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Representation Learning via
Cauchy Convolutional Sparse Coding
Perla Mayo, Oktay Karaku, Robin Holmes, and Alin Achim,

Abstract

In representation learning, Convolutional Sparse Coding (CSC) enables unsupervised learning of features by
jointly optimising both an `2-norm fidelity term and a sparsity enforcing penalty. This work investigates using
a regularisation term derived from an assumed Cauchy prior for the coefficients of the feature maps of a CSC
generative model. The sparsity penalty term resulting from this prior is solved via its proximal operator, which is
then applied iteratively, element-wise, on the coefficients of the feature maps to optimise the CSC cost function.
The performance of the proposed Iterative Cauchy Thresholding (ICT) algorithm in reconstructing natural images
is compared against the common choice of `1-norm optimised via soft and hard thresholding. ICT outperforms
IHT and IST in most of these reconstruction experiments across various datasets, with an average PSNR of up to
11.30 and 7.04 above ISTA and IHT respectively.

Index Terms

Cauchy-based penalty function, convolutional sparse coding, proximal splitting

I. INTRODUCTION

Representation learning seeks to understand the underlying patterns and structures that give raise to
the data of interest. This often involves using generative models to describe the processes involved in
the formation of this data, using known or assumed priors [1]. In some of these models it is assumed
the data arises from of a linear operation among the elements of a set of basic or canonical features.
Thus, in addition to selecting this set of features, it is also necessary to obtain their respective coefficients
for generating any given sample. Computing the coefficients for such a sample effectively transforms
it into the chosen feature domain. This transformation process is referred as encoding, whilst decoding
corresponds to the reverse action of transforming back into the original domain [1], [2].

Establishing an effective choice of features for the generative model can aid in understanding the nature
of the data. Further, the resulting coefficients after encoding can be used in-place of the raw data for many
tasks such as image compression [3]–[5], image denoising [6], [7], image super-resolution [8], [9]; or even
image classification [10], [11] or anomaly detection [12] for those requiring some discriminative power
in them.
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Thus, determining a suitable feature set for the data in question is a crucial task, but how should this
be accomplished? Early on, it was common to employ a set of predefined or fixed basis features. Sets
such as Wavelets and ones obtained from the Discrete Cosine Transform have been used with success for
image denoising and compression respectively. For instance, to denoise images, a common practice is to
transform them to the wavelet domain, in which a threshold can be applied to the wavelet coefficients
[7]. Reversing the transform to the original domain after this thresholding then results in a cleaner image.
However, feature sets such as these are in some sense universal. As such they are not always effective in
capturing specific traits of a particular dataset. This can sometimes result in vital particularities of the data
being lost. For this reason different approaches enabling the unveiling of new meaningful data specific
information have become more prevalent.

As previously mentioned, the assumptions made will guide the design of the model to utilise for
these purposes. Principal component analysis (PCA) [13] and independent component analysis (ICA)
[14] provide the means to determine the underlying components comprising the data of interest. The
difference between these two being that ICA makes a further assumption regarding the independence
among these components. In either case, the generative model corresponds to a dot product that meets
some orthogonality conditions on the (squared) matrix of features. There is no strict requirement however,
for the feature matrix to be square. For instance, in Autoencoders (AE) [15] the goal is to train a network
in an unsupervised fashion such that its weights both encode and decode the data in a lower dimensional
space. Alternatively, there is dictionary learning and sparse coding [16], in which it has been suggested
that overcomplete sets are capable of describing as well as (if not better than) complete ones as they are
able to unveil a bigger number of underlying features [16]. Since the features belong to an overcomplete
matrix, the model to solve is underdetermined and an infinity of solutions becomes available. This can be
remedied by assuming the data representation is sparse, meaning that only a few elements of the feature
matrix take part in the formation of the data and hence most of the elements in the vector of coefficients
are set to zero. This is modelled by the addition of a penalty term known to enforce this behaviour. The
assumption of sparsity has been motivated by the way in which the V1 cells from the visual cortex work
[17].

