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Abstract—The complexities associated with Automated 

Driving Systems (ADSs) and their interaction with the 

environment pose a challenge for their safety evaluation. Number 

of miles driven has been suggested as one of the metrics to 

demonstrate technological maturity.  However, the experiences or 

the scenarios encountered by the ADSs is a more meaningful 

metric, and has led to a shift to scenario-based testing approach in 

the automotive industry and research community. Variety of 

scenario generation techniques have been advocated, including 

real-world data analysis, accident data analysis and via systems 

hazard analysis. While scenario generation can be done via these 

methods, there is a need for a scenario description language 

format which enables the exchange of scenarios between diverse 

stakeholders (as part of the systems engineering lifecycle) with 

varied usage requirements. In this paper, we propose a two-level 

abstraction approach to scenario description language (SDL) – 

SDL level 1 and SDL level 2. SDL level 1 is a textual description of 

the scenario at a higher abstraction level to be used by regulators 

or system engineers. SDL level 2 is a formal machine-readable 

language which is ingested by testing platform e.g. simulation or 

test track. One can transform a scenario in SDL level 1 into SDL 

level 2 by adding more details or from SDL level 2 to SDL level 1 

by abstracting. 

Keywords— scenario, testing, scenario definition language, 

verification and validation, automated driving systems. 

I. INTRODUCTION 

Recent years have seen an increasing deployment of Cyber-
physical systems (CPSs) in the society. CPSs are an integration 
of computation and physical systems where embedded 
controllers control physical processes [1]. Building safe CPSs 
offers variety of challenges with a key challenge being the need 
for systems approach to the design. Moreover, there is a major 
temporal attribute to the functionality for safety of safety critical 
CPSs. Automated Driving Systems (ADSs) and Advanced 
Driver Assistance Systems (ADASs) are two types of CPS 
which have received an increasing focus in the automotive 
industry. The move to CPSs is driven by their many potential 
benefits, ADASs and ADSs in particular offer benefits such as 
improving safety [2], lowering vehicular emissions [3], 
improving traffic throughput [4], and decreasing drivers’ 
workload [5]. However, the increased complexity of these CPSs 
due to the system interactions and their temporal nature, have 
manifested into testing challenges for safe introduction of the 
technology [6], [7].  

ADASs and ADSs are typically developed based on a 
process derived from the V-model, which represents a system 

development lifecycle that consists several development steps 
and their corresponding testing counterparts [8]. The 
development steps form one side of the ‘V’ shape, which starts 
from high level requirements to systems development and 
further to low level module development. The testing phases 
form the other side of the ‘V’, which ranges from module level 
unit testing to system testing and to user acceptance testing. The 
V-model allows validation and verification activities to be 
carried out across the system development cycle to ensure the 
quality and correctness of a system. For ADSs, Kalra et. al 
suggested that it would need to be driven for 11 billion miles to 
demonstrate they are 20% better than human drivers [9]. While 
this might seem to be an unfeasible proposition, a more 
meaningful metric should be the types of scenarios experienced 
by the systems, leading to scenario based testing [10]. 
EuroNCAP, the European car safety assessment programme in 
their 2025 roadmap has also highlighted the role of scenario 
based testing in the safety evaluation of ADASs and ADSs [11]. 
Furthermore, for complex systems, the emergent behaviour due 
to sub-system interactions lead to occurrence of “unknown 
unknown” scenarios. Khastgir et. al. suggested for ADASs and 
ADSs, focus needs to be on “how a system fails” as compared 
to “how a system works” this leads to the focus on the scenarios 
which expose failures, i.e. Hazard Based Testing [12].  

