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Performance of a Link in a Field of Vehicular
Interferers with Hardcore Headway Distance

Konstantinos Koufos and Carl P. Dettmann

Abstract—The Poisson point process (PPP) is not always a
realistic model for the locations of vehicles along a road, because
it does not account for the safety distance a driver maintains
from the vehicle ahead. In this paper, we model the inter-
vehicle distance equal to the sum of a constant hardcore distance
and a random distance following the exponential distribution.
Unfortunately, the probability generating functional of t his point
process is unknown. To approximate the Laplace transform
of interference at the origin, we devise simple approximations
for the variance and skewness of interference, and we select
suitable probability functions to model the interference distri-
bution. When the coefficient-of-variation and the skewnessof
interference distribution are high, the PPP (of equal intensity)
approximation of the outage probability becomes loose in the
upper tail. Relevant scenarios are associated with urban micro-
cells and highway macrocells with a low density of vehicles.The
predictions of PPP deteriorate with a multi-antenna maximum
ratio combining receiver and temporal indicators related to the
performance of retransmission schemes. Our approximations
generate good predictions in all considered cases.

Index Terms—Headway distance models, method of moments,
probability generating functional, stochastic geometry.

I. I NTRODUCTION

Inter-vehicle communication, e.g., dedicated short-range
transmission IEEE 802.11p, and/or connected vehicles to road-
side units, e.g., LTE-based vehicular-to-infrastructure(V2I)
communication, will be critical for the coordination of road
traffic, automated driving, and improved safety in emerging
vehicular networks [1]. To analyze the performance of vehic-
ular networks, we need tractable but also realistic models for
the locations of vehicles. The theory of point processes deals
with random spatial patterns and can provide us with a general
modeling framework [2].

With the advent of wireless communication networks with
irregular structure [3], elements from the theory of point
processes have been employed to study their performance [4].
The simplest model is a Poisson point process (PPP) of some
(potentially variable) intensity embedded in a mathematical
space [5]. The PPP is characterized by complete randomness;
the location of a point does not impose any constraints on the
realization of the rest of the process. Due to the lack of inter-
point interaction, the probability generating functional(PGFL)
is tractable [6, Theorem 4.9], allowing us to calculate the prob-
abilistic impact of suitable functions, e.g. an interference field,
on the typical point. Because of that, the PPP has been widely-
adopted for performance evaluation, under interference, of
heterogeneous wireless communication networks [7]–[9].
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Despite its wide acceptance, the PPP has also received
some criticism because it does not capture the repulsion
between network elements due to physical constraints and
medium access control (MAC) mechanisms. This has sparked
network modeling using many other point processes which,
however, are not tailored to vehicular networks. For instance,
stationary determinantal point processes fit better than PPP the
Ripley’s K-function of macro-base station datasets [10]. The
PGFL for the Ginibre and Gauss processes can be evaluated
numerically [10]–[12]. The repulsion induced by collision
avoidance MAC is better captured by Matérn than softcore
point processes [13], [14]. The locations of users in wireless
networks may also exhibit clustering due to non-uniform
population density, and the PGFL for some of the Poisson
cluster processes is tractable, see [2, example 6.3(a)] and[15]
for the PGFL of the Neyman-Scott process.

A spatial model suitable for vehicular networks should be
broken down into a model for the road infrastructure and
another for the distribution of vehicles along each road. The
Manhattan Poisson line process can model a regular layout
of streets, while the Poisson line process is suitable for
roads with random orientations. These processes have been
coupled with homogeneous one-dimensional (1D) PPPs for
the distribution of vehicles along each line [16], [17]. The
Laplace transform (LT) of interference for the line containing
the typical receiver is calculated using the PGFL of PPP.
The contribution of interference from other lines requirestheir
distance distribution to the typical receiver [16]. Alternatively,
one can map every line to the line containing the typical
receiver with a non-uniform density of vehicles [18]. The PPP
has also been used in 1D vehicular system setups for higher
layer performance evaluation [19]. Non-homogeneous PPPs
have been used to model the impact of mobility on temporal
statistics of interference over finite regions [20], [21].

Unfortunately, the distribution of vehicles along a road with
a few numbers of lanes, e.g., bidirectional traffic streams
with restricted overtaking, will not resemble a PPP. The
PPP allows unrealistically small headways with non-negligible
probability [22] while in practice, the follower maintainsa
safety distance depending on its speed and reaction time plus
the length of the vehicle ahead [23], [24]. The distributionof
headways naturally depends on traffic status. Measurements
have revealed that the log-normal distribution is a good model
under free-flow traffic, while the log-logistic distribution is
adequate under congestion [25]. These distributions have been
used to study the lifetime of inter-vehicle links [26], however,
without considering interference.

