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Abstract

Loss aversion of the prospect theory is often measured in the accept-reject task, in which

participants accept or reject the chance of playing a series of gambles. The gambles are

two-branch 50/50 gambles with varying gain and loss amounts (e.g., 50% chance of winning

$20 and a 50% chance of losing $10). Prospect theory quantifies loss aversion by scaling

losses up by a parameter λ. Here we show that λ suffers from extremely poor parameter

recoverability in the accept-reject task. λ cannot be reliably estimated even for a simple

version of prospect theory with linear probability weighting and value functions. λ cannot

be reliably estimated even in impractically large experiments with participants subject to

thousands of choices. The poor recoverability is driven by a trade-off between λ and the

other model parameters. However, a measure derived from these parameters is extremely

well recovered—and corresponds to estimating the area of gain-loss space in which people

accept gambles. This area is equivalent to the number of gambles accepted in a given

choice set. That is, simply counting accept decisions is extremely reliably recovered—but

using prospect theory to make further use of exactly which gambles were accepted and

which were rejected does not work.
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Would you play a gamble that offered the chance to win $20 if a coin comes up heads

but lose $10 if the coin comes up tails? Suppose a person is indifferent—they do not mind

whether they will or will not participate in this lottery. In such a case, we say that this

person is exhibiting loss aversion. For this individual, the pleasure of receiving $20 is

equal, psychologically, to the pain of having to pay $10. The idea that losses loom larger

than gains is a cornerstone of behavioural economics. Loss aversion is often offered as the

explanation for various phenomena in choice, like the endowment effect (Kahneman,

Knetsch, & Thaler, 1991). Loss aversion is also a core component in prospect theory

(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992), the leading descriptive model

of choices where risks are involved. In this model, loss aversion is captured by the λ

parameter. λ is the exchange rate between the psychological value of gains and losses. For

example, with λ = 2 (other things equal) one would be indifferent between accepting and

rejecting the coin toss example—because 20− λ× 10 = 0. Using people’s responses to a

series of coin toss questions like the example here, where the gain and loss on offer in each

toss are varied, is a popular method used to estimate a person’s λ. Here we show that most

a commonly used modeling approach to estimate λ in this accept-reject task is

inappropriate.

There is a growing literature questioning the theoretical and empirical aspects of loss

aversion, in both risky and riskless context (Ert & Erev, 2013; Gal & Rucker, 2018;

Yechiam, 2018). Rather than focusing on whether loss aversion exists, the present paper

evaluates one of the commonly used methodologies of estimating at individual-level from

risky choices. There are multiple approaches to estimating parameters of prospect theory,

many of which have been designed with the main purpose of estimating individuals’ loss

aversion (Abdellaoui, Bleichrodt, & L’Haridon, 2008; Rieskamp, Busemeyer, & Mellers,

2006; Stott, 2006; Pachur & Kellen, 2013). The accept-reject task—asking people to decide

whether or not to play each in a series of coin-toss gain-loss questions like the one

described above—is one popular approach. In a typical accept-reject experiment,
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participants are presented with a series of mixed lotteries, each offering 50% chance of

winning some amount, and a 50% chance of losing some amount of money. Individuals are

simply required to indicate whether they would accept or reject each lottery. In the

experiments that incentivize people’s decisions, at least one of the lotteries is drawn at

random at the end of the procedure to be played out for real outcomes.

From a practical and statistical point of view, the accept-reject task offers an elegant

approach for determining how loss averse each participant is. First, the accept-reject task

for estimating λ is very easy to administer. Since all lotteries offer two equally likely

outcomes, the task can be explained with an analogy of a coin flip. Existing studies vary in

the number of trials, but most range from 64 to 256. Thus, the accept-reject task requires

relatively little cognitive effort and time from a participant. Indeed, this approach has been

predominantly used in conjunction with more involved procedures, such as fMRI scanning.

