
The University of Manchester Research

Arbitrarily shaped Point Spread Function (PSF) estimation
for single image blind deblurring
DOI:
10.1007/s00371-020-01930-5

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Khan, A., & Yin, H. (2020). Arbitrarily shaped Point Spread Function (PSF) estimation for single image blind
deblurring. Visual Computer. https://doi.org/10.1007/s00371-020-01930-5

Published in:
Visual Computer

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2022

https://doi.org/10.1007/s00371-020-01930-5
https://www.research.manchester.ac.uk/portal/en/publications/arbitrarily-shaped-point-spread-function-psf-estimation-for-single-image-blind-deblurring(6d576df4-b603-4ab4-9c2b-a25acec4ab27).html
https://doi.org/10.1007/s00371-020-01930-5


Journal of Visual Computer manuscript No.
(will be inserted by the editor)

Arbitrarily Shaped Point Spread Function (PSF) Estimation
for Single Image Blind Deblurring

Aftab Khan · Hujun Yin

Received: date / Accepted: date

Abstract The research paper focuses on a challenging

task faced in Blind Image Deblurring (BID). It relates

to the estimation of arbitrarily shaped (non-parametric

or complex shaped) Point Spread Functions (PSFs) of

motion blur caused by camera handshake. These PSFs

exhibit much more complex shapes than their paramet-

ric counterparts and deblurring, in this case, requires in-

tricate ways to estimate the blur and effectively remove

it. This research work introduces a novel blind deblur-

ring scheme visualized for deblurring images corrupted

by arbitrarily shaped PSFs. It is based on Genetic Algo-

rithm (GA) and utilizes the Blind/Reference-less Image

Spatial QUality Evaluator (BRISQUE) measure as the

fitness function for arbitrarily shaped PSF estimation.

The proposed BID scheme has been compared with

other state-of-the-art single image motion deblurring

schemes as benchmarks. Validation has been carried

out on the standard real-life blurred images. Results

of both benchmark and real images are presented. For

real-life blurred images, the proposed BID scheme us-

ing BRISQUE converges in close vicinity of the original

blurring functions. However, the benchmark schemes

fail to effectively restore the real blurred images. The

proposed scheme surpasses on average of seven percent

higher image quality as compared to the benchmark

schemes.
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1 Introduction

The PSF for uniform blurring can be estimated using

the functional form for some common types of blur i.e.

the Gaussian blur, motion blur and out-of-focus blur [1].

In real life, especially in the case of motion blur result-

ing from camera handshake, the blur follows convoluted

paths resulting in complex-shaped PSFs [2,3]. There

exist many schemes in the literature dealing with the

restoration of such images with some listed in [3–12].

The blurring PSF shape, in this case, cannot be easily

modelled by a simple equation or defined by a mathe-

matical model for a set of its parameter(s) [2]. PSFs in

such cases exhibit an arbitrary shape and deblurring,

in this case, requires intricate ways to estimate the blur

and effectively remove it. Such arbitrarily shaped PSFs

have been shown to exist in the case of atmospheric

turbulence blur as well as [13].

Some examples of real blurred images corrupted by

arbitrarily shaped PSFs are shown in Fig. 1(a), with

their respective close-ups in Fig. 1(b). The camera shake

pictures exhibit PSFs far different from that found when

the linear motion was investigated in [14]. The hand-

sketched PSFs are shown in Fig. 1(c). Though mod-

elling or approximating such PSFs using a large set of

parameters is not impossible, estimating in such case

becomes challenging, both computationally and in terms

of convergence of the BID algorithm.

This research work focuses on the challenging task

of restoring of images blurred by arbitrarily shaped PSF

resulting from motion blur due to camera handshake.
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Fig. 1 Examples of arbitrarily shaped PSFs. Row 1. Real
blurred images. Row 2. Image sections and Row 3. Corre-
sponding hand sketched PSFs.

