
 Han, X., Yu, X., Pasquier, T., Li, D., Rhee, J., Mickens, J., Seltzer, M.,
& Chen, H. (Accepted/In press). SIGL: Securing Software Installations
Through Deep Graph Learning. 1-18. Paper presented at USENIX
Security Symposium 2021, Vancouver, British Columbia, Canada.
https://arxiv.org/abs/2008.11533

Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/333647919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arxiv.org/abs/2008.11533
https://research-information.bris.ac.uk/en/publications/ddcc851f-82a9-453c-8898-a37b5d2df5aa
https://research-information.bris.ac.uk/en/publications/ddcc851f-82a9-453c-8898-a37b5d2df5aa

SIGL: Securing Software Installations Through Deep Graph Learning∗

Xueyuan Han
Harvard University

Xiao Yu
NEC Laboratories America

Thomas Pasquier
University of Bristol

Ding Li
Peking University

Junghwan Rhee
NEC Laboratories America

James Mickens
Harvard University

Margo Seltzer
University of British Columbia

Haifeng Chen
NEC Laboratories America

Abstract
Many users implicitly assume that software can only be ex-
ploited after it is installed. However, recent supply-chain at-
tacks demonstrate that application integrity must be ensured
during installation itself. We introduce SIGL, a new tool for de-
tecting malicious behavior during software installation. SIGL
collects traces of system call activity, building a data prove-
nance graph that it analyzes using a novel autoencoder archi-
tecture with a graph long short-term memory network (graph
LSTM) for the encoder and a standard multilayer perceptron
for the decoder. SIGL flags suspicious installations as well
as the specific installation-time processes that are likely to
be malicious. Using a test corpus of 625 malicious installers
containing real-world malware, we demonstrate that SIGL
has a detection accuracy of 96%, outperforming similar sys-
tems from industry and academia by up to 87% in precision
and recall and 45% in accuracy. We also demonstrate that
SIGL can pinpoint the processes most likely to have triggered
malicious behavior, works on different audit platforms and op-
erating systems, and is robust to training data contamination
and adversarial attack. It can be used with application-specific
models, even in the presence of new software versions, as well
as application-agnostic meta-models that encompass a wide
range of applications and installers.

1 Introduction

Software installation is risky. Installer programs often execute
with administrative privileges, providing installation-time at-
tackers with powerful capabilities to immediately corrupt
a system or establish longer-term persistent threats. Signed
installation packages verify a package’s origin, but not its se-
mantic integrity—installers can be corrupted before they are
signed. Thus, as post-installation malware detection has be-
come more sophisticated, corruption of digital supply chains
increased by 78% in the one year from 2018 to 2019 [2]. For
example, CCleaner is a popular application for removing un-
used files on desktop computers. In 2017, attackers breached
several workstations belonging to CCleaner developers, insert-
ing bot software into the official CCleaner application. The
compromised installer was downloaded by 2.27 million users,
including employees from major technology companies such

∗SIGL is pronounced as “seagull”.

as Google, Microsoft, and Samsung, before being detected
and removed [40].

Unfortunately, there are no strong defenses against ma-
licious installation. Fingerprint-based malware detection is
easy to evade by tweaking a few bytes of installation data [39].
Content-agnostic tools try to blacklist the untrusted servers
and web pages that host malicious software [8, 85]; however,
as the CCleaner attack demonstrates, corrupted supply chains
provide malicious content via trusted sources. More sophisti-
cated detection algorithms assign dynamic reputation scores
to file servers [67, 73]. Unfortunately, properly calculating
reputation scores is difficult, requiring labeled malware sam-
ples [73] or a priori knowledge about the characteristics of
malicious files [67].

To improve detection accuracy, server reputation scoring
can be augmented with client-side anomaly detection. For
example, data provenance frameworks observe causal inter-
actions between kernel-level objects, such as processes, files,
and network sockets [10]. Malicious installers will manipulate
these objects in ways that are statistically unlikely (and thus
detectable using statistical analysis). However, approaches us-
ing data provenance [28, 49] are designed for long timescales
and unpredictable exploit timings: a provenance log spans
weeks or months of system activity, with threats potentially
arriving at any moment during the logging period. To reduce
log sizes, provenance systems reduce high-fidelity event logs
to lower-fidelity summarizations, performing intrusion detec-
tion on the summaries. Unfortunately, summarizations hurt
diagnostic ability; they omit important contextual informa-
tion about, for example, the specific processes that malware
launched, and the specific files that malware accessed. When
they correctly detect an anomaly, reconstructing the low-level
details of how the attack unfolded requires manual work that is
difficult and error-prone, but critical for understanding which
attack vectors need to be patched.

SIGL reduces the manual effort needed to (1) detect mali-
cious installations and (2) identify the malicious processes.
We observe that once a malicious installation begins, a ma-
chine typically exhibits anomalous behavior (§ 3). Thus, SIGL
can afford to collect high-fidelity (but short-term) provenance
graphs, discarding old ones if no malicious installations are
detected. SIGL analyzes provenance data using a novel form
of unsupervised deep learning, which means that human ana-
lysts do not have to label training sets with both benign and
malicious graphs. Instead, given a machine which is known to
be malware-free, SIGL automatically featurizes provenance

1

graphs using a novel component-based embedding technique
tailored for system graphs (§ 4.3). It then applies long short-
term memory networks (LSTMs) [64] to extract the graph
features corresponding to normal behavior. These features do
not rely on any particular malware; therefore, they are general
and robust against malicious behavior. When deployed on
in-the-wild machines, SIGL uses anomaly scores (§ 4.5) to
calculate how far a machine deviates from the baseline fea-
tures (and thus how likely it is that a machine is experiencing
a malicious installation).

We evaluate SIGL by collecting baseline data from an en-
terprise database storing system events from 141 machines
at NEC Labs America. Using malicious installers from the
wild (as well as ones that we created ourselves), we tested
SIGL’s ability to detect malicious installation activity. SIGL
achieved precision, recall, accuracy, and F-score values all
greater than 0.94; in contrast, competing systems that we
tested were unable to achieve better than 0.9 on more than
a single metric, producing substantially worse scores on the
remaining metrics (§ 5.4). We also found that SIGL’s ranking
system typically produces a small set of candidate processes
responsible for the attack, including the one actually respon-
sible (§ 5.5). To demonstrate the applicability and robustness
of our approach, we further evaluate SIGL on different plat-
forms (i.e., Windows and Linux) and with various adversarial
scenarios (e.g., data contamination and evasion).
In summary, we make the following contributions:
• We formalize the problem of detecting malicious soft-

ware installation. In particular, we introduce a new kind of
provenance graph, called a software installation graph, that
records the short-term (but high-fidelity) provenance infor-
mation needed to capture malicious installation activity.

• We are the first to apply deep graph learning to the auto-
matic detection of anomalies in software installation graphs
(SIGs). Our approach uses a novel autoencoder architecture
layered atop a long short-term memory network.

• We present a novel node featurization model for system-
level provenance entities that is generalizable to applica-
tions beyond our current project.

• We build and thoroughly evaluate SIGL, an unsupervised de-
tection system, that identifies malicious installations. SIGL
creates SIGs using information provided by lightweight
audit frameworks such as Windows ETW or Linux Audit.
Thus, SIGL requires no additional infrastructure on end
hosts, besides a daemon that collects audit data and sends it
to a centralized analysis machine. SIGL outperforms current
state-of-the-art malware detectors, while also providing the
unique ability to identify the set of processes potentially
involved in malicious installation activity.

• To the best of our knowledge, we are the first to investigate
graph-based adversarial attacks [80, 88] given realistic and
practical systems constraints faced by the attackers.

2 Background & Motivation

We simulate the following real-world enterprise attack sce-
nario [53] to illustrate the limitations of existing tools and
motivate SIGL’s design. Our scenario uses the Dharma ran-
somware, also known as CrySIS, which has become increas-
ingly prevalent in enterprises [4]. One important factor that
contributes to its popularity is its continuous evolution to
avoid detection. We simulate a recent Dharma variant where
the adversary bundles the ransomware tool with a benign anti-

AVRemover.exe

AVRemover.exe

Process Start AVRemover.exe

File Write

AVRemover.exe

Process Start AVRemover.exe

File Write

AVRSrv.exe

Process Start a.b.c.d:e

IP Write

libwaheap.dll

File Write

eset.dat

File Write

libwautils.dll

File Write

exclusions.txt

File Write

AVRSrv.exe

File Write

File Write File Write File Write

m.n.i,j:k

IP Write

rm.exe

File Write

libwaheap.dll

File Write

libwautils.dll

File Write

AVRemover.exe

File Read

cabinet.dll

File Read File Read

File Read

File Read File Read File Read

IP Read File Read

File Read

File Read

File Read

File Read

File Read

File Read

File Read

File Read

sensAPI.dll

File Read

File Read File Read File Read IP Read

AVRemover.exe

Process Start

File Write

taskhost.exe

Process Start taskhost.exe

File Write

x.y.z.s:t

IP Write

AVRemover.exe

File Read

File Read

File ReadFile ReadFile Read

IP Read

Figure 1: The software installation graph from the attack scenario described
in § 2. The shaded area shows malicious activities not observed in a legitimate
installation. We omit some edges, nodes, and node labels for clarity.

virus remover, ESET AV Remover, creating a new version of
the software package. The attackers then launch a phishing
attack, impersonating Microsoft, urging enterprise employ-
ees to upgrade their anti-virus tool. When an unsuspecting
employee runs the installer, Dharma runs in the background,
encrypting user files, while the employee interacts with the
ESET AV Remover installer 1. Neither existing malware de-
tection tools nor newer log- or provenance-based analysis
systems are a good match for these kinds of attacks for the
following reasons.
Limitations of Malware Detection Tools. The Dharma sce-
nario poses several challenges to existing malware detec-
tion solutions. First, customized variants of Dharma will ef-
fectively evade signature-based malware analysis, including
commercial anti-virus detection [48]. In fact, many variants
of ransomware families, including Dharma, leverage popular
installation frameworks (§ 5.1) to circumvent anti-virus de-
tection without even changing the malware signature [16]. A
recent incident demonstrates that, similar to our motivating
scenario, malware can safely hide in those installation frame-
works, bypassing all anti-virus products on VirusTotal [69].
Second, bundling malicious software with legitimate software
thwarts conventional file reputation analysis [67, 73].