In this paper, we would like to identify whether the PPP for
the locations of interfering vehicles adequately describes the
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performance of a link at the origin (not part of the point pro-
cess generating the interference) and under which conditions.
The simplest model that contains the PPP as a special case,
but can also be tuned to avoid small headways, consists of a
constant hardcore distance plus a random component modeled
by an exponential random variable (RV) [27]. The inter-vehicle
distance distribution becomes shifted-exponential, and the PPP
is obtained by setting the shiftc equal to zero. In [22, Fig. 8,
Fig. 9], we illustrated that the shifted-exponential distribution
gives a good fit to real motorway traces, while the PPP
is a poor model near the origin (small headways). In [28]
we compared the variance and skewness of interference for
the two models assuming equal intensityλ. We devised a
simple formula that approximates the variance due to the
shifted-exponential model being equal to the variance due
to the PPP multiplied by a factor that depends onλ and c.
Unfortunately, we could not relate the outage probabilities of
the two models. Besides, the link performance over time, e.g.,
the mean local delay, and the outage probability with multi-
antenna receivers require the temporal and spatial correlation
properties of interference, which are different under the two
deployment models.

The common methodology to assess the average outage
probability uses the PGFL of the point process generating the
interference. With a positive hardcore, the locations of vehicles
become correlated, and we could not figure out how to use the
PGFL of PPP as a building block for the calculation of the
LT of interference. Looking at the complications associated
with the computation of the second and third moments of
interference [28], it does not seem promising to calculate
higher-order terms in the series expansion of PGFL [29]. The
kernels in factorial moment representation of the PGFL are
simple only for the PPP [30]. It has been recently shown that
the outage probability in stationary wireless cellular networks
can be well-approximated by horizontally shifting the outage
probability due to a PPP [31]. This is not applicable in our
system setup because the point process does not impact the
distribution of link gain but only the distribution of inter-
ference level. To assess the outage probability, we can also
calculate a few moments of interference and select suitable
distributions, with simple LT, to approximate it. The method
of moments has been widely used for modeling the signal-
to-noise ratio in composite fading channels [32], [33] and the
aggregate interference in spectrum sensing [34], [35].

In [28], we have shown that the coefficient-of-variation
(CoV) of the interference level distribution (at the origin)
is lower for the hardcore process [28]. Complementing [28],
we will generate a simple approximation for the skewness
of interference too. Its sign would be crucial in selecting
appropriate interference distribution models. These approxi-
mations would also allow us to deduce the traffic conditions
where the PPP fails to well-approximate the CoV and the
skewness of interference due to the hardcore process. Under
these conditions, the PPP will not accurately describe the
interference distribution and the outage probability. To study
the efficacy of PPP with temporal and spatial performance
metrics, we will respectively use the mean local delay and the
outage probability of dual-branch maximum ratio combining

(MRC) receiver. The contributions of this paper are:

• We approximate the distance distribution between the near-
est interferer and the origin for a point process with hardcore
distancec and intensityλ. Its complexity rules out the
possibility to calculate the signal level distribution forthek-
th nearest interferer, and convert it to aggregate interference
level by summing over allk→∞.

• We show that forλc≪ 1, the skewness of interference is
approximately equal to that due to a PPP of intensityλ

scaled by
(

1− λc
2

)

. Overall, a hardcore distance makes the
distribution of interference more concentrated around the
mean [28], and also less skewed.

• The skewness and the CoV of interference increase for
smaller cell sizes and lower intensity of vehicles. In these
scenarios, the outage probability predicted using the PPP
is a poor approximation to the outage probability due to
the hardcore process. On the other hand, the shifted-gamma
distribution for the interference with parameters selected
using the method of moments fits well the simulations.

• Introducing hardcore distance reduces the spatial correlation
of interference at the two branches of a MRC receiver. Un-
der independent and identically distributed (i.i.d.) Rayleigh
fading channels, the Pearson correlation coefficient scales
down approximately by(1−λc). A bivariate gamma ap-
proximation for the interference distribution with identical
and correlated marginals gives a good fit to the outage
probability.

The summary of the paper follows. In Section II, we present
the system model. In Section III, we derive the distance distri-
bution to the nearest interferer. In Section IV, we approximate
the skewness of interference, and we select suitable probability
distribution functions (PDFs) for the distribution of interfer-
ence. In Section V, we illustrate that the approximations fit
well the simulations, while the approximations using the PPP
may not be tight. In Section VI, we test the validity of the
approximations using the mean local delay and a dual-antenna
MRC receiver. In Section VII, we conclude.

II. SYSTEM MODEL

We consider 1D point process of vehiclesΦ, where the inter-
vehicle distance follows the shifted-exponential PDF. Theshift
is denoted byc>0, and the rate byµ>0. The intensityλ of
vehicles can be calculated fromλ−1= c+ µ−1, or λ= µ

1+µc .
This model has been proposed by Cowan [27], and due to
the positive shiftc, it can avoid small inter-vehicle distances.
The penalty paid is the correlations introduced in the locations
of vehicles. The correlation properties have been studied in
statistical mechanics, where the vehicles are the particles of
1D hardcore fluid, and the shift is equal to the diameter of the
rigid disk modeling the particle [36]. The probability to find
two particles atx andy>x is [36, equation (32)]:

ρ
(2)
k (y, x)=

{

λ
k
∑

j=1

µj(y−x−jc)j−1

Γ(j)eµ(y−x−jc) , y∈(x+kc, x+(k+1)c)

0, otherwise,
(1)

wherek≥1, Γ(j)=(j−1)! andρ(2)(y, x)=
∑∞

k=1 ρ
(2)
k (y, x).
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Fig. 1. The vehicles outside of the cell (red disks) generateinterference at
the receiver (black cross) located at the origin. The rest (blue disks) do not
generate interference. A transmitter (black square) is paired with the receiver.

