
The University of Manchester Research

Stock returns prediction using kernel adaptive filtering
within a stock market interdependence approach
DOI:
10.1016/j.eswa.2020.113668

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Garcia-vega, S., Zeng, X., & Keane, J. (2020). Stock returns prediction using kernel adaptive filtering within a stock
market interdependence approach. Expert Systems with Applications, 160, 113668.
https://doi.org/10.1016/j.eswa.2020.113668

Published in:
Expert Systems with Applications

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:21. Oct. 2022

https://doi.org/10.1016/j.eswa.2020.113668
https://www.research.manchester.ac.uk/portal/en/publications/stock-returns-prediction-using-kernel-adaptive-filtering-within-a-stock-market-interdependence-approach(6567998a-0a02-40db-aca7-c24f6e3da072).html
https://doi.org/10.1016/j.eswa.2020.113668

Stock returns prediction using kernel adaptive filtering
within a stock market interdependence approach

Sergio Garcia-Vegaa,∗, Xiao-Jun Zenga, John Keanea

aSchool of Computer Science, University of Manchester, Kilburn Building, Oxford Road,
Manchester, M13 9PL, United Kingdom

Abstract

Stock returns are continuously generated by different data sources and depend

on various factors such as financial policies and national economic growths.

Stock returns prediction, unlike traditional regression, requires consideration of

both the sequential and interdependent nature of financial time-series. This

work uses a two-stage approach, using kernel adaptive filtering (KAF) within

a stock market interdependence approach to sequentially predict stock returns.

Thus, unlike traditional KAF formulations, prediction uses not only their lo-

cal models but also the individual local models learned from other stocks, en-

hancing prediction accuracy. The enhanced KAF plus market interdependence

framework has been tested on 24 different stocks from major economies. The

enhanced approach obtains higher sharpe ratio when compared with KAF-based

methods, long short-term memory, and autoregressive-based models.

Keywords: Stock returns prediction; Sequential learning; Interdependence

between markets; Kernel adaptive filtering.

1. Introduction

Stock returns are continuously generated by different and separate data

sources, such as banks, corporations, and individuals. Thus, unlike traditional

∗Corresponding author
Email addresses: sergio.garcia-vega@postgrad.manchester.ac.uk (Sergio

Garcia-Vega), x.zeng@manchester.ac.uk (Xiao-Jun Zeng), john.keane@manchester.ac.uk
(John Keane)

Preprint submitted to Journal of LATEX Templates April 24, 2020

classification and regression problems, predicting these time-series requires con-

sideration of: i) a continuous sequence of data records (Cui et al., 2016); ii) the

interdependency between stock markets (Rejeb & Arfaoui, 2016). The stock

returns are characterized by nonlinearities and high noise, which imposes addi-

tional challenges to obtaining reliable prediction (Ballings et al., 2015).

We introduce a two-phase framework for stock returns prediction using se-

quential learning within a stock market interdependence approach. Thus, the

underlying models of each stock are learned separately using a kernel-based

adaptive filter that encodes different patterns of the input space. Further, stock

returns are predicted using not only their local models, but also the individual

local models learned from other stocks, providing a natural way to incorpo-

rate these interdependencies. The proposed framework is a distributed learning

paradigm rather than a centralized one in the sense that individual prediction

models are learned based solely on a local data store, thus avoiding expensive

and time-consuming data transportation into an integrated, central data store.

Such a distributed learning paradigm is especially critical for big data analysis

and real-time learning (Scardapane et al., 2016; Sohangir et al., 2018).

The framework is validated on 24 different stocks from three major economies,

i.e., Germany, United States, and United Kingdom. Simulation obtains low val-

ues of mean absolute error (MAE) and mean square error (MSE) when compared

with kernel-based adaptive filter, long short-term memory, and autoregressive-

based methods. In addition, local models learned from stocks in the UK and

the US were used to predict stocks traded in Germany, maximizing returns and

reducing volatility.

The remainder of the paper is structured as follows: Section 2 shows the

relevant background and related work; Section 3 introduces the proposed frame-

work; the experimental settings are described in Section 4; Section 5 presents

simulation results and analysis; and Section 6 concludes.

2

2. Background and Related Work

2.1. Sequential Learning

Several prediction methods that consider the sequential and interdependent

nature of financial time series have been proposed. Sequential learning is usually

addressed using the following methods: i) statistical models, such as autoregres-

sive integrated moving average (Lee & Tong, 2011; Ramos et al., 2015). How-

ever, such linear models may not be well suited for characterizing the stochastic

nature and uncertain dynamics of financial time series (Khashei & Hajirahimi,

2018; Suhermi et al., 2018); ii) feedforward neural networks (FFNNs) (Goodfel-

low et al., 2016), where sequential data is modeled by adding a set of delays to

the input, e.g., time-delay NNs (Huang et al., 2017), that deals with the shortest

path problem by means of time-dependent neurons; iii) recurrent NNs (Pascanu

et al., 2013), that model sequence structure with recurrent lateral connections

and process the data sequentially one record at a time, e.g., long short-term

memory (LSTM) (Fischer & Krauss, 2018); iv) kernel adaptive filters (KAFs),

that combine the universal approximation property of NNs and the convex op-

timization of linear adaptive filters, e.g., kernel least-mean-square (KLMS) (Liu

et al., 2008).

The prediction of financial time series has been addressed with a variety of

NN approaches (Rather et al., 2015; Liu et al., 2015; Doucoure et al., 2016;

Hosaka, 2019). However, these strategies may fail, as they can get stuck in local

minima during the training stage (Principe, 2010). In addition, these methods

require all the training data to be fully prepared in advance, restricting their

application in sequence prediction (Gu et al., 2014). In practice, as NN models

are retrained at regular intervals they require both significant computing and

storage resources (Cui et al., 2016). Note that non-parametric kernel approaches

have proven useful in identifying non-linear systems (Orabona et al., 2009; Zhao

et al., 2011; Tang et al., 2017), showing that their convex optimization helps to

reduce the computational complexity in sequential learning environments (Liu

et al., 2011). The KAFs-based approaches can start learning the model without

3

having the entire training set in advance, as their learning scheme is a combina-

tion of memory-based learning and error-correction, meaning that the model is

updated sequentially in real-time while predictions are obtained. Hence, in this

work, we use a KAF-based sequential learning method to model nonlinearities

in financial time series.