Downloader graph analysis [46] or malware distribution
infrastructure analysis [8] might have proven effective in this
instance if it were possible to notice the suspicious origin
of the bundled installer. However, if the attackers infiltrated
trusted software vendors to distribute the compromised soft-
ware package [15] (as in the recent CCleaner incident), then,
even those approaches would have been rendered ineffective
[8, 85].

In summary, these types of exploits can successfully evade
detection from existing solutions.
Limitations of Log and Provenance Analysis Solutions.
Today’s enterprises are rich in commercial threat detection
tools and log data; however, as we show in § 5.3, the log-based
commercial TDS [61] deployed in our enterprise produces a
large number of false positive alarms, because it is strict in

1We evaluate SIGL in this scenario in § 5.

2

matching predefined, single-event signatures (e.g., a process
should not write to an unknown file). Newer research proto-
types use provenance for intrusion detection [28, 29, 49, 63],
which provides more contextual analysis, but these systems
value time and space efficiency over fine-grain learning preci-
sion. As such, they tend to over-generalize statistical graph
features with constrained graph exploration. For example,
Fig. 1 depicts the graph structure surrounding the malicious
process (taskhost.exe). Rectangles, ovals, and diamonds
represent processes, files, and sockets, respectively; edges rep-
resent relationships between these objects. The shaded area
represents the malicious activity that does not exist in normal
ESET AV Remover installations. These malicious activities
comprise only a small portion of the entire graph, essentially
hiding among the greater number of normal events that take
place during benign installation. Notice that the graph struc-
ture surrounding the malicious process (taskhost.exe) is
similar to that around the benign AVRemover.exe, both of
which start a new process and communicate with an outside
IP address. Existing IDS cannot distinguish these similar
structures, because those systems use localized graph anal-
ysis (e.g., 1-hop neighborhoods) that limits their ability to
explore more distant relationships that provide a richer pic-
ture of host behavior. Thus, they produce a large number of
false alarms. Even when the alarms are real, it is difficult
to pinpoint the cause of an alarm, because existing systems
summarize features, thereby losing details.

These existing systems make rational tradeoffs, because
their goal is whole-system realtime detection over a long
time period. Consequently, they must handle large and fast-
growing provenance graphs. In contrast, SIGL focuses on
the detection of malicious installation and thus requires a
different set of trade-offs.
SIGL Insight. The key insight behind SIGL is that software
installation is generally a well-defined, multi-staged process
that can be represented as a bounded, static graph. The
bounded nature of the graph means that we can analyze the
graph in its entirety rather than having to summarize it. The
multiple stages of installation suggest that we use models that
are inherently temporal. SIGL learns both the structure and se-
quencing of installation without manual feature engineering.

3 Problem Formulation and Threat Model

We formalize the software installation malware detection
problem as a graph-based outlier detection problem. Software
installation begins when installer execution begins, e.g., the
user double clicks on the downloaded package; it terminates
when the installer process and all its descendants exit.

We characterize the installation behavior of a software
package as a chain of system events leading to its binary files
being written to a host system. We then define a software
installation graph G = (V,E), an attributed directed acyclic
graph (DAG), to represent this event chain. Nodes V represent
system subjects (i.e., processes) and objects (e.g., files, sock-
ets), and edges E record interactions between them. Given a
number of benign installations L = {G (s1),G (s2), . . . ,G (s j)}
on endpoint systems s1,s2, . . . ,s j, our goal is to learn a model
M of the installation behavior that classifies a new instal-
lation graph G (sk),k 6∈ {1,2, . . . , j} as benign or malicious.
Given an abnormal graph G , we also want to rank process
nodes Vp ⊂ V to identify which processes exhibit the most

Figure 2: SIGL collects existing audit data from enterprise workstations and
constructs software installation graphs to train a deep autoencoder using a
graph LSTM as its encoder. The resulting model is used to detect anomalous
test graphs and rank nodes within the graph based on their anomaly scores.

anomalous behavior.
We assume that the attacker’s attempt to infiltrate an enter-

prise network through malicious software installation is the
initial system breach. The attacker may distribute malicious
installers using phishing emails, through legitimate software
distribution channels (i.e., by compromising the integrity of
such channels or acting as a man-in-the-middle), or by direct
access to the network (i.e., an insider attack).

SIGL’s threat model assumes the integrity of the under-
lying OS and audit framework, as is standard for existing
provenance-based systems [28,63,66]. We further assume the
integrity of provenance records, which can be guaranteed by
using existing secure provenance systems [31, 62].

4 SIGL Framework

We begin with an overview of SIGL’s architecture and then
present the technical details of each major component.

4.1 System Overview
SIGL uses abnormal system behavior to detect installation of
malicious software. Its operation consists of three stages: 1
data collection & featurization, 2 model training & validation,
and 3 anomaly detection & prioritization. Fig. 2 illustrates
SIGL’s architecture and workflow.
1 Data Collection & Featurization. For each software in-
stallation considered, SIGL gathers audit logs from a col-
lection of machines in the enterprise and transforms each
machine’s audit logs into a graphical representation called a
software installation graph (SIG, § 4.2). It then divides the
complete set of graphs (G) into training (GT) and validation
(GV) sets, with approximately 80% in the training set and 20%
in the validation set. Thus, G represents a benign software
installation graph for a particular install. SIGL then learns two
node embedding models (§ 4.3) from GT .
2 Model Training & Validation. Given the features learned
in 1 , SIGL trains a deep graph learning model (§ 4.4), which
is a deep autoencoder with a graph LSTM component as
its encoder and a multilayer perceptron as its decoder. The
autoencoder learns to reconstruct normal process nodes in
G ∈GT from their latent representations encoded by the graph
LSTM, minimizing reconstruction errors. SIGL then uses the
validation data GV to verify the performance of the learned
model and, using the reconstruction errors, determine the
threshold for anomaly detection.
3 Anomaly Detection & Prioritization. Given a trained
model and threshold (§ 4.5), SIGL takes audit logs from a new

3

Subject Object Event Relationship

process
process start; end
file rename; read; write; execute; delete
socket send; receive

Table 1: System entities and dependency relationships.

software installation, generates its corresponding SIG, embeds
its nodes using the trained node embedding models, and uses
the autoencoder model to reconstruct all process nodes. The
resulting reconstruction losses are the anomaly scores for each
node. If the overall anomaly score exceeds the threshold, SIGL
classifies the installation as abnormal and reports a list, sorted
by anomaly score, of the most suspicious processes. System
administrators can analyze process behavior through the SIG,
prioritizing the ones with the highest anomaly scores.

4.2 Software Installation Graphs
Similar to prior systems [23, 32], SIGL builds SIGs using
common logging frameworks (e.g., Windows ETW and Linux
Audit) based on standard provenance models [79]. SIGL trans-
forms each audit log event into an edge, whose source rep-
resents the subject of the event (i.e., the entity responsible
for creating the log record) and whose destination represents
the object being acted upon (e.g., files, socket connections).
The edge itself represents a dependency relationship between
these entities. Table 1 shows the dependency relationships
that we consider in our work.

SIGL produces the SIG by backtracking [44] from the in-
stalled software executable(s), represented as file node(s).
Given a file node, SIGL adds all edges having that node as
their destination. It then recursively repeats this procedure
for each newly added node, backtracking to the download
of the installation package. The resulting graph includes all
processes involved in the installation as well as any e.g.,
dynamically linked libraries (DLL) that were executed. We
apply an adjustable time bound on how far back we track
generic system services (represented as process nodes) that
are commonly invoked during software installation, thereby
minimizing dependency explosion [47]. If the installation
produced more than one installed executable, we combine the
backtraces into a single SIG. As is done in existing prove-
nance based analysis work [58, 62, 63], we produce acyclic
SIGs by creating multiple node versions as the state of the
corresponding subject/object changes [60].

4.3 Node Embedding for System Entities
Machine learning tasks depend on having a set of informative,
discriminative, and independent features [25]. Thus, node
featurization is an important building block in graph represen-
tation learning.

Popular network representation learning frameworks, such
as node2vec [25], DeepWalk [65], and metapath2vec [18],
apply natural language processing (NLP) techniques, most no-
tably word2vec [57], to derive latent embeddings that capture
contextual information encoded in the networks. However,
these approaches are not designed in the context of repre-
senting system entities; in particular, their node features do
not encode relationships between system entities and their
functionality within the system, which are important for down-
stream graph learning and anomaly detection.

A good embedding approach for system-level prove-
nance nodes must satisfy two important properties. First,
given a system entity that plays a particular role in a sys-
tem, its embedding must be close to that of other entities
if and only if their roles are similar. For example, both
system DLLs c:\windows\system32\ntdll.dll and c:
\windows\system32\kernel32.dll contain kernel func-
tions. Their embeddings should be close to each other in
the embedding space to facilitate downstream graph learning
that captures behavioral similarity of processes loading and
executing these two DLLs.

Second, the embedding approach must generalize to sys-
tem entities not in the training dataset. Such entities are espe-
cially common in software installation, because the installa-
tion almost always introduces temporary files and processes
that have semi-random path names. Mishandling such enti-
ties (e.g., assigning random embeddings) would cause down-
stream graph learning to produce excessive false positives for
lack of meaningful features.

We satisfy both of these properties by featurizing SIG
nodes in an embedding space such that node embeddings
encode semantic meanings of the system entities they repre-
sent, while effectively leveraging the classic word2vec [57]
learning model. To the best of our knowledge, we are the
first to use a neural-network-based approach to meaningfully
featurize system-level provenance nodes.
Node Embedding in SIGL. In NLP, word2vec embeds words
into a low-dimensional continuous vector space, where words
with similar context map closely together. Given a sequence
of words, word2vec employs a skip-gram model whose ob-
jective is to maximize the log probability of predicting the
context around a given target word. A fixed size sliding win-
dow on the text sequence determines the context. Assuming
the likelihood of observing each context word is independent
given the target word, word2vec maximizes:

max
T

∑
t=1

logP(wt−C, ...,wt+C|wt) = max
T

∑
t=1

∑
−C≤c≤C

logP(wt+c|wt)

P(wt+c|wt) is defined by a softmax function: P(wt+c|wt) =
exp(wt+c·wt)

∑
V
i=1 exp(wi·wt)

where C is the window size, wt+c and wt are

the embeddings of the context word wt+c and the target word
wt , and V is the vocabulary size.