The higher-order correlation functions are naturally more
complicated. For a stationary determinantal point process, the
n-th order correlation can be upper-bounded by the normalized
(n−1)-th product of pair correlation functions (PCFs) using
Fan’s inequality [30, Lemma 4]. Fortunately, in 1D deploy-
ment, the inequality is tight [36, equation (27)]. For instance,
the third-order intensity measure describing the probability to
find a triple of distinct vehicles atx, y andz, is

ρ(3)(x, y, z) =
1

λ
ρ(2)(x, y) ρ(2)(y, z) , x<y<z. (2)

We place a receiver at the origin. The receiver and its
associated transmitter are not part of the point process gener-
ating interference. The distance-based useful signal level Pr

is fixed and known. Only the vehicles outside a guard zone
[−r0, r0] contribute to interference, see Fig. 1. For instance,
in a V2I communication, the vehicles inside the guard zone
might be paired with the receiver (road side unit or traffic
controller near an intersection), while the rest of the vehicles
interfere with it. Furthermore, in a primary-secondary spec-
trum sharing scenario, the transmitter-receiver link might be a
wireless backhaul using same spectral resources with vehicles
communicating in ad hoc mode. The vehicles inside the guard
zone are forced to stop their transmissions. Finally, calculating
the interference at the origin with a guard zone around it would
be useful in the modeling of other-lane interference due to
beamforming transmissions [22, Fig. 13].

The transmit power level is normalized to unity. The prop-
agation pathloss exponent is denoted byη> 1. The distance-
based pathloss for an interferer located atr is g(r) = |r|

−η

for |r|>r0, and zero elsewhere. The fading power level over
the interfering links,h, and over the transmitter-receiver link,
ht, is exponential (Rayleigh distribution for the fading am-
plitudes) with unit mean. Measurements have shown that the
narrowband small scale fading in inter-vehicle communication
resembles Rayleigh for distance separation in the order of
50 − 100 m or more [37, Table III and IV]. The fading is
i.i.d. over different links and time slots. The interferersand the
transmitter are active in each time slot, and they are equipped
with single omni-directional antennas. When multiple antennas
are employed at the receiver, they are separated at least by half
the wavelength and their fading samples are i.i.d. The distance-
based pathlosses to the two antennas are assumed equal.

III. D ISTANCE DISTRIBUTIONS

The statistics of interference at the origin are closely related
to the statistics of the distance to the interferers. Let us
denote byX1 the RV describing the distance to the nearest

interferer. For the PPP, due to the independence property,
it suffices to calculate the distance distribution without the
guard zone and shift it byr0. The contact distribution for
a 1D PPP is exponential with parameter twice the intensity,
fX1(x)=2λe−2λ(x−r0), x≥ r0. It is straightforward to verify
that the CoV and the skewness ofX1 for the PPP are equal
to 1

1+2λr0
and two respectively.

For the hardcore process, the distribution ofX1 follows
easily, if we ignore the guard zone. Forx ≤ c

2 , the point
process rules out any other interferer closer thanx to the
origin. The nearest interferer is located uniformly in

[

− c
2 ,

c
2

]

.
The probability to find a vehicle within an infinitesimaldx
is λdx. As a result, the distance distribution is uniform in
[

0, c
2

]

, and the probability to observe any distance of this
range is2λdx. ThereforeP

(

X1≤
c
2

)

= λc. For x ≥ c
2 , no

other interferer must be located within a distance(2x−c),
thus P

(

X1≥x|x≥ c
2

)

= e−µ(2x−c). After deconditioning,
P(X1≥x)=(1−λc) e−µ(2x−c), x≥ c

2 . Finally, the cumulative
distribution function (CDF) for the RVX1 becomes

P(X1≤x) =
{ 2λx, x∈

[

0, c
2

)

1−(1−λc) e−µ(2x−c), x≥ c
2 .

The guard zone raises the complexity of calculating the
distribution ofX1 because the locations of vehicles from the
two sides of the guard zone are correlated. However, in a
practical system setup, this correlation should be weak. In
order to give a relevant approximation, we note that a high
value for the dimensionless ratioµλ = 1

1−λc = (1+µc) ≫ 1
indicates that the PCF decorrelates slowly. The point process
decorrelates within a distance2r0c , if 2r0

c ≫ µ
λ =(1+µc)≈µc,

or equivalently,µ≪ 2r0
c2 . If this condition is true, we introduce

minor error by treating as i.i.d. the distances of the nearest
interferer from opposite sides of the guard zone.

