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IHTRODUCTION

Two problems are to bo considered* Fi>at Is the de-

termination of the intercepted volume formed by the exirl

intersection of two unequal, right, circular cylinders.

Second is the determination of the intercepted volume

formed by e random, internal intersection of two unequal,

it, circ ?lar cylinders. The analytic expression of

these volumes involves the thre# fine's of elliptic inte-

grals.

An elliptic integral *• first encountered in the

problem of the rectification of the ellipse. From its

association with the problem the integral received the

eppolletion "elliptic*. The first intensive study of inte-

grals of this type was conducted by Adri n 5?arie Legendre

(1752-1033), r-ho showed that an integral defending uoon

the him root of a polynomial of fourth degree in x can

be brought back to the three fundamental forme.
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flat , which ere termed elliptic inte-
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grela of the first, second, anrl third kinds, respectively,

Nuzaericfl evaluation of the first end second kinds Is con-

veniently effected by Lenten 1 s trrnsformetions.

The Inverse functions defined by the elliptic Inte-

grals are termed elliptic functions. In 1B25 Niels Henrik

Abel did the pioneering work with elliptic functions. Carl

Gustev Jrcob Jpcobi (1804-1P51) discovered the theta-func-

tions, which can be used In the nun? ?^icrl evrlu^ticn of the

elliptic integral of the third kind. In the second oroblera

treated below en ellioMc Integral of the third kind is

encountered. However, a mrnvricrl evr-luetlon "ill not be

attempted, as the problem nay be considered profitably

without going Into the extended application of the theta-

functions.



THE INTERCEPTED VOLUK? FORKED BY THE AXIAL I? CTION

OF fO Ml ",'T, rir=HT t m CYLINDERS

The Anelytical Represent©tion cf the Problen

A horizontal, circular

cylinder of radius e end a

circular cylinder of radius

b (a>b) intersect centrally

with en angle <X between

their exes* The cylinders

S8 end SD ere mounted on the

axes aa shown in * . 1. Obli vie coordinates are used, th«

YZ-plene being rotated about the Y-axis until it makes en

engle e( with the XY-plene, The e^uetlon of Se is its trace

on the YZ-plene, rhich is j
2/b%z2/{b 2csc2cC) szlm The equa-

tion of SD is its trace on the XY-plane, which Is

2/2 2 2x /(b cac o<)+y /V=l. The volume common to S„, and Sv is
I O

bounded on the sides by S^, end topped at eech end by Se .

The element of volume stands upon the XY-plene end uoon the

elliDse represented by the equation of r D , that is, the

base of Sb « The slrnt height of the element is I_« Its

volume is Z8 sin<oO dxdy. The total volume common to S 8 snd



b e8c«X)Vb2-y

Sv, Is V=4sln(o()/ / Z.dxdy /-^—5 .

/ solution by /Igebrelc Fethoda

b

As Z=cac(o()Ve
2-y''» Vr csc(*) JrU^-y H??l •to

Let yrbx. The volume V=8eb
2
cac(0O ^ Y(l-x2 ) (l-A )«*#

wb*re k2=b2/e 2 . Let x^sin ($). Let^4>=Vl-lc
2sIn4 .

K
Th«n V=8eb2cac(c() fjl-(l+k2 )sln^ + k2sln$] d± .— (1)

P2
2 Action of T sln<|> r'y.

The ebovo Integrnl la Identically •qua! to

ta<J> <ty+l/klf *

^ pre complete elliptic inte-

The ebovo Integrnl la Identically •nual to

n/r 72
%2 J

(-l/k) f(l-k2sln24>)d£ + 1/k2/ M=-l/W^tl/k A
= (lA2 )["K-E] , where K end pre complete elliptic

grels of the first em* second kinds, respectively^

ctlon of / alni^ d<£ •

./o 4f

Set up the folio. 5n identity: sin (<t>)cos(4>)4(<J>)

-/d ( sin*cos<fr4<t>)d4> = fo8%tfy> -sln^fy -k'^slnH^cos2^] d*

= /[l-k2ain2f-28ln'4|>t2k2aln% -k2sln ;

<|>+k
2rlnV| M

-Td* -(t+tt
9
) / sln<frd* + 5k2/ sint>d$ = sin(«t) cos(<*>)<3®.