In one prolific study, the accept-reject task was used by Tom, Fox, Trepel, and Poldrack

(2007) to show a positive correlation between activation in the dopaminergic regions of the

brain and participants’ behavioral loss aversion. Several authors relied on the accept-reject

approach to further test the neural antecedents of loss averse behavior (Canessa et al.,

2013; Chib, De Martino, Shimojo, & O’Doherty, 2012), or to show that individual-level

variations in λ parameters correspond to differences in strategic thinking (Lorains et al.,

2014), oxygen deprivation (Pighin, Bonini, Savadori, Hadjichristidis, & Schena, 2014), or

the ability to accurately perceive internal physiological states (Sokol-Hessner et al., 2015).

Table 1 below summarizes the key properties of 15 articles (from a meta-analysis of

Walasek, Stewart, & Mullett, in prep) that used the accept-reject task to estimate loss

aversion among their participants. The table shows that most studies find a considerable

level of loss aversion, at least on the aggregate level.

The second benefit of using the accept-reject task is the simplicity with which

participant’s binary decisions can be converted into λ values. We illustrate the basic logic

starting with the classic value function of prospect theory.
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Estimating Loss Aversion from Accept-Reject Choices

In cumulative prospect theory, the psychological value of a gain or loss x is given by

v(x) = xα if x > 0 (1)

v(x) = −λ|x|β if x ≤ 0 (2)

The curvature of the value function is determined by α and β. Following Wakker (2010)

and Stewart, Scheibehenne, and Pachur (2018) we set α = β, because without this

constraint λ is arbitrarily defined by the choice of unit for x, and does not measure the

extent to which losses loom larger than gains across different values of |x|. Further, we set

α = β = 1 to reduce the number of free parameters we must estimate from the

accept-reject choice data. This is also useful because it is not possible to separately

estimate loss aversion and risk aversion with a typical accept-reject task.

The prospect theory value of accepting a 50/50 gamble for +$gain or −$loss is given

by

V (accept) = w(1/2) v(gain) + w(1/2) v(−loss)

= w(1/2) gainα − w(1/2) λ lossβ (3)

where w(1/2) is the decision weight attached to the 50/50 chance. Thus the first term is the

subjective value of the 50% chance of winning gain and the second term is the subjective

value of the 50% chance of losing loss. While cumulative prospect theory allows for the

separate weighting of probabilities for gains and losses, we assume that w(1/2) is the same

for the gain and the loss and, for the accept-reject task, this assumption is without loss of

generality. This means that λ captures all loss aversion (see Pachur & Kellen, 2013).

To turn the subjective value of accepting the gamble into the probability of accepting

the gamble we, just like other authors, use the exponentiated form of Luce’s choice rule
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(e.g., Glöckner & Pachur, 2012; Rieskamp, 2008; Scheibehenne & Pachur, 2015; Stewart et

al., 2018; Stott, 2006). The probability of accepting the gamble is given by

p(accept) = ebiaseθV (accept)

ebiaseθV (accept) + eθV (reject) (4)

V (reject) is the prospect theory value of rejecting the gamble and keeping the status quo,

and has a value of 0. When V (accept) is large and positive p(accept) will be near 1. When

V (accept) is large and negative then p(accept) will be near 0. The bias parameter accounts

for the general propensity to accept gambles regardless of their outcomes. This is often not

included in prospect theory, but below we show that it is necessary. Setting bias = 0

reduces the model to a more usual version of prospect theory with a stochastic Luce’s

choice rule. The sensitivity parameter θ determines how sensitive the probability of

accepting is to differences in prospect theory value, which is seen more clearly when

Equation 4 is written in logistic form:

p(accept) = 1
1 + e−(bias+θ[V (accept)−V (reject)]) (5)

Equations 3 and 4 can be rearranged to give the log-odds of accepting a gamble (Tom

et al., 2007; Stewart, Reimers, & Harris, 2015).

log
[

p(accept)
1− p(accept)

]
= bias+ θ w(1/2) gainα − θ w(1/2) λ lossβ (6)

When α = β = 1 Equations 6 is in the form of a logistic regression, where the choice

of accepting is predicted as a function of gain and loss.

log
[

p(accept)
1− p(accept)

]
= φintercept + φgain gain+ φloss loss (7)

where
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φintercept = bias (8)

φgain = θ w(1/2) (9)

φloss = −λ θ w(1/2) (10)

which means that

λ = − φloss
φgain

(11)

Thus is it convenient to estimate prospect theory parameters using a logistic regression,

with λ set by Equation 11.

