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ABSTRACT 

 

The UK Biobank is a prospective study of more than 500,000 participants that has aggregated 

data from questionnaires, physical measures, biomarkers, imaging and follow-up for a wide 

range of health-related outcomes, together with genome-wide genotyping supplemented with 

high-density imputation. Previous studies have highlighted fine-scale population structure in 

the UK on a North-West to South-East cline, but the impact of unmeasured geographical 

confounding on genome-wide association studies (GWAS) of complex human traits in the 

UK Biobank has not been investigated. We considered 368,325 white British individuals 

from the UK Biobank, and performed GWAS of their birth location. We demonstrate that 

widely used approaches to adjust for population structure, including principal components 
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analysis and mixed modelling with a random effect for a genetic relationship matrix, cannot 

fully account for the fine-scale geographical confounding in the UK Biobank. We observe 

significant genetic correlation of birth location with a range of lifestyle-related traits, 

including body-mass index and fat mass, hypertension, and lung function, even after 

adjustment for population structure. Variants driving associations with birth location are also 

strongly associated with many of these lifestyle-related traits after correction for population 

structure, indicating that there could be environmental factors that are confounded with 

geography that have not been adequately accounted for. Our findings highlight the need for 

caution in the interpretation of lifestyle-related trait GWAS in UK Biobank, particularly in 

loci demonstrating strong residual association with birth location.    
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INTRODUCTION  

 

The United Kingdom (UK) is located off the north-western coast of the European mainland, 

and incorporates Great Britain, Northern Ireland, and many smaller islands (including the 

Hebrides, Shetlands and Orkneys). Previous studies have highlighted that population 

structure within the UK is rather limited, but it occurs at fine-scale on North-South and East-

West clines
1,2

. Analyses undertaken using genome-wide genotyping data from the People of 

the British Isles collection identified genetic clusters that are highly localised, separating the 

Orkney Islands, Scotland and Northern England, Central and Southern England, and Wales
3
. 

Such fine-scale structure can lead to false positive signals in genome-wide association studies 

(GWAS) of traits with characteristics that vary between regions, if not adequately accounted 

for in the analysis
4
. 

Multivariate statistical techniques, such as principal components analysis (PCA), have 

been widely used in population genetics to visualise genotype differences between 

individuals in few dimensions via eigenvalue decomposition of a genetic relationship matrix 

(GRM). Axes of genetic variation, derived from PCA, can be used to adjust for population 

structure by their inclusion as covariates in a generalised linear regression model
5
. An 

alternative, widely-used approach to account for population structure is to adjust for the 

genetic correlation between individuals, as measured by the GRM, which can be included as 

a random effect in a generalised linear mixed model
6-13

. However, the performance of these 

approaches to adequately account for unmeasured confounding due to fine-scale structure in 

large, population-based samples has not been evaluated. 

The UK Biobank is a very large and detailed prospective study of more than 500,000 

participants aged 40-69 years when recruited between 2006 and 2010
14

. The study has 

aggregated (and continues to collect) extensive information from participants, including data 
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from questionnaires, physical measures, biomarkers, imaging and follow-up for a wide range 

of health-related outcomes (including linkage to primary care and disease-specific registers). 

Genome-wide genotyping data, typed on the Affymetrix UK Biobank or BiLEVE arrays, 

have been centrally called and quality control assessed by the UK Biobank Analysis Team
15

, 

and imputed up to reference panels from the 1000 Genomes Project
16

, UK10K Project
17

 and 

Haplotype Reference Consortium
18

. PCA was also centrally performed by the UK Biobank 

Analysis Team to generate axes of genetic variation that can be used to identify participants 

of similar ancestry and to control for population structure
15

. 

In this investigation, we first assess the extent of fine-scale population structure in a 

subset of unrelated white British participants from the UK Biobank using demographic data 

of reported birth location. We then evaluate the impact of population structure on GWAS of 

complex human traits in the UK Biobank by considering genetic correlation with birth 

location and inflation in genome-wide association summary statistics. Finally, we consider 

locus-specific impact of residual confounding of birth location with complex human traits 

and demonstrate the effect on association signals of alternative approaches to account for 

population structure.  
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RESULTS   

 

Extent of population structure in the UK Biobank. To assess the extent of fine-scale 

population structure in the UK Biobank, we considered a subset of unrelated white British 

participants based on self-reported ethnicity and centrally derived axes of genetic variation 

(Materials and Methods, Supplementary Figure 1). We then interrogated demographic 

data of reported birth location, for which UK postcodes had been converted to Easting and 

