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A B S T R A C T   

A non-linear microscale diffusion-mechanics model combining mass transport and linear momentum balance 
equations, with elasto-viscoplastic polymer constitutive law and interfacial traction-separation law is proposed 
to provide a new insight into the effects of viscoplasticity and interfacial damage on the in situ diffusive-me
chanical behaviour of a polymer-based cathode for a solid-state battery (SSB). Diffusion and mechanics are 
coupled through two mechanisms: (1) active particle (AP) volumetric change dependence on Li concentration, 
and (2) interfacial flux dependence on mechanical opening. The model is resolved for a simple cathode mi
crostructure using an axisymmetric unit cell concept, and integrated with the non-linear finite-element solver 
ABAQUS with the help of its user subroutines (UMAT and UINTER). Finite-element simulations reveal that 
plastic deformations of the polymer due to volumetric changes of the AP reduce the value of the interfacial 
opening displacement, which is desirable for maintaining interfacial flux. The results also demonstrate that 
slower battery charging rates may lead to a softer polymer response, and thus a smaller interfacial gap. 
Moreover, a comparison between the linear elastic and current elasto-viscoplastic models for the polymer 
electrolyte shows that even 5% volumetric shrinkage of the AP leads to an overprediction of the interfacial 
opening with the linear elastic material law, which limits its validity in modelling polymer-based SSBs.   

1. Introduction 

Rechargeable Li-ion batteries (LIBs) are the most widely used en
ergy storage systems due to their high specific energy storage and 
power density. Their high energy efficiency provides promising op
portunities for the two large potential markets: (1) electrification in 
automotive industry (power batteries), and (2) development of large- 
scale stationary batteries that store energy from natural resources such 
as sunlight and wind (storage batteries), see e.g. [1]. 

In a conventional LIB with liquid electrolyte electrodes comprise of 
active particles (APs), which are embedded into a matrix typically 
consisting of a conducting material and binder, and liquid electrolyte 
that fills electrodes’ pores. Charge and discharge processes in LIBs are 
based on Li insertion into or extraction from electrodes’ APs, which 
results in cyclic volumetric changes due to swelling and shrinkage of 
APs. The resulting strains may have adverse effects on the structural 
integrity and electrochemical performance of LIBs. Therefore, the me
chanical degradation of batteries caused by such cyclic deformation has 
attracted tremendous scientific interest over the recent years, see e.g.  
[2,3] for an overview of stress-related issues and degradation 

mechanisms in various electrode materials, and [4] for a comprehen
sive review on electro-chemo-mechanical modelling of LIBs. 

Fracture and damage of APs and electrodes have been the main 
focus of research into degradation mechanisms in LIBs with liquid 
electrolytes, see e.g. [5–8], or more recent [9], where an intergranular 
cracking within a positive electrode represented as a poly-crystalline 
medium was studied using a small-strain non-linear chemo-mechanical 
framework. Interfacial debonding is another crucial failure mechanism 
that can lead to a disruption of conducting paths and decreased cell 
performance. However, it appears to be less explored. Among few 
studies is [10] where an interfacial debonding between NMC particles 
and conductive matrix was modelled by means of electro-chemo-me
chanical theory and a comprehensive 3D microstructure-based ap
proach aiming at establishing a relationship between interfacial da
mage and impedance of electrical transport and surface charge transfer. 

In recent years, solid state batteries (SSBs) with solid electrolytes 
(SEs) have been intensively studied as a potential replacement of con
ventional LIBs, as they present some safety advantages such as reduced 
flammability and risk of leakage. One of the proposed electrodes ar
chitecture for SSB is a composition of active materials and SE, see  
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[11,12], so that APs appear to be embedded directly into SE, increasing 
Li transport capabilities of a cell to a level comparable to conventional 
LIBs with liquid electrolytes. However, in this case SSBs are even more 
prone to mechanical degradation during cycling than their liquid 
electrolytes counterparts due to a more rigid material environment 
surrounding APs (especially for SEs made of ceramic materials) and a 
low electrode porosity, which offers a limited possibility to accom
modate deformations resulting from repeated volumetric changes of 
APs. Moreover, once a gap between two material phases is formed, the 
mass transport across it becomes reduced or blocked, unlike for LIBs 
with liquid electrolytes, where liquid electrolyte can fill the gaps and 
help to maintain the mass transport. Therefore, an investigation into 
light-weight, deformable, and ionically-conductive SEs is still a work- 
in-progress, where one of the potential candidates is a polymer-based 
SE, see [13–15]. An example of a SSB coin cell fabricated by sand
wiching electrodes and polymer-based SE is reported in [16]. 

Advances in modelling of SSBs with polymer-based SEs have mainly 
focused on the electrochemical performance of polymer-based SEs, see 
e.g. [17], and electro-chemo-mechanical modelling of polymer-based 
SEs, see [18,19], at the cell level, where the effect of stresses is included 
via pressure. Microscale damage modelling of SSBs was considered in  
[20], where a simplified cathode material microstructure was studied in 
2D addressing the issue of SE fracture. Then, a 1D analytical approach 
aiming at capturing interfacial mechanical failure between an AP and 
SE was proposed in [21]. All those modelling studies have assumed 
linear elastic (LE) constitutive model for the description of mechanical 
response of material components in SSBs. However, in case of polymer- 
based SE, lithiation/delithiation cycles may cause it to undergo plasti
city, thus, LE approximation will be insufficient. Moreover, SSBs can be 
charged at different rates sufficient to trigger viscoelastic phenomena in 
polymer-based SEs. Hence, an accurate description of the mechanical 
response of polymer-based SEs for SSBs requires formulation and im
plementation of finite-strain elasto-viscoplastic (EVP) constitutive 
(material) models, even for relatively small volumetric changes of APs. 
Therefore, this work proposes a microscale approach that attempts to 
couple mechanics with diffusion, and incorporates a finite-strain EVP 
description of polymer-based SE. The approach is then used to in
vestigate the effects of polymer-based SE material non-linearity and 
strain-rate dependence on the in situ response of a composite electrode, 
and, in particular, the effects of polymer-based SE elasto-viscoplasticity 
on interfacial damage and contact loss between AP and polymer-based 
SE. 

The paper starts with the description of the model background 
followed by its mathematical formulation and details of numerical 
implementation into a finite-element solver ABAQUS. The results 
showing the effects of polymer-based SE viscoplasticity on the AP-SE 
interfacial behaviour are then discussed in detail. Notation and the list 
of abbreviations used in the paper are given in Appendix. 

2. Model concept and assumptions 

A typical SSB cell consists of positive and negative electrodes, SE 
and current collectors, see Fig. 1(a). Commonly, the material of a po
sitive electrode (cathode) is highly heterogeneous and, therefore, prone 
to microstructural degradation such as interfacial damage, especially 
upon the very first electrochemical cycle. Thus, cathode is the main 
focus in the present study. SE, in turn, is considered to be polymer- 
based, therefore, in what follows, abbreviation SE refers to polymer- 
based SE. Here it is assumed that APs are embedded into an ionically- 
conducting solid matrix made of the same material as SE, see Fig. 1(b). 
This implies a possible future SSB cell design that may avoid a distinct 
interface between SE and the cathode. However, an interfacial damage 

can still occur between APs and SE as a result of particle shrinkage and 
swelling, and may be significantly affected by the EVP response of SE. 