Let us denote byXp
1 the RV describing the distance

of the nearest interferer from the positive half-axis. For
x ∈ (r0, r0+c), X

p
1 follows the uniform distribution. For

x≥r0+c, no other interferer must be located closer to the cell
border,P

(

X
p
1≥x|x≥r0+c

)

= e−µ(x−r0−c), or P
(

X
p
1≥x

)

=
(1−λc) e−µ(x−r0−c), x≥r0+c after deconditioning. Finally,

P
(

X
p
1≤x

)

=
{

λ (x−r0) , x∈ [r0, r0+c)

1−(1−λc) e−µ(x−r0−c), x≥r0+c.

The approximation for the CDF ofX1 follows from the
distribution of the minimum of two i.i.d. RVsXp

1.

P(X1≤x)≈

{

1−(1− λ (x−r0))
2
, x∈ [r0, r0+c)

1−(1−λc)
2
e−2µ(x−r0−c), x≥r0+c.

(3)

The above approximation overlaps with the simulations even
if the mean inter-vehicle distance,λ−1 = 40 m, becomes
comparable to the guard zone,r0 = 100 m, see Fig. 2a.
This is because forλc= 0.4, the PCF converges toλ2 after
approximately4c, see [28, Fig. 3], which is equal to64 m,
roughly one-third of the guard zone length. Even for the
unrealistically high value of the productλc=0.7, along with
a large hardcorec=70m, the error is negligible.
Differentiating (3), the approximation for the PDF becomes

fX1(x) ≈
{ 2λ (1− λ (x−r0)) , x∈ [r0, r0+c)

2λ (1−λc) e−2µ(x−r0−c), x≥r0+c.
(4)
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Fig. 2. (a) The CDF of the distance between the nearest interferer and the origin. The approximation in (3) is verified against the simulations forλc=0.4,
λc=0.7 andr0=100 m. (b) Simulated CDF of the distance between thek−th nearest interferer and the origin for a PPP of intensityλ=0.1 (blue lines) and
for a hardcore process withλ=0.1m−1 andc=4m (black lines). Guard zoner0=100 m. In the inset, the associated PDFs are depicted fork∈{1, 3, 5}.

It is possible to verify that the CoV and the skewness
of (4) are less than 1

1+2λr0
and two respectively, the values

associated with a PPP of equal intensity. In Fig. 2b we
have simulated the distance distribution for thek−th nearest
interferer,k≤5, which follows the same trend as that proved
for k = 1: The distributions of the hardcore process have
lower CoV and skewness as compared to those of PPP. This
complies with the intuition that a hardcore makes the point
process less random. Based on this, we may conjecture that
the distribution of interference due to the hardcore process will
be more concentrated around the mean and also less skewed
as compared to that due to a PPP of equal intensity.

IV. I NTERFERENCE DISTRIBUTION

Using Campbell’s Theorem, we can calculate the mean
interference at the origin due to a stationary point pro-
cesss of intensityλ within (−∞,−r0)∪ (r0,∞): E{I} =

2λ
∫∞
r0

x−ηdx=
2λr1−η

0

η−1 . The details for the approximation of
the second moment can be found in [28, Section V]. Over
there we have approximated the PCF with that due to a PPP
for large distance separation,ρ(2)(x, y)≈λ2, |y−x|>3c, and
used the exact PCF for smaller distances. This approximation
should be valid forλc≪1 [28, Fig. 3]. The hardcore process
is less random than the PPP, and the variance of inteference
reduces to [28, equation (14)]:

V{I} ≈
4λr1−2η

0

2η−1

(

1−λc+
1

2
λ2c2

)

, (5)

where the term in front of the parenthesis is the variance due
to a PPP of intensityλ.

Some preliminary calculations of the third moment are
available in [28, Section IV]. Next, we derive a simple ap-
proximation relating it to that due to a PPP of equal intensity.

Lemma 1. The skewness of interference from a hardcore
process of intensityλ and hardcore distancec can be approx-
imated by the skewness due to a PPP of intensityλ, scaled by
(

1− λc
2

)

. The approximation is valid forλc→0 and c
r0
→0.

S{I} ≈
12λr1−3η

0

3η−1

(

4λr1−2η
0

2η−1

)− 3
2 (

1−
λc

2

)

.

Proof. The proof can be found in the appendix of the extended
version, available in [48] (optional reading).

Few properties can be drawn from Lemma 1: (i) Introducing
hardcore distance while keeping the intensity of interferers
fixed reduces the skewness but the interference distribution
remains positively-skewed. (ii) The skewness of interference
due to a PPP increases for increasing pathloss exponentη and
decreasing cell sizer0. Introducing hardcore distance for fixed
λ does not change this property. (iii) Increasing the intensity
λ reduces the skewness of interference for fixedc.