Northing Cartesian coordinates, which we refer to as “Eastings” and “Northings”, 

respectively (Supplementary Figure 2). We excluded individuals with missing birth location 

and those from the pilot study at the Stockport recruitment centre for which the Cartesian 

coordinates were incorrect. For the remaining 368,325 individuals, we then tested for 

association of Eastings and Northings with 8,806,946 well-imputed variants with minor allele 

frequency (MAF) >0.5% in a linear regression model, including only genotyping array as a 

covariate, as implemented in SNPTESTv2.5.2
19

. To account for population structure, we then 

considered inclusion of: (i) the first ten (or twenty) centrally derived axes of genetic variation 

from PCA as covariates as implemented in SNPTESTv2.5.2
19

; or (ii) a random effect for the 

GRM as implemented in BOLT-LMMv2.3
13

 (Materials and Methods, Supplementary 

Figure 3).   

As expected, there was substantial genome-wide inflation in the association with 

Northings and Eastings, assessed via the LD-score regression intercept
20

, with no correction 

for population structure (λN=7.817 and λE=6.638). Substantial inflation was also observed 

after adjustment for ten axes of genetic variation as covariates (λN=3.871 and λE=1.912), 

which was not diminished by inclusion of an additional ten axes (Supplementary Figure 4). 

The inflation was reduced after inclusion of a random effect for the GRM, but considerable 

fine-scale population structure remained unaccounted for: λN=1.651 and λE=1.431 (Figure 1). 
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We observed no difference in inflation between directly genotyped (λN=1.650 and λE=1.436) 

and imputed variants (λN=1.648 and λE=1.428). For this mixed model analysis, we observed 

strong negative genetic correlation between Northings and Eastings from LD-score 

regression
21

 (rG=-0.660, p=2.1x10
-11

), confirming previous reports of the North-West to 

South-East cline in UK population structure
1
. The residual association with Northings was 

more pronounced than for Eastings (Figure 1). A total of 74 attained genome-wide 

significant evidence of association (p<5x10
-8

) with Northings after inclusion of a random 

effect for the GRM (Table 1). The strongest association signals mapped to/near TLR10-TLR1 

(rs4543123, pN=5.3x10
-56

, pE=2.0x10
-12

) and LCT (rs1849, pN=1.7x10
-17

, pE=2.0x10
-12

), both 

of which have been previously reported as confounded with UK population structure
1
 

(Supplementary Figures 5 and 6). The toll-like receptor family of genes encode proteins 

that play a key role in the innate immune system, such that population structure could have 

arisen through historical geographical differences in exposure to pathogens. The LCT gene 

encodes the lactase protein that allows lactose tolerance to persist into adulthood and has 

been subject to positive selection after the domestication of cattle across Europe
22

. 

 

Impact of population structure on GWAS of complex human traits in the UK Biobank. 

We next sought to assess the impact of fine-scale UK population structure on GWAS of 

complex human traits in the UK Biobank. To do this, we first used LD-score regression
21

 to 

assess the genome-wide genetic correlation between Northings and Eastings (after inclusion 

of a random effect for the GRM), and selected traits available in the UK Biobank. We utilised 

published association summary statistics available from LD-Hub
23

, obtained from analysis of 

337,199 unrelated white British individuals in a linear regression model with adjustment for 

the first ten centrally derived axes of genetic variation from PCA as covariates (Materials 

and Methods). Of the 597 traits reported in LD-Hub, we excluded those that were not 
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directly related to health outcomes, lifestyle and/or anthropometric measures (such as current 

employment, diseases of family members, education, and medication). For the remaining 268 

traits, we observed significant correlation with Northings (p<0.00019, Bonferroni correction) 

for 41 traits (Supplementary Table 1), most of which were broadly related to lifestyle 

factors, even after adjustment for population structure. A more northerly (and westerly) birth 

location was genetically correlated with increased body-mass index (BMI) and fat mass, 

alcohol consumption, hypertension and smoking, and with decreased lung function (Figure 

2), suggesting that association signals reported for these traits in UK Biobank could be 

partially driven by residual confounding with geography that has not been adequately 

accounted for in the analysis. 