With this addition the model not only learns the features to represent the data but also the coefficients
describing their contribution. This is commonly achieved by splitting the learning into two tasks, i.e., a
step is devoted to learn the elements of the dictionary and the other to learn the elements in the vector
of coefficients. There is evidence showing that the latter step can be the most critical for the model to
succeed in the representation task [2]. In [2] the power of encoding was demonstrated regardless the
choice of learning (or lack of it) for the features. This motivates efforts on the design of novel approaches
aiming to learn the coefficients in the encoding stage of the algorithm.

The core contribution of this work is the derivation and effective demonstration of a new regularisation
term used during the encoding step of Convolutional Sparse Coding (CSC). This term arises from
the assumption that feature map coefficients follow a Cauchy distribution. To make use of this new
regularisation we propose the Cauchy proximal operator, which when implemented iteratively follows in
the vein of shrinkage algorithms [18]–[20] and gives raise to an algorithm, which we refer to as iterative
Cauchy thresholding (ICT). Unlike existing previous approaches this algorithm does not perform explicit
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thresholding, resulting in values approaching 0 but not necessarily locking to it. The power of this new
regularisation is shown on a reconstruction task for 2D images, and evaluated against the common choices
of soft and hard thresholding algorithms.

The remaining of this manuscript is organised as follows. The backbone and derivation of the proposed
algorithm is reviewed in detail in section III along with related work that inspired our approach. In section
IV the algorithm used for the reconstruction task is shown. The experiments conducted are found in section
V along with their results. Lastly, section VI offers a discussion, conclusion, and future lines of work.

II. THEORETICAL PRELIMINARIES

In a basic generative model, it is assumed the observations y ∈ IRM can be estimated from a linear
combination of the column vectors (also referred as atoms, codes or features) of the dictionary matrix
A = [a1, a2, ..., aN ] ∈ IRM×N . The contribution of each one of these elements is given by the coefficients
in x ∈ IRN such that there is one coefficient per column in A:

ŷ = Ax (1)

Since y ≈ ŷ, there exists a vector ε such that ε = y− ŷ or, equivalently

y = ŷ + ε (2)

with ŷ, ε ∈ IRM . For dictionary learning and sparse coding, the dictionary matrix A is overcomplete
N > M . In addition, there is a one-to-one spatial correspondence between the features and the data
to reconstruct, i.e. the dimension of the features has to be the same as that of the data, which can be
impractical for high dimensional signals. This can be alleviated by using patches extracted from the
original signal instead, reducing the dimension of the dictionary atoms to the one of these patches. Thus,
the observations yi corresponds to patches extracted from the original signal of original dimension P and
only L atoms participate in the generation of the data (L� N ). By using patches it becomes necessary
to perform pre- and post-processing of the data to extract the patches and then bring them together to
reconstruct each sample. For this to work, it is assumed these patches are independent, even if they come
from the same sample, which is not necessarily true. There are two main ways to extract patches from the
data, one of them is restricting them to not overlap. This, in addition to the independence assumption, is
later on reflected in blocking artifacts when the samples are reconstructed. On the other hand, when the
patches are overlapped, an average is performed, which also results in a degraded version of the original
sample as there is now a smoothing effect present in them. Furthermore, the learned features are often
translated versions of other atoms within the set (they are not shift invariant).

The use of the convolution operator in the generative model helps to address the aforementioned
limitations of dictionary learning [21], [22]. Thus, it evolves to Convolutional Sparse Coding (CC). Eq.
3 describes this model.

ŷ =
K∑
k=1

fk ∗ zk (3)



4

TABLE I
PENALTY TERMS THAT PROMOTE SPARSITY AND THEIR PROXIMAL OPERATORS

Algorithm Penalty term Optimising function

IHT |xi|0 xi =

{
xi, |xi| > λ

0, |xi| ≤ λ

IST |xi| xi =


xi − λ/2, xi > λ/2

xi + λ/2, xi < −λ/2
0, otherwise

ILT λ log(δ + xi) xi =


1
2

(
(x− δ)±

√
(x+ δ)2 − 2λ)

)
, x ≥

√
2λ− δ

1
2

(
(x+ δ)±

√
(x− δ)2 − 2λ)

)
, x ≥

√
2λ+ δ

where the signal of interest y ∈ IRP is now modelled as a sum of K filters fk ∈ IRM convolved with their
respective feature map zk ∈ IRQ, with P = M + Q − 1 for k = 1, 2, ..., K. Note that y is the complete
original signal. The extension to higher dimensional data is straightforward. Nevertheless, for ease of
reading the equations are expressed purely using one dimensional data.