One of the main approaches to modelling of materials with micro
structural heterogeneity is the computational homogenisation concept, 
see [22]. The key components of the scheme are formulation of a mi
crostructural boundary value problem (BVP) for a representative vo
lume element (RVE), and coupling between micro and macro levels 
based on averaging theorems. Specific examples of this approach can be 
found e.g. in [23] for mechanical problem, in [24] for heat conduction, 
and in [25] for thermo-mechanical analysis. A multiphysics computa
tional homogenisation concept was also formulated for conventional 
LIBs with liquid electrolytes in [26], and for the ionic transport in LIBs  
[27]. In this paper, however, the interest is on the in situ response of the 
cathode at the microscale, rather than on the overall response of the 
SSB cell. Therefore, a simple microlevel unit cell with just one AP 
embedded into SE is used. Such a formulation is naturally symmetric, 
thus, running a full 3D simulation is computationally inefficient com
pared to available 2D assumptions i.e. plane stress, plane strain, or 
axisymmetric. Among these the latter is an exact 3D representation of a 
spherical AP, and in the plane perpendicular to the x2 direction can be 
considered as an approximation of the hexagonal arrangement of par
ticles, see e.g. [28]. Hence, for the sake of computational cost reduc
tion, the problem is reduced to an axisymmetric one, see Fig. 1(c). It is 
also noteworthy to mention that this is a significant geometrical sim
plification of the complex cathode microstructure. Nevertheless, it is 
believed that this simplified approach can still provide a fresh insight 
into the effects of SE viscoplasticity on the interfacial contact loss at the 
microscale, before more complex microstructures accounting for mul
tiple APs and porosity are considered. 

In general, electro-chemo-mechanical process takes place in the 
cathode including the kinetics of electron and ion transports together 
with the deformation kinematics. The evolution of mechanical field is 
driven by the diffusion and the arising mechanical stresses can affect 
the ions transport and charge transfer reactions, which, in turn, affect 
the diffusion. Since the mechanics and diffusion have a direct impact on 
each other, the focus of this study is on these two fields and the cou
pling between them. The mathematical formulation of the problem 
assumes that Li transport in the AP and SE can be described as a Fickean 
diffusion. The electric field as well as the explicit chemical reaction are 
not considered in the model, therefore, Li refers to both Li and Li-ions 
throughout the paper. Li transport from/into the AP, and from/into the 
SE towards/away from the anode (negative electrode) is captured by 
means of phenomenological interfacial and boundary conditions. 
Volumetric changes of the AP are considered to be dependent on Li 
concentration. Further, positive electrodes are frequently assembled in 
the lithiated state, see [20], and, therefore, the cathode’s AP is assumed 
to be shrinking during the very first charge cycle as Li is extracted from 
it. Then, since no experimental evidence exists on the interfacial me
chanical interactions across AP-SE matrix interfaces, it is presumed that 
some degree of chemical and physical bonding is possible at the in
terface. As a result, an exponential traction-separation law is im
plemented in the normal direction. The rigid body rotation of the AP is 
constrained by axisymmetric setup and shear sliding is negligibly small 
compared to the opening in normal direction upon shrinkage (swelling) 
of just one AP, hence, frictionless sliding is implied in shear. It is worth 
noting that for complex microstructures with multiple APs, their rigid 
body rotations should be prevented and the shear interfacial sliding is 
expected to be more pronounced due to APs interaction, thus, non-zero 
shear interactions should be considered. There is also a lack of ex
perimental evidence on the effect of contact loss on the Li transport 
across the AP-SE interface, therefore, some hypothetical interfacial 
transport laws are proposed relating corresponding flux and opening 
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displacement. 
The AP is considered to have an idealised spherical shape (a case 

with a small deviation from this is also addressed). Its mechanical be
haviour is assumed to be LE and isotropic – a simplification of a real 
response of a cathode’s AP that may be a polycrystalline material 
system, behave non-linearly (including irreversible strain and damage), 
and experience anisotropic swelling/shrinkage, see e.g. [29]. The SE is 
assumed to be made of a glassy-like polymer which is expected to have 
a higher ionic conductivity than its semi-crystalline counterpart. An 
EVP constitutive model is employed in order to capture its non-linear 
strain-rate dependent response. A drawback of a glassy polymer, how
ever, may be its low thermal stability once the operational temperature 
of the battery is near or above its glass transition temperature. Never
theless, thermal effects are beyond the scope of the present paper. 

3. Main equations 

The equations governing mechanics and diffusion in the proposed 
computational model are summarised below. They include balance 
equations, constitutive relations, initial, boundary and interfacial con
ditions. Mechanics-diffusion coupling is also discussed. 

3.1. Mechanics 

3.1.1. Equilibrium and bulk material laws 
The mechanical process is governed by the balance of linear mo

mentum neglecting mechanical body forces and inertia effects 

=· 0, (1) 

where is Cauchy stress tensor. 
The equilibrium equation above is complemented by the con

stitutive (material) laws for the AP and SE. In particular, a standard LE 
constitutive law is used for the AP which is described by two elastic 
constants (i.e. Young’s modulus E and Poisson’s ratio ). 

Then, a phenomenological EVP material relation is employed for 
glassy polymer SE, following the approach of e.g. [30–32]. The relation 
assumes two main physical processes contributing to the mechanical 
response of the polymer: Process 1 (P1) intra- and inter-molecular in
teractions determining viscoelastic behaviour at small strains and 
plasticity, and Process 2 (P2) entangled network that controls the strain 
hardening response. As a result, Cauchy stress tensor can be decom
posed as 

= + + ,s
d

h
d

v (2) 

where the deviatoric stress governing the P1 (see above) is given by 

= BG J ¯ ,s
d

s e e
d1 (3) 

while the deviatoric stress capturing the network behaviour (P2 above) 
is as follows 

= BG J ¯ .h
d

h e
d1 (4) 

The two terms are accompanied by the contribution from the hydro
static (volumetric) stress 

= IK J(1 ) .v e
1 (5)  

In the above, superscript “d” denotes deviatoric part of a tensor, 
K G, s and Gh are the bulk, shear and strain hardening moduli, respec
tively, I is the second-order identity tensor. Moreover, the total and 
elastic isochoric left Cauchy-Green tensors, B̄ and B̄e, respectively, are 
given by 

= =B F F B F FJ J¯ ( ) · , ¯ ( ) · ,T
e e e e

T2
3

2
3 (6) 

where F denotes the total deformation gradient tensor, and Fe stands for 
its elastic part (following the multiplicative decomposition of the de
formation gradient into its elastic and plastic parts, i.e. =F F F·e p, see  
[33]), = FJ det( ) and = FJ det( )e e are the total and elastic volume ratios, 
respectively. 

A non-Newtonian flow rule is adopted to relate the plastic part of 
the deformation rate tensor to the stress driving the P1 process as 

=D
2p

s
d

(7) 

where denotes viscosity given by a power law 

= =
¯

, ¯ 3
2

: ,
s

q

s s
d

s
d

0 0
0

(8) 

where ¯s is the equivalent deviatoric stress driving the P1 process, 0, 
and q are material constants and parameter 0 is introduced to avoid 
using dimentional units in power q. It is worth mentioning that plastic 
deformation is assumed to be isochoric, i.e. =Fdet( ) 1p (Fp is the plastic 
part of the deformation gradient F ), and spin-free, i.e. =W 0p . Thus, 

=J Je and the plastic part of the velocity gradient is given by =L Dp p. 

3.1.2. AP-SE interface 
A traction-separation law between normal interfacial opening dis

placement and traction t is implied at the AP-SE interface. In parti
cular, a simple universal binding law ([34]) is adopted as 

=t t exp 1 ,0
0 0 (9) 

where t0 is the maximum effective traction with 0 being its 

Fig. 1. (a) SSB cell design concept; (b) cathode microstructure; (c) axisymmetric unit cell.  
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corresponding separation, see Fig. 2. Following [35], linear unloading 
to the origin is assumed such as 

=t t ,max

max (10) 

where max is the maximum opening that has ever been achieved during 
previous loading and tmax is the corresponding cohesive traction. 