An important aspect of developing and storing test scenarios 
along the V model is the need for appreciation about the 
diversity of its end users (e.g. autonomous vehicle (AV) 
technology developer, simulation test engineer, real-world test 
engineer, regulators, public etc.). Each of these end users have 
varied requirements and at different levels of abstraction. An 
AV technology developer would favour a common structure for 
scenarios in order to reuse across systems and organizations, a 
test engineer would want a high level of specificity to have an 
objective understanding and be able to execute the scenario on a 
test platform (e.g. simulation platform, test track). A regulator 
would want a common structure at a higher abstraction level to 
enable non-specialists to understand the test scenarios. At the 
same time, a regulator would also want a common structure for 
test scenarios to enable them to compare scenarios from 
different manufacturers. While there are synergies in the 
requirements from the various end-users, some are also 
competing (e.g. executability vs high level of abstraction). 
Inspired by the functional scenario, logical scenario and 
concrete scenario concept, there is a need for a similar approach 
for different levels of abstraction for scenario definition 
language. 
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The creation of scenarios is usually based on expert 
knowledge or various data sources, and the execution of 
scenarios can be realised in X-in-the-loop (XiL) simulations or 
real-world testing. However, between the creation and execution 
of scenarios, there lacks a common, understandable and 
executable language to describe and transfer the scenarios. 
Different simulators often use tool specific languages that are 
proprietary to their individual environment. Moreover the 
abstraction level(s) of the description languages have not yet 
reached agreement across industry and academia. This not only 
limits the sharing and exchange of scenarios, but often leads to 
misinterpretations. While defining the content of test scenarios 
has been a major focus of the industry up until now, relatively 
newer efforts have now begun in the area of the format for 
scenario definition (mostly for simulation use). These include 
OpenSCENARIO [13], Wise Drive [14], ontological 
approaches [15] etc. 

II. RELATED WORK 

Across industry and academia, several definitions of 
scenario have been proposed previously. Go and Carroll [16] 
define scenario within the context of system design, as a 
description that contains actors, their environment and goals, 
and sequences of actions and events. Geyer et al. [17] then 
concluded that, under the context of ADSs, a scenario includes 
at least one situation within a scene and the ongoing activities of 
one or both actors. Later, Ulbrich et al. [18] introduced the 
definition of scenario for ADSs as follows: 

‘A scenario describes the temporal development between 
several scenes in a sequence of scenes. Every scenario starts 
with an initial scene. Action & events as well as goals & values 
may be specified to characterise this temporal development in a 
scenario. Other than a scene, a scenario spans a certain amount 
of time.’ 

A recent study from Gelder et al. [19] further defines a 
scenario as a description of the characteristics of the ego vehicle, 
its activities and/or goals, its environment, and all the events that 
are relevant to the ego vehicles. Within the definition, an activity 
describes the time evolution of state variables between two 
events, and an event marks the time instant at which system 
transits between modes. Rather than explicitly describing the 
scenes, as proposed by Ulbrich et al. [18],  Gelder et al.’s 
proposal focuses on activities and events to implicitly describe 
the scenes. Based on the scenario definition by Ulbrich et al. 
[18], Menzel et al. [10] proposed an extension to include three 
different abstraction levels: functional scenarios, logical 
scenarios and concrete scenarios. Functional scenario represents 
the most abstract level, on a semantic format it includes a 
description of entities and relations/intersections of them. 
Logical scenario represents the functional scenario using state 
space variable ranges, and concrete scenario defines the exact 
values within the ranges to derive unique test case. 

The creation of scenarios can be data-driven [20][21] and 
knowledge-driven [15]. A data-driven approach utilises the 
available data to identify occurring scenarios, the disadvantages 
of this approach are: 1) the data do not describe all aspects of a 
scenario, 2) requires knowledge input to define parameter 
dependencies, 3) limited reference to the operational design 
domain [22], 4) challenging to extract interesting test scenarios 

[20]. A knowledge-driven approach utilises expert knowledge to 
identify hazardous events systematically and create scenarios. 
However, a complete identification of all the scenarios cannot 
be guaranteed [15], and the generated cases might not be valid 
or representative in real-life [20].  