The above properties can be observed in Fig. 3, where we
have simulated the skewness for different cell sizer0, pathloss
exponentη and traffic parametersλ, c. We see that for the
considered range ofλc, the approximations for the second-
and the third-order correlation,ρ(2)(x, y) , ρ(3)(x, y, z) do not
introduce practically any error as compared to the simulations.
In addition, the approximation given in Lemma 1 is quite
accurate for smallλc. While changing from the microcell to
macrocell scenario, we have the interplay of two conflicting
factors: On one hand, the intensity of vehicles decreases to
account for the higher speed of vehicles, and this increases
the skewness. On the other hand, the cell size increases which
reduces the skewness. According to Lemma 1, the skewness
is proportional to 1√

λr0
. For the selected parameter values of

Fig. 3 the skewness is smaller for the macrocells.
For a bounded pathloss model, the interference distribution

strongly depends on the fading process [38]. In our system
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Fig. 3. Skewness with respect toλc for urban microcells,r0 = 100 m,
and motorway macrocells,r0 = 1 km. In macrocells, we expect higher
speeds, thereby lower intensityλ and larger tracking distancesc. For the
PCF approximations we usedρ(2)(x, y) ≈ λ2, |y−x| > 2c. The linear
approximation refers to the result in Lemma 1.

setup we note: (i) the positive skewness of interference, and
(ii) the guard zone around the receiver (which essentially
bounds the pathloss model) along with the exponential PDF
for the fading. The gamma PDF has a positive skewness,
and it includes the exponential PDF as a special case. The
parametersk, β, fI(x) ≈ xk−1e−x/β

Γ(k)βk , can be computed by
matching the mean and the variance approximation in (5),
resulting tok = E{I}2

V{I} and β = E{I}
k . The skewness of the

gamma distribution is2√
k
. For practical values of the pathloss

exponentη∈ [2, 6] and realistic traffic parametersλc< 1
2 [22,

Fig. 8, Fig. 9], one can verify that the skewness,2√
k

, is less
than the approximation given in Lemma 1. The shifted-gamma
PDF, which matches also the skewness of interference, is
expected to provide better fit than the gamma PDF.

fI(x) ≈
(x−ǫ)

k−1
e−(x−ǫ)/β

Γ (k)βk
, x≥ǫ,

wherek= 4
S{I}2 , β=

√

V{I}
k and shiftǫ=E{I}−kβ.

The approximation accuracy of the gamma and the shifted-
gamma PDFs is illustrated in Fig. 4 for two intensitiesλ,
andλc=0.4. The simulated standard deviation and skewness,
along with their approximations, are included in Table I. We
see in the table that: (i) the variance approximation in (5) is
quite accurate, (ii) Lemma 1 estimates the skewness better
than the gamma distribution,2√

k
, and (iii) the PPP has higher

variance and skewness than the hardcore process, justifying
the approximations in (5) and Lemma 1. In both cases, the
PPP estimates the skewness (in an absolute sense) better than
Lemma 1 because the values ofλc and c

r0
are not close

to zero where Lemma 1 holds. Nevertheless, the PPP gives
much worse estimates for the standard deviation (see Table I)
and the interference distribution (see Fig. 4) than the gamma
approximation. For fixedλc, the skewness and the CoV are
both proportional to 1√

λ
. We see in Fig. 4 that for higher

intensity of vehicles,λ = 0.1, the interference distribution

TABLE I
STANDARD DEVIATION AND SKEWNESS OF INTERFERENCE FOR A

HARDCORE PROCESS WITHλc=0.4 OBTAINED BY SIMULATIONS , AND

ESTIMATED USING (5) AND LEMMA 1.

sim. gamma shifted-gamma PPP
st. dev,λ = 0.1m−1 0.0024 0.0023 0.0023 0.0028
skewn.,λ = 0.1m−1 0.60 0.46 0.53 0.66
st. dev,λ = 0.025m−1 0.0012 0.0012 0.0012 0.0014
skewn.,λ = 0.025m−1 1.27 0.93 1.06 1.32

becomes more concentrated and less skewed, and the gamma
approximation provides a very good fit. For lower intensity of
vehicles,λ=0.025, the skewness and the CoV of interference
increase, and three moments clearly provide a better fit than
two. Also, note that the poor fit of the PPP model near origin
will translate to a poor fit in the upper tail of the signal-to-
interference ratio (SIR) CDF, which is associated with the
outage probability of high rate transmissions.

V. PROBABILITY OF OUTAGE

Under Rayleigh fading the probability of outage at operation
thresholdθ, Pout(θ) = P(SIR≤θ), can be written in terms
of the LT of the interference distribution. Even though the
interference PDF is unknown, its LT could be computed
provided that the PGFL of the hardcore process was available.
Unfortunately, this is not the case. In addition, the bounds
of [39, Theorem 2.1] using the first-order expansion of the
PGFL and the conditional Papangelou intensity1 are tight
only in the lower tail of the outage probability. In order to
appoximate the outage probability, we may use the PPP of
intensityλ as an approximation to the hardcore process.

Pppp
out (θ)

(a)
= 1−EΦ

{

∏

xk∈Φ

1

1+s x
−η
k

}

(b)
= 1−e

−2λ
∫

∞

r0

(

1− 1

1+sx−η

)

dx
,

(6)

where s = θ
Pr

, (a) follows from exponentially i.i.d. fading
channels,(b) from the PGFL of PPP, and the integral in
the exponent can be expressed in terms of the2F1 Gaussian
hypergeometric function [40, p. 556].