3.1.3. Mechanical boundary conditions 
As mentioned above, axisymmetric configuration is considered, see  

Fig. 1(c). Hence, the advantage of the problem symmetry (in geometry) 
with respect to axis x1 is taken, i.e. =u 01 is set on the symmetry line 
(boundary AD in the Figure). Node D is also fixed in x2 direction, i.e. 

=u 02 , to suppress rigid body translation. Here, u1 and u2 represent 
horizontal and vertical displacement vector components along axes x1
and x2, respectively. Furthermore, in order to account for the unit cell 
periodicity within the cathode, periodic boundary conditions are ap
plied to its boundaries such as 

=u u u uAB DC A D
2 2 2 2 (11) 

and 

=u u ,BC B
1 1 (12) 

where u u u u u, , , ,AB DC BC A D
2 2 1 2 2 and u B

1 are the corresponding vertical 
and horizontal displacement vector components of the upper, lower and 
right hand side boundaries of the unit cell (lines AB, DC and BC  
Fig. 1(c)) and the unit cell nodes (A, D, B). It is worth noting that since 
the interest of the paper is on the in situ response of the cathode at the 
microscale level rather than on the overall response of the SSB cell, the 
macroscopic deformation of the cathode is not taken into consideration. 

3.2. Diffusion 

3.2.1. Bulk diffusion 
As it was pointed out in [36], a steady-state mass transport hy

pothesis at the microscale level adopted for heat conduction in [24,25], 
is not satisfied for the battery problem. Therefore, the transient mass 
balance equation is used instead to describe the diffusion process 

=c
t

j· , (13) 

where c is the Li molar concentration and j indicates the mass flux. 

The flux in both AP and SE is expressed as Fick’s 1st law 

=j D c, (14) 

with D indicating the bulk diffusion constant. This simplified descrip
tion was exploited in e.g. [37] for electrochemical modelling of a mi
crobattery with liquid electrolyte. It is worth noting that the expression 
for the flux in the electrolyte can also contain the term associated with 
migration of ions along with the diffusive term introduced in the right- 
hand side of (14), see e.g. [10]. Similar approach was suggested for 
modelling of the flux in SE, in particular, Nernst-Planck’s equation was 
adopted in [17]. Moreover, following [38,39], the modification of 
Nernst-Planck’s equation was proposed in [18,19] in order to introduce 
the effect of mechanical stresses in solid material. The latter can also be 
taken into account in the active material, see e.g. [10]. 

A concentration range corresponding to the cell capacity can be 
defined using stoichiometry 

=x c
c

,av
AP

max
AP (15) 

see e.g. [40], where cav
AP represents the average Li concentration in the 

AP at a given time and cmax
AP indicates the maximum Li concentration. 

During cycling a cathode does not fully delithiate/lithiate, therefore, 
stoichiometry corresponding to 100% and 0% state of charge (SOC) is 
not equal to 0 and 1. Instead, it ranges between values x100% and x0%, 
which can be calculated using e.g. Open Circuit Voltage (OCV) curve, 
see [40]. The corresponding concentrations are denoted by c AP

100% and 
c AP

0% and can be derived using calculated stoichiometries x100% and x0%
and maximum Li concentration cmax

AP , see Subsection 4.1. As cathodes 
are assembled in the lithiated state, a fully discharged battery is as
sumed to be in a stress-free state. Therefore, c AP

0% is considered as an 
initial condition for the AP (note, that c AP

0% is used here instead of cmax
AP

for simplicity). The matrix, in turn, is set to possess some residual Li 
concentration cres

SE. 

3.2.2. Diffusion across the interface 
Interfacial kinetics is typically modelled via classical Butler-Volmer 

equation, see [41], using the concept of a surface overpotential. Since 
the electric field is not considered in the present study, in order to 
model Li transport from/into the AP the following phenomenological 
interfacial condition is introduced 

=j n D c c c· ( ) ,int int int int
AP

ref
AP

int
SE (16) 

where nint is the AP outward normal vector in the current (deformed) 
configuration, Dint stands for the interfacial diffusivity, cint

AP and cint
SE are 

Li concentrations at the interface of the AP and SE at a given time, i.e. 
the values of cint

AP and cint
SE vary with time during charge and discharge. 

Reference AP concentration cref
AP is a constant which drives the inter

facial flux. It is set as =c cref
AP AP

100% and =c cref
AP AP

0% for charge and dis
charge processes, respectively, i.e. during charge/discharge the flux 
from/into the AP is present as long as cint

AP has not reached the value of 
c AP

100%/c AP
0% . 

3.2.3. Boundary conditions for diffusion 
In order to model Li flux from/into the SE towards/away from the 

anode, the phenomenological boundary condition is applied at the 
upper boundary of the unit cell (line AB in Fig. 1(c)) as follows 

=j n D c c· ( ).b b b b
SE

res
SE (17) 

Here, nb is the boundary outward normal vector in the current con
figuration, Db denotes the boundary diffusivity and cb

SE indicates SE 
boundary Li concentration at a given time, i.e. it varies with time 
during charge and discharge. As it was discussed above, initially, Li 

Fig. 2. Traction-separation law with loading-unloading paths.  
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concentration in the SE is set to be equal to cres
SE , therefore, =c cb

SE
res
SE. 

During the first charge the flux from the AP causes the increase in Li 
concentration in the SE leading to the value of cb

SE becoming greater 
than cres

SE which results in the boundary flux from the SE towards ne
gative electrode. Similar procedure takes place in the reverse process. 
Note, that the residual Li concentration in the SE during both charge 
and discharge processes is considered to be equal to the initial one, i.e. 
cres

SE is constant. Moreover, it is assumed that the Li transport towards/ 
away from the anode happens only in a vertical direction, therefore, the 
remaining boundaries of the unit cell (lines CD, AD, BC on Fig. 1(c)) are 
considered to be flux free, i.e. =j n· 0b b . 

3.3. Mechanics-diffusion coupling 

Coupling between mechanics and diffusion is implemented through 
two mechanisms. The first one is based on Vegard’s law, see e.g. [9], i.e. 
strain tensor induced by AP’s delithiation/lithiation, Li, is assumed to 
be proportional to Li concentration in the AP at a given time, c AP, such 
as 

= c c( ) ,Li
AP AP

0% (18) 

where indicates AP’s volume change tensor caused by delithiation/ 
lithiation with 0ij if =i j and = 0ij if i j. The related volume 
change is associated with partial molar volume of Li in the material 
such as = tr( ). In this paper, is considered to be isotropic, i.e. 

= =11 22 33, and therefore, (18) becomes 

= Ic c
3

( ) .Li
AP AP

0% (19)  

The second coupling mechanism implies that the interfacial flux jint
is dependent on the normal opening displacement . In [10], it is en
forced by means of the interfacial electrical resistance Rint correlated 
with , which causes drop in surface overpotential affecting the Li flux 
through Butler-Volmer equation. In this study, since an electric field is 
not considered, it is implemented through variation of interfacial dif
fusivity Dint , i.e. =D f ( )int , and three possible relations are considered 
(see Fig. 3): (1) constant Dint , (2) constant Dint with linear decay upon 
reaching reference opening 0 corresponding to maximum interfacial 
traction (see Fig. 2), and (3) instant linear decay. The relation (2) is 
analogical to the ones considered in [7,9]. 

It is noteworthy to mention that other approaches for mechanics- 
diffusion coupling can be introduced, e.g. pressure-assisted bulk 

diffusion discussed in Subsection 3.2.1. The mechanical pressure can 
also be considered to affect the interfacial flux, see e.g. [38,10] where it 
is implemented through surface overpotential. Moreover, the material 
parameters which are assumed to be constant in this paper, can be 
dependent on deformations and SOC, see e.g. [42,43]. 