To further investigate the consequences of this residual confounding, we considered 

BMI and forced vital capacity (FVC, a measure of lung function) as representative of 

lifestyle-related traits that are genetically correlated with birth location (Materials and 

Methods). For both traits, the LD-score regression intercepts obtained from 368,325 

unrelated white British individuals after inclusion of a random effect for the GRM in the 

linear regression model indicated evidence of residual population structure that has not been 

accounted for in the analysis: λBMI=1.155 and λFVC=1.099. In contrast, when we considered 

asthma, a disease that is characterised by poor lung function, but that did not demonstrate 

significant genetic correlation with birth location (p=0.70 for Northings), the impact of 

residual population structure was much less pronounced: λASTHMA=1.059.   

Previous studies have highlighted that genome-wide inflation in GWAS of complex 

human traits after inclusion of a random effect for the GRM in the linear regression model 

can reflect environmental factors that are confounded with geography
24

, which can better be 

controlled for through adjustment for axes of genetic variation from PCA
25

. We hypothesised 

that we could account for this residual confounding of BMI and FVC by adjusting for ten 
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axes of genetic variation, Northings and Eastings as covariates in the linear mixed model, in 

addition to a random effect for the GRM (Materials and Methods). We demonstrated that 

these additional adjustments only marginally reduced the LD-score regression intercept for 

both traits: λBMI=1.140 and λFVC=1.095 (Figure 3). The same adjustments also had no impact 

on the LD-score regression intercept for asthma: λASTHMA=1.057. Genome-wide, adjustment 

for Northings and Eastings as covariates in the linear regression model, in addition to the ten 

axes of genetic variation, did not have a major impact on allelic effect estimates and 

association p-values (Supplementary Figure 7). 

We also investigated the possibility that current residence would better reflect 

ongoing exposure to environmental factors that are confounded with geography than would 

birth location. We repeated our analyses of BMI, FVC and asthma, after adjustment for 

Northings and Eastings derived from current residence postcode, but this did not substantially 

reduce the genome-wide inflation, compared with birth location, for any of these traits: 

λBMI=1.150, λFVC=1.096 and λASTHMA=1.054.    

 

Locus-specific impact of residual confounding of birth location with lifestyle-related 

traits in the UK Biobank. We next investigated the locus-specific impact of residual 

confounding of birth location with the 41 (mostly lifestyle-related) traits that were genetically 

correlated with Northings. To do this, we considered the 74 loci attaining genome-wide 

significant evidence of association (p<5x10
-8

) with Northings after inclusion of a random 

effect for the GRM. We first dissected association signals for Northings at each locus through 

approximate conditional analyses implemented in GCTA
26

, making use of 5,000 randomly 

selected white British individuals from UK Biobank as a reference for linkage disequilibrium. 

We identified 115 distinct association signals attaining locus-wide significance (p<10
-5

) for 

Northings, including six mapping to the major histocompatibility complex (Supplementary 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article-abstract/doi/10.1093/hm
g/ddaa157/5874041 by U

niversity of M
anchester user on 04 August 2020



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

10 
 

Table 2). Index variants for 59 (51.3%) of these signals were of low frequency (MAF<5%), 

which would be expected to have arisen due to more recent mutation events, and hence be 

more likely to be confounded with geography (Supplementary Figure 8).  

For each distinct association signal, we then identified “high-confidence” variants 

accounting for at least 5% of the posterior probability of driving confounding with Northings 

(Materials and Methods). We interrogated each high-confidence variant for association with 

the 41 traits demonstrating significant genetic correlation with Northings in the UK Biobank. 

We utilised published association summary statistics available from PhenoScanner
27,28

, 

obtained from analysis of 337,199 unrelated white British individuals in a linear regression 

model with adjustment for the first ten centrally derived axes of genetic variation from PCA 

as covariates (Materials and Methods). High-confidence variants driving distinct signals for 

Northings at five loci were associated, at genome-wide significance, with at least one trait 

(Supplementary Table 3).  

At the LCT locus, two high-confidence variants (rs182549 and rs309137, together 

accounting for 66.5% of the posterior probability of driving the confounding with Northings) 

were associated (at genome-wide significance) with 16 of the 41 traits that were genetically 

correlated with birth location. The Northing increasing alleles at the two variants were 

associated with increased BMI and multiple measures of fat mass, and with decreased lung 

function (FVC and forced expiratory volume in 1-second), which are concordant with the 

direction of the genetic correlation with birth location. Adjustment for ten axes of genetic 

variation, Northings and Eastings as covariates in the linear mixed model, in addition to a 

random effect for the GRM, reduced the strength of association with these traits by an order 

of magnitude across the locus, reflecting correction for residual confounding with birth 

location (Supplementary Figure 9). There was a more noticeable impact on the association 

with BMI, where the estimated allelic effect of rs182549 increased four-fold after adjustment 
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(Supplementary Table 4). These results indicate the potential bias in allelic effect estimates 

on complex traits that could arise with inadequate correction for population structure in UK 

Biobank.    