We can visualize how each parameter of the model plays a role in capturing the

propensity to accept mixed gambles in a two dimensional gain-loss space. We demonstrate

this with the responses taken from four randomly sampled participants in Experiment 1 of

Walasek and Stewart (2015). In their version of the accept-reject task, participants saw 64

lotteries, which were constructed by combining losses and gains ranging from $6.00 to

$20.00, in $2.00 intervals. Figure 1 illustrates raw data from four participants, with green ◦

symbols for accept responses and red × for reject responses. Visibly, these participants

behaved quite reasonably in that they tended to accept only those lotteries that offered a

large gain and a small loss (the bottom right portion of gain-loss space).

Fitting the model in Equation 7 to each participant’s responses yields parameter

values that can be used to draw each person’s indifference curve. When people are

indifferent—that is, equally likely to accept or reject—then the log odds of accepting is

zero. The equation for the indifference curve is given by setting log
[

p(accept)
1−p(accept)

]
= 0 and

rearranging Equation 6 with α = β = 1.

loss = bias

λ θ w(1/2) + 1
λ
gain (12)
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These indifference curves, drawn in Figure 1, clearly separate the area of acceptance

and rejection for each participant. Two features of these lines are important to our

argument: the slope, given by 1/λ, and the intercept given by bias
λ θ w(1/2) . Thus the slope is

determined by the loss aversion parameter λ. However, the intercept is determined by a

combination of parameters: λ, the probability weighting for one half w(1/2), the sensitivity

parameter θ, and the overall tendency of accept gambles irrespective of the gain and loss

on offer bias. When bias = 0 this means the intercept is required to be zero, which is not

the case for most participants. That is, the bias is necessary to account for people’s

individual differences in the overall propensity to accept or reject gambles independently of

the gain and losses on offer.

To preempt the results of our simulations below, we are going to show that λ cannot

be reliably estimated from accept-reject choice data. All that can be reliably estimated is

the area under the indifference curve (AUIC) in Equation 12. This area corresponds to the

fraction of gain-loss space in which people accept gambles. For a gain-loss space with

uniformly distributed gains and losses, this corresponds quite simply to the fraction of

gambles people accept. The intuition is that the indifference lines in Figure 1 can wiggle

about their middles quite a bit, which changes the slope and the intercept a lot without

changing the area under the line.

Simulation 1

Our first simulation is a parameter recovery exercise, in which we generated

simulated data from the model and then tried to recover the generating parameters by

fitting the same model. We simulated responses in hypothetical experiments where

participants must accept or reject 100 mixed gambles made up of every possible and unique

combination of gains and losses ranging from $2.00 to $20.00, in $2.00 increments. We used

the parameters from the logistic regression form in Equation 7 to define our generating

parameter grid. Our initial parameter values consisted of φgain (ranging from .05 to 1 in .05
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increments), φloss (ranging from -1 to .05 in .05 increments) and φintercept (ranging from -.2

to .2 in .2 increments). The entire parameter grid therefore consisted of all 8,400

combinations of these three parameters.

We converted the logistic-regression-form parameters into the corresponding

prospect-theory parameters in Equation 6 using Equations 8–11.

For a given set of parameter values, we simulated 50 experimental sessions. This is

analogous to a situation in which 50 individuals with the same underlying preferences take

part in the same experiment.

For each choice we generated p(accept) with Equation 6. We then generated a

response for each gamble—either accept or reject—as a Bernoulli sample based on

p(accept) for that gamble. We excluded datasets for which the standard deviations of

p(accept) over all trials was smaller than .2 to discard parameter values that make very

similar predictions over all gambles in the choice set. As a result, we were left with 6,586

unique parameter combinations and 329,300 datasets (32,930,000 individual choices). The

possible values of λ from our grid included 295 unique values ranging from .05 to 19 with a

mean of 1.39 and SD of 1.46.