It uses a blind Image Quality Measure (IQM) as feed-

back of deblurred image quality. Blind/Reference-less

Image Spatial QUality Evaluator (BRISQUE) IQM is

used as a fitness function to the Genetic Algorithm

(GA).However, for real-life blurred images, RPSNR IQM

is a more robust substitute as it is less affected by de-

blurring noise and ringing. The coefficients of the 2-

D PSF are represented by binary chromosomes which

evolve for the optimum values of the IQM hence opti-

mizing the search for the blurring PSF.

The remainder of the paper is organized as follows.

The next section briefly introduces some of the blind

IQMs used for evaluating the image quality without a

reference high-quality image. Section II describes the

proposed learning and blind deconvolution scheme in

detail while Section IV presents the details of the PSF

support size estimation technique. Experimental setup

and deblurring results for artificially blurred and real

blurred images suffered from various forms of degrada-

tion and their analysis are given in Section 4,5, and 6

respectively. Discussion and analysis of the whole re-

search work are given in Section 7 whereas concluding

remarks are presented in Section 8.

The next section details the proposed BID scheme

for arbitrarily shaped PSF estimation and deblurring.

2 Proposed Blind Deblurring Scheme For

Arbitrarily Shaped PSF Estimation

The main idea behind the proposed BID scheme is

stated as follows:

Any parametric or non-parametric uniform PSF can

be approximated by estimating its coefficients values us-

ing a deblurring measure as feedback of deblurred image

quality to the BID scheme.

Fig. 2 (a) Blurring PSF (b) An overview of the arbitrarily
shaped PSF estimation process through different stages.

A PSF can be assumed as a matrix of random val-

ues which can be estimated under a set of constraints.

Mentioned below are the constraints applied to the PSF

matrix in this research work:

– The PSF has a finite support size, with a finite num-

ber of rows and columns m and n, respectively.

– The energy of the PSF is maintained. i.e.∑
m,n

h(m,n) = 1

– The PSF is space invariant. The same blurring ef-

fect is presented by the blurring kernel at each pixel

location.

– The PSF coefficients are non-negative.

During each iteration, a coefficient value is updated

in the direction of improved deblurred image quality.
The deblurred image quality can be calculated using

an Image Quality Measure (IQM). The IQM can lead

the BID scheme towards blurring PSF estimation and

in turn restoring the blurred image. The process can be

evaluated for a fixed number of iterations or it can be

terminated when the difference in the IQM’s value in

subsequent iterations is lower than a specified threshold

value.

Fig. 2 shows a glimpse of the restoration process

for estimating the PSF coefficients. The original PSF

is depicted in Fig. 2 (a) while the estimation process is

illustrated in Fig. 2 (b). From an initial set of random

values, the process keeps on estimating the PSF coeffi-

cients’ weights till the IQM stops showing any further

improvement.

An added advantage of such a BID scheme is that

the same method can easily be extended for estimating

other types of blur apart from camera handshake. It

can be used to estimate parametric and non-parametric

blur of different types.
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The deblurred image quality can be calculated us-

ing any blind IQM such as the non-Gaussianity mea-

sures spatial kurtosis [21] and spectral kurtosis [18] and

other blind IQMs including Reblurring based Peak Sig-

nal to Noise Ratio (RPSNR) [22], BRISQUE [19,23]

and NIQE [20,24] to name a few.

The deblurring scheme is optimized using GA with

IQM as the fitness function. The ASP-BID scheme based

on GA is flexible as it can be easily incorporated with

any IQM as the fitness function. Details of the GA

based search optimization for the proposed BID scheme

are as follows:

– Step 1: Initialize the GA parameters i.e. population,

size, crossover rate, mutation rate etc.

– Step 2: Generate an initial chromosome population

where each chromosome contains information about

all the coefficients of the finite support size PSF.

– Step 3: Perform iteration and find the restored im-

age through Wiener filtering for all the chromo-

somes.

– Step 4: Calculate fitness function values for the ini-

tial population.