2.2. Interdependency between stock markets

In addition to the sequential nature of financial time series, stock markets

are themselves highly complex systems depending on various factors such as

financial policies, national economic growths and sector performance (Zhang

et al., 2019). It has became clear that all agents involved in a given stock

market may exhibit interconnections and correlations, representing important

internal forces of the market (Collins & Biekpe, 2003; Jizba et al., 2012) - that

is, the movement of a stock market in a country is likely to be affected by move-

ment of other stocks in both that country and in other regions (Masih & Masih,

2001). The following strategies have been proposed to identify and quantify

interactions on this type of complex system (Greenblatt et al., 2012): i) space-

time, such as covariance (Wang & Ye, 2016; De Ketelaere et al., 2018), correla-

tion (Kenett et al., 2015), Granger causality (Papana et al., 2017), Shannon en-

tropy (Sulthan et al., 2016), mutual information (Wang & Hui, 2017), and Renyi

entropy (Brody et al., 2007); ii) space-frequency and space-time-frequency, such

as Fourier transform (Fang & Chang, 2017; Saia et al., 2017), coherence (Vacha

& Barunik, 2012), phase synchronization (Radhakrishnan et al., 2016), directed

transfer function (Kamiński et al., 2001), wavelet transform (Joo & Kim, 2015;

Saia, 2017), and cross-time frequency measures (Loh, 2013). The previous works

study how the price of one stock is influenced by the economic factors of other

markets. However, their models do not consider changes in network structure

over time, meaning that the conditions for which the models were optimized

may disappear (Olsen et al., 2018). Hence, how to incorporate these interde-

pendencies into an analytical model, such as sequential learning, to predict stock

returns in real-time remains an open issue.

4

3. Proposed sequential prediction and stock market interdependence

framework

We develop a two-stage framework for stock returns prediction: (1) sequen-

tial learning, where the underlying models of each stock are learned separately

using KAFs (Section 3.1); (2) interdependence between stocks, where local mod-

els learned from different stock markets are used to improve prediction (Sec-

tion 3.2).

3.1. Sequential learning based on kernel adaptive filtering

Given a set of training data T ={ut, yt : t∈[1, N]}, where ut∈RM is an input

vector and yt∈R is the desired output (see Figure 1). The task is to infer the

underlying function y=f(u) from the given data T and, for a new input vector

u′∈RM , predict the value of a new observation y′∈R.

In practice, a KAF sequentially estimates f by using the current input-

output pair {ut, yt} and updating the previous estimate ft−1 as follows (Liu

et al., 2008):


f0 = 0

et = yt − ft−1 (ut)

ft = ft−1 + ηetκσ(ut, ·)

(1)

being η∈R+ the step-size, ft the learned mapping, et∈R the prediction er-

ror, while κσ(·, ·)∈R+ is a Mercer kernel with a bandwidth σ∈R+ that controls

the mapping smoothness (Scholkopf & Smola, 2001). Note that Equation (1)

creates a kernel unit for every new sample, where ut is the center and ηet its

coefficient, posing additional issues for continuous adaptation scenarios. A chal-

lenge is to curb the network growth by either eliminating redundant information

or minimizing information loss - that is, only using input data with high infor-

mation content as the new centers.

We propose to reduce the network size by partitioning the centers into distinct

regions that encode different patterns of the input space. Thus, as it has shown

5

y
1

y
2

y
3

y
4

u

{ y
0

y
-1

y
-2 y

N
y

N-1
y

N-2
y

N-3

y
1

y
2

y
3

y
4

u2

{y
0

y
-1

y
-2 y

N
y

N-1
y

N-2
y

N-3

y
1

y
2

y
3

y
4

uN

{y
0

y
-1

y
-2 y

N
y

N-1
y

N-2
y

N-3

First training sample

Second training sample

Last training sample

1

Figure 1: Three representative samples of the training set T when M=3. The blue line

represents stock returns of a given stock from which the training samples are selected. The

upper, middle and lower graphs show the first, second, and last training samples, respectively.

stable performance in non-stationary environments, these patterns are identi-

fied using a previously proposed change point detection method (Yamanishi &

Takeuchi, 2002). This method, at each iteration t, determines whether a change

in the distribution has occurred within the sequence y1, . . . , yt. This is done by

measuring how large the probability density function pt has moved from pt−1

after learning from yt. Particularly, it is stated that a change point has taken

place at iteration t when the following inequality holds:

ε(yt, pt−1) ≥ δ (2)

where ε(yt, pt−1)=− log pt−1(yt) denotes a prediction loss for yt relative to a

probability density function pt−1, while δ∈R+ is a predefined threshold. Thus,

when a change-point is detected within the sequence y1, . . . , yt, we form a new

set of centers or dictionary. Additionally, to avoid large discontinuities in learn-

6

ing (Li & Pŕıncipe, 2017), all the centers and coefficients of the closest dictionary

are copied or transferred to the newly formed dictionaries as follows:

(i) ε(yt, pt−1) ≥ δ: This indicates a change in data distribution; hence, the

following three dictionaries are formed,

• C|C|+1={Ci∗ ,ut}, with C={Ci : i∈[1, |C|]};

• Y|Y|+1={Yi∗ , yt−1}, with Y={Yi : i∈[1, |Y |]};

• W|W|+1={Wi∗ , ηet}, with W={Wi : i∈[1, |W |]};

where |C|=|Y |=|W | denotes the number of elements in each dictionary. In

addition, Ci∗={uj : j∈[1, L]}, Yi∗={yj : j∈[1, L]}, and Wi∗={ηej : j∈[1, L]}

are the closest dictionaries to yt−1. Note, Ci∗ , Yi∗ , and Wi∗ are found

using yt−1 rather than yt. This is because, during real-time prediction

tasks, only the input vectors ut are known and the desired output yt is

the value to be predicted. As seen in Figure 1, yt−1 is always the last

element of the input vector ut. We find the closest dictionary i∗ using the

Kullback-Leibler divergence as:

i∗ = arg min
∀i

pYit−1 ln
(
pYit−1/p

Yi
t

)
(3)

where pYit−1 and pYit are the probability density functions of Yi before

and after learning yt−1, respectively. The primary rationale behind the

suggested strategy in Equation (3) is to quantify the information content

that yt−1 will provide to each dictionary Yi. That is, when yt−1 does not

provides high information content to a dictionary Yi, the Kullback-Leibler

divergence will tend to zero, meaning that the two distributions pYit−1 and

pYit are identical. Thus, the dictionary Yi that minimizes Equation (3)

will be the closest dictionary to yt−1.

(ii) ε(yt, pt−1) < δ: This means that the data distribution has not changed

and, therefore, it is unnecessary to divide the centers into a new region.

In addition, to curb the growth of the radial-basis-function structure, we

incorporate an online vector quantization technique as follows,

7

• min
∀i

pYit−1 ln
(
pYit−1/p

Yi
t

)
≤ ε: The dictionary sizes remain the same

and only the closest coefficient to ut is updated using the following

expression,

W(j∗)
i∗ =W(j∗)

i∗ + ηet, (4)

where the closest coefficient j∗ is computed as follows,

j∗=arg min
∀j

∥∥∥ut − C(j)i∗ ∥∥∥ , (5)

being ‖·‖ the `2 norm and ε∈R+ a predefined threshold. The pre-

viously imposed restraint aims to assign a new center ut into the

dictionary Ci∗ only when yt−1 provides high information content to

the dictionary Yi∗ .