Results. We first removed 849 instances in which our model failed to converge,

leaving us with 328,451 recovered parameter values. Figure 2 shows how well λ, bias,

θ w(1/2), and AUIC can be recovered for a random sample of 50,000 parameter values from

our grid search. To summarise, while λ, bias, θ w(1/2) are poorly recovered, AUIC is

nearly perfectly recovered.

Figure 2A shows that the recoverability of λ is poor. The recoverability worsens for

higher levels of loss aversion, but even for the relatively lower values of λ < 2.5, the

amount of heterogeneity is non-trivial in magnitude. Consider the case of true λ of 2.25,

which is the often-used median value from (Tversky & Kahneman, 1992) and corresponds

to pronounced loss aversion. Interpreting λ as the sole reason for rejecting mixed lotteries

could lead us to believe that a person would require a gain to be approximately 2.25 higher
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than a loss in order to be indifferent with respect to a given 50/50 gamble. However, the

recovered λ is less than 1.99 30% of the time and more than 2.62 30% of the time. We

therefore cannot know for sure what is the true λ of such a participant.

The ability to recover generating bias is even worse, as illustrated by Figure 2B.

Similarly, in the case of θ w(1/2) (Panel C) the recovered values are very variable. The

recoverability is particularly poor for high values of θ w(1/2) as indicated by the fanning

out fits of the quantile regression. Appendix A further illustrates the large variance in the

recovered parameters.

What does this variability in recovered values mean for loss averse behaviour?

Answering this question requires us to distinguish between two possible interpretation of

loss averse behaviour in the accept-reject task. One view is that loss aversion is simply

given by the λ parameter of prospect theory, but another is that loss averse behaviour is

simply the overall tendency to reject mixed gambles. To capture the overall tendency to

reject mixed gambles we calculated the area under the indifference curve in gain-loss space

(see Appendix B). For example, individuals whose indifference curves are plotted in the

lower two panels of Figure 1 appear to differ considerably in their willingness to accept

mixed lotteries in the accept-reject task, but this is not reflected in the slope of their

indifference curves. Instead, the difference here is driven by the bias which contributes to

the upward and downward shifts of this curve. If bias and λ (and also θ w(1/2)) capture all

there is about the propensity to accept mixed lotteries, we should expect to see very good

recoverability of the AUIC scores.

Figure 2D illustrates recoverability of AUIC. Large AUIC scores mean that a larger

portion of the gain-loss space is covered by the decisions to accept, and therefore high

AUIC scores represent less loss averse behaviour. It is clear from the plot that AUIC is

very well recovered. Of note is the small cloud in the lower right corner of the plot. These

values emerge in rare cases when the binary accept-reject data generated from the model

probabilities are particularly extreme. In such instances, the fitted model produces the
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indifference curve that is outside the bounds of the gain-loss space.

If AUIC encompasses the global tendency to accept mixed gambles, then we should

also find no correlations, indicative of parameter trade-offs, between AUIC and bias,

θ w(1/2) or λ. In contrast, we may expect a correlation between bias and λ if these two

parameters truly trade-off in the model when they both try to capture decisions to accept

and reject mixed lotteries. To demonstrate this, for each possible combination of the

generating bias, θ w(1/2) and λ parameters, we computed Spearman’s correlation

coefficients for recovered values of these parameters and AUIC. Figure 3 shows the

distributions of correlation coefficients for all six possible pairings of parameters. There is a

strong correlation between bias and λ. Recall that the elevation of the indifference curves

in the two dimensional gain-loss space is given by the intercept bias
λ w(1/2) and slope 1

λ
. The

positive correlation coefficients therefore show that when the propensity to reject lotteries

regardless of their outcomes is high, the asymmetric weighting of gains and losses is

smaller. Conversely, we observe much weaker correlations between AUIC and λ and AUIC

and bias. With respect to θ w(1/2) we observe weak correlations with the other two

parameters as well as the AUIC.