– Step 5: Select the best fitting group of chromosomes

based on either roulette or threshold-based selec-

tion.

– Step 6: Generate a new population from the chromo-

somes selected in Step 5 through crossover and mu-

tation. Each crossover is performed with probability

pc in the range of 0.5,, 0.8 and cross over points are

selected at random. Mutation involves modification

of components of the individual chromosomes with

probability pm. pm is usually a small number usu-

ally assumed in the range of 0.001,....,0.01. Roulette

wheel selection is used to select the best fitting in-

dividuals among the population.

– Step 7: Repeat the process again from Step 3 until

the algorithm converges for the deblurring measure.

The proposed BID scheme requires PSF size input

from the user so a finite matrix of coefficient values is

calculated. In this regard, a method for visual judge-

ment based PSF size estimation before deblurring is

discussed in Section IV. In the case of real blurred im-

ages, the PSF size was estimated by inspecting a uni-

form blur region in the blurred image.

3 PSF Support Size Estimation

In order to estimate the PSF support size, a simple

technique is proposed here. Initially, the GA is run for

different sizes of PSF for a couple of iterations. The

results are then visually judged for ringing artefacts.

Algorithm 1: Genetic Algorithm for BID

//Initialize GA parameters setMutationRate();
setCrossoverRate();
getnumChromosomes();
getnumGenerations();

//Generate initial chromosomes
CurrentPop=randPop(numChromosomes);

while Generation 6= Total Generations do
scores=EvaluateChr(CurrentPop);

newParents=selectElite(CurrentPop,scores);
ChildChromosomes=Crossover(newParents);
newPop=Mutation(ChildChromosomes);

Function EvaluateChr(CurrentPop):
blurPSF = decodeChr(Chromosome)
deblurred = RestorationFilter(blurred,blurPSF )
score = CalculateScore(blurred,blurPSF )
return score

Function selectElite(CurrentPop,scores):
CurrentPop = sort(scores,CurrentPop)
newParents = SelectElite(CurrentPop,Nparents)
return newParents

Function Crossover(newPsrents):
selectpoints(newParent1,newParent2 );
ChildChromosomes=swapvals(newParent1,newParent2,locations);
return ChildChromosomes

Fig. 3 Deblurring results for varying PSF sizes. A smaller
PSF coefficient matrix results in almost no deblurring, while
ringing artifacts are observed PSF sizes larger than 5x5.
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Fig. 4 Deblurring result for arbitrarily shaped PSF of size
5x5 pixels estimated by visual judgment of ringing artifacts.
(a) Original image (b) Blurred image (c) Deblurred image (d)
Blurring PSF and (e) Estimated PSF of size 5x5 pixels.

Initially, if the estimated PSF is bigger in size than the

blurring PSF, it creates estimation error among them.

This results in ringing artefacts visible in the deblurred

image. The more the PSF estimation error, the severe

the ringing artefacts in the deblurred image. If the PSF

estimation error is minimum, ringing is least. The user

can thus pick a PSF size which shows reduced ringing

for the deblurred image.

Fig. 3 shows the image deblurred for varying sizes

of PSF. The initial blur PSF size was an 8x7 coefficient

matrix. The 5x5 matrix PSF depicts image sharpness

as compared to the 3x3 matrix. All other bigger size

matrices result in severe ringing in the deblurred image.

The deblurring result for the 5x5 size estimated PSF is

shown in Fig. 4.

4 Experimental Setup

Test images include images from the Waterloo Bragzone

grayscale image dataset [25] as well as a collection of

real-life blurred images mostly captured by the first au-

thor himself. Sony DSC-W310 digital camera was used

to capture the real blurred images. The real-life camera

handshake images demonstrate a reasonable amount of

image noise as well. Noise can affect the deblurring re-

sults by changing the statistical properties of the im-

age. Initially, a variant of GA coded by ourselves was

employed for optimizing the search. After MATLAB re-

leased support for GA in its optimization toolbox [26],

the proposed BID was successfully implemented on it

and evaluated in parallel on a multiple core computer.