In either of the two mentioned generative models, the learning of the features can be done by minimising
the error between the estimated and the observed data. For instance, for CSC:

f∗ = arg min
f
L(f, z)

= arg min
f
||y− ŷ||22

= arg min
f
||y−

K∑
k=1

fk ∗ zk||22

(4)

where f = [f1, f2, ..., fK ] and z = [z1, z2, ..., zK ]. In dictionary learning the optimisation would be carried
over the matrix A. From now on, the generative model considered in the paper is the CSC.

To seek for sparsity, it suffices to add a regularisation term to the optimisation function as

f∗, z∗ = arg min
f,z
G(f, z)

= arg min
f,z
L(f, z) + λϕ(z)

s.t. ||fk||2 = 1, k = 1, 2, ..., K

(5)

in which it is now required to learn, in addition to the set of features in f, its coefficients in the feature
maps zk. The constraint on the filters prevent it to absorb most of the energy during the learning.

The learning is carried on by iteratively alternating the optimisation of cost function over f and z. This
means that in a first step (z-step), the cost function will be minimised by assuming f is fixed. The opposite
happens during the f-step.

Several approaches have emerged aiming to solve Eq. 5 w.r.t. f to learn features from the data in addition
to Gradient Descent, such as K-SVD [23] and the more image statistic-adapted SparseDT [24]. Similarly,
optimising the cost function w.r.t. z will result in the learning of the sparse coefficients. Such optimisation
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depends on the choice of penalty function. If one is to seek for the sparsest solution, then the penalty
term chosen is the `0-norm. Hence, finding the set of coefficients that optimise Eq. 5 is a combinatorial
(NP-hard) problem. Broadly speaking, there are two main approaches to solve said regularisation term:
greedy and relaxed algorithms. The first category focuses on solving the `0-norm whilst the second one
considers its relaxed version (the `1-norm). For the former, Matching Pursuit is one of the most common
solvers in which coefficients are chosen one by one in a greedy fashion until a stopping criteria is met.
If, on the other hand, one chooses the `1-norm (LASSO), the function to optimise is now non-smooth
convex.

In these circumstances, the choice of penalty term is based on the known behaviour (shape) of the
function. Thus, as long as one knows the function has a shape that can enforce sparsity, such function
can be used for ϕ(·). Some alternatives are the non-convex `p-norm (with p ≤ 1) or the (also non-convex)
log regulariser among others. A comprehensive review of these sparsity-enforcing functions can be found
in [25] and references therein.

Iterative algorithms have come along with an associated sparsity enforcing penalty term. IST is often
involved when the function to optimise makes use of the `1-norm, IHT for the `0-norm and recently the
use of the iterative log thresholding (ILT) [20] has been proposed to optimise the log regulariser. Table I
summarises the equations involved in these algorithms.

IST and IHT can also be derived via surrogate functions in which one seeks to separate the terms
involved in the cost function. Regardless of the chosen algorithm to use, these thresholding operators are
applied in an element-wise fashion. These three approaches suppress any value below some threshold but
it is only IST and ILT that update values higher than said threshold. In the case of IST this has a direct
impact on the results as they often exhibit blurring.

III. ITERATIVE CAUCHY THRESHOLDING

The Cauchy assumption in the field of image processing is not new as it has previously been used
to model the noise corrupting the images of interest [26], [27]. Nonetheless, in this work it is not the
noise but the coefficient values involved in the generative models the ones that are assumed to follow this
distribution. In fact, the assumption of a Cauchy prior for the model has been done with success in the
past [28]–[32].