Our simulation rather unambiguously shows that λ suffers from extremely poor

recoverability when attempts are made to estimate it from the responses in the

accept-reject task. This issue seems to be mainly driven by the parameter trade-off

between λ and bias in the stochastic choice rule. A measure derived from both of these

parameters, which corresponds to the area under a person’s indifference curve in the

gain-loss space, is very well-recovered. Since this measure captures the overall propensity

to accept/reject mixed gambles, it could easily be replaced by simply calculating the

proportion of “accept” decisions in the accept-reject task. We return to the topic of using

AUIC in the accept-reject task in the Discussion.
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Simulation 2

In our second simulation, we determine whether the issue of poor recoverability of λ

in the accept-reject task can be alleviated with a larger number of data points. That is, we

attempt to establish what would be the minimum number of experimental trials that would

produce a reliable measure of prospect theory’s λ. We simulated data for 50 identical

participants with true parameter values of the bias = 0.2203, φgain = 0.9673 and φloss =

-1.2204 — the median estimates from Walasek and Stewart (2015) Experiment 1A. For

each simulated participant we simulated 64 responses to the 64 trials in the 20-20

Condition from Experiment 1A, where gains and losses were drawn from the set ($6, $8,

$10, $12, $14, $16, $18, and $20). We repeated this process for a second simulated

experiment in which the 64 trials were repeated twice (so 128 trials per simulated

participant), a third experiment where the trials were repeated three times (so 192 trials

per simulated participant), and so on, up to a somewhat impractical experiment where the

64 trials were repeated 60 times (so 3,840 trials per simulated participant).

Results. Density plots of recovered λ, θ w(1/2), bias and AUIC are shown in four

panels of Figure 4. For the single replication of the 64 trials, the distribution is a vertical

slice from Figure 2. When there is one single replication of 64 trials, the interquartile range

of the recovered λ values is 0.21. The distributions of recovered θ w(1/2) and bias are also

very variable, with the interquartile range of 0.56 and 2.90, respectively. In contrast, the

recoverability of AUIC is much better, with the interquartile range of 0.04 for the

experiment with 64 trials.

As the number of repetitions is increased the standard deviations of the distributions

of recovered parameter values reduce. But even for quite high numbers of repetitions, λ,

θ w(1/2), and bias are still poorly recovered. For example, with two repetitions the

interquartile range of the recovered λ values is 0.15. Even with 10 repetitions—640 trials

per simulated participant in total—the interquartile range of the recovered λ values is 0.07.
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Discussion

One of the defining features of people’s preferences is their attitude towards risks

involving gains and losses. It is therefore important that behavioural scientists have reliable

and accurate tools for measuring an individual’s loss aversion. Here, we evaluated the

popular accept-reject task for estimating the loss aversion parameter λ of prospect theory,

in which participants must indicate whether they would accept or reject series of 50/50

gambles. We found that λ suffers from poor recoverability. This recoverability remains

poor, in absolute terms, even with more than a thousand experimental trials. Our analysis

shows very clearly that difficulties in estimating λ arises from parameter trade offs within

the model. We also showed that a composite measure derived from both λ, θ w(1/2) and

bias, which corresponds to portion of the gain-loss space in which people accept gambles

(see Figure 1), is well recovered. This area is equivalent to the number of gambles accepted

in a choice set with uniform distributions of gains and losses. Yet, while the AUIC

measure is well recovered, it would not generalise to other choice sets with different ranges

of gains and losses. As such, AUIC should not be regarded as a solution to the problem of

estimating λ in the accept-reject task. At the level of the individual, any attempts to

estimate prospect theory’s λ seem futile and can lead to serious mis-estimations.