We apply word2vec as a basis for our embedding ap-
proach to featurize path names associated with SIG nodes.
Each node in a SIG, whether file, process, or socket, corre-
sponds to a file system path name. These path names en-
code important semantic relationships. Using the same ex-
ample from earlier, c:\windows\system32\ntdll.dll and
c:\windows\system32\kernel32.dll reside in the same
directory, because they both contain kernel functions.

To map semantically related nodes close in the embedding
space, we use a component-based node embedding model,
where SIGL learns the embedding of each component of a
path and then follows an additive method [35] to embed a
node as the normalized summation of its path components.
SIGL performs directed random walks of fixed length l to
construct the causal context for each node: Given a source
node c0 in the SIG, SIGL traverses the graph following the
direction of the edges. If a node has more than one outgoing
edge, SIGL randomly picks an edge to continue the walk. Let
ci denote the ith node in the walk. The causal context C for
c0 is {ci|i = 1, . . . , l}, where ci is generated by the following

4

distribution:

P(ci = v|ci−1 = u) =
{ 1

N if (u,v) ∈ E
0 otherwise

where N is the number of outgoing edges from ci−1. SIGL
generates multiple causal contexts (i.e., multiple walks) for
each node.

Unlike existing embedding frameworks [18, 25, 65], our
approach does not consider each node label as an atomic
individual whose meaning can be derived only from neighbor-
ing nodes through random walks along the network; instead,
each path component essentially becomes part of the context.
If we treat the pathname as a single attribute, such context
information is lost in the resulting embedding.
Embedding Unseen Nodes. The approach described so far
produces embeddings for only those nodes that have been
observed in the training graphs (GT). As mentioned above,
software installation often creates temporary folders with
meaningless base path names, sometimes containing machine-
specific variations. In these cases, SIGL uses the à la carte
embedding model [42], which follows the distributional hy-
pothesis [30] to efficiently infer the embeddings for out-of-
vocabulary (OOV) words via a linear transformation of ad-
ditive context embedding (i.e., the average embeddings of
context words). Given the contexts Cw of a word w in a vocab-
ulary and assuming a fixed context window size |c|, a linear
transformation is learned through

vw ≈ Avadditive
w = A(

1
|Cw| ∑

c∈Cw

∑
w′∈c

vw′)

where vw are existing high-quality word embeddings. After
learning the matrix A, any OOV word f can be embedded in
the same semantic space by

v f = Avadditive
f = A(

1
|C f | ∑

c∈C f

∑
w∈c

vw)

à la carte complements the component-based embedding
approach, because it uses the same context-aware and additive
mechanism. Thus, we produce meaningful embeddings using
both random walks and pathname components. For example,
given an unseen DLL c:\windows\system32\wow64.dll,
our component-based approach allows à la carte to take into
consideration its parent directories (which are the same as
those learned for the ntdll.dll and kernel32.dll nodes),
in addition to any random walks that pass through the node.

SIGL trains the à la carte model using GT and uses the
trained model to featurize unseen nodes in the validation
graphs GV and during live deployment.

4.4 Deep Graph Learning on SIGs
SIGL uses an autoencoder (Fig. 3) to learn a robust representa-
tion of the process nodes in a SIG for both anomaly detection
and prioritization. The autoencoder consists of two parts: an
encoder, for which we use a graph long short-term memory
network (graph LSTM), and a decoder, for which we use a
multilayer perceptron (MLP).
Graph LSTM. An LSTM [33] captures long-term depen-
dencies of linear sequences. Originally developed for NLP
tasks, LSTMs have been successfully adapted to a variety
of sequence modeling and prediction tasks, such as program
execution [87] and attack prediction [71].

Figure 3: SIGL’s autoencoder architecture.

The standard LSTM architecture learns sequential informa-
tion propagation only; tree-structured LSTMs [75] and the
more general graph LSTMs [64] are two natural extensions
that incorporate richer network topologies. Graph LSTMs
allow for flexible graph structures (e.g., DAGs) and consider
distinct edge types. As in standard LSTMs, each graph LSTM
unit j contains input and output gates i j and o j, a memory
cell c j, and the hidden state h j. A graph LSTM unit might
have multiple child units C(j). For each child unit k, there is a
forget gate f jk and a type-specific weight matrix Ue jk , where
e jk denotes the edge type that connects j and k. Given the
input vector for unit j, the transition equations are [64]:

i j = σ(Wix j + ∑
k∈C(j)

Ue jk
i hk +bi)

o j = σ(Wox j + ∑
k∈C(j)

Ue jk
o hk +bo)

c̃ j = tanh(Wcx j + ∑
k∈C(j)

Ue jk
c hk +bc)

f jk = σ(W f x j +Ue jk
f hk +b f)

c j = i j� c̃ j + ∑
k∈C(j)

f jk� ck

h j = o j� tanh(c j)

where x j is the input feature vector, W ’s are the input weight
matrices, b’s are the bias vectors, σ is the sigmoid func-
tion, tanh is the hyperbolic tangent function, and � is the
Hadamard product.
SIGL’s Autoencoder. Intuitively, SIGL’s autoencoder mod-
els process nodes as a function of those nodes that came
before them (temporally) in the SIG. The intuition underlying
this encoder-decoder architecture (i.e., autoencoder) is that
anomalous nodes are inherently difficult to be represented
accurately in the embedding space, so trying to reconstruct
them produces much larger reconstruction losses. SIGL uses
those losses to distinguish abnormal installations from normal
ones (§ 4.5).

Although an alternative solution would be to use a binary
classifier to determine if a SIG represents a normal installation
or not, training such a classifier would require more labeled
data (both normal and anomalous SIGs) than can easily be
collected [5]. A set of SIGs dominated by normal installations
produces class imbalance, and imbalanced two-class training
often results in poor model performance [83]. Additionally,
as an attacker’s modus operandi changes over time, keeping
the trained classifier up-to-date becomes impractical [71].
Binary classification also provides no insight on the cause of

5

the attack. A system administrator would have to manually
compare a problematic SIG to one or more known good SIGs
to identify potentially malicious processes.

SIGL’s autoencoder addresses limitations of binary classifi-
cation through unsupervised one-class learning that requires
only normal SIGs. It jointly trains the graph LSTM, as the
encoder, with a MLP as the decoder. As illustrated in Fig. 3,
the encoder learns the hidden representation of each process
node through the graph LSTM, taking into account the node’s
attributes (i.e., feature embedding) and the hidden representa-
tions of all its source nodes (i.e., temporality) distinguished by
the connection types (i.e., heterogeneity). The decoder then
learns to reconstruct the original node embedding from the
hidden representation (h j). The objective is to minimize the
reconstruction loss in the training dataset GT , which consists
of only normal SIGs (i.e., unsupervised learning).

4.5 Anomaly Detection
The autoencoder’s neural network architecture learns to recon-
struct process nodes. Nodes that show significant topological
difference from those encountered during training correspond
to unexpected changes in installation behavior, which signals
malware activity and will lead to large reconstruction errors.
SIGL is a deviation-based anomaly detection system [3], in
that it treats process nodes with high reconstruction loss as
anomalies. By ranking process nodes in a SIG by their re-
construction losses (i.e., anomaly scores), SIGL helps system
administrators prioritize analysis of anomalous nodes and
quickly eliminate false alarms.

SIGL determines a normality threshold from the reconstruc-
tion losses observed during validation. We typically observe
that a small number of process nodes (e.g., those with a large
number of descendants) are inherently much more difficult to
reconstruct than the rest of the process nodes in a SIG. These
nodes have orders of magnitude higher reconstruction losses.
If we arrange the losses in descending order, we observe “nat-
ural breaks” that partition nodes into ranges. The losses in the
first range, i.e., the ones with the largest values, represent the
“limits” of SIGL’s representational capability, thus providing
us with a reasonable baseline to determine the threshold of
normal software installation.

SIGL uses Jenks’ natural breaks [37], a statistical map-
ping method, to systematically discover class intervals of the
natural breaks in the data series (i.e., reconstruction losses).
Jenks’ natural breaks is an iterative optimization method that
minimizes intra-class variance while maximizing inter-class
variance by moving one value from the class with the largest
deviations from the mean to the class with the lowest until the
sum of the intra-class deviations reaches its minimum [38].

Using Jenks’ natural breaks, which separates reconstruc-
tion losses of a SIG’s process nodes into multiple “zones”,
SIGL identifies the zone with the largest average loss for each
validation graph and constructs a threshold list that contains
those average losses for all the validation graphs. The nor-
mality threshold in our experiments (§ 5) is set to be three
standard deviations above the average value of the threshold
list. However, system administrators can easily adjust this
threshold according to their needs (e.g., to optimize towards
a low false positive/negative rate). Alg. 1 shows the pseu-
docode for setting the threshold.

Given the normality threshold, SIGL considers any SIG
exceeding this threshold as abnormal and provides system

Algorithm 1: Normality Threshold

Input :Validation graph set GV
Output :Normality threshold T
Variables :thresholdList ← list of largest average losses from GV

1 thresholdList← []
2 for G ∈ GV do
3 nodeLosses = GraphAutoEncoder(G)
4 largestAverageLoss = JenksMaxZoneAvg(nodeLosses)
5 thresholdList.append(largestAverageLoss)
6 std ← standardDeviation(thresholdList)
7 mean← mean(thresholdList)
8 T ← mean + 3 * std
9 return T

10 Func JenksMaxZoneAvg(nodeLosses):
11 zone1, zone2, . . . = JenksNaturalBreaks(nodeLosses)
12 return max(mean(zone1), mean(zone2), . . .)