• min
∀i

pYit−1 ln
(
pYit−1/p

Yi
t

)
> ε: The sample ut is assigned as a new cen-

ter to the closest dictionary Ci∗ , the previous desired output yt−1 is

stored in the dictionary Yi∗ , while the set of coefficients Wi∗ is up-

dated using et, i.e., Ci∗={Ci∗ ,ut}, Yi∗={Yi∗ , yt−1}, Wi∗={Wi∗ , ηet}.

The above quantization technique has similarities to the method in Chen

et al. (2012). The key difference between the two strategies is that our

proposal is not based on the distance measure in the input space. Rather,

we use the data distribution as the criterion to update the network. This

enhances utilization efficiency of the closest center, which may yield better

prediction accuracy and in some circumstances a more compact network.

The proposed strategy for sequential learning, when applied to a single

stock, is summarized in Algorithm 1.

8

Algorithm 1: Strategy for sequential learning.

input : T – training data

1 Parameter setting: η- step-size, σ- kernel parameter, δ- change point

threshold, ε- quantization threshold

2 Initial dictionaries: C1={u1}, Y1=y0, W1=ηy1

3 Sets of initial dictionaries: C={C1}, Y={Y1}, W={W1}

4 Computation:

5 while {ut, yt} available do

6 Select the closest dictionary: i∗=arg min
∀i

pYit−1 ln
(
pYit−1/p

Yi
t

)
7 Compute the filter output: ŷt=

∑L
j=1W

(j)
i∗ κσ

(
C(j)i∗ ,ut

)
8 Compute the error: et=yt − ŷt

9 if ε(yt, pt−1) ≥ δ then

10 Form new dictionaries:

11 C|C|+1={Ci∗ ,ut}, Y|Y|+1={Yi∗ , yt−1}, W|W|+1={Wi∗ , ηet}

12 Update set of dictionaries:

13 C={C, C|C|+1}, Y={Y,Y|Y|+1}, W={W,W|W|+1}

14 else

15 if min
∀i

pYit−1 ln
(
pYit−1/p

Yi
t

)
≤ ε then

16 Select the closest center: j∗=arg min
∀j

∥∥∥ut − C(j)i∗ ∥∥∥
17 Update coefficient of closest center: W(j∗)

i∗ =W(j∗)
i∗ + ηet

18 else

19 Assign a new center: Ci∗={Ci∗ ,ut}

20 Assign a new desired output: Yi∗={Yi∗ , yt−1}

21 Assign a new coefficient: Wi∗={Wi∗ , ηet}

output: C, Y, W

3.2. Stock returns prediction within a stock market interdependence approach

With the aim of enhancing stock returns prediction, we consider interdepen-

dencies between stock markets. More formally, let D={Tr : r ∈ [1, S]} be the

set of training samples of S stocks, where Tr={ut,r, yt,r : t∈[1, N]}. The under-

lying models of each Tr, as seen in Figure 2, are learned separately using Algo-

9

rithm 1, giving three sets of dictionaries per stock, i.e., Cr={Ci,r : i∈[1, |Cr|]},

Yr={Yi,r : i∈[1, |Yr|]}, and Wr={Wi,r : i∈[1, |Wr|]}.

Stock 1

Stock 2

Stock S

Figure 2: Sequential learning within a stock market interdependence approach.

Then, when a new input vector u′∈RM arrives, the task is to predict a value

y′∈R. Thus, the first step is to find the closest dictionary i∗, as in Section 3.1,

using the following expression:

i∗ = arg min
∀i,r

p
Yi,r
t−1 ln

(
p
Yi,r
t−1 /p

Yi,r
t

)
, (6)

from Equation (6), it can be seen that several stocks are considered in the

selection of the closest dictionaries Ci∗={uj : j∈[1, L]} and Wi∗={ηej : j∈[1, L]}.

In practice, these dictionaries are used to predict y′ as follows:

y′=

L∑
j=1

W(j)
i∗ κσ

(
C(j)i∗ ,ut

)
(7)

Note that, when a new sample u′ comes from the r-th stock, its prediction

is usually calculated using the model learned on that stock. Here, we predict

u′ using not only the local model but also the individual local models learned

from other stocks (see Equations (6) and (7)). This strategy has similarities to

previously proposed methods such as ensemble learning (Dietterich et al., 2002;

Krawczyk et al., 2017) and forecast combination (Newbold & Harvey, 2002;

Baumeister & Kilian, 2015). The ensemble learning framework is constructed

in two steps (Zhou, 2015): 1) a number of base learners are produced, which

can be generated in a parallel or sequentially; 2) the base learners are combined

using majority voting for classification or weighted averaging for regression.

10

However, the combination of multiple classifiers does not always outperform

the best individual classifier (Polikar, 2009). In addition, better results may be

obtained when some base learners are selected instead of ensemble them (Zhou

et al., 2002). In contrast to ensemble learning methods, our approach does

not combine the base learners; rather, here, the prediction tasks are performed

only by the best learner. This better utilises the internal forces of the market,

provides a natural way to incorporate interdependencies between stock mar-

kets, and, in some circumstances, may enhance accuracy in real-time prediction

tasks (Zhou & Tang, 2003). Finally, the proposed real-time prediction frame-

work for stock returns is shown in Algorithm 2.

Algorithm 2: Predicting stock returns within a stock market interde-

pendence approach.

input : u′; C1,. . . ,CS ; Y1,. . . , YS ; W1,. . . ,WS

1 Parameter setting: σ- kernel parameter

2 Computation:

3 Select the closest dictionary

4 i∗ = arg min
∀i,r

p
Yi,r
t−1 ln

(
p
Yi,r
t−1 /p

Yi,r
t

)
5 Compute the output of the filter

6 y′=
∑L
j=1 W

(j)
i∗ κσ

(
C(j)
i∗ ,ut

)
output: y′

4. Experimental Design

The aim is to use the last ten stock returns to predict the current day price

change. The learned filter, as in Liu et al. (2011), is used to compute the

performance values on each test set. We validate the proposed framework for

stock returns prediction using the following performance measures:

• Mean Absolute Error (MAE), a negatively-oriented score that measures

the average of absolute errors - lower MAE values indicates better predic-

tion performance (Baek & Kim, 2018);

11

• Mean Squared Error (MSE), measures the average of the squares of the

errors, meaning that values closer to zero are better (Kiran et al., 2020);

• Sharpe Ratio (SR), quantifies the average return earned in excess of the

risk-free rate per unit of volatility or total risk (Wang et al., 2020). Here, as

suggested in Almahdi & Yang (2019), the Sharpe Ratio does not consider

any risk-free rate.

The above metrics have been widely used to measure models’ predictive

power and their trading performance France & Ghose (2019); Portugal et al.