7 if •£ *f J #



72
?/2 ,

As 4>=^/2 tJ3ln% d£ - (g+gfc
2

) / JJln
2
^ d4> - K/(:<k

2
).

The integral on the right -es reduced In the nrseeding
7f/2

paragraph. Hence, P sin4^> dg - ( -42k
2

) <K-E) - K/(3k
2

)

» (2+kf) :R ) - ( 2»2k
2
)E. Finally, (1) becomes

V=r8a.csc(*) [ (a
2+b2 )E-(e2-b2 )Kj , where K end E ere el-

liptic integrals of the first end second kinds, respectively.

A Solution by Elliptic Functions

>
In the volume integral ScscW / V(a

2
-x2 ) <b

2
-x

2
)dx

+0

let x=(b)sn{y,b/e). dx s=(b)cn(y)dn(y)dy.— --(i)
•2 »2_ m2 ^2 2, . 2 ^2 , o .a -x =a -b an (y)=a -b* ( 1-dny ), or

a8-x2-e2
dn2 (y).-

(2)

b^x2
=rb2-b2sn2(y)rb2-b2 <l-cn2y>, or

b
;

-x
2
=: (b)

2
cn

2
(y). — .__ _ (3)

From (1), (; ) # end (3) the volume becomes

8cse(oO'ab2^ cn2ydn2ydy. The limits in the last integral

end K, as when x=0, y- sn"1 (0)=: 0; -hen x = b,

y=an-1 (l) = K, The Irst integral is equal to



/ (l-an2y)(l-b
2

> eb2csc(o() / (l-sn2y)(l-b'W'y)dy

= 8eb2cs «X)J h-

{

s2+b2 ) sn
2
y +b2an

4
y] dy. (4)

.

The Integration of I an^ydy.

"°eP I ^~Tq 1"

By definition, E(b/o,+) =
/ Yl-(bV« )sln£ d<J>.

d^>-d(8m y) =dn(y)dy. By substitution, F(b/e, <*:=/" dn ydy,

y
as, rhen£=0, y = 0. Pence, ~(b/s,e* y) -

j
[l-(bV8

2
)sn'yJdj|

or f sn
2
y<:'y =: {

8

2A :

) £ y-K ( b/e , era y )] . •

J

'o

(5)

|
an ydy.

dTan(y)cn(y)cin(yj] = cn2ydn2y-an2ydn y-(b /e )sn yen y

= (l-an2y) [l-(b2/e
L

)an
2
y] -an2y +(bV8

2
)8n

4y-^8n^^sn4
y

•" e 2

= 1- (salary + (b
2
/e

2
) 8n

4
y -

(

e
2
-H>

2
) an

2
y + { 2b

2
/a

2
) an

4
y

= l-2(es4-b2_)8n2y + (3b2/a
2
)an'"y

Hence, / sn'ydy

ar

i« / si

Jo
.4,

» -a
2
?-f2(eW ) / snaydy+a* sn( ).-

3b2 •/ 3bT

The orl^lnel lnte^r^l (4) becomes, by aubatitutlon

from (5) end (6), V= oeb
2
Kc3c(Ar)-B8(e

2tb
2
)cac(0<') rK-K(b/e,l)j

-i- b
4
cac (<X) f-8 K+ge

2
(a

2+b2 )/K-E(bA,l))1 , or+—
i— L«"

—

Z?~ t JJ

V- 8ac«c(«) [(.^b^K-te^b2 )^ . This la the expreaalon



for V obtained on page 5,

Elements of the Intercepted Volume '

If a plane parallel to the XY-plene cuts the cylinders

at the lowest point of the upper intersectlonel curve, it

cuts the upper half of the common volume V Into two parts—

a cylinder (between the cutting plpne and the YY-plene) sad

s cap bounded by the cutting plane end both surfaces SB end

S^. The volume of this csp is evidently equpl to helf the

common volume V minus the volume of tho cylindrical section

of SD cut off by the cutting plane and the YY-plene, The

lowest point on the intersectlonel curve of S8 end S^ is

at the point on S^ where y Is greatest, that is, y = b.