By representing people’s decisions in the two-dimensional gain-loss space, we can also

show that removing bias parameter from the exponentiated Luce’s choice rule would not be

a good solution to the problem of estimating λ from accept-reject task data. Both the

intercept and slope of the indifference curves plotted in Figure 1 are necessary to represent

people’s attitudes towards mixed gambles. In other words, simplification of the model by

eliminating the bias parameter would just result in poorer model fits. We checked this by

fitting two models, one with bias = 0 and one with bias free to vary, for each participant in

the experiments reported by Walasek and Stewart (2015). Comparing model fits using

revealed that the bias = 0 constraint results in significantly poorer model fits for a

considerable proportion of the participants (ranging from 15% to 48%, see Appendix ?? for
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further details). Thus our argument is not that the model described in the Equation 6 is

wrong, but rather that data provided by the accept-reject task are not suitable for

recovering underlying attitudes towards gains and losses. The problem therefore emerges

from the combination of information-poor binary choices and the complexity of the model

necessary to capture people’s behaviour in full.

It is worth noting that bias may be particularly relevant in the context of the

accept-reject task. Several authors pointed out that this type of task confounds loss

aversion with the status quo bias (Yechiam & Hochman, 2013; Ert & Erev, 2013). Indeed,

if participants are given an opportunity to choose between a $0 for sure and a mixed

gamble, they are much more likely to choose the gamble than they are to accept it in the

accept-reject version of the task. So if the responses on the accept-reject task are in a large

part driven by the status quo bias, then the issue of poor recoverability of λ will be worse

in the case of this particular task.

How serious are these problems? In other words, could the variability of recovered

values influence results of studies in which the accept-reject task is used to estimate λ?

The problem of poor recoverability will lead to mis-estimation on the individual level. This

issue is particularly problematic for studies where individual estimates of λ are correlated

with some other individual difference. Take as an example Tom et al. (2007), in which the

authors found a strong positive correlation between participants’ λ values estimated from

the accept-reject task and neural loss aversion as measured by fMRI (specifically the

differential sensitivity to gains and losses in dopaminergic regions of the brain). Using the

results of our grid search in Simulation 1, we can demonstrate that such correlations are

unreliable when the accept-reject task is used to estimate λ. We begin by simultaneously

sampling a set of “true” λ values from a normal distribution with a mean of 2.25 and

standard deviation of 1.22 (taken from Lorains et al. (2014) as Tom et al. (2007) did not

report the mean and standard deviation) and a set of “true” neural loss aversion values

that correlate r = 0.65 with the “true” λs. Actually Tom et al. (2007) report an even
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higher correlation of r = 0.85, but our finding is robust across different values of r. For

each “true” λ we drew another corresponding “recovered” λ from the distribution in

Figure 2. We then calculated the correlation between the “recovered” λ values and the

“true” neural loss aversion. We repeated this 1,000 times for sample sizes of 15, 20, 25, and

35 participants. The distribution of 1,000 correlations is plotted in Figure 5 for each

sample size. The recovered correlations were considerably lower than the starting value of

0.65 (blue dotted line). The underestimation is large, with the correlations ranging from

-.73 to .77 (median = .10). This result should be worrying to researchers who wish to use

the accept-reject task to quantify individual differences in loss aversion.

We think that the issue of poor parameter recoverability is less bad when making

estimates about a group of participants rather than individual participants. Recall that the

relationship between the standard deviation of a sample and the standard error of the

mean—the standard error is the standard deviation divided by the square root of the

sample size. For example, while the standard deviation of the recovered λs in Simulation 2,

with one replication of 64 trials for each of the 50 simulated participants is 0.15 around a

true mean of lambda = 1.26. The standard error is 0.15/
√

50 = 0.02. Thus the estimate of

the mean of the population from which the sample of participants was drawn will be well

estimated, given a sufficient number of participants, even though the estimate for each

individual participant is poor: While the accept-reject task provides a poor estimate of any

given individual’s value of λ, the accept-reject task can offer a adequately precise

estimation of the population mean.