(2018); Kalayci et al. (2019). The first two performance measures are regression-

oriented metrics, while the last one is considered the industry standard for mea-

suring risk-adjusted return (Jalota et al., 2017). In addition, for comparison

purposes, the proposed framework is contrasted with the following online pre-

diction methods:

1. Long Short-Term Memory (LSTM), representing the state-of-the-art RNN

model for sequence learning tasks (Nweke et al., 2018). Here, as it has

shown competitive performance, the implementation known as vanilla

LSTM is used (Greff et al., 2017);

2. Nearest Instance Centroid-Estimation (NICE) (Li & Pŕıncipe, 2017), a

recently proposed method that outperforms traditional KAF-based algo-

rithms in prediction of chaotic time-series;

3. Quantized Kernel Least-Mean-Square (QKLMS) (Chen et al., 2012), a

well-known adaptive filtering method that uses an online vector quantiza-

tion strategy;

4. Vector Autoregression (VAR) (Jang, 2020), a forecasting method used to

identify relationships among multiple time-series;

5. Vector Error Correction Model (VECM) (Liang & Schienle, 2019), which

is considered the standard tool to handle multivariate non-stationary time-

series.

12

The Python implementation of the above methods can be downloaded from

https://github.com/segarciave/ESwA-2020.

4.1. Dataset

The daily closing prices data used to calculate the returns are collected from

Yahoo Finance1. Here, as suggested in Siikanen et al. (2018), we calculate daily

log returns using the adjusted closing prices of each day. The publicly available

dataset can be downloaded using Python libraries such as yfinance (please visit

the following GitHub page for more details https://segarciave.github.io/

stock_returns_prediction). Testing has been carried out on 24 different

stocks from three major economies over 12 years (see Table 1). The considered

training set ranges from January 17, 2006, to November 30, 2016, while the

test set covers January 3, 2017, to February 28, 2018. In the simulations, as

suggested in Chen (2019), the dataset is standardized so all stocks have a mean

estimation of zero and a standard deviation of one.

4.2. Parameter settings

Table 2 summarizes the set-up of compared methods in the tested stocks.

The parameters were heuristically adjusted to provide the best possible accuracy

in this dataset. In particular, to ensure consistency in the results, both η and σ

remain the same for all KAF methods. Thus, as long as this condition is met,

different η and σ values from those shown in Table 2 will not offer an advantage

to any particular algorithm.

We train the LSTM method using a single hidden layer with 20 neurons,

as suggested in Cui et al. (2016). The LSTM activation function, as suggested

in Tian et al. (2018), is the sigmoid, while the optimization is performed by

Adam algorithm with MSE as the loss function (Kingma & Ba, 2014). The

LSTM method was implemented using TensorFlow (version 1.4.0) 2 and Keras

1https://finance.yahoo.com/
2https://www.tensorflow.org/

13

https://github.com/segarciave/ESwA-2020
https://segarciave.github.io/stock_returns_prediction
https://segarciave.github.io/stock_returns_prediction

Table 1: Stocks considered in the experimental design.
Market Ticker Stock

DE

ADS Adidas AG

ALV Allianz SE

DPW Deutsche Post AG

DTE Deutsche Telekom AG

HEI Heidelberg Cement AG

LIN Linde AG

MRK Merck KGaA

SAP SAP AG

UK

ADM Admiral Group PLC

AHT Ashtead Group PLC

BA BAE Systems PLC

BP BP PLC

CCL Carnival PLC

IAG International Consolidated Airlines Group

SKY SKY PLC

VOD Vodafone Group PLC

US

AAL American Airlines Group Inc

AAPL Apple Inc

AMZN Amazon Inc

C Citigroup Inc

GOOGL Alphabet In-CL A

MSFT Microsoft Corp

SPY SPDR S&P 500 Etf

T AT&T

(version 2.1.2) 3. The free parameters of autoregressive-based methods (VAR

and VECM) were selected using heuristic approaches and following strategies

proposed in the literature (Lütkepohl, 2013; Kuo, 2016). These parameters

were chosen to achieve the best MSE on each tested data set.

The performance of our proposal is sensitive to the selection of δ and ε;

however, values for these parameters can be selected as follows: i) δ-threshold,

based on our experimentation, an appropriate value is in the interval [5, 15]; ii)

ε-quantization value, where a value of 0.0001 has shown stable performance on

all tested stocks.

5. Simulation Results and Analysis

The simulation results for the compared methods are shown in Tables 3 to 5,

where the last row displays the average performance of each algorithm. The

best overall method is in bold notation and marked with an asterisk. Table 3

3https://keras.io/

14

Table 2: Parameter setting of compared methods. M -input vector size, η-step size, σ-

bandwidth, λ-quantization value, β-centroid distance, δ-threshold, ε-quantization value, L-

layers, N -neurons per layer, G-maximum number of lags, A-number of lagged differences in

the model, I-cointegration rank.

Method
Parameter

M η σ λ β δ ε L N G A I

LSTM 10 - - - - - - 1 20 - - -

NICE 10 0.05 0.5 0.06 2σ - - - - - - -

Proposal 10 0.05 0.5 - - 10 0.0001 - - - - -

QKLMS 10 0.05 0.5 0.4 - - - - - - - -

VAR 10 - - - - - - - - 15 - -

VECM 10 - - - - - - - - - 3 0

shows the MAE values of each method in the considered stocks. The LSTM

method outperforms the other algorithms, converging to the lowest average

MAE value. This means that an error no greater than 0.012 can be expected

during the prediction task on average. Although LSTM shows the best perfor-

mance, the compared methods also converge to relatively low values of MAE.

Note, a method that minimises MAE will lead to forecasts of the median (Chai

& Draxler, 2014), meaning that this scale-dependent metric may be unable to

quantify the prediction of abrupt changes in stock returns.

Table 4 summarizes the MSE prediction performance, where lower values

are better. The compared methods show similar MSE values, suggesting a rel-

atively good prediction performance on all considered stocks under this metric.

However, NN-based methods such as LSTM requires significant computing re-

sources, as they need to be retrained regularly in sequence prediction tasks (Cui

et al., 2016). In practice, this means that several epochs have to be re-performed

each time a new sample arrives in the system, which allows finding the best pos-

sible performance when the training set is updated. The learning scheme of our

proposal, unlike LSTM and autoregressive-based methods, does not require the

entire training set in advance to start learning the model. In contrast, the model

is updated sequentially while predictions are obtained at the same time, pro-

viding an alternative to sequence prediction tasks. Additionally, the proposed

interdependence strategy allows predicting each stock using not only the local

model but also the models learned from other stock markets, supporting the

15

Table 3: Testing MAE at final iteration in stock returns prediction.

