functions G2 consisting of the functions gξ :
[ξ, 1] → R+ defined as follows for every ξ ∈ [0, 1):

gξ(y) =


γ

1−y , y ∈ [ξ, ξ + (1− ξ)λ),
κ(1−ξ)
(1−y)2 , y ∈ [ξ + (1− ξ)λ, ξ + (1− ξ)µ),

0, otherwise,

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 0.



0:12 I. Caragiannis et al.

where κ = γ − 2β − 1 ≥ 0, µ = β
γ−β−1 , β = γ(1−λ) ln(1−λ)+1+(γ−2)λ

1+λ , and 0 < λ ≤ µ < 1,

such that ln
(

1−λ
1−µ

)
= β−γλ

κ . Then, G2 is a (β, γ)–DWFF.

We now provide a lower bound on the utility of each player at a Bayes-Nash equilib-
rium that depends on the existence of a (β, γ)–DWFF.

LEMMA 4.6. Consider a Bayes-Nash equilibrium b for a GSP auction game with n
players and reserve price t. Then, for every player i, it holds that

E[ui(b)] ≥ E[βαµ(i)vi − (γ − β − 1)αµ(i)bπ(µ(i)) + (γ − 2β − 1)αµ(i)t]

+ (β + 1)
∑
j≥2

E[(αjt− αjbπ(j))1{µ(i) = j}],

where β and γ are such that a (β, γ)–DWFF exists and µ is any revenue-maximizing
allocation.

PROOF. Consider a Bayes-Nash equilibrium b. Since b is a Bayes-Nash equilib-
rium, we have

E[ui(b)|vi = x] ≥ E[ui(yx,b−i)|vi = x]

=
∑
j

E[ui(yx,b−i)1{µ(i) = j}|vi = x],

for every y ∈ [t/x, 1].
Furthermore, when µ(i) = j and vi = x, player i occupies slot j (or a higher one)

when deviating to a bid b′i ∈ [t, x] provided that b′i > bπi(j), where πi(j) denotes the
advertiser with the j-th highest bid excluding advertiser i. In this case, the payment
of player i per click is at most b′i. Hence,

ui(yx,b−i) ≥ αj(x− yx)1{y > bπi(j)/x}
≥ αjx(1− y)1{y > bπ(j)/x}, (7)

for every y ∈ [t/x, 1].
A slightly stronger bound holds if we consider deviating to the first slot. In particular,

when µ(i) = 1 and vi = x, player i occupies slot 1 when deviating to a bid b′i ∈ [t, x]
provided that b′i > bπi(1). In this case, the payment of player i per click is at most bπi(1).
Hence,

ui(yx,b−i) ≥ α1(x− bπi(1))1{y > bπi(1)/x}
≥ α1x(1− bπ(1)/x)1{y > bπ(1)/x}, (8)

for every y ∈ [t/x, 1].
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Now, let G be a (β, γ)–DWFF and let g = gt/x ∈ G. Using its properties, as well as the
above three inequalities, we have

E[ui(b)|vi = x] =

∫ 1

t/x

E[ui(b)|vi = x]g(y) dy

≥
∫ 1

t/x

∑
j

E[ui(yx,b−i)1{µ(i) = j}|vi = x]g(y) dy

=
∑
j

E[
∫ 1

t/x

ui(yx,b−i)g(y) dy1{µ(i) = j}|vi = x]

= E[
∫ 1

t/x

ui(yx,b−i)g(y) dy1{µ(i) = 1}|vi = x]

+
∑
j≥2

E[
∫ 1

t/x

ui(yx,b−i)g(y) dy1{µ(i) = j}|vi = x]

≥ E[α1x(1− bπ(1)/x)

∫ 1

bπ(1)/x

g(y) dy1{µ(i) = 1}|vi = x]

+
∑
j≥2

E[αjx

∫ 1

bπ(j)/x

(1− y)g(y) dy1{µ(i) = j}|vi = x],

where the first equality follows by the first property in Definition 4.4 for function g,
the first inequality follows by the equilibrium inequality, the second equality follows
by linearity of expectation, the second inequality follows by inequalities (7) and (8)
and since bπ(j) ≥ t when µ(i) = j, for all j. Now, from the second and third property in
Definition 4.4 for function g, we get
E[ui(b)|vi = x] ≥ E[(βα1x− (γ − β − 1)α1bπ(1) + (γ − 2β − 1)α1t)1{µ(i) = 1}|vi = x]