Optimization of the proposed BID scheme is out of the

scope of this research work thus further details of its

execution on the multiple core machine have been omit-

ted.

Six blind (non-reference) image quality measures

were used. These quality measures are based on the Hu-

man Visual System (HVS). The latest and robust non-

reference (totally blind) image quality measures have

been used to gauge the performance of the deblurring

schemes. This includes BRISQUE, NIQE, BLIINDS,

DIIVINE, FRIQUEE, SSEQ [19,20]. Spearman corre-

lation coefficients of the IQM scores with Human scores

from various subjects are also presented. For testing on

the real-life blur images, 18 of our images and 100 im-

ages from the Lai dataset [27] were used.

The proposed ASP-BID schemes estimated PSF co-

efficients are not exactly the same as the original PSF

but are rather a near approximation of the original blur-

ring PSF. The proposed BID scheme estimates the PSF

coefficients for a limited number of iterations which pro-

duces a reasonable approximation of the original PSF

coefficients. This affects the brightness and contrast of

the deblurred images thus rendering the full-reference

IQMs: the Mean Structural Similarity (MSSIM) index

[28–30] and the Universal Quality Index (UQI) [31] etc.

invalid for quantitative image quality evaluation. In-

stead, non-reference IQMs BRISQUE and NIQE were

used for this purpose.

BRISQUE was also used as the deblurring measure

for the restoration of the images due to its efficient de-

blurring performance among multiple IQMs. The differ-

ent IQMs compared for BID included spatial and spec-

tral kurtosis, RPSNR, BRISQUE and NIQE IQM. The

related work is detailed in [32]. Deblurring results for ar-

tificially blurred and real blurred images are presented

below.

5 Deblurring Results For Artificially Blurred

Images

Since the BID scheme can easily be extended for uni-

form parametric blurs, the algorithm was first evaluated

for the less complex parametric form blurs before test-

ing it for arbitrarily shaped PSFs. Deblurring results for

Gaussian, motion and out-of-focus blur are presented

below.

5.1 Restoration of Parametric PSF Blurred Images

The first set of tests included deblurring images blurred

by Gaussian PSF. Fig. 5(a) shows the deblurring result

for Cameraman image blurred by Gaussian PSF of size

11x11 pixels and variance σ2 = 2. It can be observed

that the estimated PSF takes on a rough shape of the

blurring PSF as viewed in Fig. 5(a). Results presented

here were obtained when the algorithm stopped, as the

tolerance value for the fitness function was attained.

The restored image appears sharper and much more

detailed than its blurred counterpart.
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Fig. 5 Deblurring result for image blurred by Gaussian PSF
of size 11 x 11 pixels and variance sigma2 = 2. (a) Original
image (b) Blurred image (c) Deblurred image (d) Blurring
PSF and (e) Estimated PSF.

The second set of tests included deblurring images

artificially blurred by motion blur. Fig. 5(b) shows the

deblurring results for the Lena image blurred by motion
blur PSF of length 11 pixels and angle 23 degrees. The

estimated PSF achieved for the fixed iterations of the

deblurring algorithm is almost similar to the blurring

kernel.

Fig. 5(c) shows the deblurring result of the Barbara

images under the influence of out-of-focus blur of radius

9 pixels. Deblurring results show the estimated PSF

converging towards the original blur PSF. For the large

out-of-focus blur, a lot of attenuation occurs for the

high-frequency elements in the image and recovery, in

this case, is not that sharp as observed for the Barbara

image.

5.2 Deblurring Images Blurred by Arbitrarily Shaped

PSFs

Arbitrarily shaped PSFs was used to blur the images

and then recover using the proposed scheme. Deblur-

ring results are shown in Fig. 5(d) - 5(g) which depict

Table 1 Deblurring results for artificially blurred images.
Deblurred image quality is evaluated using BRISQUE and
NIQE IQM.