Stock
Method

LSTM NICE Proposal QKLMS VAR VECM

DE

ADS 0.0109 0.0109 0.0137 0.0109 0.0115 0.0136

ALV 0.01 0.0101 0.0122 0.01 0.0101 0.0122

DPW 0.0611 0.0608 0.0645 0.0609 0.0601 0.0711

DTE 0.0063 0.0063 0.0142 0.0063 0.0065 0.0073

HEI 0.0099 0.0097 0.0161 0.0098 0.0102 0.0115

LIN 0.0077 0.0075 0.01 0.0075 0.0077 0.0093

MRK 0.0071 0.0071 0.0112 0.0071 0.0073 0.0087

SAP 0.007 0.0078 0.013 0.0078 0.0072 0.0086

UK

ADM 0.0084 0.0083 0.0154 0.0083 0.0087 0.0105

AHT 0.0153 0.0153 0.0215 0.0152 0.0162 0.0196

BA 0.0089 0.0087 0.0134 0.0088 0.0093 0.0106

BP 0.0076 0.0077 0.0194 0.0077 0.0076 0.009

CCL 0.0081 0.0082 0.0156 0.0082 0.0085 0.0106

IAG 0.021 0.0213 0.0322 0.0212 0.0214 0.0246

SKY 0.0323 0.0323 0.039 0.0322 0.0325 0.0398

VOD 0.0072 0.0083 0.0166 0.0081 0.0074 0.0088

US

AAL 0.0139 0.0149 0.0228 0.0148 0.0155 0.0181

AAPL 0.0086 0.0086 0.0224 0.0085 0.0088 0.0095

AMZN 0.0095 0.0102 0.0232 0.01 0.0101 0.0115

C 0.0087 0.0094 0.0417 0.0094 0.0097 0.0123

GOOGL 0.008 0.0082 0.0098 0.0081 0.0082 0.0091

MSFT 0.0077 0.0074 0.01 0.0075 0.0078 0.009

SPY 0.0039 0.0038 0.0057 0.0038 0.0041 0.005

T 0.0083 0.0081 0.0105 0.0082 0.0081 0.0096

Mean 0.012* 0.013 0.02 0.013 0.013 0.015

Standard Deviation 0.012 0.012 0.013 0.012 0.011 0.014

learning of arbitrary long-term dependencies in the input sequences.

The previous metrics attempt to measure the predictive power of models.

However, they do not provide any insight into the performance of the compared

methods from a trading point of view. Table 5 shows the SR values of each

method in the considered stocks, where a higher value means greater returns

for the portfolio relative to the inherent risk (Kaplanski et al., 2016). We see

that our proposal outperforms the other algorithms, converging to higher values

of SR, which suggests that the proposed interdependence strategy helps maxi-

mize returns while reducing volatility. This strategy selects a model based on

each new data point that arrives. For example, it may be possible to obtain

some predictions on ADS (a stock traded in Germany) using the model learned

from VOD (a stock traded in the UK). However, the converging speed may be

adversely affected if the kernel bandwidth parameter is inappropriately chosen.

Consequently, a suitable value can be selected using a method like Silverman’s

16

Table 4: Testing MSE at final iteration in stock returns prediction.

Stock
Method

LSTM NICE Proposal QKLMS VAR VECM

DE

ADS 0.0003 0.0003 0.0004 0.0003 0.0003 0.0004

ALV 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

DPW 0.0135 0.0135 0.014 0.0134 0.0132 0.0172

DTE 0.0001 0.0001 0.0003 0.0001 0.0001 0.0001

HEI 0.0002 0.0002 0.0004 0.0002 0.0002 0.0002

LIN 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001

MRK 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002

SAP 0.0001 0.0001 0.0003 0.0001 0.0001 0.0001

UK

ADM 0.0002 0.0002 0.0004 0.0002 0.0002 0.0002

AHT 0.0005 0.0005 0.0008 0.0005 0.0005 0.0007

BA 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002

BP 0.0001 0.0001 0.0005 0.0001 0.0001 0.0001

CCL 0.0001 0.0001 0.0004 0.0001 0.0001 0.0002

IAG 0.0009 0.0009 0.0016 0.0009 0.0009 0.0011

SKY 0.0028 0.0028 0.0034 0.0028 0.0028 0.0037

VOD 0.0001 0.0001 0.0004 0.0001 0.0001 0.0002

US

AAL 0.0004 0.0004 0.0008 0.0004 0.0004 0.0005

AAPL 0.0001 0.0002 0.0006 0.0002 0.0002 0.0002

AMZN 0.0002 0.0002 0.0007 0.0002 0.0002 0.0003

C 0.0001 0.0002 0.0019 0.0002 0.0002 0.0002

GOOGL 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002

MSFT 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002

SPY 0.000 0.000 0.0001 0.000 0.000 0.0001

T 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002

Mean 0.001 0.001 0.001 0.001 0.001 0.001

Standard Deviation 0.003 0.003 0.003 0.003 0.003 0.003

rule of thumb (Liu et al., 2011). In addition, the proposed method uses linear

adaptive structures in reproducing kernel Hilbert spaces (RKHS) to obtain non-

linear filters in the input space, enhancing prediction tasks while preserving the

simplicity of linear adaptive filters.

The true and predicted stock returns are shown in Figure 3 for three rep-

resentative stocks, namely Allianz SE (ALV), Ashtead Group PLC (AHT),

and Alphabet In-CL A (GOOGL). The left column graphs (Figures 3(a), 3(c)

and 3(e)) display predictions for all tested methods. The right column graphs

(Figures 3(b), 3(d) and 3(f)) show the predictions of our proposal, where each

color represents a different stock market. Note that, unlike the other meth-

ods, the proposed framework obtains more accurate predictions when predict-

ing abrupt stock return changes. Figure 3(b) provides an explanation for this

behavior, where it can be seen that predictions were calculated using models

learned from stocks in the US and UK. Thus, the interdependence strategy of

17

Table 5: Testing SR at final iteration in stock returns prediction.