+
∑
j≥2

E[(βαjx− γαjbπ(j) + (γ − β)αjt)1{µ(i) = j}|vi = x]

=
∑
j

E[(βαjx− (γ − β − 1)αjbπ(j) + (γ − 2β − 1)αjt)1{µ(i) = j}|vi = x]

+ (β + 1)
∑
j≥2

E[(αjt− αjbπ(j))1{µ(i) = j}|vi = x]

= E[βαµ(i)x− (γ − β − 1)αµ(i)bπ(µ(i)) + (γ − 2β − 1)αµ(i)t|vi = x]

+ (β + 1)
∑
j≥2

E[(αjt− αjbπ(j))1{µ(i) = j}|vi = x]. (9)

Note that we have silently assumed that x > 0; again, if this is not the case, inequal-
ity (9) clearly holds. We now bound the unconditional expected utility of player i by
integrating over the range of valuations that allow her to participate in the auction.

E[ui(b)] =

∫ ∞

t

E[ui(b)|vi = x] · f(x) dx

≥ βE[αµ(i)vi]− (γ − β − 1)E[αµ(i)bπ(µ(i))] + (γ − 2β − 1)E[αµ(i)t]

+ (β + 1)
∑
j≥2

E[(αjt− αjbπ(j))1{µ(i) = j}].
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This completes the proof of the lemma.

5. REVENUE GUARANTEES IN GSP AUCTIONS
We will now exploit the techniques developed in the previous sections in order to prove
our bounds for GSP auctions. Throughout this section, we denote by Oj the event that
slot j is occupied in the revenue-maximizing allocation considered. The next lemma
provides a lower bound on the revenue of GSP auctions with Myerson reserve in terms
of the click-through rates, the bids and r.

LEMMA 5.1. Consider a Bayes-Nash equilibrium b for a GSP auction game with
Myerson reserve price r and n players. It holds that∑

j≥2

E[αjbπ(j)1{Oj}] ≤ Rr(b)− α1r · Pr[O1].

PROOF. Consider a Bayes-Nash equilibrium b for a GSP auction game with My-
erson reserve price r. Define Pr[On+1] = 0. Consider some player whose valuation
exceeds r and is thus allocated some slot. Note that the player’s payment per click is
determined by the bid of the player allocated just below her, if there is one, otherwise,
the player’s (per click) payment is set to r. It holds that

Rr(b) =
∑
j

αjr(Pr[Oj ]− Pr[Oj+1]) +
∑
j

E[αjbπ(j+1)1{Oj+1}]

=
∑
j≥2

E[αjbπ(j)1{Oj}] +
∑
j

αjr(Pr[Oj ]− Pr[Oj+1]) +
∑
j

E[(αj − αj+1)bπ(j+1)1{Oj+1}]

≥
∑
j≥2

E[αjbπ(j)1{Oj}] +
∑
j

αjr(Pr[Oj ]− Pr[Oj+1]) +
∑
j

(αj − αj+1)r · Pr[Oj+1]

=
∑
j≥2

E[αjbπ(j)1{Oj}] +
∑
j

αjrPr[Oj ]−
∑
j

αj+1r · Pr[Oj+1]

=
∑
j≥2

E[αjbπ(j)1{Oj}] + α1r · Pr[O1].

The proof follows by rearranging the terms in the last inequality.

5.1. Regular probability distributions
We are ready to present the formal statement of our first main result (Theorem 5.2).
It states that the GSP auction with either the Myerson reserve or the reserve in the
statement of Lemma 3.2 yields a 4.72-approximation to the optimal revenue when val-
uations are drawn from a regular distribution. In the proof, we combine several of the
lemmas presented above, namely Lemma 3.2, inequality (3) from Lemma 4.3, Lemma
5.1, and the DWFF from Lemma 4.2.

THEOREM 5.2. Consider a regular distribution D. There exists some r∗, such that
the revenue guarantee over Bayes-Nash equilibria of GSP auction games with reserve
price r∗ is 4.72, when valuations are drawn i.i.d. from D.