At the major histocompatibility complex (MHC), where population structure reflects 

strong selective pressure of infectious diseases in recent human history
22

, one high-

confidence variant (rs9268556, 13.2% posterior probability of driving the confounding with 

Northings) was associated (at genome-wide significance) with FVC. In contrast to the signal 

at the LCT locus, the Northing increasing allele was associated with increased FVC, which is 

discordant with the direction of the genetic correlation with birth location. Consequently, 

adjustment for ten axes of genetic variation, Northings and Eastings as covariates in the linear 

mixed model, in addition to a random effect for the GRM, did not noticeably reduce the 

strength of association with lung function at this locus (Supplementary Table 4). 

DISCUSSION  

 

We have demonstrated that fine-scale population structure in the UK Biobank cannot be fully 

accounted for through adjustment for centrally derived axes of genetic variation or inclusion 

of a random effect for the GRM. There was substantial inflation in genome-wide association 

with Northing and Easting cartesian coordinates that were derived from birth location, even 

after inclusion of a random effect for the GRM in the linear regression model. The inflation 

was greater for Northings than for Eastings, which may reflect greater variation in latitude 

than longitude for participants in the UK Biobank. Investigations previously undertaken with 

GWAS from the People of the British Isles collection indicated that major clusters separate 

from North to South, which could reflect major historical events in the peopling of the British 

Isles
3
. These results are consistent with observations across the wider European continent, 

where the first axis of genetic variation, which correlates with North-South geography, 
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explains more variability in allele frequencies than the second axis, which correlates with 

East-West geography
29

. Bivariate analysis of Northings and Eastings, taking account of the 

correlation between longitude/latitude of birth location, might provide additional insight into 

population structure. However, further methodological development and software is required 

to implement bivariate linear mixed models that can accommodate the scale of GWAS in the 

UK Biobank.  

After correction for population structure, we have observed significant genetic 

correlation of Northings with 41 traits, most of which are related to lifestyle, including BMI 

and fat mass, alcohol consumption, hypertension, and smoking and lung function. LD-score 

regression intercepts for two exemplar lifestyle-related traits, BMI and FVC, indicated 

evidence of residual population structure that has not been accounted for by the inclusion of a 

random effect for the GRM in the linear regression model. Such inflation could reflect 

environmental factors that are confounded with geography, such as diet and smoking habits, 

which can better be controlled for through adjustment for axes of genetic variation. However, 

adjustment for ten axes of genetic variation, in addition to Eastings and Northings derived 

from birth location or current residence, did not substantially reduce the inflation. These 

results suggest that simple modelling of birth location (or current residence) and/or axes of 

genetic variation does not capture the full extent of geographical confounding with these 

environmental influences on lifestyle-related traits. More complex models, for example that 

allow for non-linear relationships with geography, may offer improved control for 

confounding with environmental risk factors, but cannot be easily accommodated in 

computationally efficient software that can be applied to the scale of GWAS in the UK 

Biobank.  

We identified 74 loci that demonstrated significant residual association with 

Northings after inclusion of a random effect for the GRM in the linear regression model, 
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which map to/near genes that have been subject to selection, including LCT and the MHC 

region. High-confidence variants driving distinct residual associations for Northings were 

also strongly associated with many of the lifestyle-related traits that are genetically correlated 

with birth location, even after correction for population structure. These signals could, 

therefore, represent false positive associations with lifestyle-related traits that are driven by 

confounding with geography. At signals for which the high-confidence variant was also 

associated with the lifestyle-related trait in the direction predicted by the genetic correlation, 

such as for BMI and FVC at the LCT locus, additional adjustment for axes of genetic 

variation and birth location as covariates reduced the strength of the association. In contrast, 

when the association with the lifestyle-related trait was in the opposite direction to that 

predicted by the genetic correlation, for example for FVC in the MHC region, adjustment for 

axes of genetic variation and birth location as covariates had no impact on the signal. Thus, 

whilst adjustment for axes of genetic variation and birth location, in addition to a random 

effect for the GRM, did not substantially reduce the inflation in association with lifestyle-

related traits genome-wide, we did observe locus-specific differences in the impact of this 

correction that reflect varying levels of confounding with geography.  