Figure
Number

Filter
Size

(pixels)
Parameter

Values

Fig. 5(a) Gaussian 11*11 sigma2=2.0
Fig. 5(b) Motion 5*11 L=11, A=23
Fig. 5(c) Out-of-focus 19*19 R=9
Fig. 5(d) Arbitrary 9*9 NA
Fig. 5(e) Arbitrary 15*11 NA
Fig. 5(f) Arbitrary 16*10 NA
Fig. 5(g) Arbitrary 11*14 NA

BRISQUE

Pristine Blurred Deblurred

Fig. 5(a) 6.68 35.88 47.27
Fig. 5(b) 10.26 16.67 52.07
Fig. 5(c) 50.12 30.57 63.38
Fig. 5(d) 14.30 14.67 39.11
Fig. 5(e) 14.13 17.95 36.43
Fig. 5(f) 15.45 20.77 49.80
Fig. 5(g) 49.04 30.07 42.27

NIQE

Pristine Blurred Deblurred

Fig. 5(a) 5.11 4.57 6.89
Fig. 5(b) 5.11 4.69 7.19
Fig. 5(c) 4.98 6.12 9.66
Fig. 5(d) 4.74 4.74 7.43
Fig. 5(e) 5.50 5.94 7.56
Fig. 5(f) 4.98 5.72 6.30
Fig. 5(g) 6.42 8.85 7.94

sigma2=Variance, L=length, A=Angle, R=Radius

that the proposed algorithm was able to estimate the

blurring coefficients to a large extent. The deblurred

images appear sharper than their blurred counterparts.

In Fig. 5(e), it can be observed that the estimated

PSF was of size 5 x 5 pixels while the actual blurring

kernel was of size 15 x 11 pixels. The size for the es-

timated PSF was selected as 5 x 5 pixels because a

bigger support size PSF resulted in increased ringing in

the deblurred image. A 5 x 5 coefficient matrix turned

out as the best choice for estimating the original PSFs

coefficient values.

Table 1 illustrates the quantitative IQMs values for

the deblurred images using the arbitrarily shaped PSF

estimation scheme. BRISQUE and NIQE values for the

original, blurred and deblurred image are shown as com-

parison of deblurred image quality.

Low values of BRISQUE and NIQE represent high

quality images. For Fig. 5(g), both NIQE and BRISQUE

show improvement in the image. It can be seen that the

ringing in the deblurred image is minimal.
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Though the deblurred images in Fig. 5(a)-5(g) have

recovered well from the blurring as observed visually,

the BRISQUE and NIQE values erroneously depict the

deblurred images are of less visual quality. This is due

to the presence of residual blur left from incomplete

deblurring using the PSF estimates that are not the

same as the original blurring PSFs. The tests also show

that BRISQUE and NIQE IQMs may not be ideal blind

IQMs and more effort is still needed to enhance their

performance.

6 Restoration of Real Blurred Images

Real-life blurred images were used to test the efficacy

of the deblurring scheme for practical applications. The

images depict motion blur resulting from camera hand-

shake. The BID schemes of Fergus et al. [3] and Whyte

et al. [5] were used as a benchmark for comparison of

deblurred image quality. These schemes were picked out

due to the availability of their code. Other schemes were

omitted from comparison due to their code complexity

and large computation time A brief discussion of these

schemes is provided below.

The scheme from Fergus et al. estimates the blurring

PSF and then deconvolves the image using a Richardson-

Lucy filter. The PSF estimation process depends on

image statistics, especially pixel color/image gradients.

Their scheme was designed to estimate in-plane mo-

tion PSF while neglecting out-of-plane (rotational) mo-

tion blur. The BID scheme by Whyte et al. extends the

scheme of Fergus et al. by incorporating rotational blur

constraints as well as employing it for two deblurring

cases. In the first deblurring case their scheme has been

used to deblur a single-shot image, while in the second

deblurring case, it utilizes information from a noisy pair

of the blurred image along with a single-shot blurred

image to estimate the blurring PSF.