4. Model parameters 

The selection of values for model parameters required for simula
tions is described in this section and additionally summarised in  
Table 1. 

4.1. AP material parameters 

Polycrystalline Lithium Nickel Manganese Cobalt Oxide (LiNixMny
Coz + + =x y zO , 12 ) (NMC) is a popular choice for cathode’s material 
in commercial LIBs due to its high capacity, electrochemical stability 
and cost effectiveness, see e.g. [16], and, thus, is selected here as an 
active material for the positive electrode. According to SEM images, the 
cathode made from polycrystalline NMC have secondary particles of 
nearly spherical shape with an average diameter of about 10 µm, see 
e.g. [40,44–46]. They are formed from agglomerates of primary parti
cles with a smaller diameter ( 300–500 nm), which may be single- 
crystals or contain grain boundaries. The evolution of NMC a and c 
lattice parameters, and its unit cell volume during cycling is demon
strated in [45,47,48]. An initial increase of c lattice parameter is fol
lowed by a decrease upon charging (NMC delithiation), while lattice 

Fig. 3. Variation of interfacial diffusivity as a function of mechanical opening.  

Table 1 
Parameter set for the simulations.      

Symbol Description Value Ref  

AP material parameters – NMC 
– Diameter 10 µm [44,46,40] 
– Volume change 5 % [44,46,40] 
EAP Young’s modulus 130 GPa [44,46] 

AP Poisson’s ratio 0.25 [49] 

c AP
100% Li concentration at 100% 

SOC 
13 fmol/µm3 [40] 

c AP
0% Li concentration at 0% 

SOC 
45.8 fmol/µm3 [40] 

D AP Li diffusion coefficient 0.025 µm2/s [51,43]  

SE material parameters – PEO based 
ESE Young’s modulus 100 MPa Fitted 

SE Poisson’s ratio 0.24 [42] 
q Power law parameter 3 Fitted 

0 Relaxation time 100 s Fitted 
0 – 2 MPa Fitted 

G G/s h Shear moduli ratio 7 Fitted 
DSE Li diffusion coefficient 3 µm2/s [54] 

cres
SE Residual Li concentration 1 fmol/µm3 [10,40]  

Interfacial and boundary parameters, half-cycle duration, unit cell size 
t0 Maximum interfacial 

traction 
0.5 (stiff), 0.2 (soft) MPa Assumed 

0 Reference opening 0.04 µm Assumed 
max
0 Reference maximum 

opening 
0.042 µm Assumed 

Dint
0 Initial interfacial 

diffusivity 
0.025 (5C), 0.005 (1C), Assumed   

0.001 (C/5) µm/s  
Db Boundary diffusivity 3 µm/s Assumed 

Half-cycle duration 0.2 (5C), 1 (1C), 5 (C/5) h [10] 
– Unit cell size 10 µm by 20 µm 

(benchmark), 
Assumed   

6.5 µm by 13 µm, 5.5 µm by 
11 µm  
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parameter a decreases monotonically. The unit cell volume, in turn, 
shrinks continuously upon delithiation with a volume change of about 
5%. All of these trends are reversible on a subsequent discharge. As a 
result, the unit cell volume change is anisotropic and non-linear. 
However, since the AP considered here refers to the polycrystalline 
NMC secondary particle which is formed by primary particles with 
random crystal orientations, its volume change is assumed to be iso
tropic. Moreover, it is also considered to be linear for simplicity, see  
(19). 

Young’s modulus of NMC was measured in [44] by targeted and grid 
nanoindentation and found to be ±138.73 18.78 GPa and 

±123.02 20 GPa, respectively. In [46], targeted nanoindentation was 
performed at the centre of an NMC532 secondary particle resulting in 
Young’s modulus of ±142.5 11.3 GPa. Pulse-echo acoustic technique 
and nanoindentation were carried out in [49] for NMC333 hot-pressed 
pellets with values of 0.25 and ±199 12 GPa for Poisson’s ratio and 
Young’s modulus, respectively. Therefore, an average value of Young’s 
modulus (EAP) of 130 GPa is chosen for the simulations here, along with 
an assumed Poisson’s ratio ( AP) of 0.25. 

Stoichiometry x100% and x0% of NMC811 corresponding to maximum 
and minimum capacity of a cell is determined in [40] as 0.2567 and 
0.9072, respectively. The maximum Li concentration cmax

AP is also cal
culated as 50,483 mol/m3, resulting in c AP

100% and c AP
0% being 12,959 and 

45,798 mol/m3, respectively, or 13 and 45.8 fmol/µm3. Similar value of 
48,685 mol/m3 is reported in [50] for NMC523 maximum Li con
centration, where it is calculated from theoretical specific capacity and 
density. Partial molar volume is then calculated using (19) together 
with chosen values of concentrations and AP volume change. 

Value of NMC Li diffusion coefficient varies quite a lot depending 
on, among other things, characterisation technique used for its eva
luation, e.g. Cyclic Voltammetry (CV), Galvanostatic Intermittent 
Titration Technique (GITT), Electrochemical Impedance Spectroscopy 
(EIS). A reported range of values is between 10 14 and 10 8 cm2/s, see 
e.g. [43,51], thus, a value of 0.025 µm2/s is chosen as Li diffusion 
coefficient for the AP (DAP) in the simulations. 

4.2. SE material parameters 

Poly(ethylene oxide) (PEO) with solvated Li salts and ionic liquid 
(IL) is one of the most extensively studied material candidates for SE in 
SSBs, e.g. PEO/LiTFSI in [52], PEO/LiTFSI/IL in [16], and PEO/LiClO4 

in [42]. 
Young’s modulus (ESE) and viscoplastic parameters (q G G, , , /s h0 0 ) 

required in the constitutive model for the polymer SE are obtained from 
uniaxial compression stress-strain data for an unmodified PEO carried 
out at different engineering strain rates. The derived values are 
100 MPa, 3, 100 s, 2 MPa and 7, respectively. The determined Young’s 
modulus is close to the value of ±70 7MPa reported in [53]. Poisson’s 
ratio of PEO/LiClO4 is taken as 0.24 from [42]. Total shear modulus 

= +G G GSE
s h is obtained using E ,SE SE, and the standard relation for 

isotropic solids = +G E
2(1 ) . Cyclic and rate dependent stress-strain 

curves are plotted in Fig. 4 to demonstrate the behaviour of the con
stitutive model with the chosen material parameters. 

Value of SE Li diffusion coefficient (DSE) of (0.25 3.36)·10 8 cm2/s 
is extracted from [54] where molecular dynamics simulations are per
formed for PEO with LiPF6 salt, thus, the chosen value for the simula
tions is 3 µm2/s. Finally, following [10,40], residual Li concentration in 
SE cres

SE is set to be 1 fmol/µm3. 

4.3. Unit cell size and active material volume fraction 

A volume fraction of the active material in a typical commercial 
NMC-based cathode is around 70%, see e.g. [40]. However, the 
benchmark size of the unit cell is chosen as 10 µm by 20 µm (lengths of 
AB and BC on Fig. 1(c)) corresponding to a much lower active material 
volume fraction of just 8.33% for an axisymmetric unit cell. This allows 
minimising the effects of APs interactions on the interfacial deformation 
and, thus, concentrating on local effects of SE plasticity on the inter
facial opening. In order to address the impact of the unit cell size 
(volume fraction of the active material, APs interactions), smaller di
mensions of 6.5 µm by 13 µm and 5.5 µm by 11 µm are also considered 
which correspond to active material volume fractions of 30.34% and 
50.09%, respectively. 

