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Abstract 

Bacterial genomes can contain traces of a complex evolutionary history, including 

extensive homologous recombination, gene loss, gene duplications and horizontal gene 

transfer. In order to reconstruct the phylogenetic and population history of a set of 

multiple bacteria, it is necessary to examine their pangenome, the composite of all the 

genes in the set. Here we introduce PEPPAN, a novel pipeline that can reliably 

construct pangenomes from thousands of genetically diverse bacterial genomes that 

represent the diversity of an entire genus. PEPPAN outperforms existing pangenome 

methods by providing consistent gene and pseudogene annotations extended by 

similarity-based gene predictions, and identifying and excluding paralogs by combining 

tree- and synteny-based approaches. The PEPPAN package additionally includes 

PEPPAN_parser, which implements additional downstream analyses including the 

calculation of trees based on accessory gene content or allelic differences between core 

genes. In order to test the accuracy of PEPPAN, we implemented SimPan, a novel 

pipeline for simulating the evolution of bacterial pangenomes. We compared the 

accuracy and speed of PEPPAN with four state-of-the-art pangenome pipelines using 

both empirical and simulated datasets. PEPPAN was more accurate and more specific 

than any of the other pipelines and was almost as fast as any of them. As a case study, 

we used PEPPAN to construct a pangenome of ~40,000 genes from 3052 

representative genomes spanning at least 80 species of Streptococcus. The resulting 

gene and allelic trees provide an unprecedented overview of the genomic diversity of 

the entire Streptococcus genus. 

Introduction 

Soon after the first bacterial genome was sequenced (Fleischmann et al. 1995), it 

became clear that the genomic contents varied between individual strains within a 

prokaryotic species. Variable genomic content is caused by the gain or loss of singleton 

ORFan genes (Daubin and Ochman 2004), genomic islands, selfish DNA (plasmids, 

bacteriophages, integrative conjugative elements) and/or widespread horizontal gene 

transfer (Abby et al. 2012; Szöllösi et al. 2012; Croucher et al. 2014). Thus, the 

designation “pangenome” was introduced to refer to the entire gene contents of a 
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bacterial species or set of strains (Tettelin et al. 2005). Bacterial pangenomes can be 

divided into the core genome, which consists of the subset of genes that are present in 

all genomes and the accessory genome, which consists of genes which are variably 

present among individual genomes. The core genome often contains phylogenetic 

signals reflecting the vertical accumulation of mutations, and can be used for 

assignments of bacterial strains to populations.  

An early genomic comparison of eight strains of Streptococcus agalactiae indicated that 

for some bacterial species the total size of the pangenome may increase indefinitely 

with the number of genomes sequenced, a concept dubbed an ‘open’ pangenome 

(Tettelin et al. 2005). The validity of this concept remains questionable because, until 

recently, few pangenome analyses have included more than 100 genomes (Vernikos et 

al. 2015), in part because only a limited number of bacterial genomes had been 

sequenced. Furthermore, initial pangenome construction algorithms (OrthoMCL (Li et al. 

2003); Panseq (Laing et al. 2010); PGAP (Zhao et al. 2012)) were incapable of handling 

larger numbers of genomes as they rely on an initial all-against-all sequence 

comparison, which scales computationally with the squared number of gene sequences. 

The insufficiency of data no longer exists, as bacterial genome assemblies now number 

in the 100,000s for some genera (Sanaa et al. 2019; Zhou et al. 2020). However, such 

large numbers of genomes exacerbate the scalability problem. Fortunately, at least 

three recent pipelines (Roary (Page et al. 2015); PanX (Ding et al. 2018); PIRATE 

(Bayliss et al. 2019)) exist for constructing pangenomes from large and representative 

datasets (Ding et al. 2018; Alikhan et al. 2018).  

However, pangenome construction from large datasets is still hampered by two 

problems. First, both genome annotations in public repositories and those from 

automatic annotation pipelines such as PROKKA (Seemann 2014) are incomplete and 

inconsistent (Wozniak et al. 2014; Denton et al. 2014; Salzberg 2019). These 

inconsistencies are propagated into genomic studies and can confound further 

analyses. Early pangenome analyses (Tettelin et al. 2005; Hogg et al. 2007) addressed 

these problems by running TBLASTN gene-against-genome comparisons, but such 

inconsistencies between genome annotations are not addressed by the latest 
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generation of pangenome pipelines, which do not include a reannotation step. Namely, 

genes which have been fragmented by assembly errors or pseudogenisation may still 

be relevant to cell function (Goodhead and Darby 2015) and should therefore be 

included in pangenomes. The identification of such gene fragments requires 

comparisons against intact analogs (Lerat and Ochman 2005), but automatic annotation 

pipelines instead annotate them as multiple intact genes, reducing the size of the 

estimated core genome and overestimating the overall size of the pangenome.  

The second problem in computing a pangenome is that of differentiating orthologous 

genes, which have evolved by vertical descent, from paralogous genes derived from 

gene duplications or horizontal gene transfer (HGT) events. Paralogous genes can 

become fixed in populations, but many are gained or lost multiple times. This generates 

complex patterns of presence/absence along the phylogeny. Therefore, including 

paralogous genes in a phylogenetic analysis may lead to inaccurate interpretations. 

State-of-the-art pangenome pipelines implement either graph- or tree-based algorithms 

for the identification of paralogous genes (Altenhoff et al. 2019). However, tree-based 

algorithms (used by PanX) which reconcile gene trees with a species tree do not scale 

well to large datasets. Graph-based algorithms (used by Roary and PIRATE) run faster 

because they ignore phylogenetic relationships between genomes, but perform poorly 

on benchmark datasets (Ding et al. 2018).  

Here we present PEPPAN, a novel pipeline for calculating pangenomes that specifically 

deals with the problems described above. We describe the algorithms implemented 

within PEPPAN, and show that it outperforms other pangenome methods on both 

empirical and simulated datasets. As a demonstration of PEPPAN’s capabilities, we 

present a pangenome calculated from 3052 representatives of Streptococcus, a highly 

diverse genus. 

Results 

A brief overview of PEPPAN 

PEPPAN’s workflow consists of the following five successive groups of operations (Fig. 

1A and Supplemental Fig. S1) with additional details in Supplemental Text 1.  
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(1) Identifying representative gene sequences. The inputs for PEPPAN consist of GFF3 

formatted genome assemblies (Ensembl Release 98 2019). PEPPAN also accepts 

inputs of additional nucleotide sequences, which are used to refine gene predictions. To 

reduce the number of genes used in downstream analyses, PEPPAN iteratively clusters 

genes using Linclust (Steinegger and Soding 2017), resulting in a single representative 

gene sequence per 90% nucleotide homology cluster.  