In conclusion, our findings highlight the need for caution in the interpretation of 

GWAS of lifestyle-related health outcomes in UK Biobank, particularly in loci demonstrating 

strong residual association with birth location, even after adjustment for population structure. 

To minimise the impact of population structure on these traits at loci that are most strongly 

confounded with geography, we recommend adjusting for axes of genetic variation and birth 

location, in addition to a random effect for the GRM in a regression model. Where substantial 

residual inflation in the genome-wide association remains, for example an LD-score intercept 

of the order of 1.1 or more, we suggest careful consideration of potential environmental risk 

factors for the trait that could have more complex confounding with geography than can be 
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accommodated by simple linear relationships with birth location (or current residence). UK 

Biobank has collected extensive questionnaire data on diet, smoking, alcohol consumption 

and exercise, and these potential confounders can be included directly as covariates in a 

regression model, without any assumptions about their correlation with geography. Further 

studies are warranted in other large-scale biobanks, particularly in less homogenous 

populations where the impact of geographical confounding of allele frequencies on complex 

trait GWAS may be even more pronounced. 

MATERIALS AND METHODS 

 

Selection of participants from UK Biobank. We utilised the subset of “white British” 

individuals identified centrally by the UK Biobank Analysis Team
15

, based on self-reported 

ethnicity from the assessment centre questionnaire and axes of genetic variation from 

principal components analysis. We then utilised the relatedness report generated by the UK 

Biobank Analysis Team
15

 to retain the maximal set of unrelated participants, which 

corresponded to a maximum kinship coefficient of 0.0884. 

We interrogated demographic data of reported birth location, for which UK postcodes 

had been converted to Easting and Northing Cartesian coordinates, rounded to the nearest 

500m, relative to an origin in the South West of the British Isles (Supplementary Figure 2). 

We excluded individuals with missing birth location and those from the pilot study at the 

Stockport recruitment centre for which the Cartesian coordinates were incorrect. For some 

sensitivity analyses, we also considered Easting and Northing Cartesian coordinates derived 

from current residence postcode. 

 

Genome-wide association analyses with Cartesian coordinates of birth location in UK 

Biobank. The UK Biobank Central Analysis Team performed initial quality control of 
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variants, and imputation up to reference panels from the 1000 Genomes Project
16

, UK10K 

Project
17

 and Haplotype Reference Consortium
18

. We considered the subset of variants that 

were imputed to the Haplotype Reference Consortium, excluding those with MAF <0.5% 

and/or imputation quality info score <0.5. For each variant passing quality control, we tested 

for association with Northings and Eastings, separately, in a linear regression model, using 

the genotype dosage from imputation, and including only genotyping array (UK Biobank or 

UK BiLEVE) as a covariate, as implemented in SNPTESTv2.5.2
19

. We used two approaches 

to account for population structure. First, we included ten centrally derived axes of genetic 

variation from PCA, in addition to genotyping array, as covariates as implemented in 

SNPTESTv2.5.2
19

. We also performed sensitivity analyses including twenty centrally derived 

axes of genetic variation from PCA. Second, we included a random effect for the GRM, in 

addition to a fixed effect for genotyping array, as implemented in BOLT-LMMv2.3
13

. We 

followed recommendations from the BOLT-LMM UK Biobank analysis pipeline: 

https://data.broadinstitute.org/alkesgroup/BOLT-LMM/#x1-510009. The GRM was 

constructed from directly genotyped variants that passed initial quality control from the UK 

Biobank Central Analysis Team. BOLT-LMM performs “leave-one-chromosome-out” 

analysis: variants from the chromosome being tested for association are excluded from the 

GRM to avoid proximal contamination
13

. 

For each analysis, to assess inflation in association signals due to residual population 

structure that was not accounted for in the analysis, we calculated the intercept from LD-

score regression
20

, using a subset of approximately one million variants for which European 

ancestry LD-scores were available. For some sensitivity analyses, we separated directly 

genotyped and imputed variants, and calculated the LD-score intercept for each set. 
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Genetic correlation of birth location with complex human traits in the UK Biobank. We 

used LD-score regression
21

 to assess the genome-wide genetic correlation between birth 

location and selected traits available in the UK Biobank. We utilised published association 

summary statistics available from LD-Hub
23

, obtained from analysis of 337,199 unrelated 

white British participants passing central quality control in a generalised linear regression 

model with adjustment for sex and the first ten centrally derived axes of genetic variation 

from PCA as covariates, as implemented in Hail. Phenotypes were derived and harmonised 

with PHESANT
30

, and association analyses were restricted to variants with MAF >0.1%, 

exact Hardy-Weinberg equilibrium (HWE) p>10
-10

, and imputation quality info score >0.8. 