4.4. Interfacial and boundary parameters, half-cycle duration 

Due to the lack of experimental data regarding interfacial bonds 
between APs and SE in SSB, and the effect of mechanical interfacial 
opening on interfacial diffusivity, corresponding parameters required 
for the simulations are assumed. 

First of all, two values of maximum interfacial traction (t0) are 
considered – 0.5 and 0.2 MPa – at reference opening = 0.040 µm, see  
Fig. 2. These values correspond to stiff and soft interfaces, respectively, 
with initial interfacial stiffness (defined as a gradient of traction-se
paration law (9) at = 0) being 34 and 13.6 MPa/µm. Initial interfacial 
diffusivity (Dint

0 ) is chosen to be 0.025 µm/s for 5C rate of charge (C- 
rate) with = 0.042max

0 µm, see Fig. 3. Typically, in order to charge/ 
discharge a battery at a slower or faster C-rate, the values of the applied 
current density and cycle duration are proportionally changed. The 
interfacial flux is driven by the evolution of the electric field which, in 
turn, depends on the value of the applied current density, see e.g. [10]. 
Therefore, the interfacial flux is affected by the C-rate. Since the electric 
field is not considered in the present study, the interfacial flux is as
sumed to be proportional to the C-rate through the value of initial in
terfacial diffusivity (Dint

0 ), i.e. 0.004 and 0.0008µm/s are considered for 
1C and 5/C rates, respectively. Based on the theoretical time of 
reaching the full capacity of NMC reported in [10], a chosen value for a 
half-cycle simulation duration ( ) is 720 s for 5C charging rate, and, 
hence, 1 h and 5 h for 1C and C/5 rates, respectively, with the same 
duration assumed both for charge and discharge. A value of 3 µm/s is 
set for boundary diffusivity (Db). 

Fig. 4. Simulated stress-strain curves for PEO.  
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5. Model implementation, results and discussion 

5.1. Model implementation 

Numerical implementation of the coupled diffusion-mechanics 
model introduced above, is carried out by means of the nonlinear finite 
element framework, and integrated with solver ABAQUS. Since mass 
diffusion analysis available in ABAQUS does not allow for a coupling 
with mechanics, diffusion is often modelled via thermal analysis due to 
diffusion and heat transfer equations similarities, see e.g. [55,56]. Thus, 
a fully-coupled thermal-mechanical analysis is used. Moreover, it al
lows defining specific thermal constitutive behaviour with the help of 
user subroutine UMATHT, which may be useful in the future for im
plementation of more rigorous expression for the bulk Li flux instead of 
Fick’s 1st law as discussed in Subsection 3.2.1. The interfacial interac
tions of the AP and SE are implemented via surface-to-surface contact 
with “master”/“slave” approach (surfaces of AP and surrounding SE 
correspond to the “master” and “slave” ones, respectively). Ad
ditionally, user subroutine UINTER is used for the implementation of 
the specific interfacial conditions in terms of mechanics, diffusion and 

their coupling, see (9), (10), (16) and Subsection 3.3. This approach 
was adapted in [57] for implementation of cohesive laws. Diffusive 
boundary condition (17) is employed through standard prescribed 
boundary convection. The EVP material (constitutive) model proposed 
for simulation of SE mechanical behaviour, see Subsection 3.1.1, re
quires the use of user subroutine UMAT. The details on UINTER and 
UMAT subroutines implementation are provided in Appendix. 

5.2. LE vs EVP behaviour of SE 

As discussed in Section 1, LE constitutive model is commonly pro
posed for the description of the SE mechanical response. However, such 
a simplified approach may be insufficient in the case of a polymer-based 
SE since even relatively small volumetric changes of APs can cause SE 
to undergo plasticity. In order to demonstrate this, LE and EVP models 
are compared in this Subsection. An idealised case of constant inter
facial diffusivity (case (1) in Fig. 3) is considered with a stiff interface 
(interfacial stiffness of 34 MPa/µm corresponding to the maximum 
traction =t 0.50 MPa, see Subsection 4.4) at 5C charging rate 
( =D 0.025int

0 µm/s, = 0.2 h) and different cycles (shown for the EVP 
response only since the corresponding curves for the LE model visually 
coincide) for a benchmark unit cell size (10 µm by 20 µm). An inter
facial opening displacement at 100% SOC (maximum AP shrinkage) is 
denoted as 100% and plotted in Fig. 5 with respect to angle (see  
Fig. 1(c) for definition) for LE and EVP models for SE. In general, 100%
is smaller for the EVP model with the minimum difference in 

100%(between LE and EVP, cycle 1) of 15% at °60 and °120 , and 
the maximum one of 16% at °0 and °180 . This indicate that SE is 
more compliant in this case, i.e. SE reached its plasticity regime within 
the given loading range. Moreover, with further cycling, 100% decreased 

Fig. 5. Interfacial opening at 100% SOC vs angle (see Fig. 1(c) for its definition) 
for benchmark unit cell size, constant interfacial diffusivity and a stiff interface 
at 5C charging rate. 

Fig. 6. Interfacial opening at = °90 and 100% SOC vs cycle number for the 
EVP model and benchmark unit cell size with constant interfacial diffusivity at 
5C charging rate. 

Fig. 7. (a) Interfacial opening displacement and (b) traction variations at 
= °90 for benchmark unit cell size, constant interfacial diffusivity and a stiff 

interface at 5C charging rate. 
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for the EVP model due to accumulation in residual plastic strain. This is 
also shown in Fig. 6 where 100% at = °90 is plotted for the EVP model 
with respect to the cycle number. 

Similar observations can be drawn by analysing the variations of 
interfacial opening and traction t at = °90 over time plotted in Fig. 7 
at cycles 1, 15 and 30. For the AP shrinkage (charge half-cycle), in
creases at a similar rate for both SE material models until it enters the 
plastic regime for the EVP model. Then, the growth rate slows down 
and reaches its peak corresponding to 100% with a smaller value for 
the EVP model compared to the LE one. Upon AP swelling (discharge 
half-cycle), the faster decrease of in the case of the EVP model is 
followed by compression (as shown by negative traction) once the in
terfacial gap has closed. This indicates the presence of the residual 
plastic strain in the SE as discussed above. Its accumulation with cycling 
can be seen from the extent of the region where = 0 (closed inter
facial gap) which becomes wider with cycling. In other words, time 
required for closing the opening during discharge is getting smaller 
with cycling, see Fig. 8. 

5.3. Effect of interfacial stiffness variation 

The effect of the interfacial stiffness on mechanical opening is 
studied here for LE and EVP models at different cycles. For a softer 
interface with interfacial stiffness of 13.6 MPa/µm (maximum inter
facial traction =t 0.20 MPa), 100% is larger compared to a stiffer inter
face discussed in the previous Subsection – compare Figs. 5 and 9. This 
implies that upon AP shrinkage/swelling the softer interface deforms 
more than the stiffer one and, consequently, the SE deforms less. 
Therefore, SE plasticity is smaller or has not yet been activated in the 
case of a softer interface resulting in SE behaviour being closer to the 
linear elasticity. Thus the difference in between LE and EVP models is 
smaller, which is clearly visible in Fig. 10, where opening and trac
tion tare plotted as functions of time (compare with Fig. 7). This dif
ference starts to increase slightly with the number of cycles – again, due 
to the SE undergoing some plasticity (still smaller than in the case of the 
stiffer interface), which accumulates with cycling, see Figs. 6 and 8. 
Note, that the interfacial gap does not close upon swelling of the AP 
within the half-cycle duration of 720 s for the first 10 cycles, see Fig. 8. 