(2) Identifying all gene candidates in all genomes. Each representative gene is aligned 

to all genomes using both BLASTN (Altschul et al. 1990), which accurately locates short 

inserts and deletions (indels), and DIAMOND (Buchfink et al. 2015), which generates 

amino acid alignments and has greater sensitivity with divergent sequences than 

BLASTN. Alignments are rescored and all sequences with homology ≥50% across 

≥50% of the representative sequence (Supplemental Text 1.2) are clustered in a 

Neighbour-Joining tree using RapidNJ (Simonsen et al. 2011). 

(3) Identifying clusters of orthologous genes. PEPPAN identifies putative orthologs by 

calculating a paralogous score for each branch in a gene cluster tree (see Supplemental 

Text 1.3.2) based on ratio of the pairwise genetic distances of candidate genes within 

each cluster to the average genetic distances of their host genomes (Fig. 1B). Using 

average genetic distances avoids potential errors that can be introduced by using a 

‘species’ tree to reconcile individual gene cluster trees (Altenhoff et al. 2019). Branches 

with a paralogous score of >1 are iteratively pruned until none remain. The remaining 

monophyletic subtrees are treated as putative orthologs.  

The genomic locations of multiple putative orthologs may overlap in some genomes due 

to either inconsistent genome annotations or a failure to cluster divergent orthologous 

sequences in the first stage. These conflicts are resolved by retaining the ortholog with 

the greatest information score (see Supplemental Text 1.3.3), and eliminating all other 

gene candidates for that region.  

The remaining gene candidates from each genome are ordered according to their 

genomic coordinates, and the final set of orthologous genes is identified based on 

synteny (see Supplemental Text 1.3.4).  
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(4) Pseudogene prediction and outputs. Each gene candidate in each genome is 

categorized as either an intact coding sequence (CDS) or a pseudogene, depending on 

the size of the aligned reading frame relative to its representative gene (Fig. 1C). It is 

also possible to predict pseudogenes that are disrupted in all genomes by importing 

their intact analog into PEPPAN as an external representative gene. Finally, the 

evaluations of all genes, as well as their genomic coordinates and orthologous group 

are output in GFF3 format, and the extents of the regions that match to their 

representative genes are saved in FASTA format.  

(5) Pangenome analyses. A separate tool, PEPPAN_parser, generates analyses of the 

estimated pangenome based on the GFF3 outputs from PEPPAN (details can be found 

at https://github.com/zheminzhou/PEPPAN/blob/master/docs/source/usage/outputs.rst). 

Similar to Roary (Page et al. 2015) and PIRATE (Bayliss et al. 2019), these include 

rarefaction curves, gene presence matrices and gene presence trees. In addition, 

PEPPAN_parser can also calculate a core genome tree based on allelic differences of 

genes which are conserved in most genomes. These core genome trees can scale to 

10,000s of genomes, and provide the basis for all core genome MLST schemes in 

EnteroBase (Zhou et al. 2020) (Supplemental Text 3).  

Comparisons of PEPPAN with state-of-the-art pangenome pipelines 

We assessed the absolute performance of PEPPAN, and compared it with other, 

recently described pipelines for pangenome construction (Roary (Page et al. 2015); 

PanX (Ding et al. 2018); PIRATE (Bayliss et al. 2019)) as well as with a classical, small-

scale pipeline (OrthoMCL, (Li et al. 2003)).  

It is important to examine multiple aspects of genomic diversity for these comparisons 

because the evolutionary history of bacterial pangenomes can be highly complex. 

However, we are not aware of any pre-packaged simulation tools that can encompass 

the entire diversity of bacterial genomic changes, including gene duplications and HGTs 

(leading to paralogs), homologous recombination and large-scale gene insertions and 

deletions. We therefore performed our first benchmarks by comparing a pangenome 

calculated from 15 manually curated Salmonella enterica genome annotations (Nuccio 

and Bäumler 2014) with pangenomes based on automated annotations of the same 

https://github.com/zheminzhou/PEPPA/blob/master/docs/source/usage/outputs.rst
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genome assemblies. Subsequently, we designed a new simulation tool, SimPan, which 

uses SimBac (Brown et al. 2016) to simulate the dynamics of pangenome evolution via 

recombination, HGT, gene gain and loss as well as the creation of paralogs 

(Supplemental Text 2). 

Benchmarking pangenome pipelines on 15 curated genomes 

Nuccio and Bäumler re-annotated 15 complete genomes of S. enterica (Nuccio and 

Bäumler 2014). They removed existing annotations for unreliable short genes, 

performed new BLASTN and TBLASTN alignments to identify previously not annotated 

genes, corrected the start positions of falsely annotated genes and predicted the 

existence of pseudogenes based on alignments with orthologous intact CDSs. The 

result of these efforts is a unique set of consistently annotated genomes from a single 

species, which we equated with the ‘ground truth’ with which to compare the results 

from the pangenome pipelines.  

First, we compared the manual re-annotation with three sets of gene annotations for 

each of the 15 S. enterica genomes: (1) the original annotation that had been submitted 

to GenBank (“Submitter”), (2) an automated re-annotation from RefSeq (Haft et al. 

2018) that was generated with PGAP (Tatusova et al. 2016), (3) a novel annotation 

using PROKKA (Seemann 2014), another popular bacterial annotation pipeline. Genes 

that had been eliminated by Nuccio and Bäumler as being “unreliable” were removed 

from all three annotations for consistency. We then examined the degree of 

concordance between the pangenome published by Nuccio and Bäumler with the 

pangenomes calculated by each of the pipelines. Concordance was estimated by 

calculating the adjusted Rand index (ARI) (Rand 1971), which is a measure of similarity 

between clustering results. For Roary or PIRATE we only report results from the run 

with the greatest ARI among three parallel runs with varying minimum identity (50, 80 or 

95%), because the optimal value of this parameter differs for various levels of diversity 

((Ding et al. 2018) and our own observations). 