To construct scenes within a scenario, a five-layer-model 
was used by Bagschik et al [15], this was further extended to a 
six-layer-model by Bock et al [23]. The first layer describes the 
road layout, the second layer contains the traffic infrastructure 
such as barriers and traffic signs. The third layer represents the 
temporary manipulations of the first two layers, such as road 
works or construction site. The fourth layer introduces the 
dynamic and stationary objects. The fifth layer provides 
environment information such as weather, lighting. And the 
sixth layer includes data and communications. Based on this 
layered model, the automation of scene creation was achieved 
by Bagschik et al [15]. Several forms of expression can be used 
to describe the elements within a scenario and their relations. 
Gronniger et al. [24] compared three possible forms of 
languages in the context of modelling: 1) textual languages, 2) 
graphical languages, and 3) a combination of the two. 
Comparing to the graphical format, textual languages offers 
better readability, higher efficiency, space-saving and easier 
integration[24][8]. In the field of ADSs, textual scenario 
descriptions or a combination of textual and graphical 
descriptions are used across different abstraction levels. When 
the two formats are used in combination, the textual description 
tends to be incomplete [8].  In addition, The quality, expressions, 
and semantics in a textual scenario description are highly 
dependent on the individual creator, ambiguities and 
misunderstandings often exist [25].  

To tackle this problem, the industry and academia have been 
working towards a common, exchangeable and executable 
language to describe scenarios for ADSs. Several simulation 
platforms offer tool-specific languages which are unique to their 
software, such as [26][27], this raises challenges for sharing and 
integration of scenarios. Open language formats such as 
OpenStreetMap [28], OpenDRIVE [29] and Lanelets [30] are 
popular examples for describing the road layout and road 
features, which forms the first three layers of the six-layer-
model. However, OpenStreetMap is mainly designed for 
geographical purposes and not for driving simulator or ADSs 
[31]. OpenDRIVE is more used in industry and lanelets is more 
popular in academia. One of the main benefits of OpenDRIVE 
is the exchangeability between simulators, on the other hand 
lanelets is more lightweight but still able to offer great level of 
details. Althoff et al. [31] developed a conversion tool between 
lanelets and OpenDRIVE format. Currently still under 
development, OpenSCENARIO [13] is an emerging format for 
the description of the dynamic and environment elements 
(fourth and fifth layers). The dynamic elements are described 
through actions and events. Menzel et al. [22] presented an 
automation process to detail a keyword-based scenario 
description for execution, both OpenDRIVE and 
OpenSCENARIO file formats were used to set the concrete 
scenario parameters and integrate to the simulator. Pilz et al. [32] 
used OpenSCENARIO format to construct the dynamic 
elements of a scenario, integrated and executed the 
OpenSCENARIO file in a simulator. 
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Although the methodologies for scenarios creation exists, a 
commonly recognised language that can cover all aspects of a 
scenario is still missing, this limits the reproducibility of 
scenarios and the exchangeability between tools [33]. Moreover, 
the language shall cover different abstraction levels, from 
functional level to concrete level, to address different audience 
groups. 

TABLE I.  SCENERY ELEMENT EXAMPLES FOR THE THREE SCENARIO 

LEVELS 

Abstraction level Example description 

Functional scenarios A three-lane motorway with a straight geometry 

Logical scenarios 
Road type [Motorway], number of lanes [3], lane 
width [3.5-4.5]m, road curvature [0-5] degree 

Concrete scenarios 
Road type [Motorway], number of lanes [3], lane 

width [4]m, road curvature [0] degree 

 

III. DEVELOPMENT OF SCENARIO DESCRIPTION LANGUAGE 

To develop a description language that can be used 
throughout the development cycle of an ADS, the language 
needs to be divided into different levels based on the information 
details and data values. Inspired by the three abstraction levels 
of scenarios [10] as illustrated in Table I,  two different levels 
have been proposed for the SDL, SDL level 1 at the functional 
level, and SDL level 2 at the logical and concrete level. Based 
on the elements described in the six-layer-model, SDL elements 
are split into the following three groups – dynamic elements, 
scenery elements and environment elements. Dynamic elements 
consist of actors and their corresponding actions, the actors 
include both ego vehicle and those who can influence ego 
vehicle directly or indirectly. Scenery elements consist of all the 
physically static elements in the scene, such as road layout, 
traffic lights etc. Environment elements define the physical 
conditions such as precipitation, lighting and connectivity. An 
SDL standard format can be formed by connecting the three 
groups together: Actor is doing action in scenery when context 
(Fig. 1). 