PROOF. By Lemma 3.2, we have that there exists r′ ≥ r such that the expected
revenue over any Bayes-Nash equilibrium b′ of the GSP auction game with reserve
price r′ satisfies

Rr′(b
′) ≥ (1− 1/e)E[α1ϕ(vo(1))

+]. (10)
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Now, let b′′ be any Bayes-Nash equilibrium of the GSP auction game with Myer-
son reserve and let β, γ, and δ be parameters so that a (β, γ, δ)–DWFF exists. Using
inequality (3) from Lemma 4.3 with c = 2 and Lemma 5.1 we obtain

Rr(b
′′) =

∑
i

E[ασ(i)ϕ(vi)]

≥
∑
i

∑
j≥2

E[αj(βϕ(vi)− γbπ(j))1{µ(i) = j}]

= β
∑
j≥2

E[αjϕ(vo(j))
+]− γ

∑
j≥2

E[αjbπ(j)1{Oj}]

≥ β
∑
j≥2

E[αjϕ(vo(j))
+]− γRr(b

′′).

In other words,

(1 + γ)Rr(b
′′) ≥ β

∑
j≥2

E[αjϕ(vo(j))
+].

Using this last inequality together with inequality (10), we obtain(
1 + γ +

eβ

e− 1

)
max{Rr(b

′′),Rr′(b
′)} ≥ (1 + γ)Rr(b

′′) +
eβ

e− 1
Rr′(b

′)

≥ β
∑
j

E[αjϕ(vo(j))
+]

= βROPT .

We conclude that there exists some reserve price r∗ (either r or r′) such that for any
Bayes-Nash equilibrium b it holds that

ROPT

Rr∗(b)
≤ 1 + γ

β
+

e

e− 1
.

By Lemma 4.2, the family G1 is a (β, γ, 0)–DWFF with β = κλ and γ = κ, where
λ ∈ (0, 1) and κ = − 1

ln (1−λ) . By substituting β and γ with these values and using
λ ≈ 0.682, the right-hand side of our last inequality is upper-bounded by 4.72.

5.2. MHR probability distributions
Our next result applies specifically to MHR valuations and provides our strongest rev-
enue guarantee. Its proof combines inequality (2) from Lemma 4.3, Lemma 5.1, Lemma
3.3, and the DWFF defined in Lemma 4.2.

THEOREM 5.3. Consider an MHR distribution D. There exists some r∗, such that
the revenue guarantee over Bayes-Nash equilibria of GSP auction games with reserve
price r∗ is 3.46, when valuations are drawn i.i.d. from D.

PROOF. Let b′ be any Bayes-Nash equilibrium of the GSP auction game with Myer-
son reserve and let β, γ, and δ be parameters so that a (β, γ, δ)–DWFF exists. Since D
is an MHR probability distribution, we have

E[ασ(i)r] ≥ E[ασ(i)(vi − ϕ(vi))] = E[ui(b
′)]
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for every player i. By summing over all players and using inequality (2) from Lemma
4.3 with c = 2, we obtain∑

i

E[ασ(i)r] ≥
∑
i

E[ui(b
′)]

≥
∑
i

∑
j≥2

E[αj(βvi − γbπ(j) + δr)1{µ(i) = j}]

≥
∑
j≥2

E[αj(βϕ(vo(j))
+ − γbπ(j) + δr)1{Oj}]

= β
∑
j≥2

E[αjϕ(vo(j))
+]− γ

∑
j≥2

E[αjbπ(j)1{Oj}] + δ
∑
j≥2

E[αjr1{Oj}]

≥ β
∑
j≥2

E[αjϕ(vo(j))
+]− γRr(b

′) + (γ − δ)E[α1r1{O1}] + δ
∑
j

E[αjr1{Oj}]

= β
∑
j≥2

E[αjϕ(vo(j))
+]− γRr(b

′) + (γ − δ)E[α1r1{O1}] + δ
∑
i

E[αµ(i)r].