The encoding step depends on the regularisation term in the optimisation model. This term could fall
into the non-smooth convex functions, such as the `1-norm; non-smooth non-convex, such as the log
regulariser or the `0-pseudo norm; or smooth non-convex penalty terms, such as the one explored in
this paper. This function is derived from a statistical assumption on the coefficients, serving as prior in
a maximum a posteriori (MAP) approach. The resultant learning algorithm corresponds to a function
which, despite the non-convexity of its regularisation term, is guaranteed to convergence under a certain
condition. Specifically, it is the Cauchy distribution the one assumed to drive the learning framework.
The use of this prior enables the learning of the coefficients by iteratively applying its proximal operator
on the coefficients, achieving shrinkage around a non-explicit threshold that emerges naturally from the
equations involved in this process. In addition, the parameters shaping the distribution of the coefficients
can be estimated from the observations, facilitating the use of this method.
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Fig. 1. Cauchy PDF with different values for the parameters δ and γ

A. The Cauchy distribution

The Cauchy distribution belongs to the family of the Symmetric α-Stable (SαS ) distribution. Its location
and dispersion are described by the parameters δ and γ respectively, and its p.d.f. is defined by

p(x) =
γ

π(γ2 + (x− δ)2)
(6)

whilst Figure 1 illustrates their role on the distribution.
For the aim of the proposed work (enforcing sparsity), it is required that δ = 0, which in turn simplifies

the expression to work with. On the other hand, the parameters of the distribution can be estimated from
the data itself using maximum likelihood estimation as

γ = arg min
γ
−

T∑
t=1

log(p(x) + ε) (7)

where ε is a very small value.
The overall cost function to be optimised is composed of two functions, as illustrated in Eq. 5. The data

fidelity term L(·, ·) being convex with ϕ(·) possibly non-smooth and/or non-convex. In proximal splitting,
the functions that present challenges during conventional optimisation techniques are projected into a
convex set via their proximal operators. Note that the number of functions involved in the optimisation
can be ≥ 2. The proximal operator of a given function ϕ(·) can be obtained by solving:

proxλϕ(x) = arg min
z

(z − x)2 + λϕ(z) (8)

B. The Cauchy Proximal Operator

Following a MAP approach, the penalty term on the coefficients in z is then defined as ϕ(·) =

− log(p(·)), with p(·) as defined in Eq. 6 and setting δ = 0. This penalty term is applied individually on
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every element of z. Thus, plugging in this into Eq. 8 it is possible to derive the Cauchy proximal operator
as

proxλϕ(x) = arg min
z

(z − x)2 + λϕ(z)

= arg min
z

(z − x)2 − λ log

(
γ

π (γ2 + z2)

) (9)

Taking the derivative to find the stationary points:

d

dz

(
(z − x)2 − λ log

(
γ

π (γ2 + z2)

))
= 0

d

dz

(
(z − x)2

)
− λ d

dz

(
log

(
γ

π (γ2 + z2)

))
= 0

2(z − x)− λ d
dz

(
− log

(
γ2 + z2

))
= 0

2(z − x) + λ
d

dz

(
log
(
γ2 + z2

))
= 0

2(z − x) + λ
1

(γ2 + z2)

d

dz

(
γ2 + z2

)
= 0

2(z − x) + λ
2z

(γ2 + z2)
= 0

(γ2 + z2)(z − x) + λz = 0

Lastly, rearranging the terms, we get

z3 − xz2 + (γ2 + λ)z − γ2x = 0 (10)

Using the Cardano’s method to find the roots of the previous cubic equation with a = 1, b = −x,
c = γ2 + λ and d = −γ2x, one finally gets to:

z =
x

3
+ t (11)

where
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(a) (b)

Fig. 2. Behaviour of ICT for varying (a) γ’s and (b) λ’s.

t = 3

√
−q

2
+

2
√

∆ + 3

√
−q

2
− 2
√

∆

∆ =
q2

4
+
p3

27

p = λ+ γ2 − x2

3

q = − 2

27
x3 +

1

3

(
λ− 2γ2

)
x

The Cauchy proximal operator, thus, requires to choose values for the parameters γ and λ, for which it
becomes ideal to understand their function in the operator. By fixing γ to a specific value and then vary
λ and vice-versa it is possible to gain an intuition of their roles. In fact, it is found that the value of γ
shapes the thresholding function and smaller values contribute to a more aggressive shrinkage near the
threshold, whilst λ shifts the threshold location. Fig. 2a and 2b illustrate this behaviour.