Stock
Method

LSTM NICE Proposal QKLMS VAR VECM

DE

ADS 0.9017 0.2162 3.6583 0.0051 2.2682 0.9369

ALV 1.2965 0.2089 3.3982 0.0729 1.0817 0.0021

DPW -0.7522 -1.0027 2.13 -1.1187 -0.8717 0.7948

DTE 0.2688 -0.0372 1.9498 -0.1236 0.7665 1.2571

HEI 0.8574 0.2089 2.0087 -0.0287 1.3908 2.0077

LIN 0.5044 0.1126 3.1285 0.0646 1.2623 2.5074

MRK 0.7296 0.0983 3.627 -0.0257 1.4655 0.6756

SAP 0.4705 0.0497 4.39 -0.0371 1.8604 2.4806

UK

ADM 0.4663 0.334 5.9617 0.0065 2.4326 1.0164

AHT 2.2794 0.936 5.3711 -1.2048 -1.3246 -0.3778

BA 0.7246 0.0998 2.1991 -0.0579 1.2097 1.2656

BP 1.0361 1.5645 6.549 0.1094 -0.0275 -1.3034

CCL 1.2433 0.5456 5.9871 0.0216 -0.7435 -0.5154

IAG 1.9193 -1.123 4.5652 1.5662 0.3662 -1.3497

SKY -0.2469 0.3637 1.4274 0.318 -1.2898 -1.3334

VOD 0.6955 0.222 5.2585 0.1688 0.3891 1.4227

US

AAL 1.1319 -0.5774 5.8926 0.4946 -1.144 -1.1616

AAPL 0.6432 0.1279 2.6692 -0.1274 1.0422 1.648

AMZN 0.5934 0.1681 1.5527 -0.0205 1.0327 1.7307

C 0.975 0.2737 3.6621 0.0879 1.1656 -0.3031

GOOGL 0.5118 0.1185 2.9763 0.0459 1.3334 1.2835

MSFT 0.5291 0.1301 2.8933 0.0355 1.2268 2.1107

SPY 0.4121 0.0827 1.7878 -0.0977 1.0711 1.7259

T 1.2947 0.1438 3.3456 -0.0684 1.3681 1.1828

Mean 0.77 0.136 3.6* 0.004 0.722 0.738

Standard Deviation 0.606 0.517 1.532 0.484 1.061 1.207

our proposal provides an advantage over competition algorithms, as they do

not consider the interconnections between stock markets. Figure 3(d) shows a

similar situation, where predictions are improved using models learned from the

US. Figure 3(f) further suggests that the predictions of a particular stock can

be enhanced by incorporating models learned from other stock markets.

Figure 4 shows the models used by the proposed framework to predict the

considered stocks, where each color represents a different stock market. Fig-

ure 4(a) displays the percentage of models from Germany, the UK and the US

that were used to predict stock returns. For example, 18% of the models used

to predict the 8 stocks traded in Germany are from the UK, while 60% of the

models used to predict the 8 stocks traded in the US are from Germany. The

models from Germany, such as SAP AG (SAP) (see Figure 4(b)), are widely

used to predict stock returns in the UK and the US (see Figure 4(a)), suggesting

that the patterns encoded by German stocks are more appropriate to predict

18

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Samples [dd/mm/yy]

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100
Lo

g
Re

tu
rn

Des red
LSTM
NICE
QKLMS
VAR
VECM
Proposal

(a) ALV (compared methods)

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Sample [dd/mm/yy]

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

Lo
g
Re

tu
rn

De ired
DE
UK
US

(b) ALV (only proposal)

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Samples [dd/mm/yy]

−0.15

−0.10

−0.05

0.00

0.05

0.10

Lo
g

Re
tu

rn

Des red
LSTM
NICE
QKLMS
VAR
VECM
Proposal

(c) AHT (compared methods)

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Sample [dd/mm/yy]

−0.15

−0.10

−0.05

0.00

0.05

0.10

Lo
g
Re

tu
rn

De ired
DE
UK
US

(d) AHT (only proposal)

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Samples [dd/mm/yy]

−0.08

−0.06

−0.04

−0.02

0.00

0.02

Lo
g

Re
tu

rn

Des red
LSTM
NICE
QKLMS
VAR
VECM
Proposal

(e) GOOGL (compared methods)

03/01/2017 17/04/2017 24/07/2017 01/11/2017 28/02/2018
Test Sample [dd/mm/yy]

−0.08

−0.06

−0.04

−0.02

0.00

0.02

Lo
g
Re

tu
rn

De ired
DE
UK
US

(f) GOOGL (only proposal)

Figure 3: Stock return predictions in the test sets of three representative stocks.

other stock markets. Figure 4(b) also shows that there are some stocks with 0%

such as ADS, DTE, LIN, SKY, AAL, etc. This means that their models were

19

not used to obtain their own predictions, nor were they used to predict other

stocks. However, their performance is still competitive (see Tables 3 to 5).

DE Stocks UK Stocks US Stocks
0

10

20

30

40

50

Pe
rc

en
ta

ge
 [%

]

DE Models
UK Models
US Models

(a) Markets

AD
S

AL
V

DP
W

DT
E

HE
I

LI
N

M
RK SA
P

AD
M

AH
T BA BP CC
L

IA
G

SK
Y

VO
D

AA
L

AA
PL

AM
ZN C

GO
OG

L
M
SF

T
SP

Y T

0

5

10

15

20

25

30

Pe
rc
en

ta
ge

 [%
]

(b) Stocks

Figure 4: Percentage of models used by the proposed framework to predict the 24 stocks.

Note: The Python implementation can be downloaded from https://

segarciave.github.io/stock_returns_prediction.

6. Conclusions and Future Work

This study introduces a framework for stock returns prediction using KAF

within a stock market interdependence approach. The framework sequentially

predicts stock returns by considering interconnections between stock markets.

The proposed sequential learning strategy uses the data distribution as the

criterion to encode different patterns of the input space, which in some cir-

cumstances may yield a more compact network. This strategy helps maximize

20

https://segarciave.github.io/stock_returns_prediction
https://segarciave.github.io/stock_returns_prediction

returns and reduces volatility while maintaining the robustness and simplic-

ity of kernel-based adaptive filters. The proposed framework for stock returns

prediction comprises an O(N3) computational complexity, which results in an

expensive execution time when compared to conventional algorithms. Thus,

more elaborate optimization algorithms or GPU-based implementations must

be considered to reduce the computational burden.

The framework has been tested on 24 different stocks from three major

economies. Simulation results demonstrate that the interdependence strategy

used by our proposal enhances prediction accuracy, representing an advantage

over compared methods. In addition, as the simulation results show, the models

learned from the German market are more suitable for making predictions in

other stock markets. This suggests that the US market is more influenced

by the European and not vice versa, which is in line with previous empirical

findings (Jizba et al., 2012; Rezayat & Yavas, 2006).

We are in the process of expanding our research in the following areas: i)

considering other stock markets and portfolios of financial assets such as com-

modities and bonds; ii) considering additional Mercer kernels, i.e., not restricted

to the Gaussian kernel; iii) introducing a hyper-parameter tuning procedure into

the proposed method.

Acknowledgment

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under the

Marie Sk lodowska-Curie grant agreement No 675044.

References

Almahdi, S., & Yang, S. Y. (2019). A constrained portfolio trading system

using particle swarm algorithm and recurrent reinforcement learning. Expert

Systems with Applications, 130 , 145–156.

21

Baek, Y., & Kim, H. Y. (2018). Modaugnet: A new forecasting framework for

stock market index value with an overfitting prevention lstm module and a

prediction lstm module. Expert Systems with Applications, 113 , 457–480.

Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating

multiple classifiers for stock price direction prediction. Expert Systems with

Applications, 42 , 7046–7056.

Baumeister, C., & Kilian, L. (2015). Forecasting the real price of oil in a

changing world: a forecast combination approach. Journal of Business &

Economic Statistics, 33 , 338–351.