Full details of the quality control, phenotype derivation and association analyses can be found 

at: https://github.com/Nealelab/UK_Biobank_GWAS/tree/master/imputed-v2-gwas#sample-

and-variant-qc. 

 Of the 597 traits reported from UK Biobank in LD-Hub, we excluded those that were 

not directly related to health outcomes, lifestyle and/or anthropometric measures (such as 

current employment, diseases of family members, education, and medication). For each the 

remaining 268 traits, we calculated the genetic correlation with Northings and Eastings using 

association summary statistics after adjusting for population structure by including a random 

effect for the GRM as implemented in BOLT-LMMv2.3
13

, as described above. The LD-score 

regression analysis was restricted to a subset of approximately one million variants for which 

European ancestry LD-scores were available, and which overlapped with those reported for 

birth location and the complex trait. We extracted the genetic correlation, corresponding 

standard error and p-value. We defined significant genetic correlation by p<0.00019, which 

corresponded to a Bonferroni correction for 268 traits.  
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Genome-wide association analyses with body mass index (BMI), forced vital capacity 

(FVC) and asthma in UK Biobank. We performed inverse rank normalisation of BMI and 

FVC (best measure). For each variant passing quality control, we tested for association with 

each trait (after transformation), separately, in a linear regression model, using the genotype 

dosage from imputation, and including genotyping array (UK Biobank or UK BiLEVE) as a 

covariate and a random effect for the GRM as implemented in BOLT-LMMv2.3
13

. We 

repeated each of these analyses by including: (i) the first ten centrally derived axes of genetic 

variation from PCA as additional covariates; and (ii) the first ten centrally derived axes of 

genetic variation from PCA, Northings and Eastings as additional covariates in the linear 

regression model. We also repeated our analyses, adjusting for Northings and Eastings 

derived from current location postcode, instead of birth location postcode, in addition the first 

ten centrally derived axes of genetic variation from PCA. For each trait, for each analysis, we 

calculated the intercept from LD-score regression
20

, using a subset of approximately one 

million variants for which European ancestry LD-scores were available.  

  

Dissection and fine-mapping of association signals with birth location in UK Biobank. 

We considered each locus attaining genome-wide significant evidence of association 

(p<5x10
-8

) with Northings. Within each locus, we utilised the “--cojo-slct” option in GCTA
26

 

to identify index variants representing distinct association signals attaining locus-wide 

significance (p<10
-5

), based on: (i) association summary statistics for Northings after 

adjusting for population structure by including a random effect for the GRM as implemented 

in BOLT-LMMv2.3
13

, as described above; and (ii) 5,000 randomly selected white British 

participants included in our association analyses as a reference for LD in the UK population. 

For each locus with more than one index variant, we next dissected each distinct association 

signal. For each index variant, we obtained the corresponding conditional association signal 
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by utilising the “--cojo-cond” option in GCTA
26

 by adjusting for all other index variants at 

the locus. 

 Within each locus, for each distinct signal, we first approximated the Bayes’ factor
31

 

in favour of association with Northings of each variant on the basis of summary statistics 

after adjusting for population structure by including a random effect for the GRM as 

implemented in BOLT-LMMv2.3
13

, as described above. We utilised summary statistics from 

unconditional analysis for loci with a single signal, and GCTA conditional analysis for loci 

with multiple distinct signals. Specifically, the Bayes’ factor for the  th variant at the  th 

distinct association signal is approximated by 

 

       [
   
 

    
], 

 

where     and     are the allelic effect on Northings and the corresponding variance, 

respectively. We then calculated the posterior probability that the  th variant is driving the  th 

distinct association, given by 

 

    
   

∑     
, 

 

where the summation is over all variants across the locus. We defined “high-confidence” 

variants as having posterior probability of at least 5% of driving distinct association signals 

for birth location. 