All pipelines successfully calculated a pangenome from each of the four annotations, 

except that “Submitter” annotations never ran to completion with PanX. The PEPPAN 

pangenomes consistently yielded ARIs of ~0.98 relative to the manual pangenome (Fig. 
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2A, histograms). This is not surprising because PEPPAN re-calculates gene 

annotations in a fashion which resembles that of the manual curation. All the other 

pipelines yielded lower ARI values which varied between the annotation methods. The 

PROKKA annotations yielded ARIs of 0.97 with Roary, PanX, and OrthoMCL and 0.96 

with PIRATE. The ARIs were 0.95-0.96 for the PGAP annotations from RefSeq, and 

0.93-0.94 for the "Submitter” annotations. We also performed hierarchical clustering 

using the Neighbor-Joining algorithm on pairwise comparisons of the ARI scores across 

all 14 pangenomes (Fig. 2B). The three pangenomes predicted by PEPPAN formed a 

tight cluster with high pairwise ARI (0.99), which clustered tightly with the curated 

pangenome (ARI=0.98). In contrast, pangenomes generated by the other pipelines 

clustered according to annotation source rather than pipeline methodology. For each of 

the three annotation sources, the pangenome predicted by Roary was the most distinct 

whereas pangenomes predicted by OrthoMCL, PanX, and PIRATE clustered more 

tightly. These results may reflect the fact that Roary differs from the other pipelines by 

performing an additional splitting of paralogs on the basis of synteny. 

Pseudogenes prediction. The core genome defined by Nuccio and Bäumler contained 

2,838 CDSs that were intact in all 15 genomes and 783 others that were disrupted in at 

least one genome. PEPPAN predicted marginally more intact CDSs, and slightly fewer 

pseudogenes, from all three annotations than were present in the manual annotations 

(Fig. 2A, circles). The number of pseudogenes for each genome was also very similar 

between the manual curations and PEPPAN’s automated predictions. We note that 

PEPPAN consistently predicts fewer pseudogenes for extraintestinal strains than those 

for those linked to gastrointestinal disease (Fig. 2C), This is an interesting observation, 

as accumulation of pseudogenes has been linked to host specialization in Salmonella 

(Parkhill et al. 2001; Holt et al. 2008; Nuccio and Bäumler 2014; Zhou et al. 2014; Zhou 

et al. 2018b). 

Roary, OrthoMCL and PanX do not predict any disrupted genes. PIRATE reports ‘gene 

diffusion’, a measure of the frequency with which CDSs that are intact in some genomes 

are split into two or more fragments in others. However, it did not detect any gene 

diffusion in the RefSeq and GenBank annotations, and only one instance with the 



9 
 

PROKKA annotations. PIRATE also failed to predict fragmented genes. Similar to the 

ARI comparisons described above, the total numbers of predicted core CDSs varied 

according to annotation source for all pipelines other than PEPPAN. The four pipelines 

reported 3,301-3,515 core CDSs from PROKKA annotations (Fig. 2A right). These 

numbers are similar to the total number of intact core CDSs plus pseudogenes within 

the curated pangenome, indicating that PROKKA predicted many pseudogenes as 

intact CDSs. Roary, PIRATE and OrthoMCL only detected 2,418-2,484 core genes in 

the originally submitted genomes, suggesting inconsistencies between individual 

genome annotations. In contrast, all four pipelines predicted 2,901-2,957 core CDSs 

from the RefSeq annotations, and these numbers were similar to the numbers of intact 

core CDSs in the curated pangenome (2,838), or as predicted by PEPPAN (2,918-

2,961). 

Inaccurate prediction of orthologs. Inconsistent ortholog calls relative to the manually 

curated pangenome (Nuccio and Bäumler 2014) also contributed to variation in the 

numbers of core CDS predicted by the different pipelines. We designated as ‘false 

splits’ those cases where a single ortholog cluster in the curated pangenome was split 

into multiple ortholog clusters by a pipeline. Similarly, ‘false merges’ occurred when 

multiple orthologous clusters in the curated pangenome were assigned to a single 

orthologous cluster. We identified 4,695 ‘backbone genes’ in the curated pangenome 

which were present in the most recent common ancestor (MRCA) and 3,364 ‘mobile’ 

genes, which were associated in one or more genomes with mobile genetic elements, 

and which were absent from the MRCA. For backbone genes, PEPPAN made the 

fewest false splits and false merges of all five pipelines, followed by PanX (Fig. 2D). 

False merges were made four times as often by all pipelines for mobile genes than for 

backbone genes, and false splits were up to two times as frequent (Fig. 2E vs. 2D). 

Roary generated the highest number of false calls, while PEPPAN generated the 

lowest.  

Simulating pangenome datasets 

The analyses above indicate that the backbone and mobile genes might differ in their 

rates of gain and loss during evolution. In order to test the abilities of pangenome 
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pipelines to handle varying rates of gene gain and loss, we created SimPan 

(https://github.com/zheminzhou/SimPan) to simulate the evolution of real bacterial 

pangenomes (Supplemental Fig. S2 and Table S1; see Supplemental Text 2 for 

details). In brief, SimPan uses SimBac (Brown et al. 2016) to generate a clonal genomic 

phylogeny. This clonal phylogeny is subjected to random homologous recombination, 

resulting in different “local trees” that reflect the individual ancestries of backbone and 

mobile genes. Random indel events leading to loss or gain of blocks of genes are 

simulated along the branches of these local trees until the average number of genes per 

genome and in the core genome attain user-specified parameters ‘--aveSize’ and ‘--

nCore’ (Supplemental Table S1). This results in a presence/absence matrix of all 

backbone and mobile genes. Finally, sequences of both genes and intergenic regions 

are subjected to short indels, converted into genes with INDELible (Fletcher and Yang 

2009) and concatenated into whole genomes.  

We simulated five genomic datasets each containing 15 genomes, using parameters 

derived from the curated S. enterica pangenome, with each genome containing a mean 

of 3,621 core genes and 879 accessory genes (simulations a-e). We arbitrarily assigned 

5% of the backbone genes and 40% of the mobile genes to paralogous clusters, and 

varied their mean percentage sequence identities between each set of simulations (Fig. 

3, inset). Simulation c represents the simplest pangenome construction scenario, with 

high sequence identity (98%) between genes in an ortholog cluster and low sequence 

identity (60%) between genes in a paralog cluster. Simulations a and b have decreasing 

levels of identity between orthologs to simulate more diverse species while simulations 

d and e have increasing levels of identity between paralogs in order to simulate recent 

gene duplications.  

Pipeline performance on simulated genomes 

Pangenomes calculated from each simulated dataset by PEPPAN, Roary, PIRATE, 

PanX, and OrthoMCL were compared to the original pangenomes produced by SimPan 

(Fig. 3A). Once again, PEPPAN pangenomes were highly concordant with the known 

truth (ARI ≥0.998 for all comparisons). Roary performed comparably to PEPPAN on all 

simulated datasets (ARI ≥0.995). PIRATE performed almost as well on simulations c to 

https://github.com/zheminzhou/SimPan
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e, but yielded ARI scores below 0.99 when run on simulations of more diverse genomes 

(simulations a and b). In contrast, PanX and OrthoMCL yielded ARI scores ≥0.99 when 

run on simulations a and b, but were less concordant (ARI < 0.99) when run on 

simulations containing more recent gene duplications (simulations d and e).  