There the verticel height (not the slent height) of the

cylinder boun' ed by the cutting plane, the XY-plene, end 8^,

Is Ve^t? . Hence, Its volume Is 7Tb2 Ve2-b .cr.c(^). The

volume of tho cap (of which there ere two) Is

4ecsc(0Q r(e2+b2 )E-(82-b2 )KJ - 7Tb2 Va2-b2 .csc(tf).

Sn; clal Cases

Observe thet if e(=7j£, the volume V common to Se and

Sfc is expressed by V-=8a. ["(8
2+b2 )F-(s2-br )A • If asb,
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/ 2 2\
the volume Integral degenerates to V— Scac(0() / (8 -y )dy

•to

- 16a
2
cse(QQ, Finally, iftf=%cnd a = b, V = I6e

3
.

A Ifuraericcl Case

In e numerical evaluation of the general form of V,

the elliptic integrals K and 8 bt* readily handled by means

of Lenden'a transformations ( Byerly, 1926 ) ,
by

which K» the complete integral of the first kind, is equal

to flrU+kjHl+kgHl+K,-) ,< here Kp_ 1- "/l-k^

l+/l-kp-l

¥.{ k,7T) = K jl-k2 ( Ifki+^kg + k
x
kgk,+ )| , "here k

L ^ T*
is the same as above*

P

t a numerical exprnnle, let a =4, b*=l, flf= 60°, Then

V=: 52csc(60° ) ri7E-15KJ, By the use of five-place logarithm

k1= 1-Vl-(1A6) = .016131 . ko- l-fl-. 00026019
l+Yl-d/16) 1+T/1-.0002 019

r. 000070006* Neglecting the k»s beyond kg , we heve

Ksjai+kiHl+k,,) ss 1.570796(1.010131) (1.0000?) =1.5962.
2

As a check, this answer may be compered with the table value

1.59635. Orcrter accuracy may be obtained by teking more

terms of the transformation.



By the trrnsformetlon p.lven on pege r,

S = 1. 5962 fl~( 1/32 )(1+ ,00 -065 + ,00000020231)1 S 1.5459.

The very small terms may be neglected If sceurecy beyond

four places Is not desired* As a check, note the* tpble

value 1.545 .

The volume V= 32csc(60° ) [ 17T?-15k|» 32(2^3373) = 20.788.
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THE IJfT VOLUME FORMED BY A RANDOM, INTERNAL

IH^ "?I0N OF TW) UNEQUAL, FIGHT, CIRCL/R CYLINDttS

Simplificetion of the Analytical

Representation of the Problem

Let the exes of the two

cylinders be represented by

the random lines L^ pnd L ,

which have no point in com-

mon, itho t loss of gene-

rality, take the X-axis as /y F/g-Z.

L^. Let L2 he s random line whose equations are

S^ =A1x+B1y+ Cjz 4-I^s 0,

s2 SAgX + Bgy-fC^s + D^s 0.

The oencil of planes on Lg is

Sj+kSg 51 (Ai-J- kA2 )x + (B1 +kB2 )y+ (C-t + kCg)* + ( I^ + krg) = 0,

The direction cosines of Lj nre X= 1, yU=0, V= 0. The

angle between L^ end the Dime S1 4-kS2
=0 is rriven by

sinO)-. X( /it kl o ) +jjl { B-, -J- kPg )

+

-p ( C^kC,-,

)

—
7Urt-kAo)*-MB1+kB2r+ (c1+ kc2 )-i(X^H>a

;

+z^)

( Snyder enc- Sisem, 1914 ) . If a plane of the pencil
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Is perellel to k| then 0=0. The lest eouation reduces

to AUj* kA
2
)=0, or ks^-Aj/Ag), Ag^O. If Ag=0, Sg=

is the desired plene perellel to L^. Hence, the equation

of a plane containing Lg end perellel to L^ is

(A2B1-A1B2 )y + (A2C1
-A

1
C2 )s5+(A2D1-A1D2)=0. This proves

that one plene contr inlng L2 may he constructed perellel

to T.-t.