Software Installer Version Installation Framework # T # V # BT # M
FireFox N 18.1.0 Mozilla Installer 86 12 24 20
FileZilla N 3.35.1 Nullsoft Scriptable Install System 88 12 24 40
PWSafe 3.48.0 Nullsoft Scriptable Install System 88 12 24 40
MP3Gain 1.2.5 Nullsoft Scriptable Install System 88 11 23 40
ShotCut 18.12.23 Nullsoft Scriptable Install System 85 12 24 40
TeamViewer N 14.4.2669 Nullsoft Scriptable Install System 84 12 24 40
Foobar 1.4.6 Nullsoft Scriptable Install System 85 12 24 40
7Zip 18.5.0 SFX 88 12 24 40
TurboVNC 2.1.2 Inno Setup 88 12 24 40
WinMerge 2.14.0 Inno Setup 85 11 23 40
Launchy 2.5 Inno Setup 151 21 42 40
Skype N 8.50.0 Inno Setup 80 11 22 40
WinRAR 5.71.0 SFX 84 12 24 20
DropBox N 79.4.143 DropBox Installer 84 11 23 20
Slack N 4.0.1 NuGet Package 84 12 24 20
Flash N 32.0.0.223 Flash Installer 84 12 24 20
OneDrive N 19.103.527 SFX 84 12 24 20
NotePad++ 7.7.1 NotePad Installer 85 11 23 20
ICBC Anti-Phishing 1.0.8 ICBC Installer 85 11 23 20
ESET AV Remover F 1.4.1 ESET Installer 75 10 21 20

T: Training V: Validation BT: Benign Test M: Malicious Installer
Table 2: Software installers used in the experiments. Popular software instal-
lations in the enterprise are marked with N. The software discussed in § 2 is
marked with F. Note that malicious installers are included only in the test
dataset.

administrators with a list of its process nodes sorted by their
anomaly scores.

5 Evaluation

We present a number of experiments to evaluate SIGL as a
behavior-based malware detection system for secure software
installation on enterprise end-point systems and an experimen-
tal testbed. In particular, we focus on the following research
questions:
Q1. What is the performance of SIGL in detecting malicious
software installation, and how does it compare to existing
commercial TDS and other anomaly-based detection systems
that leverage data provenance? (§ 5.3, § 5.4)
Q2. Can SIGL effectively guide cyber-analysts to quickly
identify abnormal processes and potential malware? (§ 5.5)
Q3. Can SIGL be realistically used in an enterprise setting?
(§ 5.6, § 5.7, § 5.8, § 5.10, § 5.11)
Q4. How robust is SIGL against adversarial attackers? (§ 5.9)
Q5. Can SIGL generalize to a large variety of software pack-
ages and different platforms? (§ 5.12)

5.1 Datasets
We describe our methodology to collect audit data from be-
nign and malware-infected software installations from all the
workstations at NEC Labs America using Windows ETW. We
also generated additional datasets on our Linux testbed us-
ing Linux Audit. All experiments related to the testbed are
discussed in § 5.12, while other sections focus on real-world
Windows logs from the enterprise.

6

Installer Name Malware Signature (MD5) Malware Type Malware Family
TeamViewer a2fd7c92f1fb8172095d8864471e622a Win32/Agent Trojan
TeamViewer a538439e6406780b30d77219f86eb9fc Win32/Skeeyah.A!rfn Trojan
ESET AV Remover F d35fa59ce558fe08955ce0e807ce07d0 Win32/Wadhrama.A!rsm Ransomware
Flash ab6cef787f061097cd73925d6663fcd7 Win32/Banload TrojanDownloader
Flash 7092d2964964ec02188ecf9f07aefc88 Win32/Rabased HackTool
Flash 5a9e6257062d8fd09bc1612cd995b797 Win32/Offerbox PUA

Table 3: Malicious installers found in the wild. The malware discussed in § 2
is marked with F.

Malware Signature (MD5) Malware Type Malware Family
03d7a5332fb1be79f189f94747a1720f Win32/VBInject.AHB!bit VirTool
02c7c46140a30862a7f2f7e91fd976dd Win32/VBInject.ACM!bit VirTool
1243e2d61686e7685d777fb4032f006a Win32/CeeInject.ANO!bit VirTool
056a5a6d7e5aa9b6c021595f1d4a5cb0 Win32/Prepscram SoftwareBundler
0f0b11f5e86117817b3cfa8b48ef2dcd Win32/Prepscram SoftwareBundler
c649ac255d97bd93eccbbfed3137fbb8 Win32/Unwaders.C!ml SoftwareBundler
02a06ad99405cb3a5586bd79fbed30f7 Win32/Fareit.AD!MTB PasswordStealer
1537083e437dde16eadd7abdf33e2751 Win32/Fareit.AD!MTB PasswordStealer
01abfaac5005f421f38aeb81d109cff1 Win32/Primarypass.A PasswordStealer
c622e1a51a1621b28e0c77548235957b Win32/Fareit!rfn PasswordStealer
04e8ce374c5f7f338bd4b0b851d0c056 Win32/DownloadGuide PUA
c62ced3cb11c6b4c92c7438098a5b315 Win32/Puwaders.A!ml PUA
73717d5d401a832806f8e07919237702 Win32/KuaiZip PUA
05339521a09cef5470d2a938186a68e7 Win32/Adload TrojanDownloader
0e8cce9f5f2ca9c3e33810a2afbbb380 Win32/Gandcrab.E!MTB Ransomware
0f030516266f9f0d731c2e06704aa5d3 MSIL/Boilod.C!bit HackTool
0ed7544964d66dc0de3db3e364953346 Win32/Emotet.A!sms Trojan
c60947549042072745c954f185c5efd5 Win32/Delpem.A Trojan
02346c8774c1cab9e3ab420a6f5c8424 Win32/Occamy.C!MTB Trojan
0314a6da893cd0dcb20e3b46ba62d727 Win32/Occamy.B!bit Trojan

Table 4: Real malware used in the experiments to create malicious installers.

Benign Data. We collected benign data from the enterprise
event database where system administrators store and monitor
company-wide system activity. We constructed software in-
stallation graphs (§ 4.2) for popular software in the enterprise.
Software versions are consistent across different machines.
Administrators carefully monitor installations to ensure their
authenticity. We installed additional legitimate and popular
software packages in the market [20] to increase the size of
our dataset. We also included benign versions of malicious
installers found in the wild (Table 3). Table 2 shows the com-
plete list of software installers used in our evaluation.
Malware Data. We collected malware data from malicious
installers discovered in the wild (Table 3). We also created
more than 600 malicious installers by combining benign soft-
ware installers in Table 2 with real malware from VirusShare.

Table 4 lists the malware samples we used in our evaluation.
We randomly selected malware samples from a wide range of
malware families that exhibit diverse behavior. For example,
trojan attacks and ransomware typically communicate with a
remote server, while malware of the PUA family downloads
and installs potentially unwanted applications.

We investigated past real-world security incidents (e.g., [41,
53, 54]) that involve malicious installers as the entry point to
high profile attacks and observed two general approaches to
designing malicious installers:
Bundle malware with legitimate installers. The attackers cre-
ate a “wrapper installer” that simultaneously runs an unmod-
ified benign installer in the foreground and malware in the
background. We bundle each legitimate installer with every
malware sample in Table 4 to create malicious installers.
Embed malware in legitimate installers. The attackers modify
an existing benign installer and embed malware in the installer.
The installer executes the malware during the installation
process. This approach requires us to decompile existing
installers and recompile them with malware.

To make our malicious installers representative, we select
software (Table 2) using three popular installation frame-
works: Nullsoft Scriptable Install System (NSIS), Inno Setup,
and SFX, and insert every malware sample in Table 4 to create
malicious installers. Those frameworks are popular vehicles
to spread malware [16, 69]; they are also widely used among

Inno Setup (631)

51.0%

Nullsoft (294)

23.8% SFX (141)

11.4%

Other (171)

13.8%

Figure 4: Popularity of installation frameworks for Windows applications.
Other frameworks include UPX, InstallShield, PEncrypt, CreateInstall, etc..

Method Precision Recall Accuracy F-Score FP Percentage
SIGL 0.94 0.99 0.96 0.96 0.06
Commercial TDS [61] 0.07 0.59 0.90 0.12 0.93
StreamSpot [49] 0.97 0.52 0.72 0.68 0.03
Frappuccino [28] 0.95 0.12 0.51 0.21 0.05

Table 5: Overall SIGL experimental results compared to other approaches.

popular software installers. Fig. 4 shows the market share of
those frameworks based on our survey of 1,237 Windows
applications hosted on Softpedia.

5.2 Implementation & Experimental Setup
We implement SIGL’s data collection and graph generation
module in Java 8 so that we can use the existing audit event
server deployed in our enterprise, which provides APIs only in
Java. SIGL’s core analytic algorithms, including node embed-
ding, modeling, and anomaly detection, are implemented in
Python 3.5 and PyTorch 1.1.0 with CUDA 9.0 toolkit. Specifi-
cally, we use the Gensim [68] library to generate node embed-
dings for training graphs and Deep Graph Library (DGL) [1]
to implement deep graph neural networks on top of PyTorch.

For all experiments, we partition the benign input data
into a training set (70%), a validation set (10%), and a false
positive test set (20%). Table 2 shows the exact number of
software installation graphs used for training, validation, and
testing for each experiment.

We parameterize the node context for node embedding
with window size 5, 10 random walks, each of length 10,
and 128 dimensions. The same window size is used in à la
carte. We use the skip-gram training algorithm with negative
sampling [26] and run 20 epochs over the corpus.

SIGL performs unsupervised learning; therefore, we need
only benign installers during training. We train SIGL’s deep
graph neural network on a system with a NVIDIA GTX 1080
Ti graphics card with 12 GiB GPU memory. We train the
model for 100 epochs with the training batch size set to 25,
validate model performance after every epoch, and choose the
model that produces the best performance on validation data.

5.3 SIGL Experimental Results
We evaluate SIGL’s detection performance on 625 malicious
installers across a variety of software packages (Table 2).
Table 5 shows that SIGL achieves over 90% precision, recall,
accuracy, and F-score in identifying abnormal installation
behavior. It correctly identified all malicious installers found
in the wild. In § 6, we discuss two attack cases from Table 3 to
further illustrate SIGL’s ability to detect real-world malicious
installers.