PEPPAN correctly predicted all core genes in simulations b, c, and e, and only missed 

2-3 core genes in the two remaining datasets (Fig. 3A, circles). Roary correctly 

predicted all single-copy core genes for simulation c, but failed to identify any multi-copy 

core genes for any dataset, likely due to its aggressive synteny-based paralog 

identification step. PIRATE, PanX, and OrthoMCL significantly underestimated the 

number of core genes when only single-copy core genes were counted, suggesting a 

high frequency of false splitting of paralog clusters. Indeed, the frequency of false 

merges was particularly high for backbone genes with these three pipelines, and the 

frequency of false splits was high with Roary and OrthoMCL (Fig. 3B). All pipelines 

made multiple false merges of mobile genes, possibly because of their predominance 

among paralog clusters, and Roary also made large numbers of false splits (Fig. 3C). 

Overall, PEPPAN made the fewest false calls for both backbone and mobile genes, 

which explains its higher ARI scores. 

The effects of missing gene annotations on the pangenome. As shown above, 

inconsistent or inaccurate gene annotations are problematic for calculating reliable 

pangenomes. We simulated this effect by randomly deleting 0.1%, 1% or 2% of the 

gene annotations from simulation c (Fig. 3D). Because PEPPAN reassigns individual 

genes to ortholog clusters, it was unaffected by these manipulations. However, the 

missing annotations yielded drastically reduced ARI scores (Fig. 3D. histograms) and 

core genome sizes (Fig. 3D, circles) for the other pipelines, and ARI scores became 

progressively worse with the proportion of missing annotations.  

Computation time. We generated 10 additional simulations of 20 to 200 genomes with 

the same parameters as simulation c, and measured the running wall times to calculate 

a pangenome for all five pipelines using 4 processors on a server with 1 TB of memory 

and 40 CPU cores (Fig. 3E). OrthoMCL was the slowest and needed >24 h for ≥60 

genomes. PanX was at least eightfold slower than the other three pipelines, and needed 
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500 min for 200 genomes, despite using a divide-and-conquer algorithm on datasets 

with >50 genomes. Both Roary and PIRATE scaled very well, and each completed the 

calculations on 200 genomes within 30 minutes. PEPPAN is about twice as slow as 

either Roary or PIRATE, and needed 63 minutes for 200 genomes. The good scalability 

of these pipelines is likely related to the pre-clustering step, which reduces the number 

of genes used in downstream comparisons. However, this pre-clustering step becomes 

less efficient with increasing genetic diversity: in an independent simulation of 200 

genomes with only 90% sequence identity, the runtime for all three pipelines increased 

by at least twofold relative to simulation c (PEPPAN: 144 min; Roary: 132; PIRATE: 60).  

A pangenome for the genus Streptococcus 

PEPPAN can construct a pangenome from thousands of genomes with high genetic 

diversity, and earlier versions of this pipeline were used to generate cgMLST schemes 

for the genera represented in EnteroBase (Alikhan et al. 2018; Frentrup et al. 2020; 

Zhou et al. 2020) as well as for ancient DNA analyses (Zhou et al. 2018b; Achtman and 

Zhou 2020). To demonstrate PEPPAN’s capability on genetically diverse datasets, we 

chose the genus Streptococcus, which includes highly significant zoonotic and human 

pathogens (Gao et al. 2014). 

We generated a dataset of 3052 high-quality genomes (Supplemental Table S2A) 

representing the entire taxonomic diversity of Streptococcus (see Methods). PEPPAN 

took 5 days to construct a pangenome from this dataset. The resulting pangenome 

contained 39,042 genes, twice as many as a previous pangenome based on 138 

Streptococcus genomes (Gao et al. 2014). In agreement with the earlier conclusions by 

Gao et al., the rarefaction curve showed no sign of plateauing, and the pangenome 

continued to expand with each new genome added (Fig. 4A). Gao et al. estimated that 

the pangenome would expand by 62 genes for each new genome, whereas we estimate 

a lower rate of 39 genes per new genome for a randomly sampled set of 138 genomes. 

However, the growth rate dropped with the increased number of genomes, and we 

estimate that the future expansion rate of the pangenome is only 4.4 new genes for 

every newly added genome. 
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In contrast to earlier studies (Gao et al. 2014), which defined a strict core genome of 

278 orthologs, we found only 182 genes that were shared across all Streptococcus 

genomes (Fig. 4B, inset). Each of these was disrupted in at least one of the 14,115 

Streptococcus genomes in RefSeq. This is a common problem for core genome 

analyses, especially because the multiple contigs within draft genomes can result in the 

absence of multiple genes from genome assemblies. Core genome schemes used for 

cgMLST are therefore usually based on a relaxed core, consisting of single-copy genes 

present in the large majority of representative isolates (Moura et al. 2016; Alikhan et al. 

2018; Zhou et al. 2020). Our analyses identified 754 genes that were present in at least 

2900 (95%) of the representative streptococcal genomes (Supplemental Table S3, Fig. 

4B). However, most of the 754 genes were present in multiple copies in some genomes, 

leaving a final relaxed core of 292 single-copy genes that are suitable for identifying 

core genomic relationships and evolutionary history (Table 1; Supplemental Table S3). 

Taxonomic clusters within Streptococcus 

Streptococcus taxonomy is a highly dynamic area of research (Kikuchi et al. 1995; 

Jensen et al. 2016; Dekker and Lau 2016; Velsko et al. 2018; Velsko et al. 2019; Kilian 

and Tettelin 2019; Zhou et al. 2020). Many Streptococcus species are currently defined 

exclusively by phenotypic markers, and multiple taxonomic assignments in RefSeq are 

incorrect (Beaz-Hidalgo et al. 2015; Gomila et al. 2015; Kilian and Tettelin 2019). We 

therefore initially ignored taxonomic designations, and used the normal cut-off of ANI 

≥95% as a proxy for species designations (Konstantinidis et al. 2017; Jain et al. 2018). 

Single-linkage agglomerative clustering of pairwise ANI values calculated from the 3052 

representative genomes revealed 223 clusters (Supplemental Table S2). For the 29 

clusters containing ≥10 genomes, we also identified a dominant species designation 

from NCBI metadata, as shown in Supplemental Table S4. Information on each cluster’s 

pangenome can be found in Supplemental Text 4 and Supplemental Table S5.  