An upper bound to the outage probability can also be
obtained as follows:

Pout(θ) = 1− EΦ

{

e
−∑

xk∈Φ log(1+sx−η
k )
}

(a)

≤ 1− exp
(

−EΦ

{

∑

xk∈Φ
log
(

1+sx
−η
k

)

})

(b)
= 1− exp

(

−2λ

∫ ∞

r0

log
(

1+sx−η
)

dx

)

=PJen
out(θ) ,

where (a) is due to Jensen’s inequality,(b) follows from
Campbell’s theorem and the integral in the exponent can be
expressed in terms of the2F1 function.

Finally, the gamma approximations for the PDF of interfer-
ence studied in the previous section have simple LTs, and they

1Without presenting the calculation details, the upper bound to the PGFL
(lower bound to the outage probability) follows by setting the local stability
constraint in [39, equation (2.8)] equal toc∗=µeµc.
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lower tracking distance can be associated with driving at lower speeds. A PPP with equal intensity is also simulated.107 trials per simulation curve.
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Fig. 5. Simulated probability of outage for the hardcore point process along with the upper-bound, PJen
out(θ), the PPP approximation Pppp

out (θ), and the
approximations, Pgout(θ) and Psg

out(θ) in (7). 105 simulations per curve. Pathloss exponentsη = 4, signal levelPr = 8 × 10−7W for r0 = 50 m and
Pr=10−8W for r0=250 m. The gamma approximations fit very well the simulations in the lower tail too, see also Fig 7.

can be used to generate simple approximations for the outage
probability.

Pout(θ) ≈ 1− (1 + sβ)−k = Pg
out(θ) ,

Pout(θ) ≈ 1− e−sǫ (1 + sβ)−k = Psg
out(θ) .

(7)

We see in Fig. 5 that the PPP and the Jensen inequality
are tight in the body of the SIR CDF, but they start to fail
in the upper tail. The error is more prominent in microcells
and macrocells with a low intensity of vehicles. Recall from
Section IV that smaller cell sizesr0 and lower intensitiesλ are
associated with higher CoV and skewness for the interference
distribution. According to (5) and Lemma 1, for a fixedλc,
the absolute prediction error of PPP increases for lowerλ, r0,
and subsequently, the induced errors for the interference dis-

tribution and the outage probability become higher. We claim
that the PPP cannot always describe accurately the outage
probability of a link in a field of interferers with hardcore
headway distance. We will illustrate next that for temporal
performance metrics and multiple antennas at the receiver the
PPP accuracy worsens, while the gamma approximations can
be used to generate good performance predictions in all cases.

VI. A PPLICATIONS

The two deployment models (hardcore vs. PPP) induce
different interference correlation over time and space. Wewill
use the mean local delay to describe the temporal performance
of the link, and a dual-branch MRC receiver for the spatial
performance. For notational brevity, we will use the gamma
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approximation for the distribution of interference, unless oth-
erwise stated.

A. Temporal performance

The mean local delay is defined as the average num-
ber of transmissions required for successful reception. For
mobility models introducing correlations in the locationsof
interferers over time, it is challenging to calculate it. For T

consecutive transmissions, the jointT−th dimensional PDF
of interference, with correlated marginals, would be needed.
Alternatively, we may get some insight by investigating the
properties of delay under (i) i.i.d. locations, and (ii) static
interferers over time [9]. The performance is associated with
scenarios characterized by very high and very low mobility of
interferers respectively.

For i.i.d. locations, the mean delay is equal to the inverse of
the probability of successful reception. For the PPP, one may
take the complementary of the last line of (6) and invert it. For
the hardcore process, the mean delay would be approximated
by (1+sβ)k, see (7).

In order to calculate the mean delay with static interferers,
one has to invert the probability of successful reception condi-
tioned on the realization of interferers, then average overtheir
locations [9]. The mean delay with Poisson interferers accepts
an elegant form for continuous transmissions,E{D}=esE{I},
which follows from substitutingp=1, q=0 in [9, Lemma 2].
In order to overcome the lack of the PGFL for the hardcore
process, we use an alternative expression for the mean delay,
E{D}=

∑∞
T=1Pout(T ) [41, Section V-B], where Pout(T ) is the

joint outage probability overT consecutive time slots.