SIGL shares a common characteristic with many anomaly-
based detection systems in that it produces more false pos-

7

Software Installer Precision Recall Accuracy F-Score
FireFox 0.78 0.70 0.77 0.74
FileZilla 0.98 1.0 0.98 0.99
PWSafe 0.98 1.0 0.98 0.99
MP3Gain 0.98 1.0 0.98 0.99
ShotCut 0.98 1.0 0.98 0.99
TeamViewer 0.87 1.0 0.91 0.93
Foobar 1.0 1.0 1.0 1.0
7Zip 0.98 1.0 0.98 0.99
TurboVNC 0.95 1.0 0.97 0.98
WinMerge 0.98 1.0 0.98 0.99
Launchy 0.8 1.0 0.88 0.89
Skype 1.0 1.0 1.0 1.0
WinRAR 0.95 1.0 0.98 0.98
DropBox 0.91 1.0 0.95 0.95
Slack 0.91 1.0 0.95 0.95
Flash 1.0 1.0 1.0 1.0
OneDrive 0.74 1.0 0.84 0.85
NotePad++ 1.0 1.0 1.0 1.0
ICBC Anti-Phishing 0.95 1.0 0.98 0.98
ESET AV Remover 0.95 1.0 0.98 0.98

Table 6: SIGL experimental result breakdown for each software installer.

itives (FPs) than false negatives (FNs), as reflected by its
higher recall (99%) than precision (94%). However, precision
and recall are well balanced, meaning that SIGL does not tend
to reduce the number of FPs by compromising its ability to
detect actual malicious installers. In § 5.4, we study two other
anomaly-based detection systems that succumb to this pitfall.

Table 6 further details the experimental results for each
software installer. It shows that SIGL delivers consistent per-
formance over a wide range of software that exhibit vastly
different installation behaviors on host systems. We investi-
gate two, FireFox and OneDrive, that have slightly lower
precision and recall. We notice that the installation process of
these two applications sometimes includes software updates
that are also captured in SIGs. SIGL therefore has difficulty
generalizing both installation and update behavior from only
a few instances of training graphs, resulting in lower perfor-
mance than that of other applications.

5.4 Comparison Study
We compare SIGL against our in-house commercial TDS [61]
and two existing research anomaly detection systems,
StreamSpot [50] and Frappuccino [28], that analyze prove-
nance graphs. We do not evaluate SIGL against other com-
mercial TDS, because they typically require intelligence ser-
vice subscriptions and customized deployment from external
vendors. Similarly, we exclude evaluation against academic
systems (such as Mastino [67] and Dropper Effect [46], see
§ 8) that leverage proprietary information from security ven-
dors that is unavailable to us. SIGL enables an enterprise to
detect threats using local, enterprise-wide information readily
available to system administrators; additional protection from
global security services such as Symantec is complementary
to SIGL.

We conducted a preliminary experiment to show that our
malicious installers (created using real malware in Table 4)
can already significantly reduce the efficacy of commercial
anti-virus tools, even without changing malware signatures.
We upload the original malware samples (Table 4) to Virus-
Total, which scans the samples and reports the number of
anti-virus engines that detect them. On average, 80.8% of
the engines detect the malware listed in Table 4; the lowest
detection rate was 70.0%. Testing on our malicious installers,

VirusTotal reports only 42.4% on average, and a minimum
detection rate of 10.8%. Therefore, we do not further evalu-
ate SIGL against commercial anti-virus tools, because their
limitations are well-known in the literature [67].

We briefly describe each evaluated system and discuss the
results in the remainder of this section. Table 5 summarizes
the overall results for all the systems in this study.
Commercial TDS. The commercial TDS [61] inspects every
event between a process and a file and determines its potential
to be a threat based on two factors: A) the familiarity of a file
– if the TDS has some knowledge of the file in the past (based
on the file name in the training data), then it is less likely to be
malicious; B) the diversity of a process – if a process writes to
many different files, then the write event itself is less likely
to be malicious, even if the file is unfamiliar to the TDS.
Frappuccino. Frappuccino [28] detects program anomalies
by analyzing whole-system provenance graphs [62]. It ex-
plores the graph’s local neighborhood structures using a
vertex-centric label propagation algorithm to compare the
similarity between two provenance graphs. Based on the as-
sumption that normal behavior of a program produces similar
provenance graphs when it runs on different host systems, it
clusters normal provenance graphs of many running instances
of the program as its model and detects abnormal program
runs when their graphs cannot fit into any existing clusters.
We compare SIGL against Frappuccino, because both sys-
tems make similar assumptions on the ability to distinguish
abnormality from normalcy using provenance graphs.
StreamSpot. StreamSpot [49] detects host-system intrusions
based on information flow graphs. Similar to Frappuccino,
it leverages a clustering-based approach using a similarity
function that compares two graphs based on their statistics. It
represents each graph as a vector of local substructure frequen-
cies and further approximates the vector using a similarity-
preserving hashing scheme. The hashing scheme reduces the
dimensionality of the vector while preserving discriminatory,
principal features that better generalize the learned model.
Since StreamSpot claims to detect any anomalies on the host
system, we expect it to identify abnormal installation activity.
Experimental Results. Table 5 shows the overall results for
all the baseline systems. For StreamSpot and Frappuccino,
we use the same experimental setups as described in their
respective papers or as implemented in their publicly avail-
able code repositories. We notice that StreamSpot’s original
implementation analyzes only small local substructures in the
graph. Such a constrained graph exploration tends to make
graphs look overly similar to each other, thus resulting in high
FNs and low true positives (TPs). We therefore reimplement
StreamSpot to analyze larger graph neighborhoods. We re-
port the reimplementation results (i.e., better performance)
in Table 5.

We see from Table 5 that SIGL significantly outperforms
all baseline systems in terms of recall, accuracy, and F-score.
It reported only 42 FPs among over 1,000 software installa-
tions in three months. On the contrary, the commercial TDS
produces an overwhelmingly large number of FPs (9,240
events are considered potential threats during the experiment),
resulting in exceedingly low precision 2. The commercial

2The commercial TDS’s performance values are computed on a per-event
basis, rather than a per-graph basis, because it has no notion of causality.
To understand an alarm, however, system administrators typically resort to
causal analysis, which requires them to inspect benign events in addition to
the alarm-triggering event.

8

TDS results are consistent with a recent study that shows that
many enterprises receive at least 300 alerts per day with more
than 50% being FPs [21]. StreamSpot marginally outperforms
SIGL in precision by only 3%, at the expense of a much lower
recall (by 47%). A low recall is typically a product of low TPs
and high FNs. Both StreamSpot and Frappuccino suffer from
low recall because they have limited graph analytical capabil-
ity. They use a vertex-centric approach to explore local graph
neighborhoods, but such exploration ignores temporal rela-
tionships among those substructures and provides only limited
views of graph evolution. As a result, they are unable to dis-
tinguish malicious installers from benign ones, producing few
FPs (i.e., higher precision) but many FNs (i.e., lower recall).
Although SIGL reports slightly more FPs, we show in § 5.5
that it provides auxiliary information that allows rapid inspec-
tion and dismissal of FPs, which is absent in both StreamSpot
and Frappuccino. Reducing FPs from the hundreds per day
of a typical commercial TDS [21] to fewer than one per day
is a significant step at mitigating “alert fatigue” [32]. Exist-
ing techniques, such as whitelisting trusted processes during
backtracking, can further reduce these FPs. The performance
of our StreamSpot reimplementation demonstrates the impor-
tance of incorporating structural information in the analysis.
StreamSpot outperformed Frappuccino, because Frappuccino
is unable to retain just the relevant information; it overgener-
alizes its model with “noise” in the dataset.

SIGL benefits from three important features of graph
neural networks. First, they effectively filter noise. SIGL
learns to capture relevant information during training, a data-
oriented approach different from the hashing technique used
in StreamSpot. Second, they preserve long-term memory.
SIGL memorizes the sequential procedure of a software in-
stallation and uses this long-term memory to determine the
legitimacy of a process during different stages of the instal-
lation. StreamSpot and Frappuccino consider only “bag-of-
subgraphs” when analyzing provenance graphs. Third, they
consider non-linear encoding of graph structures. Graph struc-
tures are contexts that help distinguish normal and abnormal
process nodes. SIGL learns graph structure via its unique neu-
ral network architecture, while the commercial TDS isolates
each event from its broader execution context.

5.5 Prioritizing Anomalous Processes
Many existing provenance-based detection systems [28, 49,
63] lack support for postmortem attack investigation, because
their contextual analysis typically requires a holistic under-
standing of a large provenance (sub)graph. It is therefore diffi-
cult to pinpoint the exact nodes/edges responsible when a deci-
sion is made based on the entire (sub)graph. Others [32,34,58]
instead focus on using data provenance to correlate alerts from
simple edge-based detection systems (e.g., commercial TDS)
to reduce false alarms and provide attack attribution. How-
ever, they depend on the underlying threat detection system
to reliably report all possible threats, assuming a 100% de-
tection rate [32]. SIGL conducts contextual graph analysis
to maintain high detection accuracy. Meanwhile, we show
in Fig. 5 that it also assists attack attribution by accurately
identifying anomalous processes within the graph.

We consider three levels of attribution that provide cyber-
analysts with increasing degrees of guidance. We call the
malware process (and its associated file) the target and the
ranked list generated by SIGL based on processes’ anomaly

Fire
Fox

File
Zilla

PW
Safe

M
P3G

ain

Sho
tC

ut

Tea
mView

er

Foo
ba

r
7Z

ip

Turb
oV

NC

W
inM

erg
e

Lau
nc

hy
Sky

pe

W
inR

AR

Drop
Box

Slac
k

Flas
h

One
Driv

e

Note
Pad

++
IC

BC

AV
Rem

ov
er

0

0.2

0.4

0.6

0.8

1

%
of

m
al

ic
io

us
in

st
al

le
rs

Basic Guidance Improved Guidance Targeted Guidance

Figure 5: Prioritization of anomalous processes.

scores the list. Note that SIGL assigns every process and
its versions (§ 4.2) an anomaly score. If SIGL identifies a
process among the top 10 in the list that is fewer than 3
hops away from the target (Fig. 5, checks), we consider SIGL
successfully having provided basic guidance. If the process
is ranked among the top 5 and is less than or equal to 3 hops
away (Fig. 5, stripes), SIGL has provided improved guidance.
Finally, if SIGL identifies the target among the top 5 in the
list or the target is only 1 hop away from a top-5 process
(Fig. 5, solid), we say that SIGL offered targeted guidance.
These three levels of guidance are based on typical behavior
of system administrators, trying to understand the sequence
of steps that produced an attack [44], and the value (e.g., time
savings) that SIGL brings to the human analysts.