A. Dynamic elements 

The SDL dynamic elements provide description for the 
behaviours of all the moving objects in a scenario, which include 
road users, pedestrians and animals. There are two categories 
within the dynamic elements, scripted traffic and non-scripted 
traffic, which will be discussed in the following section.  

1) Scripted traffic 
For the scripted traffic, the full dynamic behaviour 

description is included in the scenario description. It is usually 
required for the non-ego actors which directly influence the 
behaviour of the ego vehicle. Two approaches have been used 
to define the dynamic behaviour of entities (vehicles, 
pedestrians etc.). The first approach uses relative manoeuvres in 

relation to other dynamic or scenery objects. And the second 
uses absolute manoeuvres that are independent from the rest of 
the scenario elements. Taking an overtaking and lane-change 
cut-in scenario as an example, under relative concept one would 
define the behaviour of one vehicle in relation to the other such 
that it could accommodate a range of different parameters and 
provide more flexibility. On the contrary, using the absolute 
concept one would need to pre-determine the parameters of both 
vehicles individually in a highly accurate manner such that the 
two vehicles can reach synchronisation. The absolute 
manoeuvre approach is susceptible to changes in the outside 
conditions and will require additional input to calculate the 
parameter values. Moreover, as the complexity level increases 
(such as increase in number of entities), scenarios based on 
absolute manoeuvres will become difficult to create, interpret 
and maintain, due to the difficulties on establishing the spatio-
temporal relationships between entities. It is therefore important 
to combine relative manoeuvres with absolute manoeuvres 
when describing the dynamic behaviour of entities, this defines 
both the types of movement of the entity and its relations to other 
entities or objects. Each combined manoeuvre consists of initial 
conditions and exit conditions to set the start and end 
parameters, and at least one phase where it is executed. The 
number of phases depends on the complexity of the scenarios 
and the transition between phases can be initiated by triggers 
(e.g. time triggers, location triggers and condition triggers etc). 

In order to describe the dynamic behaviour of road users, a 
list of manoeuvre types is identified for both absolute and 
relative manoeuvres (Table II). Among the absolute 
manoeuvres, ‘Drive’ means the vehicle is moving forward, 
‘Stop’ corresponds to a stationary vehicle, and lane change only 
takes places between current and adjacent lanes. For the relative 
manoeuvres, Fig. 2b. is used to illustrate the terms. It displays a 
‘lane change left’ absolute manoeuvre performed by V1 within 
a two-lane road. In this example, V1’s relative manoeuvre is 
‘cut-in’ for both V5 and V2, and ‘cut-out’ for V4 and V3. Upon 
finishing the lane change manoeuvre, V1 is ‘moving towards’ 
V5 and V4, and ‘moving away’ from V2 and V3. By combining 
the absolute manoeuvres with the relative manoeuvres, thirty-
six manoeuvre identities can be obtained to form the SDL road 
user manoeuvre matrix. For instance, Drive + Moving Towards 
→ Drive_Towards, Lane Change Right + Cut-in → 
LaneChangeRight_CutIn.  

TABLE II.  ABSOLUTE AND RELATIVE MANUVER TYPES FOR ROAD USERS 

Absolute 

maneuvers 

Drive, Stop, Lane change right, Lane change left, Turn 
right, Turn left, Reverse, Miscellaneous, Collide 

Relative 

maneuvers 
Cut-in, Cut-out, Moving towards, Moving away 

 

Fig. 1. SDL standard format example, which includes actors, actions, 

scenery and the overall context 

 

 

Fig. 2. a) vehicle relative position compass, b) example for relative 

manoeuvre illustration 
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However, the manoeuvre matrix on its own is not sufficient 
to describe the dynamic behaviour between two vehicles in a 
unique manner. For example, in Fig. 3 both a) and b) can be 
described as V1 changing lane left and cut into V2’s lane. In 
order to differentiate between the two examples, V1’s relative 
position to V2 must be taken into consideration. The vehicle’s 
relative position compass is introduced as part of the manoeuvre 
description. It consists of eight different positions, as shown in 
Fig. 2a. Applying the compass to case a (Fig. 3) would mean that 
V1 is changing lane left cut-in with relative position FSR to V2, 
while with relative position RSR to V2 in case b.  