Brody, D. C., Buckley, I. R., & Constantinou, I. C. (2007). Option price cali-

bration from rényi entropy. Physics Letters A, 366 , 298–307.

Chai, T., & Draxler, R. R. (2014). Root mean square error (rmse) or mean ab-

solute error (mae)?–arguments against avoiding rmse in the literature. Geo-

scientific model development , 7 , 1247–1250.

Chen, B., Zhao, S., Zhu, P., & Pŕıncipe, J. C. (2012). Quantized kernel least

mean square algorithm. IEEE Transactions on Neural Networks and Learning

Systems, 23 , 22–32.

Chen, J. (2019). Text-classification methods and the mathematical theory of

Principal Components. Ph.D. thesis Georgia Institute of Technology.

Collins, D., & Biekpe, N. (2003). Contagion and interdependence in african

stock markets. South African Journal of Economics, 71 , 181–194.

Cui, Y., Ahmad, S., & Hawkins, J. (2016). Continuous online sequence learning

with an unsupervised neural network model. Neural computation, 28 , 2474–

2504.

De Ketelaere, B., Hubert, M., Rousseeuw, P., & Vranckx, I. (2018). Real-time

outlier detection based on detmcd. In Book of Abstracts (p. 99).

22

Dietterich, T. G. et al. (2002). Ensemble learning. The handbook of brain theory

and neural networks, 2 , 110–125.

Doucoure, B., Agbossou, K., & Cardenas, A. (2016). Time series prediction

using artificial wavelet neural network and multi-resolution analysis: Appli-

cation to wind speed data. Renewable Energy , 92 , 202–211.

Fang, M., & Chang, C.-L. (2017). Options pricing efficiency with fractional fast

fourier transform. DEStech Transactions on Environment, Energy and Earth

Sciences, .

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory

networks for financial market predictions. European Journal of Operational

Research, 270 , 654–669.

France, S. L., & Ghose, S. (2019). Marketing analytics: Methods, practice,

implementation, and links to other fields. Expert Systems with Applications,

119 , 456–475.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning

volume 1. MIT press Cambridge.

Greenblatt, R. E., Pflieger, M., & Ossadtchi, A. (2012). Connectivity measures

applied to human brain electrophysiological data. Journal of neuroscience

methods, 207 , 1–16.

Greff, K., Srivastava, R. K., Koutńık, J., Steunebrink, B. R., & Schmidhuber, J.

(2017). Lstm: A search space odyssey. IEEE transactions on neural networks

and learning systems, 28 , 2222–2232.

Gu, Y., Liu, J., Chen, Y., Jiang, X., & Yu, H. (2014). Toselm: timeliness online

sequential extreme learning machine. Neurocomputing , 128 , 119–127.

Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and

convolutional neural networks. Expert Systems with Applications, 117 , 287–

299.

23

Huang, W., Yan, C., Wang, J., & Wang, W. (2017). A time-delay neural

network for solving time-dependent shortest path problem. Neural Networks,

90 , 21–28.

Jalota, H., Thakur, M., & Mittal, G. (2017). Modelling and constructing mem-

bership function for uncertain portfolio parameters: A credibilistic frame-

work. Expert Systems with Applications, 71 , 40–56.

Jang, W. W. (2020). Risk aversion, uncertainty, and monetary policy: Struc-

tural vector autoregressions identified with high-frequency external instru-

ments. Economics Letters, 186 , 108675.

Jizba, P., Kleinert, H., & Shefaat, M. (2012). Rényi’s information transfer

between financial time series. Physica A: Statistical Mechanics and its Appli-

cations, 391 , 2971–2989.

Joo, T. W., & Kim, S. B. (2015). Time series forecasting based on wavelet

filtering. Expert Systems with Applications, 42 , 3868–3874.

Kalayci, C. B., Ertenlice, O., & Akbay, M. A. (2019). A comprehensive review of

deterministic models and applications for mean-variance portfolio optimiza-

tion. Expert Systems with Applications, .

Kamiński, M., Ding, M., Truccolo, W. A., & Bressler, S. L. (2001). Evaluat-

ing causal relations in neural systems: Granger causality, directed transfer

function and statistical assessment of significance. Biological cybernetics, 85 ,

145–157.

Kaplanski, G., Levy, H., Veld, C., & Veld-Merkoulova, Y. (2016). Past returns

and the perceived sharpe ratio. Journal of Economic Behavior & Organiza-

tion, 123 , 149–167.

Kenett, D. Y., Huang, X., Vodenska, I., Havlin, S., & Stanley, H. E. (2015).

Partial correlation analysis: Applications for financial markets. Quantitative

Finance, 15 , 569–578.

24

Khashei, M., & Hajirahimi, Z. (2018). A comparative study of series arima/mlp

hybrid models for stock price forecasting. Communications in Statistics-

Simulation and Computation, (pp. 1–16).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980 , .

Kiran, R., Kumar, P., & Bhasker, B. (2020). Dnnrec: A novel deep learning

based hybrid recommender system. Expert Systems with Applications, 144 ,

113054.

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Woźniak, M. (2017).

Ensemble learning for data stream analysis: A survey. Information Fusion,

37 , 132–156.

Kuo, C.-Y. (2016). Does the vector error correction model perform better than

others in forecasting stock price? an application of residual income valuation

theory. Economic Modelling , 52 , 772–789.

Lee, Y.-S., & Tong, L.-I. (2011). Forecasting time series using a methodology

based on autoregressive integrated moving average and genetic programming.

Knowledge-Based Systems, 24 , 66–72.

Li, K., & Pŕıncipe, J. C. (2017). Transfer learning in adaptive filters: The near-

est instance centroid-estimation kernel least-mean-square algorithm. IEEE

Transactions on Signal Processing , 65 , 6520–6535.

Liang, C., & Schienle, M. (2019). Determination of vector error correction

models in high dimensions. Journal of econometrics, 208 , 418–441.

Liu, W., Pokharel, P. P., & Principe, J. C. (2008). The kernel least-mean-square

algorithm. IEEE Transactions on Signal Processing , 56 , 543–554.

Liu, W., Principe, J. C., & Haykin, S. (2011). Kernel adaptive filtering: a

comprehensive introduction volume 57. John Wiley & Sons.

25

Liu, Y.-k., Xie, F., Xie, C.-l., Peng, M.-j., Wu, G.-h., & Xia, H. (2015). Predic-

tion of time series of npp operating parameters using dynamic model based

on bp neural network. Annals of Nuclear Energy , 85 , 566–575.

Loh, L. (2013). Co-movement of asia-pacific with european and us stock market

returns: A cross-time-frequency analysis. Research in International Business

and Finance, 29 , 1–13.

Lütkepohl, H. (2013). Vector autoregressive models. In Handbook of Research

Methods and Applications in Empirical Macroeconomics. Edward Elgar Pub-

lishing.