Pout(T ) =P(SIR1≤θ, SIR2≤θ, . . . , SIRT ≤θ)
=E

{(

1−e−sI1
) (

1−e−sI2
)

. . .
(

1−e−sIT
)}

=

T
∑

t=0

(−1)
t
CT

t E

{

e−s
∑t

j=1 Ij

}

=

T
∑

t=0

(−1)
t
CT

t E

{

e
−s

∑

xk∈Φ

∑t
j=1 hk,jg(xk)

}

=

T
∑

t=0

(−1)
t
CT

t E

{

e
−s

∑

xk∈Φ hk(t)g(xk)
}

,

whereCT
t are thet-combinations in aT -element set, SIRj

andIj describe the SIR and the interference respectively over
the j-th time slot, and the RVhk(t)=

∑t
j=1 hk,j , as a sum of

i.i.d. exponential RVs follows the gamma distribution.
We deduce that the calculation of the joint Laplace func-

tional over t slots with static interferers is equivalent to
the calculation of the LT of interference for a single time
instance, but with a different fading distribution. The first
two moments of the RVhk(t) = h(t) ∀k are E{h(t)} = t

and E
{

h2(t)
}

= t (1+t). We will still utilize the gamma
approximation for the interference, but the fading is now
modeled by a gamma instead of an exponential RV. We
have the same simple expression for the LT of interference,
(1+sβ(t))

−k(t), where the parametersk, β now depend on
t. Without showing the derivation details, the mean, and the
variance of interference in the presence of Nakagami fading
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Fig. 6. Mean local delay at the origin under different fields of interferers.
r0=100m, η=4, λ=0.05m−1, c=8m, Pr=8×10−6W. In the numerical
evaluation of (9), we truncated atT0=5000 and used2 000-digit precision
in Mathematica [42]. We validated numerically that higher values ofT0 give
negligible additional contribution to the limit.10 000 simulations per marker.
Solid and dashed lines use the gamma approximation for the hardcore process
and they are exact calculations for the PPP.

modeled by a gamma RV with shapet and scale unity are

E{I(t)} =
2λ t r1−η

0

η − 1

V{I(t)} ≈
2λt (1+t (1−λc)

2
) r1−2η

0

2η−1
.

(8)

Finally, the approximation for the mean delay using the
gamma distribution can be read as

E{D}≈
∞
∑

T=0

T
∑

t=0

(−1)t CT
t (1 + sβ(t))−k(t)

,

wherek(t) , β(t) are derived via moment matching using (8).
The above approximation can be turned into a single sum-

mation by re-ordering the two sums and setting a sufficient
maximum valueT0 for the parameterT , where the sum over
t should be truncated.

E{D} =

∞
∑

t=0

∞
∑

T=t

(−1)
t
CT

t (1 + sβ(t))
−k(t)

= lim
T0→∞

T0
∑

t=0

T0
∑

T=t

(−1)
t
CT

t (1 + sβ(t))
−k(t)

= lim
T0→∞

T0
∑

t=0

(−1)t CT0+1
t+1 (1 + sβ(t))−k(t)

.

(9)

Since it is not realistic to assume very low mobility across
macrocells, we depict in Fig. 6 the mean delay for a microcell.
The interference field due to the hardcore process induces a
much smaller increase in the mean delay in comparison with
PPP, as we move from extreme mobile to static interferers.
This is because the temporal correlation coefficient of inter-
ference due to a static PPP is equal to1

2 [43], while that due
to the hardcore process is approximately1

2 (1−λc) [44]. Due
to the lower correlation of interference, fewer retransmissions
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are needed (on average) to meet the SIR target, and the mean
delay decreases in comparison with that due to static PPP.

B. Spatial performance

The probability of successful reception for MRC with dual-
branch receiver has been derived in [45, equation (26)] for a
Poisson field of interferers. The PGFL for the hardcore process
is not known and thus, we resort again to approximations about
the distribution of interference in the two branches and their
correlation. We will end up with a simple approximation for
the outage probability, while the calculation in [45, equation
(26)] requires the numerical computation of three integrals.

Let us denote byI1=
∑

i h1,ig (xi) andI2=
∑

i h2,ig (xi),
the instantaneous interference, and byI the vector ofI1, I2.
Treating the interference as white noise, the MRC becomes
optimal, and the post-combining SIR equals the sum of the
SIRs at the two branches.

P{SIR≥ θ} = EI

{

P

(

ht,1Pr

I1
+

ht,2Pr

I2
≥ θ|I

)}

.

Let us denote byW =
ht,2Pr

I2
the RV describing the SIR

at the second branch. Conditioning on the realizationw, and
using that the fading channel is Rayleigh, we have

P{SIR≥ θ}=EI,W

{

e−s1I1
}

= EI

{
∫ ∞

0

e−s1I1fW |I2
(w)dw

}

,

wheres1=
max{0,θ−w}

Pr
andfW |I2

is the conditional PDF of
the SIR at the second branch.