Fig. 5 shows that SIGL is able to provide at least basic guid-
ance to identify almost all malicious processes or files for
all software installers in the experiment. In fact, it provides
targeted guidance for at least 10% of malicious installers in
all cases and more than 50% of them in the majority (75%) of
the cases. We investigate two specific examples, Foobar and
OneDrive, as they have distinctive results. SIGL has difficulty
providing effective guidance for about half of the malicious
Foobar installers. We inspected the SIGs of those installers
manually and discovered that SIGL identifies many versions
of a process that originally connects to the malware file as
the most anomalous. It is likely that anomaly scores “accu-
mulate” as later versions of the process are being analyzed.
Concrete investigation of how provenance graph versioning
affects graph analysis is left for future work.

SIGL is not able to provide targeted guidance for OneDrive,
because OneDrive frequently identifies the update processes
in the SIG as among the most anomalous. As mentioned
in § 5.3, a small number of OneDrive training SIGs include
both installation and update processes. SIGL cannot accu-
rately learn update behavior from only a small number of
samples and therefore incurs high reconstruction losses for
those processes. The same situation is less severe in Fire-
Fox, because the update process occurs more frequently in its
training data. However, it does result in lower recall (Table 6)
as the FireFox model attempts to generalize both behaviors
using a small number of training samples.

Overall, we show that SIGL can effectively guide cyber-

9

Software Installer Modeled Version Test Version False Alarm True Alarm Guidance
FireFox 18.1.0 19.0.1 7 3
FileZilla 3.35.1 3.34.0 7 3
PWSafe 3.48.0 3.49.0 7 3
MP3Gain 1.2.5 1.2.4 7 3
ShotCut 18.12.23 18.12.25 7 3
TeamViewer 14.4.2669 14.5.1691 7 3
Foobar 1.4.6 1.5 7 3
7Zip 18.5.0 19.0.0 7 3
TurboVNC 2.1.2 2.2.2 7 3
WinMerge 2.14.0 2.13.22 3 3
Launchy 2.5 2.6 7 3
Skype 8.50.0 8.51.0 7 3
WinRAR 5.71.0 5.61.0 7 3
DropBox 79.4.143 69.4.102 3 3
Slack 4.0.1 4.0.2 7 3
Flash 32.0.0.223 32.0.0.238 7 3
OneDrive 19.103.527 19.086.502 3 3
NotePad++ 7.7.1 7.7.0 7 3
ICBC Anti-Phishing 1.0.8 N/A N/A N/A N/A
ESET AV Remover 1.4.1 1.3.2 7 3

: Targeted Guidance : Improved Guidance : Basic Guidance
Table 7: Results when testing an adjacent software version on a model.

analysts to quickly identify abnormal processes and potential
malware. Note that neither StreamSpot nor Frappuccino pro-
vides any guidance to assist attack attribution.

5.6 Using SIGL in an Enterprise
In an enterprise environment, system administrators configure
workstations to include a standard set of installations. When
there is a new software release, the installed software needs to
be updated. This can lead to a supply-chain-attack scenario,
where the attacker exploits a vulnerability in the new release
by compromising the software distribution channel, so no le-
gitimate version of the new release is available. Therefore, we
investigate how well SIGL models generalize across versions,
given that administrators’ only defense is the model from the
previous version of the software installation.
Experimental Setup. We installed an adjacent version of
the software listed in Table 2. In some cases, our modeled
software was already the latest release (at the time of writing);
in those cases, we installed its previous version instead. To
create malicious installers, we bundle each software installer
with a random malware in Table 4. Table 7 lists the versions
of the software we use in this experiment. Note that ICBC
Anti-Phishing has only one version.
Experimental Results. Table 7 shows the results for each
installer modeled in § 5.3. We run only one benign and one
malicious instance against each model. If SIGL considers a
benign installer abnormal, we put a check mark (3) in the
False Alarm column in Table 7; we check the True Alarm
column if SIGL correctly detects a malicious installer. We
see in Table 7 that SIGL continues to maintain high precision
and recall across versions. Among the 19 benign installers,
SIGL correctly classifies 16 of them (84%) without raising
a false positive alarm. False alerts in our experiments are
caused by significant changes in graph structures (correspond-
ing to changes in installation behavior) and node identities
(corresponding to changes in files installed) between two ver-
sions. For example, Dropbox’s installation behavior changed
across the two versions. We observe that the older version
of the Dropbox installer frequently reads from and executes
a temporary file during the installation process. This behav-
ior creates a large subgraph in the SIG between the file and
the process that is absent in the training dataset. We quickly
identify this difference following the guidance provided by
SIGL. In § 7, we further discuss this issue regarding software
evolution. In terms of true alerts, SIGL detects all malicious

10−7 10−6 10−5 10−4 10−3 10−2 10−1

FireFox
FileZilla
PWSafe

MP3Gain
ShotCut

TeamViewer
Foobar

7Zip
TurboVNC
WinMerge

Launchy
Skype

WinRAR
DropBox

Slack
Flash

OneDrive
NotePad++

ICBC
AVRemover

: Benign Installer : Malicious Installer
Figure 6: Sensitivity analysis to determine the normality threshold for each
software installer in the experiment. We use a log-10 scale for x-axis.

installers with the majority (74%) receiving targeted guid-
ance.

5.7 Sensitivity Analysis
Anomaly-based detection systems [11] typically require set-
ting threshold values representing how much of a deviation
from normality constitutes an anomaly. Thresholds determine
the tradeoffs between precision and recall. Detection systems
that are overly sensitive to threshold settings are difficult to
use in practice, even if there exists an optimal threshold that
performs perfect detection.

SIGL quantifies a normality threshold from the validation
dataset based on the anomaly scores of individual nodes in
the graph (§ 4.5). We demonstrate in Fig. 6 that the anomaly
scores of benign and malicious graphs are well-separated with
considerable margins such that SIGL’s detection performance
generally does not depend on finding a precise threshold.

Fig. 6 shows the average (circled mark), minimum, and
maximum (two ends of the error bar) anomaly scores for be-
nign (blue) and malicious (red) installers for each experiment.
None of the installs have overlapping benign and malicious
ranges, although the precise break between the ranges is, in
fact, installer specific. However, many of the benign installers
have scores orders of magnitude smaller than those of the
malicious installers. For example, compared to the malicious
NotePad++ installer with the smallest anomaly score (Fig. 6),
even the benign installer with the largest score has a value two
orders of magnitude smaller. Such liberal margins not only
make it practical to set anomaly thresholds but also indicate
the likelihood of an installer being benign/malicious.

5.8 Robustness Against Data Contamination
So far, we have assumed that anomaly-free data is available
for training, but this assumption does not hold in most real-
life scenarios. On the contrary, real-world data often con-
tains noise or undetected anomalies (i.e., contaminations) that
potentially affect detection performance [7]. Hence, a fully
unsupervised learning system requires a certain degree of ro-
bustness that minimizes the need for weak labeling of benign

10

0
0.0

5 0.1 0.1
5 0.2 0.2

5
0

0.25

0.5

0.75

0.9

1

A
U

C

FireFox
FileZilla
PWSafe

MP3Gain
ShotCut

0
0.0

5 0.1 0.1
5 0.2 0.2

5

TeamViewer
Foobar
7Zip

TurboVNC
WinMerge

0
0.0

5 0.1 0.1
5 0.2 0.2

5

Launchy
Skype

WinRAR
DropBox

Slack

0
0.0

5 0.1 0.1
5 0.2 0.2

5

Flash
OneDrive

NotePad++
ICBC Anti-Phishing
ESET AV Remover

Contamination Percentage
Figure 7: AUC result breakdown for each software installer with various degrees of data contamination.

data [43]. We evaluate the effects of anomaly contaminations
in the training set for each software installer in Table 2.
Experimental Setup. We contaminated 5%, 10%, 15%, 20%,
and 25% of the original training set with malware data from
the test set and rebuilt the model for each level of contamina-
tion. Malware data used for training is also included in the
test set to evaluate SIGL’s robustness against anomaly data
pollution. We use the Area Under the Receiver Operating
Characteristics (ROC) curve, or AUC, to compare anomaly
detection results for each installer (Fig. 7). AUC, ranging
between 0 and 1, measures the quality of model prediction
regardless of classification threshold.
Experimental Results. Fig. 7 shows that in general, SIGL is
tolerant to contamination in training data. In the majority of
cases, the AUC stays above 0.90, even when contamination
is severe (e.g., 25%). We notice that applications with lower
performance in § 5.3 (e.g., FireFox) are more likely to be
affected by data contamination, since their benign installation
behavior is already difficult to learn even with clean training
data.

5.9 Robustness Against Adversarial Attacks
With the growing popularity of graph-based classification
methods in security applications, adversarial attacks on graph
data are likely to become increasingly common for an attacker
to evade those methods [80]. However, there exist only a few
studies [17, 80, 88, 89] on this topic, with the majority focus-
ing on citation networks (e.g., Cora [51], Citeseer [9]) and
social networks (e.g., Facebook, Twitter [81]), and designed
specifically for a particular type of graph neural networks
(e.g., GCN [89]).

To demonstrate SIGL’s robustness against adversarial at-
tacks, we investigate two realistic attack scenarios from a prac-
tical, systems perspective. Different from prior approaches
that focus on network graph attacks, our scenarios require
a distinct set of attacker behavior (and thus resulting graph
perturbations), constrained by the threat model (§ 3), our neu-
ral network architecture and classification method, but more
importantly, the feasibility of system manipulations.
Background. We consider the restrict black-box attack (RBA)
and practical black-box attack (PBA) adversarial settings [17]
3. In RBA, the attacker must perform adversarial graph mod-
ifications without any knowledge of our model, given only
sampled benign and attack graphs. The PBA scenario relaxes

3We do not consider the white-box attack (WBA) setting in which the
attacker can access any model information, including model parameters and
gradient information, since such accessibility is rarely possible in real-life
situations [12].

the restrictions on model knowledge by disclosing discrete
prediction feedback from the target classifier (but not any
other information e.g., the normality threshold). Our threat
model assumes the integrity of data provenance, so the at-
tacker cannot directly modify SIGs. They can manipulate
graph structures (i.e., structure attack) and node feature vec-
tors (i.e., feature attack) only by manipulating software instal-
lation process, while ensuring successful malware execution.