Masih, A. M., & Masih, R. (2001). Dynamic modeling of stock market interde-

pendencies: an empirical investigation of australia and the asian nics. Review

of Pacific Basin Financial Markets and Policies, 4 , 235–264.

Newbold, P., & Harvey, D. I. (2002). Forecast combination and encompassing.

A companion to economic forecasting , (pp. 268–283).

Nweke, H. F., Teh, Y. W., Al-Garadi, M. A., & Alo, U. R. (2018). Deep learning

algorithms for human activity recognition using mobile and wearable sensor

networks: State of the art and research challenges. Expert Systems with

Applications, 105 , 233–261.

Olsen, R. B., Glattfelder, J. B., & Golub, A. (2018). The alpha engine: De-

signing an automated trading algorithm. In High-Performance Computing in

Finance (pp. 49–76). Chapman and Hall/CRC.

Orabona, F., Keshet, J., & Caputo, B. (2009). Bounded kernel-based online

learning. Journal of Machine Learning Research, 10 , 2643–2666.

Papana, A., Kyrtsou, C., Kugiumtzis, D., & Diks, C. (2017). Financial networks

based on granger causality: A case study. Physica A: Statistical Mechanics

and its Applications, 482 , 65–73.

26

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training

recurrent neural networks. In International Conference on Machine Learning

(pp. 1310–1318).

Polikar, R. (2009). Ensemble learning. Scholarpedia, 4 , 2776. Revision #186077.

Portugal, I., Alencar, P., & Cowan, D. (2018). The use of machine learning

algorithms in recommender systems: A systematic review. Expert Systems

with Applications, 97 , 205–227.

Principe, J. C. (2010). Information theoretic learning: Renyi’s entropy and

kernel perspectives. Springer Science & Business Media.

Radhakrishnan, S., Duvvuru, A., Sultornsanee, S., & Kamarthi, S. (2016).

Phase synchronization based minimum spanning trees for analysis of financial

time series with nonlinear correlations. Physica A: Statistical Mechanics and

its Applications, 444 , 259–270.

Ramos, P., Santos, N., & Rebelo, R. (2015). Performance of state space and

arima models for consumer retail sales forecasting. Robotics and computer-

integrated manufacturing , 34 , 151–163.

Rather, A. M., Agarwal, A., & Sastry, V. (2015). Recurrent neural network

and a hybrid model for prediction of stock returns. Expert Systems with

Applications, 42 , 3234–3241.

Rejeb, A. B., & Arfaoui, M. (2016). Financial market interdependencies: A

quantile regression analysis of volatility spillover. Research in International

Business and Finance, 36 , 140–157.

Rezayat, F., & Yavas, B. F. (2006). International portfolio diversification: A

study of linkages among the us, european and japanese equity markets. Jour-

nal of Multinational Financial Management , 16 , 440–458.

Saia, R. (2017). A discrete wavelet transform approach to fraud detection.

In International Conference on Network and System Security (pp. 464–474).

Springer.

27

Saia, R., Carta, S. et al. (2017). A frequency-domain-based pattern mining for

credit card fraud detection. In IoTBDS (pp. 386–391).

Scardapane, S., Wang, D., & Panella, M. (2016). A decentralized training

algorithm for echo state networks in distributed big data applications. Neural

Networks, 78 , 65–74.

Scholkopf, B., & Smola, A. J. (2001). Learning with kernels: support vector

machines, regularization, optimization, and beyond . MIT press.

Siikanen, M., Baltakys, K., Kanniainen, J., Vatrapu, R., Mukkamala, R., &

Hussain, A. (2018). Facebook drives behavior of passive households in stock

markets. Finance Research Letters, 27 , 208–213.

Sohangir, S., Wang, D., Pomeranets, A., & Khoshgoftaar, T. M. (2018). Big

data: Deep learning for financial sentiment analysis. Journal of Big Data, 5 ,

3.

Suhermi, N., Prastyo, D. D., Ali, B. et al. (2018). Roll motion prediction using

a hybrid deep learning and arima model. Procedia computer science, 144 ,

251–258.

Sulthan, A., Jayakumar, S., & David, G. (2016). On the review and appli-

cation of entropy in finance. International Journal of Business Insights &

Transformation, 10 .

Tang, J., Zhang, J., Wu, Z., Liu, Z., Chai, T., & Yu, W. (2017). Modeling

collinear data using double-layer ga-based selective ensemble kernel partial

least squares algorithm. Neurocomputing , 219 , 248–262.

Tian, Y., Zhang, K., Li, J., Lin, X., & Yang, B. (2018). Lstm-based traffic flow

prediction with missing data. Neurocomputing , 318 , 297–305.

Vacha, L., & Barunik, J. (2012). Co-movement of energy commodities revisited:

Evidence from wavelet coherence analysis. Energy Economics, 34 , 241–247.

28

Wang, M.-C., & Ye, J.-K. (2016). The relationship between covariance risk and

size effects in emerging equity markets. Managerial Finance, 42 , 174–190.

Wang, W., Li, W., Zhang, N., & Liu, K. (2020). Portfolio formation with

preselection using deep learning from long-term financial data. Expert Systems

with Applications, 143 , 113042.

Wang, X., & Hui, X. (2017). Mutual information based analysis for the distri-

bution of financial contagion in stock markets. Discrete Dynamics in Nature

and Society , 2017 .

Yamanishi, K., & Takeuchi, J.-i. (2002). A unifying framework for detecting out-

liers and change points from non-stationary time series data. In Proceedings

of the eighth ACM SIGKDD international conference on Knowledge discovery

and data mining (pp. 676–681). ACM.

Zhang, M., Jiang, X., Fang, Z., Zeng, Y., & Xu, K. (2019). High-order hid-

den markov model for trend prediction in financial time series. Physica A:

Statistical Mechanics and its Applications, 517 , 1–12.

Zhao, P., Hoi, S. C., & Jin, R. (2011). Double updating online learning. Journal

of Machine Learning Research, 12 , 1587–1615.

Zhou, Z.-H. (2015). Ensemble learning. Encyclopedia of biometrics, (pp. 411–

416).

Zhou, Z.-H., & Tang, W. (2003). Selective ensemble of decision trees. In Interna-

tional Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft

Computing (pp. 476–483). Springer.

Zhou, Z.-H., Wu, J., & Tang, W. (2002). Ensembling neural networks: many

could be better than all. Artificial intelligence, 137 , 239–263.

29

	Introduction
	Background and Related Work
	Sequential Learning
	Interdependency between stock markets

	Proposed sequential prediction and stock market interdependence framework
	Sequential learning based on kernel adaptive filtering
	Stock returns prediction within a stock market interdependence approach

	Experimental Design
	Dataset
	Parameter settings

	Simulation Results and Analysis
	Conclusions and Future Work