Fig 6 shows the deblurring results for the Ian-1 im-

age with the image source given in [33]. The blurred

image is shown in Fig. 6(a). The deblurred image us-

ing the proposed BID scheme is shown in Fig. 6(b) with

the estimated PSF in Fig. 6(e). The blurred image after

restoration is reasonably clear with some ringing in Fig.

6(b) for the proposed scheme. However, the best result

in terms of visual quality is achieved for the Fergus et

al. based BID scheme in Fig. 6(c). Whyte et al.’s scheme

was unable to estimate the blurring kernel properly and

the deblurred image in Fig. 6(d) contains large residual

blur and ringing.

Deblurring results of the Basilica image are shown

in Fig. 7. The blurred image in Fig. 7(a) was deblurred

using the proposed BID scheme. The deblurred image

and the corresponding estimated PSF are shown in Fig.

Fig. 6 Deblurring result for Ian-1 image blurred by arbi-
trary PSF resulting from camera handshake (a) Blurred im-
age. Deblurred using (b) Proposed BID scheme (c) Fergus
et al. scheme (d) Whyte et al. scheme with their respective
estimated PSFs in (e), (f) and (g).

Fig. 7 Deblurring result for Basilica image blurred by ar-
bitrary PSF resulting from camera handshake (a) Blurred
image. Deblurred using (b) Proposed BID scheme (c) Fergus
et al. scheme (d) Whyte et al. scheme with their respective
estimated PSFs in (e), (f) and (g). The hand sketched PSF
is shown in (h).

7(b) and Fig. 7(e). The image appears to have recovered

well as compared to the deblurred images in Fig. 7(c)

and (d) for the BID schemes of Fergus et al. and Whyte

et al., respectively. Looking at the estimated PSFs in

Fig. 7(f) and Fig. 7(g), it can be seen the estimated

PSFs are approximated for few points as compared to

the estimated PSF using the proposed scheme in Fig.

7(e). Fig. 8 shows the deblurring results for the Eiffel

image.

Fig. 9 shows the deblurring results for the Monu-

ment image. The blurred image in Fig. 9 (a) was de-

blurred using the proposed scheme, Fergus et al. and

Whyte et al. scheme in Fig. 9(b), (c) and (d) with their

respective estimated PSFs shown in Fig. 9 (e), (f) and

(g). In Fig. 9, the image seems to have recovered well,

but looking it in detail, the text in the image is unread-

able, as shown in Fig. 10.

None of the BID schemes was able to estimate the

PSF of the real-life blurred image perfectly. For the

proposed BID scheme, the rationale behind its ineffi-

ciency can be related to the lack of more extreme im-

age and PSF constraints. However, even in the case

of the deblurring schemes of Fergus et al. and Whyte

et al., much more advanced image constraints and in-

plane/out-plane PSF constraints fail to enhance the de-
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blurring performance. This is probably due to blurring

models and image/blur statistics constraints that leave

large uncertainties in the modeling and computation of

the blurring kernel [2,4]. Also, the presence of noise in

the blurred images may affect the deblurring outcome.

6.1 SOTA Real Blur Dataset Results

In order to gauge the proposed scheme’s efficiency, it

was tested on real-life blurred images. The set of 118

real-life blurred images (with 100 images from Lai dataset

and 8 real-blurred images from our dataset) was utilised.

These images are blurred from real-life complex-shaped

motion blur.

Six of the latest and robust non-reference (totally

blind) image quality measures have been used to gauge

the performance of the deblurring schemes. These qual-

ity measures are based on the Human Visual System

(HVS). This includes BRISQUE, NIQE, BLIINDS, DI-

IVINE, FRIQUEE, SSEQ [34]. Spearman correlation

coefficients of the IQM scores with Human scores from

various subjects are also presented.

The schemes of Fergus and Whyte were utilised for

two reasons: (1) They surpassed the current schemes,

particularly for real-life blurred images. (2) Two other

methods, Qi Shan and Hirsch et al. performed well but

as per our previous study, these two have been out-

dated.