We follow state-of-the-art graph-based adversarial machine
learning literature [80, 88] to generate adversarial attack
graphs by 1) adding or removing edges, and 2) modifying
node attributes on the malicious graphs in Table 2. As dis-
cussed in detail below, we also define an equivalency indica-
tor [17] for each attack setting to restrict graph perturbations
that are realistically available to the attacker (e.g., the attacker
cannot add a directed edge between two file nodes).
Experimental Setup (RBA). We define the equivalency in-
dicator as any allowed graph modifications on nodes/edges
related to the malicious processes. The attacker can easily
identify those graph components given both benign and at-
tack graphs. Without any additional information, the attacker
is empirically better off to focus on malicious process nodes
that typically receive high anomaly scores and influence graph
classification (§ 4.5). Conceptually, this is equivalent to adver-
sarial attacks in node classification problems, where malicious
process nodes are the attacker’s target nodes. Prior studies
have demonstrated that manipulations on target nodes result
in significantly more adversarial damage [12, 88].

One strategy is to disguise malicious processes to mimic
the benign ones. We design a feature attack, a structure attack,
and a combination of both. In the feature attack, we modify
the malicious process’ node attributes to be the same as those
of the benign ones, effectively aligning feature vectors of both
malicious and benign nodes (§ 4.3). In the structure attack,
we ensure that the malicious processes read/write the same
number of files/sockets and fork the same number of child
processes, so that their local structures approximate those
of the benign processes. In the combination of both attacks,
we further make sure that feature vectors of files/sockets/pro-
cesses related to the malicious processes are similar to those
related to the benign processes (e.g., by manipulating file
node attributes). We evaluate the effects of all attack vectors
for each software installer in Table 2.
Experimental Results (RBA). Fig. 8 shows the results for
only those software installers affected by at least one attack
vector. AUCs of the other installers in Table 2 remain un-
changed. We see that the efficacy of the feature and structure
attack in isolation is installer independent: while TeamViewer
and Slack are slightly more vulnerable to the structure attack,

11

FireFox TeamViewer WinMerge Launchy Slack

0

0.5

1
0.

98
8

0.
97

7

0.
98

6

0.
92

4

10.
96

3

0.
96

9

0.
96

1

0.
91

1

0.
94

4

0.
96

5

0.
96

5

0.
96

5

0.
91

6

0.
94

2

0.
93

1

0.
96

0.
95

9

0.
91

1

0.
94

2

A
U

C

No Attack Feature Attack Structure Attack Combined Attack

Figure 8: AUC result breakdown for software installers affected by RBA.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1

2

3

4

Graph Instance

A
no

m
al

y
Sc

or
e

(1
0−

3)

Original Adversarial

Figure 9: Anomaly scores of Skype attack graphs affected by PBA.

the rest are more affected by the feature attack. Combin-
ing both feature and structure attacks improves attack per-
formance, but overall, SIGL is robust to adversarial attack
in this scenario. SIGL’s use of deep graph learning means
that changes in one part of the graph can have far-reaching
consequences. Manipulating anomalous process nodes does
not remove all the effects of such nodes; the benign nodes to
which they connect are also affected by their originally mali-
cious behavior [88]. The attackers could strengthen RBA if
they can also accurately identify target nodes that are not ma-
licious but have been influenced by the malicious processes,
but such information is not available in this setting.
Experimental Setup (PBA). PBA allows the attacker to ob-
tain prediction feedback from the classifier, so the attacker
can iteratively add/remove edges or modify node features in
the graph, until the resulting graph produces a false nega-
tive from SIGL’s model. We will generate such a PBA attack
using reinforcement learning (RL). Our goal is to build an
RL-model that takes as input a SIG produced by an existing
malware package and produces, as output, a SIG that SIGL
improperly classifies as benign. We constrain the changes that
the RL-model can make on the graph to structural changes
that can be produced according to the criteria discussed in the
previous section (i.e., that the attackers can produce manipu-
lated graphs only by changing their attack implementation),
and define the equivalency indicator as the minimal number
of such modifications within a fixed budget [88]. We adopt a
hierarchical reinforcement learning (RL) based attack method
through Q-learning to learn a generalizable attack policy over
graph structure [17].

We build our RL-model using a subset of the malware of
a single application (we randomly chose 5% of the Skype
malware installations) and then evaluate the model using the
full suite of malware from Table 2.
Experimental Results (PBA). The adversarial attacker tries
to increase the false negative rate (FNR) of the attack graphs,
but we observe no such changes for Skype nor for the ma-

Fire
Fox

File
Zilla

PW
Safe

M
P3G

ain

Sho
tC

ut

Tea
mView

er

Foo
ba

r
7Z

ip

Turb
oV

NC

W
inM

erg
e

Lau
nc

hy
Sky

pe

W
inR

AR

Drop
Box

Slac
k

Flas
h

One
Driv

e

Note
Pad

++
IC

BC

AV
Rem

ov
er

0

0.5

1

0.
98

8

1 1 1 1 0.
97

7

1 1 1 0.
98

6

0.
92

4

1 1 1 1 1 1 1 1 1

0.
90

5

0.
93

3

1 1 1 1 1 1 1 0.
99

3

0.
76

8

0.
99

5

1 1 0.
96

0.
83

3 1 1

0.
94

5

0.
93

5

A
U

C

Application-Specific Model Meta-Model

Figure 10: AUC result comparison for each installer using application-
specific vs. meta model. The Skype dataset is not used in training the meta
model.

0
0.0

5 0.1 0.2 0.4 0.5

0.5

0.75

1

Percentage of Excluded Applications

A
U

C

INC
EXC

Figure 11: AUC results when meta-models are trained with various numbers
of applications. The meta-models are tested on applications included (INC)
in and excluded (EXC) from the training data.

jority of the other installers in Table 2. The two exceptions
are TeamViewer and FireFox; TeamViewer exhibits more
FNs for one attack graph, and FireFox exhibits fewer FNs
for one attack graph. When applying the adversarial model
trained on the Skype dataset to other installers, its perfor-
mance varies depending on the installer. In fact, its efficacy
fluctuates even within the Skype dataset itself where the target
model is known to the attacker. We investigate the changes
in anomaly scores of Skype’s attack graphs under the ad-
versarial influence. Fig. 9 shows that even the best possible
manipulation (predicted by the trained RL model) does not
necessarily reduce an attack graph’s anomaly score. Our re-
sults differ significantly from prior work demonstrating the
efficacy of adversarial attacks on graphs (e.g., [17]). This
prior work demonstrated efficacy on graphs from citation and
social networks. We hypothesize that adversarial attacks are
less effective in our setting, because 1) provenance graphs are
structurally different from these network graphs, and 2) our
setting allows a more constrained set of changes to the graph.

5.10 Building SIGL Meta-Model
SIGL is designed to build one model per application, but it
can easily build a “meta-model” that learns generic software
installation behavior. Intuitively, such a generalized model can
classify unseen installers, thus saving considerable manual
labor from training new application-specific models. On the
other hand, it must perform comparably to those models to
warrant its usability for the installers in the training dataset.
Experimental Setup. We trained a meta-model using the
training sets from all but the Skype installer (selected ran-
domly). We then evaluated the meta-model using both the
benign and malicious datasets from each application, includ-
ing Skype. This experimental setup is identical to the one de-
scribed in § 5.2 to fairly compare against application-specific
models. We repeated this experiment by randomly excluding
different installers; the results are similar.

We further investigated meta-model performance when

12

trained with various numbers of applications. We excluded
5%, 10%, 20%, and 40% of the original applications from the
training set and rebuilt the meta-model for each scenario. We
evaluated each meta-model with two sets of test data, 1) the
benign and malicious test sets from the applications used in
training (INC in Fig. 11), and 2) the benign and malicious test
sets from the excluded applications (EXC).
Experimental Results. Fig. 10 shows the AUC results for all
the installers. For half of the installers, the AUC is unchanged;
even for the other half, it decreases marginally. Most installers
achieve over 0.9 AUC under the meta-model. Although the
model is never trained on the Skype dataset, it is able to ac-
curately separate its benign and malicious instances. This
result implies that commonalities exist in legitimate software
installations, and SIGL learns these shared characteristics. Sur-
prisingly, we also see AUC improvement for TeamViewer and
WinMerge, which is likely the result of model generalizability.
Fig. 11 shows the AUC results for meta-models trained with
different percentages of applications. When the meta-model
learns from a smaller set of applications, it inevitably faces
more challenges generalizing to unseen software, but works
better on the trained ones. Since the performance gracefully
degrades with an increasing number of new applications, SIGL
provides abundant opportunities for system administrators to
retrain the meta-model (§ 7).

5.11 Runtime Performance
SIGL takes, on average, fewer than 90 minutes (on a single
GPU on our local test machine) to train a model for a par-
ticular software. Training for different installations can be
performed in parallel and/or distributed to the cloud. Table 2
shows the number of installation graphs we used for training.
We train only on the graphs available in our current database;
SIGL can be effective even across versions (§ 5.6) and on un-
seen software (§ 5.10). SIGL supports incremental learning to
efficiently train on new graph samples. With SIGL’s guidance
(§ 5.5), system administrators can easily decide to further
improve a model if top-ranked processes are not malicious.
Once trained, SIGL takes less than a second to evaluate a SIG
and provide guidance.