After the main dynamic attributes (manoeuvre matrix, 
relative position, event triggers) are identified, the next step is to 
construct syntax for both initialisation and manoeuvre phases. 
Initialisation process will first require specifying the road and 
lane IDs for the agent vehicle (A_ID), the heading angle of the 
A_ID will be determined by the lane specification. To initialise 
a relative agent vehicle (RA_ID), its road and lane IDs need to 
be specified, in addition the relative position of RA_ID to A_ID 
also need to be specified. To construct the manoeuvre syntax, 
user first needs to specify a manoeuvre matrix ID (Func_Type) 
for the A_ID. Two direct inputs for the manoeuvres are speed 
and acceleration, this will be specified for the A_ID, in addition 
the relative speed of A_ID to RA_ID will also be specified. 
Please note the acceleration attribute is only effective when the 
target speed is not reached. Apart from the speed and 

acceleration, the syntax also contains position information such 
as relative position, junction information (whether vehicle is 
within a junction) and lateral / longitudinal margin. The position 
information serves as the triggers for entering and exiting 
manoeuvre phases. For instance, agent vehicle would perform a 
right turn only when the junction condition is satisfied. The 
syntax for both initialisation and manoeuvre is illustrated in Fig. 
4.  

The executability of the syntax shown in Fig. 4 was 
evaluated using the open-source CARLA simulator [27]. An 
SDL python-based tool chain was developed to execute a 
scenario in SDL Level 2 format in the simulator. The tool chain 
consists of an SDL manoeuvre library and an auto-scripting / 
parsing library. Based on the scenarios defined in SDL level 2 
format, the tool chain specifies parameter values within the 
defined range to create test cases values. The SDL manoeuvre 
library contains the execution code for all the manoeuvre 
identities in the SDL manoeuvre matrix. The auto-
scripting/parsing library first generates the code for the temporal 
and spatial based event triggers, it then combines the triggers 
with the manoeuvre identities to complete the execution code for 
the dynamic element of a scenario. The feedback from the 
CARLA evaluation has been reflected in the syntax shown in 
Fig. 4. 

Different from the SDL level 2 format, the SDL level 1 
description is more textual and at higher abstraction level. 
Instead of using the manoeuvre IDs (absolute + relative 
manoeuvres), SDL level 1 separates the two terms to form a 
plain and spoken expression. Moreover, at level 1 the relative 
speed and acceleration values between vehicles will no longer 
be specified, it uses more general terms such as ‘acceleration, 
constant, deceleration’ to indicate (see case studies). 

TABLE III.  ABSOLUTE AND RELATIVE MANUVER TYPES FOR 

PEDESTRIANS AND ANIMALS 

Absolute 

maneuvers 

Stop, Walk forward, Walk backward, Turn right, Turn 

left, Turn backward, Run, Slide, Miscellaneous, Collide 

Relative 

maneuvers 
Moving towards, Moving away, Crossing agent’s lane 

 

Similar philosophy was used to develop the syntax for 
pedestrian / animal manoeuvre description. The absolute and 
relative manoeuvre types used in this case are illustrated in Table 
III. Combining the absolute and relative manoeuvre types results 

 

Fig. 3. Change lane left cut-in examples 

 

 

Fig. 4. SDL level 2 road users dynamic element syntax for a) 

initialisation, b) manoeuvre 

 

 

Fig. 5. SDL level 2 pedestrians/ animals dynamic element syntax 
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in thirty manoeuvre identities for the pedestrian / animal 
manoeuvre matrix. For example, walk forward + moving 
towards element → WalkForward_MovT. The corresponding 
syntax is displayed in Fig. 5. 

2) Non-scripted traffic 
The increasing demand for more realistic simulations [13] to 

enhance the testing capabilities has raised the requirements of 
more intelligent actors to be represented in scenario executions 
and thus also in scenario definitions. To cater to this 
requirement, in a simulation setting, the non-scripted (goal 
based) traffic description is used to define intelligently 
controlled traffic, which can be based on AI decisions or 
surveillance cameras recordings replay. The attributes used to 
define non-scripted traffic include agent type, traffic density 
(agents/distance), traffic speed (distance/time), presence of 
special vehicles, and starting / finishing points. 