5.4. Effect of interfacial diffusivity variation 

In this Subsection, the effect of -dependent interfacial diffusivity 
variation on the average Li concentration in the AP is investigated 
based on the interfacial transport laws introduced in Subsection 3.3 (see  
Fig. 3). The AP average Li concentration cav

AP is plotted with solid lines 

Fig. 8. Time required for closing the interfacial gap at = °90 vs cycle number 
for the EVP model and benchmark unit cell size with constant interfacial dif
fusivity at 5C charging rate. 

Fig. 9. Interfacial opening at 100% SOC vs angle (see Fig. 1(c) for its definition) 
for a soft interface (constant interfacial diffusivity, benchmark unit cell size, 5C 
charging rate). 

Fig. 10. (a) Interfacial opening displacement and (b) traction variations at 
= °90 for a soft interface (constant interfacial diffusivity, benchmark unit cell 

size, 5C charging rate). 
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in Fig. 11 as a function of time for the LE and EVP models, where the 
colours correspond to the ones used in Fig. 3 for different cases of in
terfacial transport laws, i.e. red – case (1) – constant Dint , blue – case (2) 

– constant with decay, green – case (3) – instant decay. Dashed blue and 
red lines represent c AP

0% and c AP
100%, respectively. Here, the average lithium 

concentration is determined through volumetric averaging as 
=c c Vav

AP
N

n
n
AP

n
1

1 with cn
AP and Vn denoting Li concentration and vo

lume at nth integration point (output IVOL in ABAQUS), respectively, 
and N indicating the number of integration points in the AP instance. As 
expected, AP average Li concentration is adversely affected by 
through interfacial diffusivity variation. In particular, it results in 
smaller values of cav

AP, i.e. the AP is unable to reach its maximum ca
pacity. Moreover, green curves in Fig. 11(a) for LE model indicate that 
AP delithiates/lithiates a little slower/faster at cycle 15 compared to 
cycle 1. This is due to the interface having a reduced stiffness upon 
unloading and secondary loading caused by the evolution of the in
terfacial damage, see Fig. 2, leading to a faster gap opening/closure. 
Also, since tends to get smaller with cycling for the EVP model, see  
Subsections 5.2 and 5.3, it results in an increase of AP average con
centration in the cases where the interfacial flux depends on the 
opening, see the green and blue curves in Fig. 11(b). 

5.5. Effect of the C-rate 

The C-rate representing a rate at which the battery is charged/dis
charged has an influence on the half-cycle duration ( ) and interfacial 
flux ( jint) which is approximated by the variation of the initial inter
facial diffusivity value (Dint

0 ), see Subsection 4.4 for more detail. The 
variation of the interfacial flux, in turn, affects the rate of the AP 
shrinkage/swelling, which has an impact on the mechanical response of 
the surrounding viscoelastic medium such as polymer-based SE and 
thus, on the interfacial mechanical response. In other words, slower C- 
rates correspond to smaller strain rates imposed on SE during 
shrinkage/swelling of the AP leading to a smaller value of the yield 
stress, see Fig. 4. Therefore, for slower C-rates, smaller strain is required 
for the SE to reach its plasticity and become more compliant. This leads 
to a larger SE deformation and smaller interfacial opening at maximum 
AP shrinkage 100%. As a result, 100% is getting smaller with the decrease 
of a C-rate, compare Figs. 5, 12 and 13. Moreover, the difference in 

100% between cycles 1, 15 and 30 is also getting smaller with the de
crease of C-rate, i.e. the effect of subsequent cycling at slower C-rates on 
SE and, thus, interface states of deformation is less significant. The C- 
rate can also affect the 100% over profile, see e.g. the curve for cycle 1 

Fig. 11. Charge and discharge curves affected by variation of -dependent 
interfacial diffusivity for (a) LE and (b) EVP models of SE (stiff interface, 
benchmark unit cell size, 5C charging rate). 

Fig. 12. Variation of interfacial opening at 100% SOC at 1C charging rate (EVP 
model, constant interfacial diffusivity, stiff interface, benchmark unit cell size). 

Fig. 13. Variation of interfacial opening at 100% SOC at C/5 charging rate 
(EVP model, constant interfacial diffusivity, stiff interface, benchmark unit cell 
size). 
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in Fig. 13. It is also worth mentioning here that the value of the AP Li 
diffusion coefficient affects the SE response similarly to the C-rate, in 
particular, its smaller values cause slower diffusion in the AP and thus, 
an increased time required for the AP to delithiate/lithiate, which is an 
analogy of slowing down the C-rate. . 

5.6. AP aspect ratio variation 

SEM images of NMC material reported in e.g. [10,46] show that 
realistic APs are not perfectly spherical. Therefore, in order to study the 
effect of a deviation from the spherical shape on the opening , an 
ellipsoidal AP shape is considered in this Subsection with semi-width a 
and semi-height b, see Fig. 1(c), selected as 6 and 4 µm, respectively. 
The simulations show that the AP shape affects the 100% over profile, 
compare Figs. 5 and 14, and the change in this profile with cycling, in 
particular, for ellipsoidal AP it is not as uniform as in the case of a 
spherical one, i.e. 100% decreases more substantially at e.g. = °0 and 

°180 compared to = °75 . The decrease of 100% with cycling at = °90 , 
however, is similar for spherical and ellipsoidal shapes of the AP, see  
Fig. 15. 

5.7. Effect of active material volume fraction 

The impact of active material volume fraction on the interfacial 
opening is studied by varying the unit cell size. The variations of 100%
are plotted with respect to angle in Figs. 16 and 17 for smaller unit 
cell dimensions of 6.5 µm by 13 µm and 5.5 µm by 11 µm, respectively. 
Comparison with the results for a benchmark unit cell size (10 µm by 
20 µm) presented in Fig. 5 shows that in general, smaller unit cell di
mensions (i.e. higher AP volume fractions) result in smaller values of 

100%, i.e. SE reaches its plasticity faster, and thus it becomes more 
compliant earlier, in the case of higher active material volume fraction. 
The unit cell size also affects the change in the 100% over profile with 
cycling, in particular, 100% decreases at °90 and increases at °0
and °90 for smaller unit cell sizes whereas it uniformly decreases for all 

Fig. 14. Interfacial opening at 100% SOC vs angle for an ellipsoidal AP (EVP 
model, constant interfacial diffusivity, stiff interface, benchmark unit cell size, 
5C charging rate). 

Fig. 15. Interfacial opening at = °90 and 100% SOC vs cycle number (EVP 
model, constant interfacial diffusivity, stiff interface, benchmark unit cell size, 
5C charging rate). 

Fig. 16. Interfacial opening at 100% SOC vs angle for the unit cell size of 
6.5 µm and 13 µm (EVP model, constant interfacial diffusivity, stiff interface, 
benchmark unit cell size, 5C charging rate). 

Fig. 17. Interfacial opening at 100% SOC vs angle for the unit cell size of 
5.5 µm and 11 µm (EVP model, constant interfacial diffusivity, stiff interface, 
benchmark unit cell size, 5C charging rate). 
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in the case of a benchmark unit cell size. Note, that cycle 30 is not 
shown on Fig. 17 since the corresponding curve coincide with the one 
for cycle 15. 