In fact, when γ → 0 the threshold → 2λ and the shape of the function approximates the ILT. On the
other hand, when λ→ 0, the roots of Eq. 10 → γi,−γi, and x, which would keep the values unchanged,
i.e., not shrinkage would be performed. Nonetheless, in this work we do not treat γ as a tunable parameter.
Instead, this value is estimated from the data following the approach mentioned in Section III-A.

One could compare the Cauchy and log penalty terms (third row in Table I) since both are shaped by the
logarithm function and some parameter, δ for ILT and γ for ICT. The corresponding proximal operators
are considerably different. A major difference between ICT and the rest of the algorithms presented in
this manuscript so far is the lack of an explicit threshold. The coefficients are still shrunk according to
the proximal operator in an iterative manner, reaching values closer to zero but not necessarily locking
on it.

The penalty term derived from the Cauchy distribution is a smooth non-convex function, which makes
the optimisation of G(·, ·) challenging . However, the cost function defined in Eq. 5, as a whole, can be
guaranteed to converge to a global minimum, if the following condition is met [33]:

λ ≤ 8γ2 (12)
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Fig. 3. Behaviour of the different thresholding algorithms and, in the case of Cauchy, using different parameters.

Specifically, the condition given in Eq. 12 ensures that the cost function in the Cauchy proximal operator
(9) converges. This condition guarantees convergence in the scenario in which the proximal operator needs
to be applied in an iterative manner for inverse problems [33] It is this iterative process the one that gives
rise to our proposed ICT algorithm, whose pseudocode is presented in Algorithm 1. Note that an additional
parameter η is present as it accounts for the learning rate, thus, the original equation contains ηλ, and
since λ = 1 the algorithm has η only, which also affects the convergence condition to η ≤ 8γ2 instead.

Algorithm 1 Iterative Cauchy Thresholding
Initialise x with 0’s
Set η, γ and λ
Choose stopping criterion. In this work this corresponds to a max number of iterations
while Stopping criteria has not been met do

Compute z← z− η∇zL(f, z)
Shrink every element in z using Eq. (11).

end while

This condition is easily applied when the generative model corresponds to CSC. As shown by [33],
this arises from the condition being derived by taking the second derivative where the generative model
is no longer involved and the resultant expression is dependant only on the hyper-parameters.
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Fig. 4. Block diagram of the Cauchy Convolutional Sparse Coding algorithm. After a few iterations the coefficients within the feature maps
get closer to zero.

IV. CAUCHY CONVOLUTIONAL SPARSE CODING

In this section, our new CSC algorithm for representation learning is introduced. It is based on the use
of the Cauchy proximal operator through an iterative process in order to encode the data for the z-step.
The cost function is derived via MAP. The prior knowledge employed and which then translates into the
penalty function corresponds to the assumed statistical distributions of the coefficients [22].

By using the Cauchy distribution in the generative model it is now required to perform the z-step via
the Cauchy proximal operator. Our goal is thus to solve Eq. (5) for the feature maps using the Cauchy
penalty function. Specifically, the cost function is now:

G(f, z) = ||y− ŷ||22 − λ
K∑
k=1

Q∑
q=1

log

(
γ

π(γ2 + z2k,q)

)
(13)

with ŷ as defined in Eq. 3. Thus, the full algorithm aims to learn the set of filters f and the feature maps
z associated to the data from a dataset of size T . Note that extending the cost function defined in 5 to
learn from more than one sample (i.e. dataset size > 1) is straightforward and hence not detailed in here.

As it is common in similar algorithms, the proposed approach works by alternating between the learning
of the features and the learning of the coefficients, until a convergence criterion is met. This can consist
in reducing the reconstruction error below some predefined value or in a maximum number of iterations
to be reached. Gradient descent is used as learning approach for the features (f-step) in conjunction with a
chosen thresholding algorithm for the coefficients (z-step). In both learning steps the learning rate adapts
so that overshooting over the local minima is prevented. This is achieved by halving the learning rate for
the current step following an observed increase in value subsequent to an update.