 

Association of high-confidence variants with complex human traits in UK Biobank. We 

extracted association summary statistics for each high-confidence variant for each trait 
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attaining significant genetic correlation with Northings in UK Biobank using 

PhenoScanner
27,28

. Association summary statistics were obtained from analysis of 337,199 

unrelated white British participants passing central quality control in a generalised linear 

regression model with adjustment for sex and the first ten centrally derived axes of genetic 

variation from PCA as covariates, as implemented in Hail. Phenotypes were derived and 

harmonised with PHESANT
30

, and association analyses were restricted to variants with MAF 

>0.1%, exact HWE p>10
-10

, and imputation quality info score >0.8.  
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Figure 1. Miami plot and quantile-quantile plots for association with Northing and 

Easting Cartesian co-ordinates for birth location of unrelated white British individuals 

from the UK Biobank after correction for population structure. Association analyses are 

performed with inclusion of a random effect for the GRM in a linear mixed model. Inflation 

factors (λ) assessed via LD-score regression intercept. The genome-wide significance 

threshold (p<5x10
-8

) is indicated by the horizontal lines.  

 

Figure 2. Genetic correlation of lifestyle related traits with Northing and Easting 

Cartesian co-ordinates for birth location of unrelated white British individuals from the 

UK Biobank. We selected twelve traits as representative of obesity and fat distribution, lung 

function and smoking, and blood pressure and hypertension. The tips of the arrows 

correspond to the genetic correlation of the trait with Northings and Eastings. A more 
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northerly (and westerly) birth location was genetically correlated with increased body-mass 

index and fat mass, hypertension and smoking, and with decreased lung function. 
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Figure 3. LD-score regression intercepts for body mass index, forced vital capacity and 

asthma, obtained for unrelated white British individuals from the UK Biobank after 

correction for population structure through inclusion of a random effect for the GRM 

in a linear mixed model, with and without adjustment for ten axes of genetic variation, 

and Northing and Easting Cartesian coordinates. The height of each bar represents the 

LD-score intercept, and the error bars define the 95% confidence interval. 

Table 1. Loci attaining genome-wide significant association (p<5x10
-8

) with Northing 

Cartesian coordinates for birth location of unrelated white British individuals from the 

UK Biobank after correction for population structure through inclusion of a random 

effect for the GRM in a linear mixed model.  

 

Locus Lead variant Chr Position 

(bp, b37) 

Mixed model  

p-value 

Northings Eastings 

YTHDF2 rs183909650 1 29,059,553 1.2x10
-8

 0.75 

MYSM1-JUN rs138938527 1 59,196,687 9.3x10
-10

 0.35 

Intergenic rs11184903 1 106,972,375 3.4x10
-8

 0.011 

POLR3C rs141333427 1 145,599,750 6.1x10
-10

 0.55 

GJA5-GJA8 rs76713613 1 147,307,666 4.1x10
-8

 0.49 

FCRLB rs6700369 1 161,691,586 2.6x10
-12

 0.24 

KIAA0040 rs2861158 1 175,135,829 9.4x10
-9

 0.063 

CHRM3 rs142495445 1 239,889,366 2.1x10
-10

 0.023 

LPIN1 rs869162 2 12,017,846 5.3x10
-9

 0.82 

PRKCE-EPAS1 rs72795609 2 46,458,369 1.3x10
-8

 0.56 

LCT rs182549 2 136,616,754 1.7x10
-17

 2.0x10
-12

 

PDE11A rs75313639 2 178,613,409 1.9x10
-9

 0.083 

STAT4 rs17768109 2 191,920,448 3.2x10
-8

 0.34 

Intergenic rs138897148 3 30,414,016 2.4x10
-8

 0.53 

GBE1-LINC00971 rs75932529 3 82,986,685 1.2x10
-10

 0.76 

Intergenic rs189809665 3 95,199,900 1.3x10
-8

 0.97 

Intergenic rs191077151 3 102,612,554 5.6x10
-9

 0.61 

ILDR1 rs147965995 3 121,719,991 3.5x10
-8

 0.78 

YEATS2 rs166398 3 183,446,977 1.5x10
-8

 0.53 

TLR10-TLR1 rs4543123 4 38,792,524 5.3x10
-56

 4.1x10
-11

 

Intergenic rs562248335 4 53,210,826 3.6x10
-8

 0.55 

AASDH rs10010544 4 57,202,676 3.7x10
-8

 0.23 

PARM1-LINC02483 rs142147881 4 76,126,259 6.9x10
-9

 0.87 

SLC10A7-POU4F2 rs138838211 4 147,525,948 2.7x10
-8

 0.49 
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LINC02100-RF00017 rs144164550 5 18,838,724 2.7x10
-9