We used PEPPAN_parser to generate two trees of the 3052 representative genomes 

based on the presence or absence profiles of 39,042 pan genes (Fig. 5A) and on the 

allelic variation profiles of 292 relaxed core genes (Fig, 5B). The topology of the first 

tree reflects similarities in pangenome content and the topology of the second tree 
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reflects sequence similarities within core genes.The details of these two topologies 

differed somewhat. In particular, the core gene tree contained an unresolved, star-like 

radiation which we attribute to distinct sequences in all of the core genes from highly 

diverse species. However, despite these differences in deep branching topology, both 

trees showed comparable tight clustering of genomes corresponding to each of the 29 

common taxonomic groupings. This tight clustering indicates that the topologies of both 

trees are congruent at the ANI95% level. Both trees also support published taxonomic 

assignments of subspecies. For example, MG_29 corresponds to S. gallolyticus and 

includes its three subspecies gallolyticus, macedonicus, and pasteurianus (Dekker and 

Lau 2016). Similarly, MG_2 corresponds to S. dysgalactiae and includes its two 

subspecies dysgalactiae and equisimilis (Jensen and Kilian 2012).  

Both Streptococcus trees also clustered high order branches according to the traditional 

taxonomical group names Mitis, Anginosus, Salivarius, Mutans, Bovis, and Pyogenic 

(Gao et al. 2014). They clustered S. suis together in a seventh phylogenetic branch, 

which we designate as Suis, and also clustered S. acidominimus, S. minor, S. 

hyovaginalis, S. ovis, and multiple other taxa into a novel, unnamed neighboring branch. 

Using PEPPAN_parser, we calculated a pangenome for each of the seven named 

taxonomical groups. Similar to the Streptococcus pangenome, each group pangenome 

is open (Fig. 4C-D), and grows at the rate of 3.5-30.1 new genes for each new 

representative genome. Unlike the entire genus, these seven named taxonomic groups 

possess a sizable strict core genome, consisting of 475 to 1067 core genes (Fig. 4C-D, 

Table 1). After excluding multi-copy genes, the sizes of the group-specific, 95% relaxed 

core genomes ranged from 380 (Mutans) to 672 (Suis) genes (Fig. 4C-D, Table 1).  

In accord with prior observations (Kilian et al. 2008; Kilian and Tettelin 2019), numerous 

discrepancies differentiate the ANI95% groups and the taxonomic designations in 

RefSeq. Some discrepancies reflect inaccurate metadata, but others reflect true 

discrepancies between ANI95% clusters and taxonomic designations made by expert 

microbiologists. For example, S. mitis spans 44 distinct ANI95% clusters (Fig. 5, 

Supplemental Table S4). Similarly, S. oralis straddles multiple, distinct ANI95% clusters, 

as did each of the three S. oralis subspecies oralis, tigurinus and dentisani defined by 
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Jensen et al. (Jensen et al. 2016). Further investigations will be needed to elucidate 

how many biological species are truly present within the genus Streptococcus. We 

anticipate that the trees in Fig. 5 might be useful for such analyses. 

Discussion 

Comparison of PEPPAN with other pangenome pipelines. Pangenome pipelines 

must be efficient in order to handle the computational demands of modern, large-scale 

comparative genomics. Roary (Page et al. 2015) and PIRATE (Bayliss et al. 2019) were 

the fastest of all the pipelines tested, likely reflecting their choice of time efficient 

approaches in every stage of their algorithms. However, this speed comes with trade-

offs in terms of accuracy (Figs. 2, 3). The workflow implemented in PEPPAN requires 

many more calculations than other pipelines due to its implementation of tree-based 

splitting of paralogs and similarity-based internal gene prediction, but is only marginally 

slower because of the care that was taken to implement time efficient algorithms.  

Roary, PIRATE and PEPPAN all use a pre-clustering step to reduce the numbers of 

genes that are analyzed in subsequent, very time-consuming all-against-all 

comparisons. PEPPAN accelerates this step by using Linclust (Steinegger and Soding 

2018). Linclust scales linearly with the number of genes, and is faster than CD-HIT, the 

clustering package used by Roary and PIRATE. 

Roary and Pirate both use MCL, a graph-based clustering approach (Enright et al. 

2002) to split paralogous clusters. MCL identifies a strict optimal threshold that 

separates orthologous genes from paralogous genes, and scales well with the numbers 

of genes. This approach is accurate for closely related genomes, but is error-prone 

when datasets contain both closely-related and distantly-related genomes, because a 

single optimal clustering threshold does not exist for both extremes. PIRATE thus failed 

to split many paralogous clusters from real (Figs. 2D, E) and simulated (Figs. 3B, C) 

genomes, especially for more diverse datasets (Fig. 3A). Roary implements an 

additional synteny-based approach to identify and split unresolved paralog clusters, but 

this approach also failed to correctly split orthologs into multiple clusters (Figs. 2D, E, 

3B, C). In contrast, PEPPAN identifies an optimal threshold for each gene and uses that 
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threshold to split paralogous branches in the gene trees. This allows accurate estimates 

of pangenomes even in datasets of highly divergent genomes. 

PanX uses a “divide and conquer” strategy for the gene comparisons, which is 

computationally demanding. In addition, PanX constructs a gene tree for every potential 

gene cluster, which, similar to other tree-based approaches, involves the alignment of 

gene sequences using MAFFT (Katoh and Standley 2013) followed by a tree 

construction using FastTree (Price et al. 2010). As a result, PanX is substantially slower 

than PEPPAN, PIRATE or Roary (Fig. 3E). However, PanX was not substantially more 

accurate than those programs (Figs. 2A, 3A), which might be attributed to its use of raw 

pairwise genetic distances of genes for paralog splitting. In contrast, inspired by the 

methods used by large-scale genomics studies (Chewapreecha et al. 2014; 

Banaszkiewicz et al. 2019), PEPPAN uses a reference-based approach to generate an 

alignment for each gene group, which is then used to reconstruct a neighbor-joining 

gene tree using RapidNJ. These methods are less accurate, but much faster than those 

in PanX, and scale to thousands of sequences. As a result, although the run time of 

PEPPAN was approximately twice as long as the run time of Roary or PIRATE, it still 

scaled linearly with the number of genomes (Fig. 3E).  

Effects of internal annotations by PEPPAN. Our benchmarking analyses on real and 

simulated genomes revealed the strong impact of inconsistent annotations on the 

pangenome predictions (Fig. 2A). Indeed, differences in annotation influenced the 

quality of the pangenome more than pipeline algorithms (Fig. 2B), and decreased the 

number of core genes by up to one-third for some pipelines (Fig. 2A). PEPPAN avoids 

this problem by implementing a similarity-based gene prediction step. Accordingly, 

pangenomes predicted by PEPPAN varied only slightly with different annotations (Fig. 