The f -step is solved by minimising Eq. 13 over f, which can be written compactly as
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Algorithm 2 Cauchy Convolutional Sparse Coding
Initialise zk with 0’s, k = 1, 2, .., K
Initialise randomly fk, k = 1, 2, .., K
Estimate γ from the data using Eq. 7
Choose stopping criteria
while Overall stopping criteria has not been met do

Set zold ← z
while Stopping criteria for z-step has not been met do

Set CO ← G(f, z)
For every zk compute:
zk ← zk − ηz∇zkL(f, z)
Shrink zk using Eq. (11).
Set CN ← G(f, z)
if CN > CO then

Set z← zold
Set ηz = ηz/2

else
Set zold ← z

end if
end while
while Stopping criteria for f -step has not been met do

Set CO ← G(f, z)
For every fk compute GD on the filers:
fk ← fk − ηf∇fkL(f, z)
if CN > CO then

Set f← fold
Set ηf = ηf/2

else
Set fold ← f

end if
end while

end while

f∗ = arg min
f
||y−

K∑
k=1

fk ∗ zk||22 (14)

This requires taking the gradient over f and choosing a step size ηf for updating the features iteratively.
This guarantees convergence since it involves the optimisation of the `2-norm, which is a smooth convex
function.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5. Reconstructions of image Lena (top row) using the algorithms (a) IHT, (b) IST and (c) ICT and the filters learned using (a) IHT,
(b) IST and (c) ICT.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 6. Reconstructions of image Shepp-Logan Phantom (top row) using the algorithms (a) IHT, (b) IST and (c) ICT and the filters learned
using (a) IHT, (b) IST and (c) ICT.
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The key to implementing the Cauchy-CSC (CCSC) method consists in using ICT in the encoding phase
of the algorithm. This is achieved by solving:

z∗ = arg min
z
||y−

K∑
k=1

fk ∗ zk||22

− λ
K∑
k=1

Q∑
q=1

log

(
γ

π(γ2 + z2k,q)

) (15)

In addition to the regularisation parameter λ, one requires also to choose a learning rate ηz. Similarly
to what has been done for the f -step, ηz is updated whenever the cost function increases as result of the
previous coefficient update. The pseudocode of the whole approach is presented in Algorithm 2 and its
diagram is depicted in figure 4.

V. SIMULATION RESULTS

In order to assess the performance of CSC when used in conjunction with ICT, IHT and IST we
conducted a number of experiments. In particular, we focused on the reconstruction of 2D images in
order to quantify the results of the said algorithms. The data employed were classical images such as
Lena and the Shepp-Logan phantom, as well as the MNIST and AT&T faces1 datasets. Before applying the
representation learning algorithm, independently of the regulariser used, the data have been pre-processed
to make them zero-mean. There is no pre-processing done to enforce the dataset to have unit variance
since this could affect the estimation of the γ parameter required by the ICT algorithm. Since MNIST
and the faces dataset are considerably large, a sample composed of T = 500 and T = 30 random images
therein were used in the respective experiments.

The complete approach was performed 100 times for each dataset using different random initialisation
for the filters. For the MNIST and AT&T datasets a random set of samples was also chosen at the beginning
of each of their experiments. The maximum number of iterations was fixed to 100 per experiment.

Note that the hyperparameter λ incorporates the learning rate for IHT and IST, whereas for ICT it was
set to 1 in order to leave it as close to the original cost function derived from MAP as possible. Hence,
only the estimation of γ is required.

For ICT, the learning rate needs to meet the condition in Eq. 12. The additional tunable parameters
employed were K = 25 and a filter size of 5×5 for all the experiments.