In Simulation 2, we showed that merely increasing the number of trials does not the

solve the problem of poor recoverability of λ for individuals. However, another possibility

would be to change the number of trials more strategically, increasing the number of

lotteries in the regions that are most diagnostic for determining the slope of one’s

indifference curve (e.g., at the edges of the gain-loss space). Even if an experimenter had a

good idea about the reasonable set of lotteries for recovering λ, manipulating sets of
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lotteries in the accept-reject task can have serious consequences. Stewart, Canic, and

Mullett (2020) and André and de Langhe (2019) both show that the sets of questions used

to elicit prospect theory parameters biases the estimate of those parameters. Stewart et al.

(2020) show that the correlation between prospect theory parameters estimated across a

random partitioning of a choice set is disturbingly low: estimated parameters do not even

generalise to a new set of choices drawn from the same master set. André and de Langhe

(2019) show that allowing the range of gains and losses to vary biases the estimate of λ in

the accept-reject task. Thus if one is to have a measure of λ which is comparable across

participants—as is required for correlating λ with other individual differences—one must

use the same set of choices over all individuals. This requirement thus rules out having the

choices generated for each participant from an adaptive procedure.

Our finding that the accept-reject task is not suitable for recovering prospect theory’s

λ involved using Luce’s choice rule as an error model to allow prospect theory to make

stochastic predictions. This extension is often used and, for the accept-reject task, is

equivalent to a logistic regression. We believe that the poor recoverability of λ would hold

for alternative error models. Here we consider two prominent alternative approaches (see

Loomes, 2005, for discussion). The first approach is to assume that people select the

alternative (i.e., accept or reject) with the higher prospect theory value, but that their

hand trembles and sometimes selects the other response. To see how this trembling-hand

model is similarly affected, consider the probability of accepting a gamble as a surface over

gain-loss space, rising as the gain grows and the loss falls. Under the Luce choice model

(Equation 5), this is a smooth surface with a logistic shaped cross section. This trembling

hand model effectively replaces the smoothly curving surface with a step function, stepping

at the point where people are indifferent. But the same issue remains. Loss aversion is

about identifying the orientation of the indifference curve in gain-loss space. All switching

to the trembling-hand form has done is change the shape of the probability surface. In

particular, because the trembling hand model has the same probability of tremble, no
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matter what the gain or loss, the model equalises relative importance of the responses far

from the indifference line in setting the orientation of the line. This does not make it easier

to estimate the orientation of the indifference line. The same is true of a second prominent

approach. In the Fechner model the difference in prospect theory value between accept and

reject is subject to Gaussian noise and the choice is determined by the sign of the noisy

difference. Thus the logistic form of the probability surface from the Luce model is

replaced with a cumulative Gaussian form. Because of the very similar estimates obtained

from logistic regression and probit regression (where the logistic form is swapped for a

cumulative Gaussian), the same issue with the poor recoverability of λ will apply. Again,

estimating λ is about estimating the orientation of the indifference line in gain-loss space,

and subtly changing the curvature of the surface does not fix this problem. In short, the

non-recoverability of λ will apply not just to the Luce’s choice error model, but also to the

trembling hand and Fechner error models.

The accept-reject task, as generally used, is clearly not appropriate for estimating

prospect theory’s λ at the level of an individual. A research who uses this task would be

better off with simply counting the number of accept decisions. While the present paper

does not offer a simple fix to the recoverability issue, it adds to the growing body of

evidence demonstrating serious limitations of risky choice tasks for estimating λ under

parametric assumptions.
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Table 1

Summary of the studies using the accept-reject task to estimate λ

Author(s) Year N Participants N Trials λ

Barkley-Levenson et al. 2013 16 144 NA

Canessa et al. 2013 56 104 NA

Chib et al. 2012 32 512 m = 2.09

Chumbley et al. 2014 43 36 NA

Frydman et al. 2011 90 140 µ = 1.52

Gelskov et al. 2015 16 64 µ = 2.16, m = 2.08

Lazzaro et al. 2016 39 100 µ = 1.46-1.78

Lorains et al. 2014 38 49 µ = 2.25

Markett et al. 2016 46 256 µ = 1.89, m = 1.66

Pighin et al. 2014 26 256 µ = 2.37

Schulreich et al. 2016 29 200 NA

Sokol-Hessner et al. 2013 47 150 µ = 1.31, 1.15

Sokol-Hessner et al. 2009 60 140 µ = 1.62, 1.41

Sokol-Hessner et al. 2015 22 180 µ = 1.38

Tom et al. 2007 16 256 µ = 1.93
Notes. Aggregate λ values are reported for control groups only, unless it was not clear which

of the available groups acted as a control (in such cases estimates from both groups are

included). λ values are means, except for Chib et al. which is a median. Table provides

aggregate estimates of λ, when authors reported either, both, or neither (NA).
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Figure 1 . Example responses and fitted indifference curves of four participants from