2A, B). Draft genome assemblies based on 454 or IonTorrent sequencing include 

elevated numbers of single-base insertions and deletions due to inaccurate sequencing 

(Shao et al. 2013; Zhang et al. 2015). Including such genomes in an analysis reduces 

the quality of the pangenome for all state-of-the-art pipelines. However, PEPPAN simply 

scores genes disrupted by artificial indels as frameshifts, making such inaccurate 

genomes easier to identify. 



17 
 

Finally, it is worth noting that the current similarity-based internal annotation algorithm 

implemented in PEPPAN is optimized for prokaryotes, and does not work for eukaryotic 

genomes, where multiple exons of a gene can be separated by introns of >10kb. Apart 

from this limitation, however, the other technological advantages in PEPPAN will also 

work on eukaryotic genomes. PEPPAN could therefore be extended for use on 

eukaryotes with collaboration from experts in eukaryotic genomics.  

Relevance to MLST schemes. Alikhan et al. (2018) described a pangenome for all of 

Salmonella based on 537 genomes that had been derived by a precursor of PEPPAN in 

2015. That pangenome was used to develop a wgMLST scheme of 21,065 loci and a 

cgMLST scheme of 3002 genes. The same publication also described a reference set of 

926 genomes that represented the diversity of almost 120,000 Salmonella genomes on 

the basis of rMLST. After completion of this manuscript, we became aware of a new 

publication (Park and Andam 2020) which used Roary to calculate a pangenome of 

84,041 S. enterica genes and 2085 soft core genes from those 926 representative 

genomes after re-annotation with PROKKA. Such applications of Roary are strongly 

discouraged by its documentation, which recommends against using Roary on diverse 

groups of organisms such as all Salmonella. We ran PEPPAN on the same 926 

representative genomes. The resulting pangenome contained 30,000 fewer pan genes 

and 1200 more soft core genes than the calculations by Park and Andam 

(Supplemental Table S6), confirming that Roary struggled with this task. The high 

resolution and continued reliability that EnteroBase offers in downstream analyses of 

phylogenetic relationships between genomes are in part due to the accurate, smaller 

pangenome and larger core genome that was calculated by PEPPAN. The analyses 

presented here identified a reliable relaxed soft core genome consisting of 292 single 

copy genes for Streptococcus, which is currently being used to establish an EnteroBase 

database for this diverse genus.  

Pangenomes depend on sample size. Early analyses of pangenomes were based on 

small numbers of genomic sequences (Tettelin et al. 2005), resulting in the conclusion 

based on 12 genomes that the pangenome of Streptococcus pyogenes was closed 

(Tettelin et al. 2008). The same publication concluded that the pangenome of 
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Streptococcus pneumoniae was open and would continue to expand indefinitely. 

However, a subsequent study of 44 genomes concluded that the pangenome of S. 

pneumoniae was also closed (Donati et al. 2010). It is only very recently that large 

numbers of bacterial genomes are available for analysis, and that pipelines exist that 

can handle such large numbers.  

We calculated a pangenome from 3052 Streptococcus genomes that represent the 

genomic diversity of 14,115 draft and complete genomes. Our pangenome contains 

39,042 genes, is open, and will continue to expand at a rate of 4.4 genes per novel, 

genome. This rate of expansion is 14fold slower than the original calculations of a 

pangenome from 138 genomes (Gao et al. 2014). We also calculated pangenomes and 

their expected growth rates for the 29 most common ANI95% clusters within 

Streptococcus (Supplemental Text 4). All pangenomes were open, with the single 

exception of MG_41 (Streptococcus sobrinus). These inconsistencies with prior 

analyses suggest that pangenome status may be strongly dependent on the number of 

genomes investigated, sampling strategies used to identify representative genomes, 

and possibly on pangenome pipelines. 

Taxonomic insights. It has been clear since 2004 that the strict core genome of all 

prokaryotes is extremely small. Only 14-30 genes were present in all of 147 diverse 

genomes (Charlebois and Doolittle 2004), and almost all of those genes encoded 

ribosomal proteins (Weiss et al. 2018). However, it was still unexpected that the strict 

core genome would be this small for a large collection of Streptococcus genomes. We 

only found 182 strict core genes in the representative set of 3052 genomes, and each of 

these was absent or incomplete in one or more of the entire set of 14,115 genomes. We 

therefore recommend using phylogenies based on sequence variation within a relaxed 

core complement of genes and/or presence/absence of accessory genes for an 

overview of the phylogenetic relationships of an entire genus instead of relying only on 

strict core genes. PEPPAN_parser can calculate such phylogenies from the PEPPAN 

outputs.  

These observations may also be relevant in respect to the concept of universal genes. 

FetchMG (Kultima et al. 2012) identifies the presence of genes by a very relaxed cutoff 
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because it uses the alignment score of CDSs according to an HMM model of the 

corresponding protein domain. FetchMG searches for 40 supposedly universal core 

CDS which are present across all prokaryotes (Mende et al. 2013). This raises the 

question why some of the 3052 Sterptococcus genomes only contained 38 of these 

genes according to FetchMG (Supplemental Table S2A), and why FetchMG only found 

14 which were present in all those genomes (Supplemental Table S2C). PEPPAN is 

stricter in its definition of strict core CDSs, because it recognizes pseudogenes and 

excludes them from the calls of CDSs. PEPPAN only found five strict core CDSs in all 

3052 genomes (Table 1), even fewer than FetchMG. Each of these findings seem to be 

incompatible with a minimum of 40 universal genes for any living organism. However, 

previous analyses have already indicated that only 82% of genomes contain all 40 

universal genes (Mende et al. 2013). Secondly, PEPPAN estimated the number of strict 

core genes including pseudogenes as 182 over all 3052 genomes (Table 1), and these 

included the same 14 as had been found by FetchMG. The absence of the other 26 

universal genes might relate to random gaps that occur in draft genomes, and which 

artificially resemble missing genes. Alternatively, they may not be universal. 

As previously noted by others (Kilian et al. 2008; Jensen and Kilian 2012; Jensen et al. 

2013; Jensen et al. 2016; Kilian and Tettelin 2019), the taxonomies of multiple 

Streptococcus genomes are misclassified in RefSeq (Supplemental Fig. S3). 