B. Scenery elements 

The scenery elements provide descriptions of the static 
elements within a scenario using junctions and roads as the 
building blocks. Fig. 6 illustrates the graphical representations 
for the two different levels of the scenery elements. Figure 6a 
displays two vehicles manoeuvre within an empty space without 
any defined scenery elements. Figure 6b provides road 
geometries and junction connections, this corresponds to the 
concept of SDL level 1. Figure 6c adds more elements to the 
scenery such as lane specifications, road structures, traffic 
control, roundabout details etc, this corresponds to the detail 
level of SDL level 2. In theory, SDL level 2 scenery elements 
could contain large number of attributes in order to represent real 
world scenarios. However, for a scenery to be relevant, it needs 
to be part of the Operational Design Domain (ODD) of the ADS. 
ODD refers to the operating conditions underwhich an ADS can 
perform safely [34]. In order to effectively describe the scenery 
while maintaining a compact format, the attribues from ODD 
taxonomy (ISO 34503) has been used [35], the high level 
elements are shown in Fig. 7. Zones specify any special road 
configurations which may differ from normal driving 
conditions, or area with special regulations. Drivable areas 
provide description of the elements that are directly related to 
the vehicle’s manoeuvrability. The junction attribute consists of 

roundabouts and intersections.  Road structures are classified 
into special road structures, fixed road structures and temporary 
road structures. The following example (Fig. 8) illustartes both 
SDL level 1 and level 2 format, it describes a straight motorway 
which connects to an exit slip road. Please note part of the 
descriptions for R2 and R3 are hidden due to repetitions and 
space constrain, a full description will expand the details.  

C. Environment elements 

The environment elements describe the physical conditions 
of the scenarios such as lighting, wind, cloudiness, etc. These 
characteristics are part of the ODD definition, hence the ODD 
Taxonomy [35] was used as a reference to determine the SDL 
attributes for the environment elements. These attributes can be 
divided into four main categories: weather, particulates, 
illumination and connectivity. Weather include wind, rainfall 
and snowfall, which are defined in m/s, mm/h and visibility (km) 

 

Fig. 6. Graphical representations of the scenery detail levels: a) no 
scenery elements, b) SDL level 1 representation, c) SDL level 2 

representation 

 

 

Fig. 7. High level categories of the SDL scenery elements 

 

 

Fig. 8. SDL level 1 and level 2 scenery descriptions of a straight  motorway 

with a Y junction 
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respectively. Illumination include day light and artificial 
lighting, in the case of day light illumination the elevation angle 
of the Sun above the horizon and the relative position of the Sun 
need to be defined. An example of the environment element 
description can be found in case study 1. 

IV. CASE STUDIES 

Two case studies are presented in this section to demonstrate 
the key properties -- common structure, executability and 
understandability – of SDL. The first case study utilises the 
STATS19 accident dataset, converts the relevant parameters 
into scenarios using SDL format, which can be further used for 
execution or sharing. The second case study creates SDL 
scenario descriptions based on the Euro NCAP test scenarios.  

A. Case study 1: Formating accident data into SDL 

For the first case study, the publicly available accident 
dataset STATS19 were used [36]. The original dataset contains 
sixty-seven variables, among which thirty-two variables 
describe the accident circumstances, which equivalent to the 
SDL scenery and environment elements. The next twenty-one of 
the variables describe the details of the vehicle and driver, 
together with high level vehicle manoeuvre description, this can 
be related to the SDL dynamic element.  The last seventeen of 
the variables describe the casualty, this is not part of the SDL 
elements. After filtering through the parameters, fourteen most 
relevant variables were used as the input for generating the SDL 
format. Table IV displays the filtered STATS19 parameters for 
a selected example, it can be seen that most of the parameters 
contribute to the scenery elements, the remaining contribute to 
the environment and dynamic elements. Among all the 
variables, 1st road class corresponds to the road where the 
accident occurred, junction details indicate the nearest junction, 
and 2nd road class indicates the nearest road which the junction 
connects to. Translating these accident parameters into spoken 
language will result in the following description: 

On a clear sunny morning with no high winds, on-road 
vehicle is performing an overtaking in an adjacent lane to ego 
vehicle at a dual carriageway motorway. The road surface 
condition is dry and the speed limit is 70 mph, there is no 
junction within 20m of range. 