The following works (with author names) were used

as benchmark for comparison of deblurring results in

the case of real-life blurred images.

Kupyn (DeblurGAN) [35], Tao (Deep Image Deblur-

ring) [36], Nah (CNN) [37], Mai (Kernel Fusion) [38],

Kupyn (DeblurGAN2) [39] and Ramakrishnan (Deep-

GAN) [40].

Most of the schemes referred above are learning-

based and all of them are aimed at handling complex-

shaped motion blurs. Apart from the proposed scheme,

DeblurGAN and Taos Deep Image Deblurring aim at

the recovery of artificial as well as real blurred images.

Such learning-based BID schemes take a lot of time de-

pending upon the amount of image data used for train-

ing e.g. DeblurGAN depicts a training period of six days

for 128 x 128 image size and around 1000 images while

its deblurring algorithm takes only 0.8 seconds.

Using each code along with its pre-trained model,

we tested the images for deblurring. Results for test-

ing deblurring of real-life blurred images are presented

below. The quality scores are averaged for each quality

measure over the set of 118 real-life blurred images.

These quality measures are based on the Human

Visual System (HVS). The score for some IQMs were

Fig. 8 Deblurring result for Eiffel image blurred by arbi-
trary PSF resulting from camera handshake (a) Blurred im-
age. Deblurred using (b) Proposed BID scheme (c) Fergus et
al. scheme (d) Whyte et al. scheme with their respective es-
timated PSFs in (e), (f) and (g). The hand sketched PSF is
shown in (h).

100 (best) and 0 (worst). Others IQM scores were re-

ordered so they correlate with this range. Table 2 shows

the scores.

The proposed scheme is occasionally surpassed by

DeblurGAN2 and is nearly matched in performance by

DeblurGAN. In our study, we computed the Spearman

correlation coefficient of the IQM scores with Human

scores from various subjects. The correlation coefficient

depicts that the even though the quality measure val-

ues of the proposed scheme may be relatively low, they

are well aligned with human scores concurring that the

restoration results of the proposed scheme are visually

better as compared to the benchmarks schemes

The performance of the benchmark schemes, espe-

cially training based ones, is severely marred when real-

life blurred images are provided. For comparison, the

same image size and computing system were used for

all testing. We compared our scheme with theirs as they

suggest they surpass other previous benchmarks. The

proposed scheme’s results for both artificial and real de-

blur outdo the benchmark schemes qualitatively, quan-

titatively and can handle any type of blur.

7 Discussion and Analysis

A novel BID scheme based on GA and utilizing the

blind BRISQUE measure as the fitness function is pre-

sented for deblurring images corrupted by arbitrarily

shaped PSFs. The proposed BID scheme can estimate

any parametric or non-parametric PSF coefficients val-

ues using an IQM as feedback of deblurred image qual-

ity to the BID scheme. During each iteration, a coeffi-

cient value is updated in the direction of improved de-

blurred image quality measured using the blind IQM.

The process can be evaluated for a fixed number of it-

erations or it can be terminated when the difference in

the measure value in subsequent iterations is lower than

a specified threshold value.
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Table 2 Comparison of blind image quality scores for the proposed scheme vs. the benchmark schemes.

IQM
Proposed
Scheme

Kupyn -
Deblur
GAN

Tao - Deep
Image

Deblurring

Nah-
CNN

Mai -
Kernel
Fusion

Kupyn -
Deblur
GAN2

Ramakrishnan -
DeepGAN

BRISQUE 67.51 59.71 46.46 62.49 65.50 66.00 61.95
BLIINDS 66.48 54.92 52.88 57.79 59.85 57.53 62.02
DIIVINE 63.57 52.05 49.69 54.98 56.80 54.45 59.02

FRIQUEE 63.38 55.57 42.56 58.46 60.95 62.01 57.89
ILNIQE 54.58 46.81 48.29 45.68 36.66 56.22 50.88
SSEQ 79.91 67.40 68.89 69.40 71.52 72.78 73.32