Misclassification has been ongoing for decades (Kikuchi et al. 1995) due to the 

phenotypic heterogeneity of this species. The Mitis group is particularly heterogeneous 

(Kilian et al. 2008; Jensen et al. 2016) and difficult to study (Kilian and Tettelin 2019; 

Velsko et al. 2019). Similar problems also apply to other bacterial genera such as 

Pseudomonas (Gomila et al. 2015) and Aeromonas (Beaz-Hidalgo et al. 2015). The 

results presented here defined 223 ANI95% clusters which are consistent by 

independent phylogenetic approaches based on both cgMLST and gene presence. It 

has been suggested that bacterial diversity does not delinieate species clusters due to 

extensive HGT (Doolittle and Papke 2006). Our results, instead, revealed congruent 

clusters between the accessory genome and the core genome at the ANI95% level in 

Streptococcus. Similar congruent clusters have been reported in the Streptomycetaceae 

(Wright and Baum 2018) and we suspect that they will also occur in other genera. Thus, 
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approaches such as those described here may provide a framework for improving future 

taxonomic assignments. Finally, the test case of Streptococcus illustrates the power of 

PEPPAN, which can now be used for defining the pangenomes of other diverse genera. 
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Methods 

S. enterica genomes. We downloaded the assembly_summary_genbank.txt table and 

the assembly_summary_refseq.txt table from NCBI on 30th May of 2019 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/). The first table 

summarizes all genomes uploaded into GenBank by their original authors and the 

second summarizes all the genomes in RefSeq. We used these tables as a source of 

the FTP links for each of the accession codes listed by Nuccio and Bäumler (Nuccio 

and Bäumler 2014) for genomic sequences of 15 S. enterica genomes. These 15 

genomes were also annotated ab initio with PROKKA 1.12 (Seemann 2014). Nuccio 

and Bäumler excluded some “unreliable” short genes from their manual re-curation. In 

order to exclude these genes in our analyses as well, the genomic coordinates of each 

gene in each of the three annotations (Submitter, RefSeq, PROKKA) were compared 

with the coordinates of “reliable genes” in Table S1 of Nuccio and Bäumler. Only genes 

with co-ordinates overlapping those of a reliable gene by ≥90% were used here for 

further comparisons. 

Preparation of simulated datasets.  

All simulated datasets were generated using SimPan (Supplemental Text 2) with the 

input parameters “--genomeNum 15 --aveSize 4500 --pBackbone 4000 --nMobile 10000  

--nCore 3621 --pBackbone 0.05 --pMobile 0.40 --rec 0.1”. Datasets a through e were 

generated with the additional parameters: (a) ‘--idenOrtholog 0.9 --idenParalog 0.6’; (b) 

‘--idenOrtholog 0.95 --idenParalog 0.6’; (c) ‘--idenOrtholog 0.98 --idenParalog 0.6’; (d) ‘--

idenOrtholog 0.98 --idenParalog 0.8’; (e) ‘--idenOrtholog 0.98 --idenParalog 0.9’. Ten 

other sets of simulated genomes that were used to evaluate running times were 

generated with the same parameters as dataset c but with the additional parameter  

‘--genomeNum xxx’, where xxx ranged from 20 to 200 by steps of 20.  

Pangenome pipelines.  

The following versions of the individual pipelines and command lines were used for all 

benchmark datasets.  

(1) PEPPAN with a Git HEAD of f721513 was run in the Python 3.6 environment as: 

ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/
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python PEPPA.py -t 4 -p PEPPAN --pseudogene 0.9 --min_cds 45 *.gff 

(2) Roary 3.6.0+dfsg-4 was installed as a Ubuntu APT package and run as: 

roary -p 4 -o roary -f roary -i <identity> -s -v -y *.gff 

Three runs of Roary were performed for each dataset with the additional parameters “-i 

50”, “-i 80” or “-i 95”. The data reported here are from the runs with the parameter ‘-i 80’ 

because that consistently yielded the best ARI values.  

(3) PIRATE with a Git HEAD of effc522 was downloaded from 

https://github.com/SionBayliss/PIRATE and run as:  

PIRATE -i . -o PIRATE -s <steps> -t 4 -k "--diamond" 

Three runs of PIRATE were performed for each dataset with the additional parameters 

“-s 50,60,70,80,90,95,98”, “-s 80,90,95,98” or “-s 95,98”. We report the data generated 

with “-s 80,90,95,98” which had the greatest ARI value, except for simulated dataset e, 

where “-s 95,98” had the greatest ARI.  

(4) PanX v1.6.0 was downloaded from https://github.com/neherlab/pan-genome-

analysis/releases and run in the Python 2.7 environment as: 

 panX.py --folder_name panX --species_name panX --threads 4 --diamond_identity 80 -

-simple_tree --store_locus_tag 

(5) OrthoMCL v2.0.9 was downloaded from https://orthomcl.org/ and run in multiple 

steps as described in 

https://currentprotocols.onlinelibrary.wiley.com/doi/full/10.1002/0471250953.bi0612s

35.  

Generating ANI95% clusters of Streptococcus genomes.  

A summary table of all genomes deposited in RefSeq was downloaded on 20 June of 

2019 (see S. enterica genomes above). 14,115 bacterial records that contained 

“Streptococcus” in the “organism_name” field were extracted from the table 

https://github.com/SionBayliss/PIRATE
https://github.com/neherlab/pan-genome-analysis/releases
https://github.com/neherlab/pan-genome-analysis/releases
https://orthomcl.org/
https://currentprotocols.onlinelibrary.wiley.com/doi/full/10.1002/0471250953.bi0612s35
https://currentprotocols.onlinelibrary.wiley.com/doi/full/10.1002/0471250953.bi0612s35
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(Supplemental Table S7), and the files for each record were downloaded as described 

above. MASH (Ondov et al. 2016) was used to measure the pairwise distances between 

the genomes with parameters of ‘-k 19 –s 10000’. The resulting matrix was used to 

cluster Streptococcus genomes with the AgglomerativeClustering function in the scikit-

learn package (Pedregosa et al. 2011), with parameters linkage=single and 

distance_threshold=0.002. The function generated 3170 clusters. The genome with the 

greatest N50 value within each cluster was chosen as its representative genome. Each 

representative genome was subjected to quality evaluation according to three criteria: 

(1) carries at least 38 of the 40 single-copy essential genes according to fetchMG 

(Kultima et al. 2012); (2) is assigned to Streptococcus genus by the ‘Identify species’ 

function in rmlst.org (Jolley et al. 2012); (3) has an N50 value ≥10 kb. 118 genomes 

failed these criteria and were discarded (Supplemental Table S2B), leaving a dataset of 

3052 high-quality genomes (Supplemental Table S2A) that represents the entire 

taxonomic diversity of Streptococcus. Pairwise ANI values were calculated from the 

3052 representative genomes with FastANI v1.2 (Jain et al. 2018), and these genomes 

were grouped into ANI95% clusters using the AgglomerativeClustering function with 

linkage=single and distance_threshold=0.05.  