Due to the fact that the fading channel is Rayleigh,
P (W ≥w|I2) = e−s2I2 , wheres2 = w

Pr
. By differentiation,

fW |I2
(w)= I2

Pr
e−s2I2 . Therefore

P{SIR≥ θ} =
1

Pr

∫ ∞

0

EI

{

I2e
−s1I1e−s2I2

}

dw

(a)
=

1

Pr

∫ θ

0

EI

{

I2e
−s1I1e−s2I2

}

dw+

1

Pr

∫ ∞

θ

EI

{

I2e
−s2I2

}

dw,

(10)

where(a) follows from s1=0 for w>θ.
We will assume that the random vectorI follows the bi-

variate gamma distribution with identical marginals following
the gamma distribution with parameters{k, β} calculated in
Section IV. The correlation coefficient is denoted byρ, and it
is calculated in the Lemma 2 below. Using the differentiation
property of the LT [46, pp. 229], the first expectation in (10),
J =EI

{

I2e
−s1I1e−s2I2

}

, becomes

J = −
∂

∂s2

{

(

1+s1β+s2β+s1s2β
2 (1−ρ)

)−k
}

=
kβ (1 + βs1 (1− ρ))

(1 + s1β + s2β + s1s2β2 (1− ρ))
k+1

.
(11)

The second expectation in (10) is

EI

{

I2e
−s2I2

}

= kβ (1 + s2β)
−k−1

. (12)

After substituting (11) and (12) into (10), cancelling out
some terms and carrying out the integration forw>θ, we end

up with

P{SIR≥ θ} = P k
r (Pr + θβ)−k + kβP 2k

r ×
∫ θ

0

(Pr + β (θ − w) (1− ρ)) dw

(P 2
r +θβPr+(θ − w)wβ2 (1−ρ))

k+1
.

(13)

The above integral can be expressed in terms of2F1 functions.
In Fig. 7 we depict the outage probability. The performance

prediction of PPP in the upper tail worsens in comparison
with single-antenna receiver, and it is expected to deteriorate
with more antennas. Without presenting the calculation details,
the approximation for the outage probability using a bivariate
shifted-gamma distribution for the distribution of interference
at the two branches of the receiver is also included in Fig. 7.
The two approximations can be used to get a quite good
performance estimate with low computational complexity.

Lemma 2. For i.i.d. exponential power fading channels with
unit mean, the spatial correlation coefficient of interference
ρ between the two antennas can be approximated asρ ≈
1
2 (1− λc). The approximation is valid forλc→0 and c

r0
→0.

Proof. The covariance of interference is

cov{I} =E{h}2 E
{

∑

x∈Φ
g2(x)

}

+

E{h}
2
E

{

∑x 6=y

x,y∈Φ
g(x) g(y)

}

− E{I}
2

=
2λr1−2η

0

2η − 1
+

∫

g(x) g(y)ρ(2)(x, y) dxdy−E{I}2.

The variance of interference is [28, equation (3)]

V{I} =E
{

h2
}

E

{

∑

x∈Φ
g2(x)

}

+

E{h}
2
E

{

∑x 6=y

x,y∈Φ
g(x) g(y)

}

− E{I}
2

=
4λr1−2η

0

2η − 1
+

∫

g(x) g(y) ρ(2)(x, y) dxdy−E{I}2.

The integral S =
∫

g(x) g(y) ρ(2)(x, y) dxdy has been
approximated in [28, Section V] forλc → 0 and c

r0
→ 0.

The two dominant terms with respect tor0 are

S ≈
4λ2r

2−2η
0

(η − 1)
2 −

4λ2cr
1−2η
0

2η − 1
+

2λ3c2r
1−2η
0

2η − 1
.

After substituting the above approximation forS in the
expressions of the covariance and the variance, doing some
factorization and cancelling out common terms, the correlation
coefficient can be approximated as

ρ =
cov{I}
V{I}

≈
(1− λc)2

2− 2λc+ λ2c2
λc→0
≈

1

2
(1− λc) ,

and the Lemma is proved.

VII. C ONCLUSIONS

The PPP model for vehicular networks allows small inter-
vehicle distances with non-negligible probability. A more
realistic point process of equal intensity, but with a hardcore
distance, i.e., shifted-exponential inter-arrivals [22], changes
the properties of interference distribution at the origin.The
discrepancy in the outage probability predicted by the two
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Fig. 7. Probability of outage at the origin with dual-antenna MRC and
interferers deployed as a hardcore process. The approximation (13) is verified
with simulations.λ = 0.025m−1, c = 20m. See the caption of Fig. 5 for
the rest of the parameter settings for microcells. In the inset we zoom at the
upper tail. The interference approximation using a bivariate shifted-gamma
distribution with correlated marginals gives an excellentfit to the simulations.

models is evident when the coefficient of variation and the
skewness of interference is high, i.e., in urban microcells
and motorway macrocells with sparse flows. The discrepancy
increases if we consider multiple antennas at the receiver
because, in that case, the outage probability also depends on
the spatial correlation of interference, which is different under
the two deployment models. Temporal performance indicators
associated with the performance of retransmission schemes
are affected by the correlation properties of interferencetoo.
We bypassed the lack of the PGFL for the hardcore point
process by using a gamma approximation for the interference
distribution. The gamma distribution yields better predictions
for the outage probability than the PPP in all cases. In
this paper, we assumed that the point process impacts the
distribution of interferers while the transmitter-receiver link is
fixed and known. It would be interesting to use a random link
distance and investigate whether the horizontal deployment
gain for non-Poisson stationary point processes holds [31].
Another promising topic is the validation of the models against
real vehicular traces [47].
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