Mean Score 65.91 56.08 51.46 58.13 58.55 61.50 60.85

Spearman Corr Coeff 0.0868 -0.1747 0.1845 -0.1426 -0.1634 0.1112 -0.1252

Fig. 9 Deblurring result for Monument image blurred by
arbitrary PSF resulting from camera handshake (a) Blurred
image. Deblurred using (b) Proposed BID scheme (c) Fergus
et al. scheme (d) Whyte et al. scheme with their respective
estimated PSFs in (e), (f) and (g).

Fig. 10 Deblurring results for section of Monument image
using (a) Proposed BID scheme (b) Fergus et al. scheme and
(c) Whyte et al. scheme. The text in the image is unreadable
in all cases.

The proposed BID schemes estimated PSF coeffi-

cients are not exactly the same as the original PSF but

are rather a near approximation of the original blur-

ring PSF. This affects the brightness and contrast of

the deblurred images thus rendering the full-reference

IQMs PSNR, MSSIM, UQI etc invalid for quantitative

image quality evaluation. Hence, non-reference IQMs

BRISQUE and NIQE were used for computation of de-

blurred image quality.

Initially, a self-coded GA variant was employed for

optimizing the search algorithm which was later re-

placed by MATLAB based GA in its optimization tool-

box. The proposed BID was successfully evaluated in

parallel on a multiple-core machine. The proposed BID

scheme requires a fixed PSF size input from the user. In

this regard, a method for visual judgment based PSF

size estimation prior to deblurring is discussed in Sec-

tion IV. In the case of real blurred images, the PSF size

was estimated by inspecting a blur region in the image.

Since the BID scheme can also be extended for uni-

form parametric blurs, the algorithm was first evaluated

for the less complex parametric form blurs before test-

ing it for arbitrarily shaped PSFs. Results presented

here were obtained when the algorithm stopped, as the

tolerance value for the fitness function was attained.

The restored images appear sharper and much more

detailed than its blurred counterpart.

Real-life blurred images were used to test the effi-

cacy of the deblurring scheme for practical application.

The images depict motion blur resulting from camera

handshake. The proposed BID scheme has been com-

pared with other deblurring schemes that include the

single image motion deblurring scheme of Fergus et

al. [3] and the single/noisy-paired motion deblurring

scheme of Whyte et al. [5]. None of the BID schemes

was able to estimate the PSF of the real-life blurred

image perfectly.

For the proposed BID scheme, the rationale behind

its inefficiency can be related to the lack of more ex-

treme image and PSF constraints. However, even in

the case of the deblurring schemes of Fergus et al. and

Whyte et al., much more advanced image constraints

and in-plane/out-plane PSF constraints fail to enhance

the deblurring performance. This is probably due to

blurring models and image/blur statistics constraints

that leave large uncertainties in the modelling and com-



Arbitrarily Shaped Point Spread Function (PSF) Estimation 9

putation of the blurring kernel. Also, the presence of

noise in the blurred images may affect the deblurring

outcome.

8 Conclusions

The problem of deblurring of images corrupted by com-

plex motion blurs has been analyzed and a BID scheme

is proposed. The proposed BID can handle both para-

metric and arbitrarily shaped PSF estimation using a

single algorithm, for single-shot blurred images, with

enhanced optimization through GA. The deblurring re-

sults show effective PSF estimation capability for para-

metric and arbitrarily shaped PSFs in the case of artifi-

cially blurred images. For real-life blurred images result-

ing from camera handshake, the proposed scheme su-

passes the benchmark schemes and estimates the blur-

ring kernel well. Different IQMs and restoration filters

can be easily incorporated in the proposed BID in order

to investigate their performance especially in enhanc-

ing the deblurred image quality. Modeling and deblur-

ring the complex camera handshake PSFs effectively

still remains a challenging task particularly for real-life

blurred images.
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