For an initial qualitative assessment, Figures 5 and 6 show the filters learned for the different datasets,
along with the reconstructed images. We show samples from the experiments with the highest PSNR for
each algorithm. By visually inspecting Figures 5 and 6, it can be seen that ICT can learn more meaningful
filters since they seem to present less random patterns, in contrast to IST and IHT, in which some of
these bases failed to be updated. In fact, we noticed that the initialisation of the filters plays an important
role in their learning as sometimes there seem to be no learning at all for IHT as the filters have a noisy

1https://git-disl.github.io/GTDLBench/datasets/att face dataset/

 https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/
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TABLE II
PSNR RESULTS OF CSC USING DIFFERENT PENALTY TERMS

Dataset ICT IHT IST

MNIST 20.36 21.09 18.57

AT&T Faces 25.82 25.31 20.37

Phantom 24.20 20.67 20.37

Lena 32.39 25.35 21.09

TABLE III
PROPORTION OF ZERO COEFFICIENTS LEARNED VIA CSC USING DIFFERENT PENALTY TERMS

Dataset ICT IHT IST

MNIST 99.99 5.65 1.16
AT&T Faces 99.99 2.91 1.65

Phantom 100 2.60 1.37
Lena 99.99 1.57 1.60

appearance. This is in spite of their relatively good reconstruction performance with high PSNR values
achieved and this confirms the dependence of reconstruction performance on the encoding step [2].

The performance of the three representation learning approaches is also assessed through quantitative
analysis. The PSNR values for the reconstruction of each sample was computed and their average values are
reported in Table II and Fig. 8 showing their respective boxplots. Table III reports the average proportion
of non-zero elements in the learned feature maps. In both table II and table III, the best performance for
each dataset is shown in bold.

Lastly, in Fig. 9, a plot of the learning performance as function of average PSNR as the iterations
progress is provided.

From Fig. 9 we can see that ICT and IST reach the plateau corresponding to the highest PSNR early in
the learning process, with IHT reaching its own maximum a few iterations later. It is ICT, however, the
one that achieves the highest PSNR and requires the least iterations. Both IHT and IST requires tuning of
a number of parameters for optimal performance, whereas for ICT the parameter γ is estimated directly
from the data. In fact, the use of the iterative Cauchy algorithm requires the choice of only two values,
the learning rate and the scale parameter. As noted in section III-B, γ can be estimated from the original
data whilst ηz needs to obey the condition in Eq. 12.

From Table II we can see that ICT provides the best PSNR performances in three out of four cases, which
is consistent with the visual evaluation. IST, on the other hand, is the one with the worst reconstruction
performances, although it leads to the sparsest representations and the learning of seemingly sharper
features in comparison to ICT. IST presents more consistency in regard of the PSNR results obtained as
the inter-quartiles range is shorter than the other two algorithms, as seen in Fig. 8.

There is an increase of the average PSNR as the images increase in size for the three thresholding
algorithms considered, with ICT exhibiting the highest of such jumps. Indeed, ICT performed better as the
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Fig. 7. Histogram of coefficient values from the 25 feature maps involved in the reconstruction of the image Lena using ICT. Y axis scale
factor: 105.

size of the images increased, having very similar performance to IHT for the small size MNIST (28×28)
dataset as opposed to the case of the the Shepp-Logan phantom (256×256) and Lena (512×512) images.
Furthermore, despite the high PSNR values obtained with IHT, some degradation in the reconstructed
images surrounding the edges and the lose of details is apparent. In the case of IST, the images exhibit
a smoothing effect regardless of their dimension. Lastly, the reconstructed images produced by ICT also
present some artifacts near the edges, which become more apparent in smaller image sizes.

With respect to Table III, it is evident that ICT is the approach that offers the least sparse solutions.
Having a closer look to the histograms of coefficients (Fig. 7) it can be observed that most coefficients
are in a very close vicinity of 0, which might explain the ability to learn most of the features most of the
times whilst reducing their noisy appearances.

VI. CONCLUSIONS AND FUTURE WORK

In this work a new convolutional sparse coding framework based on a Cauchy model assumption is
proposed. This approach enables the learning of filters and their respective feature maps by using said
distribution as prior for the coefficients in the latter ones, which results in a new cost function. The
Cauchy proximal operator was derived and used to optimise it and this requires a preliminary step before
the learning process, which involves the estimation of the corresponding scale parameter. The performance
was evaluated on four different datasets and compared against the reconstruction performance achieved
using hard and soft thresholding. Even though CCSC does not achieve the same degree of sparsity as
IST and IHT, the filters learned are seemingly better for the reconstruction task based on their higher
PSNR values achieved. Current work focuses on investigating the discriminative power of the proposed
representation in classification problems.
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