In the generel volume problem the axis of the cylinder

S Is the X-axis, The axis of the cylin
fc

Is the

random line L2 in the above discission. mo simplify the

analytic expression of the general problem, take e plane

P^ on the exis of SD perellel to the exis of Se
by the

process outlined ebove. Teke a plene Pg on the axis of Sa

end perellel to P^. Take P2 as the now XZ-plsne. The new

XY-plane Is peroendicular to P2 end on the axis of S
ft
.

The new YZ-plane is perpendicular to the other two plenee

end intersect p the XY-plene in the game point with the

axis of Sjj. The volume problem with random Internal

inters ction of the cylinders S snd S^, (o>b) is expressed

analyticrlly by the cylinder Se on the X-axis end by the

cylinder SD , whose exis cuts the Y-axis end is nerellel to

the XZ-plene. A further simplification Is accomplished by

rotating the YZ-plene ebout the v-exis until the exis of

SD lies in tho new YZ-plene. (See Fig. 3 on pege 12).
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uction of the Volume Integral rd Forms

The r>xls of the

cylinder S^ of rrtfius

b cuts the Y-axis et

(0,L,C) pnd is prrcl-

lol to the Z-exis,

rhich mekes sn sngle

o( 1th the X-oxis. The

sxio of the cylinder

S of rpdlus a Is the
C |

axis

Fig. 3.
X-exls. e^ (L+b).

The equation of S
ft

is z2/(B2csc2e(h'J2/r =1. ho - etion

of Bh is x2/(b2csc2tf) +(y-i,) 2/b2=l. The volume common to

the cylinder* is L+b Vb2-(y-L) 2 csc(o()

2sln(0C)// Z.dxdy

' 4/-(y-L)
2
csc(o()

As ZE =V(o^-y
2

) csc(0() f V becomes ^L+b

4esc(tf) /l/(r.
l -y2 )[b^(y-L)%

*T-b'L-b

Let y=cx, The lest integral in, in Indefinite form wltr.out

the coefficient.
*
6 /YU^-DU-L-bHx-l•L+b) dx. Let

I

L-b - c end Jj+b r f. rrop the coefficient to get
e e

yv^<*"•-!) U-c)(*-f)t>X.
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Multiply numerator and denominator of the integrand by

rl/Tx^-iMx-cHx-f) to got

/Yx4- ( c+f ) x
5
+- ( cf-1

)

x2+ ( c+f ) x -cf
j
^ t

Hence the volume integral may be reduced to five cf the

type /i^dx , -<nere n=0, la 2, 3, 4. (1)

J**
r

Reduction of I x
A
6x . d(xHx)r Fxdx •+

J Rx

f4x
3-Mc+f)x2 -t- 2(cf-l)x + (c+f)1 xdx , or

L EE^ J

xRT g 1 f f6x
4
-5( c+f )

x

3+4 ( cf-1

)

x% 3< c+f )x-2cf
j , Y • '.his

ation may be solved for /x4 dx > blch Is then expressed

/*In terms of xFx end / xndx , here n = 0, 1, t« 3.

-eduction of fxdx •

' Fx

d(BT ) = 4x5-3(c+f)x2+2(c-"-l)x+(c+f) ^ , or
2RX

4S fei5-5(etf)A2(eM)»f(etf)
[

dx # This e nation

may be solved for / x'
5dx , vtklell Is then ^5ven In terms

r J ~*x~~
of !?x and /x^dx , • h re n;0, 1, 2.