5.8. Effect of unit cell boundary conditions 

As discussed in Subsection 3.1.3, periodic boundary conditions are 
applied to the unit cell in order to account for its periodicity within the 
cathode. In this section unit cells with traction-free and partially-con
strained boundaries are studied. The latter infers that =u 02 is set at the 
upper and lower boundaries of the unit cell (lines AB and CD on Fig. 1c) 
and and =u 01 is applied to the right hand side boundary (line BC). 
Such conditions allow keeping the unit cell boundaries flat, thus, im
plying the unit cell periodicity, and are often proposed instead of 

periodic ones, see e.g. [58]. The variations of 100%vs angle for a unit 
cell of a benchmark size with traction-free, partially-constrained and 
periodic boundary conditions (EVP model, cycle 1) are plotted in Fig. 18. 
Constraints applied to the unit cell boundaries result in higher values of 
the interfacial opening 100% since the SE becomes less compliant. In 
other words, such boundary conditions overstiffen the SE response, 
especially if a smaller unit cell size is considered, compare Figs. 18 and 
19. The values of the opening 100% in the case of traction-free boundary 
conditions, in turn, are closer to those for the unit cell with applied 
periodic boundary conditions. However, since traction-free boundary 
conditions do not account for the unit cell periodicity, the SE state of 
deformation is obviously different, as shown by a profile of 100% over . 
It is also worth mentioning that the deformation of more complex sta
tistically representative unit cells (RVEs) with multiple randomly po
sitioned APs may be much less uniform and nonsymmetrical compared 
to the unit cells with regularly positioned APs making the use of par
tially-constrained boundary conditions (resulting in flat boundaries) 
insufficient especially for smaller unit cell sizes. Moreover, in those 
cells/volumes with multiple APs both partially-constrained and trac
tion-free boundary conditions are unable to account for field fluctua
tions at the microscale, while the periodic boundary conditions can 
easily capture them (at least as periodic microfluctuations). 

6. Conclusions 

Thermoplastic polymers and their composites have been extensively 
studied as SE materials for SSBs with a particular interest on improving 
ionic conductivity and mechanical response of polymeric SEs. The 
present paper contributes to an ongoing discussion on what optimum 
properties of polymer SE in SSBs should be – in addition to the general 
knowledge that “softer” systems (i.e. those typically containing lithium 
salts) exhibit higher ionic conductivity, while “harder” ones prevent 
from (or delay) dendrite growth, this work shows that yet another as
pect should be taken into consideration i.e. ability of SE to accom
modate volumetric changes of APs and maintain contact with them 
throughout the charge-discharge process. The latter can be achieved 
with SEs that have sufficiently low yield strength generating plastic 
flow at smaller stresses, which can contribute to the integrity of various 
interfaces in SSBs. 

In the present study, the focus is on providing a fresh insight into the 
effects of viscoplastic behaviour of a polymer-based SE on the evolution 
of interfacial damage in a SSB cathode by developing and utilising a 
non-linear computational microscale diffusion-mechanics model. For 
this, a BVP is formulated using a simple axisymmetric unit cell concept 
at the microscale with an elasto-viscoplastic constititive model cap
turing a non-linear and rate-dependent response of a polymeric SE 
during SSB cycling, a non-linear cohesive zone concept (traction-se
paration law), and diffusion-mechanics coupling via Vegard’s law and 
interfacial opening-dependent flux. The BVP is integrated into the non- 
linear finite-element solver ABAQUS using its user subroutines UMAT 
and UINTER. 

The simulation results show that plastic deformation and residual 
plastic strains resulting from the SE deformation have a significant ef
fect on the interfacial opening displacement. Particularly, the plastic 
deformation induced during AP shrinkage may minimise as well as 
maximise the interfacial opening depending on the problem formula
tion (AP shape, unit cell size, C-rate, etc), which may be crucial in terms 
of maintaining interfacial diffusivity. The results demonstrate that 
slower charging rates lead to a softer SE response and smaller inter
facial opening displacement due to the relaxation of the SE caused by its 

Fig. 18. Interfacial opening at 100% SOC for a unit cell of a benchmark size 
(EVP model, cycle 1, constant interfacial diffusivity, stiff interface and 5C 
charging rate). 

Fig. 19. Interfacial opening at 100% SOC for a unit cell of a smaller size of 
5.5 µm and 11 µm (EVP model, cycle 1, constant interfacial diffusivity, stiff 
interface and 5C charging rate). 
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non-linear viscoelastic nature. Fast C-rates, in turn, can stiffen the 
mechanical response of the SE, which can lead to higher stresses and a 
possibility of premature damage. Additional simulations demonstrate 
that the interfacial stiffness affects plastic deformation of the SE, and 
hence, the interfacial opening. This indicates the importance of tuning 
the strength of the interfacial bonding between APs and SE within SSB 
cathodes to control interfacial damage, and thus Li transport. It is also 
shown that the values of the interfacial opening are lower for smaller 
unit cell sizes (i.e. higher AP volume fractions) since the SE reaches its 
plasticity earlier in cases of higher volume fractions of the active ma
terial. Moreover, it is revealed that the partially-constrained boundary 
conditions, which are frequently used in the battery modelling-related 
literature, do not capture the actual in situ behaviour at the microscale, 
and may lead to an overstiffened SE response and, thus, overpredicted 
values of the interfacial opening, especially for small unit cell sizes. 

In general, it is demonstrated that the interfacial opening profile 
along AP circumference and its change with cycling due to the SE vis
coplastic response is sensitive to the AP shape, C-rate, active material 
volume fraction (unit cell size) and boundary conditions, and therefore, 
these effects should be further investigated in the context of more 
realistic and complex microstructures. 

Ultimately, a comparison with the linear elastic model for the SE 
shows that even 5% volumetric shrinkage of the AP results in an 
overprediction of the interfacial opening displacement value as opposed 
to a more realistic elasto-viscoplastic behaviour implemented in this 
paper for the SE. Hence, the use of the linear elastic model may become 
invalid in the analysis of polymer-based SSBs, when their material 
components exhibit a non-linear viscoplastic behaviour, especially in 

the cases of more significant volumetric changes of APs and polymer 
SEs with smaller values of the yield strength. 
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Appendix A. Notation 

Vectors are denoted with an arrow, e.g. a . Second-order tensors are denoted as bold capital letters A and represent a tensor product between 
vectors denoted by a b . In the index notation it is given by =A a bij i j, where A a,ij i and bj are components of A a, and b , respectively. Fourth-order 

tensors are formed by a tensor product of four vectors, e.g. a b c d , or two second-order tensors, e.g. AB, and denoted with preceding superscript 
“4”, e.g. A4 . The scalar product is denoted with a dot, e.g. =c a b· for vectors, = Ac b· for a scalar product of a tensor by a vector from the right, 
and =C A B· in case of two tensors. It can be rewritten in the index notation as = =c a b c A b,i i i ij j and =C A Bij ik kj, respectively, with the Einstein 
summation notation adopted. The double inner product of two tensors is denoted as = A Bc : which is =c A Bij ji in the index notation. The transpose 
of a tensor is denoted as =C AT and given by =C Aij ji in the index notation. Inverse tensors are denoted with superscript “ 1”, e.g. A 1, trace and 
determinant of a tensor are denoted as Atr( ) and Adet( ), respectively. 

Standard second- and fourth-order identity tensors and a right transpose of the latter are denoted as =I I e e e e, i j j i
4 , and =I e e e eRT

i j i j
4 , 

respectively, where ei are basis vectors. Some useful properties are = =I A A I A: :4 4 and = =I A A I A: :RT RT T4 4 . 
The derivatives of function = A( ) and tensor =B B A( ) with respect to tensor A can be written as 

= =
A

B
AA

e e
B

A
e e e e, ,

ij
i j

ij

km
i j k m

(A.1) 

see [59,60], therefore, the following expressions hold 

=

= =

= =

=

( )
I

I

I A A

A I A

,

: , : : ,

, det( ) ,

· · .