  



24 
 

Software availabilitySource code for PEPPAN is accessible at 

https://github.com/zheminzhou/PEPPAN and as Supplemental Code S1. Source 

code for SimPan is accessible at https://github.com/zheminzhou/SimPan and as 

Supplemental Code S2.  
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Table 1. Summary statistics of the pangenome of Streptococcus genus and seven species groups. 

 

 

 

 

 

 

 

 

 

Strict core genes refers to the number of genes that were found by DIAMOND and BLASTN in all genomes. Strict core 

CDSs refers to the number of genes which are not a pseudogene in any genome. 

 

 Genomes Number per genome 95% of genomes All genomes 

Traditional 

Group 

 
Genes CDSs % pseudogenes All 

genes  

Single 

copy  

Strict core 

genes 

Strict core 

CDSs 

Pan 

genes 

Streptococcus 3052 1918 1810 5.6 754 292 182 5 39,042 

Anginosus 103 1821 1720 5.5 1144 648 1067 722 6,981 

Bovis 80 1877 1768 5.8 1184 559 1046 583 7,729 

Mitis 1485 1970 1849 6.1 1087 642 475 36 16,640 

Mutans 117 1858 1747 6.0 1110 380 751 248 6,535 

Pyogenic 792 1791 1712 4.4 979 439 582 149 13,010 

Salivarius 96 1865 1727 7.4 1217 595 1025 666 6,040 

Suis 342 2059 1948 5.4 1281 672 848 570 11,292 
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Figure Legends 

Figure 1. A brief overview of the workflow for PEPPAN. (A) Flow chart indicating the 

five cascading groups of operations from top to bottom. (B) Cartoon of similarity-based 

prediction of gene candidates (left) and phylogeny-based paralog splitting (middle and 

right). The tree was split at the red branch (right) to separate gene candidates into two 

sub-clusters. The gene pairs in the same sub-cluster had low paralogous scores (blue 

quadrilaterals and arrows at left) whereas gene pairs between the sub-clusters had high 

paralogous scores (yellow). (C) Flow chart of the pseudogene identification. The 

detailed workflow of the algorithm implemented in PEPPAN can be found in 

Supplemental Fig. S1 and Supplemental Text 1.  
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Figure 2. Comparison of pangenome predictions for 15 Salmonella genomes with 

a manually curated pangenome (Nuccio and Bäumler 2014). (A) The adjusted Rand 

index versus the manual curation (ARI; histogram) and the sizes of core genomes 

(circles) in each of the pangenomes after annotation by PROKKA (Seemann 2014), 

after reannotation in RefSeq with PGAP (Tatusova et al. 2016), and as originally 

submitted to NCBI (Submitter). *indicates that PanX failed to run on the “Submitter” 

annotations. (B) A Neighbour-joining tree (left) of the pairwise ARI scores (heatmap at 

the right) between the predicted pangenomes and the curated pangenome. The 

annotation source is indicated within grey shadows at the left except for PEPPAN where 

it is listed at the tips. Colors are as in part A. (C) Histogram of the numbers of 

pseudogenes (Y-axis) in each of the genomes (X-axis) in the curated pangenome (grey) 

and pangenome predicted by PEPPAN (orange). A dashed line separates the two 

Salmonella pathovar groups described by Nuccio and Bäumler. (D, E) Histograms of the 

average numbers of false splits (top) and merges (bottom) of ortholog groups by the 

individual pipelines (X-axis) in backbone (D) or mobile (E) genes.  
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Figure 3. Comparison of the pangenome pipelines with simulated data generated 

by SimPan. (A) The adjusted Rand index (ARI; histogram) and the sizes of core 

genomes (circles) in the pangenomes produced by SimPan simulations a, b, c, d, e 

(inset). Left: pangenome produced by the simulations. Other histograms, pangenomes 

calculated by five pipelines. (B) Numbers of failed splits (top) and false merges (bottom) 

of ortholog groups by five pipelines with backbone genes. (C) Numbers of failed splits 

(top) and false merges (bottom) of ortholog groups by five pipelines with mobile genes. 

(D) The adjusted Rand index (ARI; histogram) and the sizes of core genomes (circles) 

in the pangenomes produced by SimPan simulation c after random deletions of 0%, 

0.1%, 1% and 2% of the gene annotations. Other details as in part A. (E) Runtime for 

each pipeline (Y-axis) versus number of genomes in simulated datasets (X-axis). Runs 

which exceed 600 minutes are not shown. 
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Figure 4. Rarefaction curves of pan- and core gene numbers in Streptococcus 

and its seven major taxonomic subgroups. (A) Rarefaction curves created with 

PEPPAN_parser for the accumulations of pan genes and core genes of 3052 

Streptococcus representative genomes from 1000 random permutations. (B) The 

frequencies of pan genes (Y-axis) by the numbers of genomes that carried that many 

genes (X-axis). The inset shows the relaxed core genes present in ≥ 95% of the 

genomes. (C) Rarefaction curves of genomes in the Mitis, Pyogenic and Suis groups. 

(D) Rarefaction curves of genomes in the Mutans, Anginosus, Salivarius and Bovis 

groups. The dark lines in figures A, C and D indicate median values and the shadows 

indicate 95% confidence intervals. 
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Figure 5. Phylogenies of 3052 Streptococcus genomes based on accessory gene 

content (A) and allelic variation in relaxed core genes (B). (A) A FastTree (Price et 

al. 2010) phylogeny based on binary information of the presence and absence of 

accessory genes in. (B) A RapidNJ (Simonsen et al. 2011) phylogeny based on 

numbers of identical sequences (alleles) of 292 single copy, relaxed, core genes that 

are present in ≥95% of Streptococcus genomes. These trees are represented in 

GrapeTree (Zhou et al. 2018a). The sizes of the circles in A and B are proportional to 

the numbers of genomes they encompass, and are color-coded by 29 common ANI95% 

clusters as shown in the inset. Many Streptococcus species have been assigned to one 

of six traditional taxonomic groups whose names are shown outside colored arcs. 

These trees define from the Suis group which contains S. suis. A black arrow in Figure 

B shows the root of the tree, where multiple branches radiate directly outwards due to 

lack of resolution of cgMLST for such distant taxa. All ANI95% cluster information can 

be found in Supplemental Table S4. Interactive versions of the trees can be found at (A) 

https://achtman-

lab.github.io/GrapeTree/MSTree_holder.html?tree=https://raw.githubusercontent.com/z

heminzhou/PEPPA_data/master/Strep.content.json; (B) https://achtman-

lab.github.io/GrapeTree/MSTree_holder.html?tree=https:// 

raw.githubusercontent.com/zheminzhou/PEPPAN_data/master/Strep.CGAV.json 
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