•/ Rx

Slmoliflcatlon of r

x « ove the x-terms from

<i = (xii+2Axfyu)(x2+2Ax+
>
|4), proceed as in Stive;

( 1921 ). Let x=(p+ez)/(l+z); then x <;+2Xx«f
/u =
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(p+cz) 2+2\(p+qz)(l+z)+*(l+zr - mz2+£fz+g ) , rhere

(1+z) (1+z)'

H=q2+2Xq-^u, snd l/ll =
pq+^p+O+^M

-1

p
c+ 2Ap+M

Tlrrly, x2 + 2>|x+V= I
J
' (

z

2+ 2f'z+ft') , where H», f»,

u+zT2
""

g* are the seme functions of p, M ,X,yU» M Ig f» g» ere

of p, n,X fyu. Imm = P ' (

z

2+^ fz+r; ) (

z

2+ 2f f z+g '
) .j-

(1+B )«

f,e shell be able to aoke f find f » zero by taking p end q

ao that pq+X(p+q.)+/^=0 and pn + X(p+' )+><-0, i. •

pq/(y-Aj«)= (p+q)/|u-^) =1/(X-A) =

-
, ,

°"q
. I No* |M^)

2
-4(X-X) fy*$J =

5 ^+>u'-2XX) 2
-4Ju-,£ >'-X) =K2 , aay. So

p+q = fyu-yu)/(\-\) and p-q=K/(X-X), rtteBM p and q

•re found, B

Ae en example, take Q = (x2-l)[x2-( c+f )x+cf . Here

\=0 9j/JL=-l, Xs -{c+f )/2,/tscf. ^hon p+H= 2(l+cf ) (1)
TcTTT

/lso p-q = -2 Ttl+cr) g-(c+f) . (li)
c+f

Add (1) end (11) to get

»-V(— 2
<—p s ( i+cf)-yq+-cf) -(c+f)

c+?

Subtract (li) from (I)
to net

= ('+cf)+V(l+cf)* -(c+fF .

c+f

Then Q becomes, by the substitution x= (p+r y)/(l+y), whore
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p and q ere es ebove,

*• - -f^-1 )y^P2-J [ {

o

s
-n ( cff Hcf)A p

j -p( c+f )+cf]
(1 7) 4

= Uy%B) (Cy^fT.) 5 (IU /(l+y)
4

» where A, B, 0, end D
(l+y) 4

ere es in the identity pbove*

reduction of Ix dx • Reduce this integral by the

./ Hx

x =(p-K?y)/(l+y) given in the preceding peregreph, where

F2=Q. Then dx=( q-p)dy end ?x= R /(1+y) 2
. Hence

= q
2(M) flzgj^7^1iay-2q(n-p)

S
f( li.yMy +(q.prY dv

*/ <y+D% JAm% Jo^f-

y s y u+y)Ry j n*l

e/xfdx defends upon /dy » /* dyy— y- yri?

(i+jl 1

/
dy • These three forms will now be reduced.

T
ctlon of

y u4T8 pt
*

<{JX-} s (l-*-y ) [^y(Cy2-H»+2C7(Ay%B)] -2F
2 dy

P+yTl 2Fy(l+y)*

= /C(y
2
-l)(y+l) + UP+BC+2/C)(y+l).-U+B) (0»r) dy , or

yi+y)"

P /•

-L=*c/ (y
2-l)dy + Ur+BC+2/.C) f dy -U+B) (fl+T -/dy .ro ./ % Jd+y)Rv jmST"
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Then / dy depends upon / y dy , /dy, / dy

end F_/(l+y), therefore /xj^dx depends upon / y"dy ,r j"TT" J '>>

/
dy , end / dv .

Kecuction of / y dy . This integral is Identl-

eelly euirl to /• 2 . _ v *
In theI /Wfo)dy ,

-« /dy, .
A ./yUy^BHCy^+P) V T?T

/ ?
firs* integrel in the dexter let y=yP(t -1) to get

t dt. 1 (1)

If AD-BC>r, the Integral (1) Is 1>£!>® jF dt.