A
A

A Q
Q
A

B
A

B
Q

Q
A

A
A

A
A

A
A

RT

T RT

T

RT T

4

4

(tr( )) (det( ))

( ) 1 41

(A.2)  

In addition, it is useful to note that 

= + =
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Appendix B. List of abbreviations   

LIB Li-ion battery 
AP Active particle 
SSB Solid state battery 
SE Solid electrolyte 
LE Linear elastic 
EVP Elasto-viscoplastic 
BVP Boundary value problem 
PEO Poly(ethylene oxide) 
NMC Lithium Nickel Manganese Cobalt Oxide  

Appendix C. UINTER subroutine implementation 

As discussed in Subsection 5.1, traction-separation law (9) with the expression governing its unloading (10), interfacial diffusivity condition (16) 
and the coupling between interfacial flux and normal opening displacement introduced in Subsection 3.3, are implemented in UINTER subroutine. 

The subroutine passes in interfacial stress components STRESS(i) at the beginning of an increment in the local coordinate system, which then 
need to be updated depending on the given relative positions between surfaces RDISP(i) with =i 1, 2 denoting normal and shear directions, re
spectively. Negative values of RDISP(1) and STRESS(1) correspond to opening and tension. The loading and unloading regimes in the traction- 
separation law are determined by the value of DRDISP(1) – an increment in relative position between surfaces – with RDISP(1)  <  0 and DRDISP 
(1)  <  0 indicating tensile loading and unloading, respectively. At the same time, penetration of the AP into the SE defined by positive value of 
RDISP(1) is prevented using penalty compressive stress 

=t kp (C.1) 

represented by positive STRESS(1) with kp being a penalty coefficient. As a result, a check for the values of RDISP(1) and DRDISP(1) is undertaken 
with every call of UINTER, leading to the use of the corresponding law (either (9), (10) or (C.1)) for the interfacial stresses components STRESS(i) 
update. 

Interfacial condition (16) is implemented through the update of heat flux (analogy of interfacial Li flux jint) magnitudes FLUX(j) into the “slave” 
( =j 1) and “master” ( =j 2) surfaces, depending on both mechanical openings RDISP(i) (through interfacial diffusivity Dint , see Subsection 3.3) and 
surface temperatures (analogy of concentrations cint

SE and cint
AP) TEMP(j). Here, positive and negative values of the flux indicate heat flowing into and 

out of the surface, respectively. 
Finally, DDSDDR(i i, ), DDSDDT(i j, ), DDFDDT( j j, ) and DDFDDR( j i, ), which represent variations (or their negatives in case of DDFDDT( j j, )) of 

stresses STRESS(i) and fluxes FLUX(j) with respect to the relative opening displacements RDISP(i) and temperatures TEMP(j), also need to be 
provided, see [61] for more detail. 

Appendix D. UMAT subroutine implementation 

UMAT subroutine is used to implement the non-linear constitutive (material) law for the SE in the framework of finite deformations (see  
Subsection 3.1.1). Main implementation details are explained below. 

D.1. Stress update 

First of all, the subroutine requires to update Cauchy stress components STRESS(n), =n 4(for an axisymmetric problem in Voigt notation), at the 
end of each increment. Since finite deformations are considered (option NLGEOM is ON), the total deformation gradient F is passed in at the 
beginning ( n) and at the end ( = ++n n1 ) of each increment, corresponding to the time duration of . Also, since plastic deformations are not 
present at the beginning of the analysis, =F Ip and =D 0p are set to initialise the incremental-iterative solution procedure. 

Plastic part of the velocity gradient tensor is given by =L F F F F· · ·p e p p e
1 1, therefore, taking into account the multiplicative decomposition of the 

total deformation gradient ( =F F F·e p), and the fact that the plastic deformation is spin-free =W 0p ( =L Dp p), the plastic part of the deformation rate 
tensor can be rewritten as 

=D F F F F· · · .p p p
1 1 (C.1) 

Hence, (C.1) can be rearranged as 

=F D F· ,p
T

p
T

p
T (C.2) 

where =D F D F· ·p p
1 . The scheme for derivation of the solution for Fp

T within an incremental time stepping procedure presented below follows from  
[62]. It is assumed that Dp is constant during an increment, hence, the plastic deformation gradient at the end of the increment is given by 

=+F F F( ) · ( ),p
T

n p
T

p
T

n1 (C.3) 

where 
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=F Dexp[ ( )].p
T

p
T

n (C.4)  

Note, that the explicit integration scheme is used, which is only conditionally stable. Various approximations are available for the evaluation of 
tensor exponential Fp

T , e.g. Padé approximation 

+ =F I D I D F
2

·
2

.p
T

p
T

p
T

p
T1

(C.5)  

For finite increments, the determinant of the approximated exponential term Fp
Tmay deviate slightly from unity, which may be corrected by 

F[det( )]p
T 1

3 . Therefore, 

=F F F[det( )] .p
T

p
T

p
T1

3 (C.6)  

As a result, plastic part of the deformation gradient Fp is derived at the end of an increment ( +n 1) and, thus, the elastic part is obtained using 
=F F F·e p

1, which allows updating Cauchy stress and plastic rate of deformation tensor Dp using (2) and (7). Finally, components of are rewritten 
in Voigt notation as STRESS(n), see [61] for a particular order of stress components; Fp and Dp are stored as STATEV variables, and passed onto the 
next increment. 

D.1.1. Jacobian (DDSDDE) 
Another requirement of UMAT subroutine is to provide Jacobian for the current increment defined by DDSDDE(n n, ) in Voigt notation. It is 

shown in [63] that the consistent fourth-order Jacobian tensor J4 can be derived based on Jaumann rate of Kirchhoff stress. Hence, the components 
of J4 are defined as 

=

+ + + +

J F F F F

( ).

iqph J iM qI pK hL
S
E

ip qh qh ip ih qp qp ih

1

1
2

MI
KL

(C.7) 

where =i q p h M I K L, , , , , , , 1, 2, 3 with lower-case and upper-case indices referring to the current and reference configurations, respectively; SMI
and EKL are the components of second Piola-Kirchhoff stress and Green-Lagrange strain tensors, =S F FJ· · T1 and =E C I( )1

2 , respectively, 
where =C F F·T is the right Cauchy-Green deformation tensor. 

Following (2), second Piola-Kirchhoff stress tensor can be written as 

= + +S S S S ,v s
d

h
d (C.8) 

where 

=

=

=

S C

S C C C

S I C C

K J

G J

G J

( 1) ,

tr( ¯ ) ,

tr( ¯ ) ,

v e

s
d

s e p e

h
d

h e

1

1 1
3

1

1
3

1

2
3

2
3

(C.9) 

with 

= = =
= =

C F F C F F C F F
C B C B

J J· , ¯ ( ) · , ¯ ( ) · ,
tr( ¯ ) tr( ¯ ), tr( ¯ ) tr( ¯).

p p
T

p e e e
T

e e
T

e e

2
3

2
3

(C.10)  

Therefore, 

= + +S
E

S
C

S
C

S
C

2 ,v s
d

h
d

(C.11) 

where 

= +

= + +

= + +

( )X C C

C Y C X C C C Y

IY C X C I C Y

K J

G J

G J

( 1) ,

tr( ¯ ) tr( ) ,

tr( ¯ ) tr( ) ,

S
C

S
C

S
C

e
J

s p e e p e

h e

4
2

1 1

1 1
3

4 1 1

1
3

4 1

v e

sd

h
d

2
3

2
3

(C.12) 

with 

= = = =X C
C

C I C Y
C

CJ J· · , 1
3

.RT e
e4

1
1 4 1

2
3 1

2
3

(C.13) 
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Here, IRT4 represent the right transpose of the fourth-order identity tensor (see Appendix A), and 

= = =C C C C F FJ det( ) , , · .e
T

e e
T

e
1 (C.14)  

At the end, J4 is obtained using the components of the fourth-order tensor S
E

defined in (C.11), deformation gradient and Cauchy stress tensors, F
and , respectively. Then, the components of J4 are rewritten from tensor to Voigt notation as DDSDDE(n n, ).  
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