TABLE IV.  STATS19 DATASET FILTERED PARAMETERS FOR THE 

SELECTED EXAMPLE 

Attributes Value 

Urban/rural Urban 

Carriageway hazard None 

1st road class Motorway 

Speed limit 70 mph 

Road type Dual carriageway  

2nd road class Out of range 

Road surface condition Dry 

Junction location Not within 20 m  

Junction detail N/A 

Junction control N/A 

Weather condition Fine no high winds 

Lighting condition Daylight 

Vehicle maneuver Overtaking moving vehicle  

The next step is to match these parameters with the SDL 
parameters, for those where a direct match cannot be 
established, assumptions are made. The environment parameters 
contained in the accident data are high level description in terms 
of weather, lighting and time, as shown in Table IV. For the 
dynamic element, it is assumed that the on-road vehicle is 
performing an overtaking of the ego vehicle, upon overtaking, 
the on-road vehicle changes into ego vehicle’s lane and starts 
decelerating, while the ego vehicle keeps going ahead without 
braking and results into an accident.  

The SDL descriptions (Fig. 9 and Fig. 10) illustrate the 
complete scenario of the selected STATS19 accident example. 
Unlike the dynamic element and environment element, the 
executability of the scenery element is difficulty to examine due 
to the limited software available that can achieve auto-
generation of the simulation scene. However, SDL can provide 
an understandable and common format for describing the 
scenery and environment element which complies with the 
standards defined by standards organizations.   

B. Case Study 2: Formating Euro NCAP scenarios in SDL 

The European New Car Assessment Programme (Euro 
NCAP) is a European car safety performance assessment 
program. It contains a series of vehicle tests, which represent 
major real-life accident scenarios that could result in injuries or 
casualties. Among the accident scenarios, the car-to-car rear 

 

Fig. 9. SDL level 1 description of the selected accident scenario 
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impact is one of the most frequent categories, this case study will 
present the test scenarios for the autonomous emergency braking 
system and convert them into SDL format. Fig. 11 displays the 
initial scene of car-to-car rear stationary (CCRs) test scenario 
defined by the Euro NCAP. During this scenario, the vehicle 
under test (VUT) is travelling forward at a speed range of 10-50 
km/h towards a stationary Euro NCAP vehicle target (EVT). 
The goal is to test whether the autonomous emergency braking 
(AEB) is effective at reducing the VUT speed when potential 
collision is detected. The test shall be conducted in dry condition 
with no precipitation, wind speed shall be below 10m/s and 
natural illumination must be homogenous. Fig. 12 and Fig. 13 
display the SDL description of this scenario. 

V. CONCLUSION  

This paper presents a scenario definition language concept 
based on two different levels of abstraction. Level 1 caters to the 
needs of a textual language for end users such as regulators, it 

 

Fig. 10. SDL level 2 description of the selected accident scenario 

 

 

Fig. 11. Initial scene of the Euro NCAP CCRs test scenario 

 

 

Fig. 12. SDL level 1 description of the Euro NCAP CCRs test scenario 

 

 

Fig. 13. SDL level 2 description of the Euro NCAP CCRs test scenario 
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forms the functional level scenarios. Level 2 is a formalised 
scenario specification for ingestion by toolchains for simulation 
based testing or real-world testing, this represents the logical and 
concrete level scenarios. Conversion between the two 
abstraction levels is achieved by adding additional details or 
abstracting. Both levels include scenery, dynamic and 
environment aspects. The elements included in each aspect align 
with the six-layer model for describing scenarios, and they are 
referenced to the ODD taxonomy for ADSs. This paper further 
illustrates the process of representing accident data and testing 
scenario using SDL. 
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