1 /l~

where k2r fl.+k
2t

2
dt let t=(l-z2 )

+1^
^=se— / Ti-tg

It becomes H-dtk2 )*1/2] f k-k2z"/{l+k ) dz, 0<k /(l+k
r
;<l,

the strndrrd elliptic integral of the second kind. Tske

the other form of the ehove integrr '

, u mely

ff
/l-k't 1

('t. It is in stcr form If k2 < 1. If k2>l,
1-t",

let t = z/k to get

e At- (i- z^2)d/M>^(if7
J l/il-z")(l-z") - Jtjgt

dz

/(l-rlll-z') ~ £± l V( 1-
*''*)( 1- **A* >

These ere stenderd elliptic integrels of the second end

first kinds, res ectlvely, where l/k *\1.
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Now return to (1) on peg© 16, If BC-AD^O, (1) is of the

form

At , whor© k =|BC-/D) 1/2 f HT^2 AD
bI^Td

«jt, teko / /l-kgt
2

r>t • Lot t^l-z2
)

1 ' 2 to got
Jlt^l

- /I l-lC+k2z2 dz . If k2 >l, this la a form trostod.

Ji—tt.—
above. If k2-l<0, the integral Is of the form

2 2
dz , the other possible forr of the-(1-k2 )

1/2 /T^ki

last Integral. Here k| =k2/(l-k' :

) > 0. Rearrange fchia

last form as Al-kfz2 )dz = fl+k
2

) /* dz

^/(z2
-l)(l+kfz*) / /(z2-l)(l*-kfz2 )

+ k
2 Mz2-l)dz By lett-ng z = llAfc) (^-l)

1/2

yVU^-lMl+Hj/*)

1 /7l'KlA?)-( <*
>gAf) d4 , which

/» dz

yV(ze-l)(l-rkjV
2

)

let z = l/(l-t
2

)

VZ
to get (l+kf)"

1/2 f dt ,

^(l-t2
)(l-kft

2
)

wh re kg xd+kj)"1 { 1. ^ho lrst 3 s In Han first

form. This completes the r- r^izatlon of

transform the lpst to k

Is a form treated above. inally, in /• dj

1/2

/*& ay-
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deduction of / dy . R
2 wen tho not&tion for

I%- 4
(Ay^BJtCy^+D). By the ml method of di-v out the

conntentf from the radical end reeking s I at tion

y = ax, ^e n Is 8 Judiciously cho?< n conrtent, the

ebove i^tegrel is reduced to one of the fol 1 © lng for

defending on the ?igns of . , c, sr- | .

r dx f dx
U)

Jl/U-x
2 )(l-k2x-)

' (2) y^x2 )(l-k
:

'xi

M-i+x2 }(i-k-x2 ) Ji i-i-x
2m-*?x2

)

r dx , (6) /* dx

Jia-x^il+k'tx*) Jll(l+x2 ){Vr&x'd )

r & , ( i /•

/»{-l+xs )(l+>2x2 ) J V(»l*aTHl+kV)
2,

(1) is in atondnrd first form if ) (l. If no^, the

substitution x = z/k *H1 rtcndrrdize it,

i-or (2), the substitution x s (l/k) <l-z
2

) will

reduce it to (1),

In (») tho substitution x =(!-**) will yield (1)

o
or (7), depending on the size of k f

.

The restitution xsfz2-!) 1/2 changes (4) to (1).

(5) Is reduced to (2) by letting x-z/k.
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In (6) the substitution x = z(l-e2r 2 will yield

2
(1) or (5), depending on the value of k%

Q -1 /P
(7) is reduced to (1) by letting x =(l-z°) ' •

In (8) let x^iz2-!) 1' 2 to get (5) or (3), depending

q
on the value of k •

action of / dy •

This mey be rewritten as /* y dy . f dy •

/ (y
2-l)J y /(y -l)F

y
The lrst integral In the dexter may be chanced to one of

the following formn, defending on the vJ , , C,

and Bip by dividing constants out of the radical end by

•king a Judicious substitution y=rn'x,

{1 ) f j

d* f ^
/ ( 1+nx2 ) V( 1-x'^ ) ( 1-k'^x* ) (2)J il+nx2 ) V(l+x2 ) (l-k

2
x*)

f dx ,(4) r dx
( 3

}

7 ( l+nx* ) tt -1+x^ ) ( l-kaxK ) y (1+nx2 ) V(-l-x~) (l-k^x*)
'