The last inequality follows by Lemma 5.1. Since
∑

i E[αµ(i)r] =
∑

i E[ασ(i)r], we obtain
that

γRr(b
′) ≥ β

∑
j≥2

E[αjϕ(vo(j))
+] + (γ − δ)α1r · Pr[O1] + (δ − 1)

∑
i

E[ασ(i)r]. (11)

By Lemma 3.3, we have that there exists r′ ≥ r such that the expected revenue over
any Bayes-Nash equilibrium b′′ of the GSP auction game with reserve price r′ satisfies

Rr′(b
′′) ≥ (1− e−2)E[α1ϕ(vo(1))

+]− (1− e−2)E[α1r1{O1}].
Using this last inequality together with inequality (11), we obtain(

γ +
e2β

e2 − 1

)
max{Rr(b

′),Rr′(b
′′)}

≥ γRr(b
′) +

e2β

e2 − 1
Rr′(b

′′)

≥ β
∑
j

E[αjϕ(vo(j))
+] + (γ − δ − β)E[α1r1{O1}] + (δ − 1)

∑
i

E[ασ(i)r]

≥ βROPT + (γ − δ − β)E[α1r1{O1}] + (δ − 1)
∑
i

E[ασ(i)r].

By Lemma 4.2, the family G1 is a (β, γ, δ)–DWFF with β = γ − δ = κλ, γ = κ, and δ =
κ(1−λ), where λ ∈ (0, 1) and κ = − 1

ln(1−λ) . By setting λ ≈ 0.432 so that δ = κ(1−λ) = 1,
the above inequality implies that there exists some reserve price r∗ (either r or r′) such
that for any Bayes-Nash equilibrium b of the corresponding GSP auction game, it holds
that

ROPT

Rr∗(b)
≤ 1

λ
+

e2

e2 − 1
≈ 3.46,

as desired.

5.3. MHR probability distributions and GSP auctions with Myerson reserve
We now specifically focus on the important GSP auction with Myerson reserve and
present a revenue guarantee of 3.90 for MHR distributions. This bound follows using
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the slightly more involved deviation weight function family from Lemma 4.5 together
with Lemmas 4.6 and 5.1.

THEOREM 5.4. Consider an MHR distribution D. The revenue guarantee over
Bayes-Nash equilibria of GSP auction games with Myerson reserve price r is 3.90, when
valuations are drawn i.i.d. from D.

PROOF. Let b be any Bayes-Nash equilibrium of the GSP auction game with My-
erson reserve and let β and γ be parameters so that a (β, γ)–DWFF G exists. We first
derive a lower bound on the expected utility of each player using Lemma 4.6. We have

E[ui(b)] ≥ E[βαµ(i)vi − (γ − β − 1)αµ(i)bπ(µ(i)) + (γ − 2β − 1)αµ(i)r]

+ (β + 1)

n∑
j≥2

E[αjr − αjbπ(j)1{µ(i) = j}].

By summing over all players, we get∑
i

E[ui(b)] ≥ β
∑
i

E[αµ(i)vi]− (γ − β − 1)
∑
i

E[αµ(i)bπ(µ(i))]

+ (γ − 2β − 1)
∑
i

E[αµ(i)r]− (β + 1)
∑
i

∑
j≥2

E[αjbπ(j)1{µ(i) = j}]

+ (β + 1)
∑
i

∑
j≥2

E[αjr1{µ(i) = j}]. (12)

We will argue about some of the terms of Inequality (12) separately. First note that∑
i

E[ui(b)] =
∑
i

E[ασ(i)(vi − ϕ(vi))] ≤
∑
i

E[ασ(i)r]. (13)

Using Oj to denote the event that slot j is occupied in µ (or σ) when reserve price r is
set, we have ∑

i

E[αµ(i)bπ(µ(i))] =
∑
j

E[αjbπ(j)1{Oj}]

≤
∑
j

E[αjvπ(j)1{Oj}]

=
∑
i

E[ασ(i)vi]

≤
∑
i

E[ασ(i)(ϕ(vi) + r)],

which implies that ∑
j

E[αjbπ(j)1{Oj}] ≤ Rr(b) +
∑
i

E[ασ(i)r]. (14)

Furthermore, ∑
i

∑
j≥2

E[αjbπ(j)1{µ(i) = j}] =
∑
j≥2

E[αjbπ(j)1{Oj}] (15)

and ∑
i

∑
j≥2

E[αjr1{µ(i) = j}] =
∑
j≥2

αjr · Pr[Oj ]. (16)
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Using inequalities (12)-(16) and Lemma 5.1, we obtain∑
i