Walasek and Stewart (2015).
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Figure 2 . Scatterplots of recovered parameter values plotted against generating

parameters. Each plot is based on the same random sample of 50,000 data points from the

parameter recovery. Panel A: Recovered λ against generating λ. Panel B. Recovered bias

against generating bias. Panel C: Recovered θ w(1/2) against generating θ w(1/2). Panel C:

Recovered AUIC against generating AUIC. In Panels A, B and C , the y-axis scale has a

larger range than the x-axis so that more of the recovered values can be displayed.

Nonetheless, some parameter values are not shown; the number of values shown is

displayed inside the panel.
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Figure 3 . Distributions of Spearman’s correlation coefficients for pairs of parameter values:

λ, bias, θ w(1/2), and AUIC.
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Figure 4 . Distributions of recovered parameters. Panel A: λ, Panel B: bias, Panel C:

θ w(1/2), and Panel D: AUIC, for selected numbers of repetitions. Dashed vertical lines

show the true parameter value, identical for all simulated participants. Distributions are

the distributions of the recovered parameter value over 50 identical simulated participants.
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Appendix A

Alternative Parameter Recovery Plot

Figure A1 replots data from Figure 2 to highlight the median, 25th, and 75th percentiles of

recovered parameters.
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Figure A1 . Median, 25th, and 75th percentile recovered parameter values plotted against

generating parameters Panel A: Recovered λ against generating λ. Panel B. Recovered bias

against generating bias. Panel C: Recovered θ w(1/2) against generating θ w(1/2). Panel C:

Recovered AUIC against generating AUIC.
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Appendix B

Calculating Area Under the Curve

Consider a gain-loss space square with gains running horizontally from 0 to G and losses

vertically from 0 to L. The indifference line, along which the decision maker is equally

likely to accept or reject the gamble is given by Equation 12.

The intercept β0 = bias
λ θ w(1/2) determines whether the indifference line enters the

gain-loss square along the bottom or on the left. Together the intercept and the slope

β1 = 1/λ determine whether the line exits the gain-loss square along the top or on the right.

(Avoid confusing intercept β0 and slope β1 with risk aversion in the loss domain β from

Equation 1.) Thus there are four cases in Table B1 depending on the slope and the

intercept for the area under the curve. The expressions are straightforward calculations

resulting from adding and subtracting the areas of rectangles and triangles in the gain-loss

square.

Table B1

Closed-form expressions for area under the curve

Entry Exit AUIC Expression

Left, β0 ≥ 0 Top, β0 + β1G ≥ L LG− (L− β0)2/(2β1)

Left, β0 ≥ 0 Right, β0 + β1G < L G(2β0 + β1G)/2

Bottom, β0 < 0 Top, β0 + β1G ≥ L L(2β0 + 2β1G− L)/(2β1)

Bottom, β0 < 0 Right, β0 + β1G < L (β0 + β1G)2/(2β1)
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Appendix C

Model fit comparison: with and without bias

We fitted two versions of the logistic regression to individual-level choice data from

Walasek and Stewart (2015). We then performed a Likelihood Ratio Test to compare

performance of the two models to capture each individual’s responses. Table C1

summarizes the proportions of participants for whom there was a significant difference in

the model performance, such that the model with bias offered a better model fit than a

model without bias.

Table C1

Proportion of participants best fitted by a model with a bias parameter

Experiment Proportion

1A 0.15

1B 0.14

2 0.20

3 0.48