) /" dx ,(6) r dx ,

J (l+nx2 )^l-x2 )(l+k2x2 ) y { H-nx2 ) /l+x2 ) ( 1+kV

)

r ^ ,( ) r ^x

^
( 1+nx

2
) i( -1+x2 ) ( l+k2x2 ) J ( 1+nx2 ) tf-l-x

2
) ( 1+

k

2x2 )

(1) is a standard third form if k'"^»l. If nrt, the

substitution x-z/k will stMtordiM it.

(2) becomes (1) by le?tt lng x = (l-z
:

)

1^2
.—^

(5

(7)



so

In (3) use x^CL-z2 )
1/2 to vield (1) or (7), donen-

ding on the vrlue of k2 #

_,„2 ,^/2
(4) Is chenged to (1) by letting x=(z'-l)

(5) Is reduced to (2) by letting x= z/k.

In (6) let xri/d-B2 )

1 '2
to reduce to

/
(l-z2 )dz = -1 /*(l-»mz2 )dz

:± r

The first in

;
*
2

>

+ (l+n1 )/n1 f dz

J (l+n^2
) V(l-z2 ) (l±k2 i

the f'oxter of the 1< entity is sn elliptic integral of the

tyoe treated In the reduction of /djr nbove« ^he second

in the dexter Is of form (1) or (5) ip.bove, denuding on

the signs In the rudicrl,

(7) is reduced to the first p I for* in (6) sbove

(or form that mey be hrn^led slm5:' | by 'he substi-

tution x rd-z2 )"1/2
.

In (8) use x=(z2-l) '* to reduce to (5) or (3),

depending on tho velue of k
2
.

ductlon of f ydy Let y
2 =l/t+l to got

J lyz-l)F
y

Z± f
<** . This is

J #*(i+ s) tj[ c+(i+r)tj

form Mox^bx+c)"*1' 2**, Is of verging forms

en elementsry
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2
This completes the redaction of the intcprrl /xdx

according to the signs of the constents.

lntcprrl h
J

Psduction of /xc'x • 3t the substitution

encountered on orge 15»

/• Rx

x =(p+qy) / (1+y), where p snd o ere as on page 14, ths

lntegrel /_ xdx becomes

y/(x^i)(x-c)(x.f)

-n) / (ptny)dy = o(n-rt) / dy -f «{ -n) / ydy
JVTi- J (i+y}ny yil+y:

= -(p-n) r dy + o(a-n) /dy . Both of these heve
yTl+y)Hy y *

y
been reduced In the preceding discussion.

reduction of fax . The substitution xsl/ytl

yields - / dy . How lot

^V(l+2y)[lt( J[l+C

y+l/2 =z2 to get
-(2)

which wes treated on osge 17.

*ffi(l+cWl-c)s^[(ljf)+(l-f)s^|~

/•

This completes the reduction of the volume lntegrrl

V(e 2-y2 } [b2-(y-L) 2
J dy to strndsrd forms, which

consist of the three types of elliptic Integrals, severrl

elexner. integrals, end vrrlous algebraic expression .
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SUKKARY

The expression for the Intercepted volume formed by

the rrndoni, In^ernrl Intersection of two unequrl, right,

circ lrr cylinders Involves, finong other functions, the

three kinds of elliptic Integr;-Is. Tf tho intersection

Is mrde centrrl, the elliptic lntegrel of the third kind

de en.?rpter. irtl , If the rrdli of tho cylinders

ere mrde e nrl, the elliptic integrrls of the first vnd

second kinds degenorete. Flnelly, If the exea of the cy-

linders Intersect I ly, the trigonometric fector be-

comes unity, lesving a simple tJc expression.
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