E[ασ(i)r] ≥ β
∑
i

E[αµ(i)vi]− γRr(b) + (γ − 2β − 1)
∑
i

E[αµ(i)r]

− (γ − β − 1)
∑
i

E[ασ(i)r] + (β + 1)
∑
j≥2

αjr · Pr[Oj ]

+ (β + 1)α1r · Pr[O1]

≥ βROPT − γRr(b) +
∑
i

E[ασ(i)r],

which implies that

ROPT

Rr(b)
≤ γ

β
.

We use the family G2 from Lemma 4.5 with parameters κ = 0.158, λ = 0.163, µ ≈ 0.794,
β ≈ 0.608, and γ = 2.374 to obtain a revenue guarantee of 3.90. The proof of the lemma
is now complete.

6. CONCLUSIONS
Even though we have considerably improved and extended the results of Lucier et al.
[2012], we conjecture that our revenue bounds are not tight. The work of Gomes and
Sweeney [2013] implies that the revenue guarantee of GSP auctions with Myerson re-
serve is in general higher than 1; however, no explicit lower bound is known. Due to
the difficulty in computing Bayes-Nash equilibria analytically, coming up with a spe-
cific lower bound construction is interesting and would reveal the gap of our revenue
guarantees. A concrete question here is whether Myerson reserve is the best choice as
a reserve price.

Furthermore, note that the analysis in Section 4 considers infinitely many deviations
in order to bound the utility of each advertiser. We believe that this argument could
be improved by taking into account the fact that advertisers are utility-maximizers.
Such a detailed reasoning about the structure of equilibria was recently applied by
Chawla and Hartline [2013] on GFP auctions; their results imply that GFP auctions
with Myerson reserve are revenue-optimal. Interestingly, even though GFP auctions
were used by Yahoo! until 2004, they are no longer popular and, instead, GSP is the
de facto standard of the sponsored search industry today. So, we believe that further
exploring the revenue guarantees of variants of GSP auctions is important.
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A. PROOF OF LEMMA 4.2
Let ξ ∈ [0, 1). We first compute

∫ 1

ξ
gξ(y) dy. It holds that∫ 1

ξ

gξ(y) dy =

∫ ξ+(1−ξ)λ

ξ

κ

1− y
dy = −κ ln(1− λ) = 1.

In order to prove the second property of Definition 4.1 we need to show that∫ 1

z

(1− y)gξ(y) dy − κλ+ κz − κ(1− λ)ξ ≥ 0, ∀z ∈ [ξ, 1].

We consider two cases depending on z. First, we consider z ∈ [ξ + (1− ξ)λ, 1], in which
case we have∫ 1

z

(1− y)gξ(y) dy − κλ+ κz − κ(1− λ)ξ = κ(z − λ− (1− λ)ξ)

≥ κ(ξ + (1− ξ)λ− λ− (1− λ)ξ)

= 0.

For z ∈ [ξ, ξ + (1− ξ)λ), we have∫ 1

z

(1− y)gξ(y) dy − κλ+ κz − κ(1− λ)ξ =

∫ ξ+(1−ξ)λ

z

κdy − κλ+ κz − κ(1− λ)ξ

= 0,

and the proof of the lemma is complete.

B. PROOF OF LEMMA 4.5
Let ξ ∈ [0, 1). We begin by computing

∫ 1

ξ
gξ(y) dy. We have∫ 1

ξ

gξ(y) dy =

∫ ξ+(1−ξ)λ

ξ

γ

1− y
dy +

∫ ξ+(1−ξ)µ

ξ+(1−ξ)λ

κ(1− ξ)

(1− y)2
dy

− γ ln(1− λ) +
κ(µ− λ)

(1− µ)(1− λ)
.

It holds that ∫ 1

ξ

gξ(y) dy = −γ ln(1− λ) +
β − λ(γ − β − 1)

1− λ
= 1,

where we get the first equality by substituting κ and µ, and the second equality by
substituting β.

c⃝ 0 ACM 1533-5399/0/-ART0 $15.00
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Regarding the second property of Definition 4.4, we need to prove that∫ 1

z

(1− y)gξ(y) dy − β + γz − (γ − β)ξ ≥ 0, ∀z ∈ [ξ, 1].