 0.96 

Intergenic rs11738948 5 44,999,799 1.7x10
-8

 0.31 

PART1 rs3887175 5 59,790,456 4.7x10
-8

 0.050 

CSNK1G3 rs2897789 5 122,948,316 8.6x10
-9

 0.047 

SMIM33 rs13181561 5 138,850,905 7.6x10
-9

 0.00059 

RP11-541P9.3 rs185543831 5 162,606,973 1.5x10
-10

 0.29 

MHC region rs67850286 6 32,207,912 2.9x10
-12

 0.27 

ANKRD66-MEP1A rs9463249 6 46,747,864 3.7x10
-8

 0.60 

RN7SKP211 rs77691922 6 106,389,862 8.1x10
-10

 0.49 

LINC02534 rs527638681 6 116,060,967 3.3x10
-8

 0.0034 

ZC3H12D-PPIL4 rs183211514 6 149,809,239 2.7x10
-9

 0.14 

ZNF316 rs9640029 7 6,685,123 4.5x10
-8

 0.038 

THSD7A-TMEM106B rs12699279 7 11,886,719 1.7x10
-8

 0.27 

LOC401324 rs7807834 7 35,355,874 4.2x10
-8

 0.95 

GTF2IRD2 rs145191771 7 74,285,390 2.5x10
-8

 0.96 

AC002451.1-DYNC1I1 rs73241153 7 95,321,530 3.2x10
-8

 0.013 

KLRG2-CLEC2L rs6467860 7 139,190,020 5.8x10
-9

 0.38 

GIMAP4 rs6969418 7 150,262,584 8.4x10
-9

 0.97 

TUSC3 rs12543949 8 15,309,705 3.2x10
-8

 0.55 

FGF20 rs2467176 8 16,692,687 4.9x10
-8

 0.078 

LY96 rs11466004 8 74,941,275 3.3x10
-8

 0.37 

JRK-PSCA rs2920288 8 143,753,289 3.7x10
-9

 0.92 

KDM4C rs140546025 9 6,765,320 3.9x10
-8

 0.71 

Intergenic rs72712132 9 12,297,698 4.7x10
-8

 0.57 

TLR4 rs4986790 9 120,475,302 5.8x10
-12

 0.014 

PIK3AP1 rs12572544 10 98,509,591 1.8x10
-9

 0.57 

TMEM180 rs74908306 10 104,233,229 9.6x10
-11

 0.055 

NADSYN1-KRTAP5-7 rs11234014 11 71,232,811 7.2x10
-10

 1.1x10
-7

 

C11orf53 rs7934982 11 111,149,632 4.6x10
-9

 0.078 

CSRP2 rs10746288 12 77,261,098 4.6x10
-11

 0.37 

MYBPC1 rs10860766 12 102,064,667 4.3x10
-8

 0.12 

GALNT9 rs117340324 12 132,683,244 2.4x10
-8

 0.25 

LINC00417-ANKRD20A9P rs9552508 13 19,354,675 2.6x10
-8

 0.65 

FLT3 rs35263155 13 28,652,999 4.5x10
-8

 0.76 

LINC00398-LINC00545 rs73165012 13 31,388,774 2.9x10
-8

 0.60 

DCAF5 rs143797681 14 69,498,428 3.1x10
-8

 0.69 

PWRN2 rs544128806 15 24,494,412 4.7x10
-8

 0.26 

SECISBP2L-COPS2 rs62009762 15 49,389,757 4.5x10
-8

 0.0053 

PRTG-NEDD4 rs150276168 15 56,067,643 1.8x10
-8

 0.34 

LINC00923 rs72752662 15 98,370,408 1.6x10
-10

 0.25 

IFT140 rs117492052 16 1,655,759 6.7x10
-9

 0.19 

MC1R rs1805007 16 89,986,117 6.8x10
-9

 0.46 

LINC00670 rs149081560 17 12,503,649 1.5x10
-8

 0.42 

ZNF536 rs149713626 19 30,817,216 1.9x10
-8

 0.37 

SELENOV rs8102247 19 40,008,118 2.1x10
-9

 0.46 

LTBP4-NUMBL rs2604861 19 41,150,922 9.4x10
-9

 0.0026 

VSTM2L rs6013469 20 36,558,660 9.7x10
-9

 0.58 

MAFB rs6102086 20 39,281,690 2.6x10
-8

 0.0046 
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LINC01549 rs193267476 21 18,710,258 4.7x10
-8

 0.31 

RUNX1 rs564634064 21 36,479,812 2.4x10
-8

 0.18 

 

ABBREVIATIONS 

 

BMI: body mass index 

FVC: forced vital capacity 

GRM: genetic relationship matrix 

GWAS: genome-wide association study 

MAF: minor allele frequency 

PCA: principal components analysis 
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