We consider three cases depending on z. If z ∈ [ξ + (1− ξ)µ, 1), we have∫ 1

z

(1− y)gξ(y) dy − β + γz − (γ − β)ξ = −β + γz − (γ − β)ξ

≥ (1− ξ) (γµ− β)

≥ 0.

If z ∈ [ξ + (1− ξ)λ, ξ + (1− ξ)µ), we have∫ 1

z

(1− y)gξ(y) dy − β + γz − (γ − β)ξ =

∫ ξ+(1−ξ)µ

z

κ(1− ξ)

1− y
dy − β + γz − (γ − β)ξ

= κ(1− ξ) ln

(
1− z

(1− ξ)(1− µ)

)
− β + γz − (γ − β)ξ

≥ κ(1− ξ) ln

(
1− λ

1− µ

)
− (β − γλ)(1− ξ)

= 0,

where the inequality holds since the function is non-decreasing for z ∈ [ξ+(1− ξ)λ, ξ+
(1− ξ)µ), and the last equality holds by definition. For z ∈ [ξ, ξ + (1− ξ)λ), we have∫ 1

z

(1− y)gξ(y) dy − β + γz − (γ − β)ξ

=

∫ ξ+(1−ξ)λ

z

γ dy +

∫ ξ+(1−ξ)µ

ξ+(1−ξ)λ

κ(1− ξ)

1− y
dy − β + γz − (γ − β)ξ

= γ(ξ + (1− ξ)λ− z) + κ(1− ξ) ln

(
1− λ

1− µ

)
− β + γz − (γ − β)ξ

= γλ(1− ξ) + κ(1− ξ) ln

(
1− λ

1− µ

)
− β(1− ξ)

= 0,

where the last equality holds by definition.
For the third property of Definition 4.4, we need to prove that

(1− z)

∫ 1

z

gξ(y) dy − β + (γ − β − 1)z − (γ − 2β − 1)ξ ≥ 0, ∀z ∈ [ξ, 1].

Again, we distinguish between three cases depending on z. First we consider z ∈ [ξ +
(1− ξ)µ, 1). We have

(1− z)

∫ 1

z

gξ(y) dy − β + (γ − β − 1)z − (γ − 2β − 1)ξ

= −β + (γ − β − 1)z − (γ − 2β − 1)ξ

≥ −β(1− ξ) + (γ − β − 1)(1− ξ)µ

= 0.
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For z ∈ [ξ + (1− ξ)λ, ξ + (1− ξ)µ), we have

(1− z)

∫ 1

z

gξ(y) dy − β + (γ − β − 1)z − (γ − 2β − 1)ξ

= (1− z)

∫ ξ+(1−ξ)µ

z

κ(1− ξ)

(1− y)2
dy − β + (γ − β − 1)z − (γ − 2β − 1)ξ

=
κ(1− z)

1− µ
− κ(1− ξ)− β + (γ − β − 1)z − (γ − 2β − 1)ξ

= κ

(
1

1− µ
− 1

)
− β

= 0,

where the second to last equality holds since the coefficients of z cancel out. Finally, if
z ∈ [ξ, ξ + (1− ξ)λ), we have

(1− z)

∫ 1

z

gξ(y) dy − β + (γ − β − 1)z − (γ − 2β − 1)ξ

= (1− z)

∫ ξ+(1−ξ)λ

z

γ

1− y
dy + (1− z)

∫ ξ+(1−ξ)µ

ξ+(1−ξ)λ

κ(1− ξ)

(1− y)2
dy − β + (γ − β − 1)z

− (γ − 2β − 1)ξ

= γ(1− z) ln

(
1− z

(1− ξ)(1− λ)

)
+ κ(1− z)

µ− λ

(1− µ)(1− λ)
− β + (γ − β − 1)z

− (γ − 2β − 1)ξ

≥ κ(1− ξ)
µ− λ

1− µ
− β(1− ξ) + (γ − β − 1)(1− ξ)λ

= 0,

where the inequality follows since the derivative with respect to z is negative. The
proof of the lemma is complete.
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