5.12 SIGL in Linux
We see in § 5.10 that SIGL can build generic, application-
agnostic models that detect abnormal installation behavior
on Windows. In this section, we further demonstrate that
SIGL is generalizable to an even larger variety of software
packages and on different platforms. Since our enterprise
monitoring system collects only Windows audit data, we set
up our own Linux testbed and generated a dataset of 2,885
Python package installation graphs.
Experimental Setup. We trained SIGL on 1,708 benign in-
stallation graphs, each of which was collected using Linux
Audit from installing different Python packages including
popular tools [78] such as urlib3, and six. After training
such a meta-model on all 1,708 packages, we design our ex-
periments to focus on two research questions:
Q1. Given that SIGL is trained on a large number of distinct
software packages, is it able to generalize to new benign pack-
ages and maintain a low false positive rate (FPR)? We are
particularly concerned with FPs, because anomaly-based sys-
tems are generally more likely to produce excessive FPs that

overwhelm cyberanalysts, especially when they are trained
on diverse datasets. We tested the model on 1,176 installation
graphs of benign packages unknown to the model.
Q2. Can SIGL accurately detect malicious software packages
and provide targeted guidance? We used a real-world mali-
cious Python package python3-dateutil that was uploaded
to PyPI in 2019. The benign version of the same package is a
popular utility tool that extends Python’s standard datetime
module. We note that the attack does not create any malicious
binary files on the victim system. Instead, it executes obfus-
cated malicious code in the package that transmits sensitive
user information to a remote host.
Experimental Results (Q1). Among 1,176 benign test
graphs, SIGL reports 29 FPs, resulting in only 2.47% FPR.
This further corroborates our experimental results in § 5.10
that SIGL is capable of learning from a diverse set of training
data to model generic installation behavior.
Experimental Results (Q2). SIGL correctly detects the ma-
licious Python package. It indicates the process making a
network connection to a Bitly URL as the most abnormal,
thus providing accurate attack attribution.

Overall, we conclude that SIGL is effective in modeling
diverse installation behaviors from a large variety of software
packages on different OS platforms and installation frame-
works.

6 Case Studies

We describe two case studies illustrating SIGL using different
real-world malicious installers in Table 3.
Malware Bundled with ESET AV Remover Installer.
In § 2, we described a real-world attack scenario where the
user is phished to install a legitimate ESET AV Remover in-
staller [55] bundled with malware. Fig. 1 shows a simpli-
fied software installation graph from this scenario. When the
malware (taskhost.exe in the shaded area in Fig. 1) runs
during benign software installation (AVRemover.exe), it es-
tablishes a communication channel (x.y.z.s:t) with the
attacker, which allows the attacker to perform further damage
(e.g., exfiltrate sensitive information). Note that the user is
unaware of this activity since she is distracted interacting with
the benign ESET AV Remover installer.

We discuss in § 2 how existing tools might fail to detect
malicious activities from such an installation. SIGL, on the
other hand, constructs a SIG from the audit data, and tests the
graph against the existing ESET AV Remover model. SIGL
generates a threat alert for this graph because its anomaly
score is much larger than the set threshold and orders of mag-
nitude greater than those of the training graphs. SIGL also
ranks the AVRemover.exe process node in the shaded area
in Fig. 1 among the most anomalous processes (i.e., targeted
guidance). We observe that AVRemover.exe is considered
more anomalous than the malware process taskhost.exe,
probably because it is uncommon for the installer process to
spawn two child processes at the beginning of the installa-
tion. SIGL ranks the malware process taskhost.exe lower
because structurally, it resembles benign process behavior
that also communicates with outside IP addresses. However,
system administrators can easily identify the malicious pro-
cess through quick one-hop backtracking starting from the
top-ranked AVRemover.exe process. Compared to the entire
SIG, SIGL reduces the number of events that the administrator
needs to inspect by two orders of magnitude.

13

FlashPlayer.exe

FlashPlayer.tmp

File Write

FlashPlayer.tmp

Process Start

FlashPlayer.exe

File Read

File Read

FlashPlayerDebug.exe

File Write

FlashPlayerDebug.exe

Process Startdownloader.exe

File Write

downloader.exe

Process Start AvastAntiVirusSetupOnline.exe

File Write

AvastAntiVirusSetupOnline.exe

Process Start

counters.dat

File Read

is-s2ge4.tmp

FlashPlayerInstaller.exe

File Write

FlashPlayerInstaller.exe

Process Start

Player.exe

File Write

util.dll

File Write File WriteFile Write

yandexpacksetup.exe

File Write

a.b.c.d:e

IP Write IP Read

File Read

x.y.z.s:t

IP Write

AvastAntiVirusSetup.exe

File Write

AvastAntiVirusSetup.exe

Process Start

IP Read

File WriteFile Write File Write

Figure 12: The software installation graph from the malicious Flash installer.
The colored process nodes are top-ranked by SIGL.

Malware Embedded within Flash Installer. Different
from the malicious ESET AV Remover installer, the malicious
Flash installer embeds a dropper and a potentially unwanted
application (PUA). The dropper (downloader.exe) commu-
nicates with outside channels and downloads additional mal-
ware (e.g., yandexsetup.exe). The installer also installs anti-
virus software (AvastAntiVirusSetup.exe) without user
consent. Fig. 12 shows a simplified software installation graph.

SIGL identifies FlashPlayer.tmp (red) as the most
anomalous process (i.e., targeted guidance) and down-
loader.exe (yellow) in the top 10. The additional processes
started by the installation process (FlashPlayer.tmp) and
their progeny subgraphs possibly lead to its high anomaly
score. The PUA, the dropper, and the malware it drops all be-
have differently from the benign Flash installer. SIGL ranks
the dropper process and all the malware processes (not shown
in Fig. 12 for clarity) above the PUA process, because the
PUA process behaves in a manner closer to that of the real
installation process (FlashPlayerInstaller.exe) than do
the other malicious processes. We can see from Fig. 12 that
their substructures resemble each other. Regardless, given
the dropper process, administrators already have sufficient
information to confirm the malicious nature of the installation.

7 Discussion & Limitations

SIGL’s machine learning model shares characteristics com-
mon to other statistical models [76]; model performance im-
proves with more training data. As we see in § 5.3 and § 5.4,
SIGL achieves good detection performance with only a small
number of benign installation graphs for training. We attribute
this ability to the well-defined problem domain for which
SIGL was designed. The specificity of the domain allows
SIGL to learn representative behavior patterns from a small
dataset. Other deep-learning-based detection systems, such
as DeepLog [19] and Tiresias [71], also enjoy the same ad-
vantage as they target specific areas in the security domain.
For example, DeepLog mines log data in regulated environ-
ments such as Hadoop and thus can learn normal application
behavior from a small fraction of normal log entries.

Regardless of training data size, one important key to
SIGL’s success, and of any modeling-based system, is data
quality. We see in § 5.3 that when data quality deteriorates
(e.g., FireFox and OneDrive), it adversely affects system
performance. However, SIGL can significantly outperform
its peer systems, even with fairly limited training data. We
attribute its efficacy to the fact that we learn on the entire
graph, not a summary of it. This makes SIGL desirable in an
enterprise environment where the only training data available
have been generated internally or in which the third party
tools that collect the data might sometimes lose data, e.g., due
to small buffers and/or slow ingestion rates [56].
Software Evolution. We see that SIGL delivers consistent
performance across software versions (§ 5.6) and builds
application-agnostic models with a diverse training dataset
(§ 5.10, § 5.12). It can potentially also learn deltas of soft-
ware versions, by modeling past versions of software, which
we leave for future work. However, as software continues to
evolve and additional software packages are installed, SIGL
may eventually require retraining on the SIGs of new in-
stallers. We lessen such burdens in several ways:
1. SIGL maintains a good margin between anomaly scores

of benign and malicious installers (§ 5.7). System admin-
istrators can easily position an installer’s anomaly score
among those used in training and determine whether re-
training is necessary. For example, the benign NotePad++
installer with the highest anomaly score (1.233×10−4) is,
in fact, the older version, while the training instances used
to model the newer version have much lower scores (be-
tween 5×10−6 and 5×10−5). Administrators might want
to consider retraining if they want all benign instances to
have anomaly scores less than 1×10−4.

2. SIGL provides effective guidance (§ 5.5) to help analysts
identify the cause of an alert and dismiss false positives.

3. SIGL’s performance degrades slowly (§ 5.10).
4. SIGL’s retraining time is short (§ 5.11).
Evasion. Stealthy malware might leverage process injection
techniques (e.g., DLL injection [14]) to inject malicious code
into a legitimate live process. If the separate process, once
affected, were not subsequently tracked by SIGL, i.e., SIG did
not capture the causality relationship between the malware
and the legitimate process as a result of the injection, the at-
tacker could evade detection. This may be the case given that
our current prototype monitors only a subset of system events,
but state-of-the-art provenance-capture systems [62] are ca-
pable of tracking memory-related events between processes,
which would allow SIGL to include affected legitimate pro-
cesses into analysis. We leave as future work extending our
logging system to show that such evasion is a mere artifact of
our prototype, not the approach.

Attackers might use software installation to deposit mali-
cious software on a system but delay exploiting that software
until some time in the distant future. As SIGL is optimized for
detecting malicious installations, such a deployment might
go unnoticed – that is, SIGL might notice that an extra piece
of software appeared, but if that software is not executed dur-
ing the installation process, SIGL might not flag its existence
as an anomaly. One possible solution is to leverage forward
tracking [45] to obtain a broader view of system behavior to
detect such time-dispersed anomalies. Prior work [58] has
shown that data provenance facilitates such analysis by closely
connecting causal events, even if they are temporally distant.
This makes it manageable to incorporate forward tracking into

14

SIGL’s analysis. Interesting future work would quantify the
amount of forward tracking necessary to detect such attacks
using SIGL.
Benign Dataset. Many enterprises tightly control software
installation via centralized IT departments. Best practices for
deploying new software are to test initially on a limited set
of canary machines to detect stability or compatibility issues;
those machines are a natural source of labeled installation
data. Our IT department at NEC Labs America also places
remote telemetry facilities on end-user machines, collecting
data using enterprise-wide security monitoring solutions. Al-
though we cannot guarantee the collected data is perfectly
clean; in practice, our evaluation in § 5.8 demonstrates that
SIGL is robust against potential data contamination.
Adversarial Robustness. We evaluated two realistic adver-
sarial scenarios in § 5.9, taking into consideration systems
constraints that are absent in existing ML literature. The ex-
perimental results show that SIGL is robust against practical
adversarial attacks. Our experience is consistent with recent
studies [17, 88], which show that effectively attacking graph
structured data is difficult. Granted, our evaluation is by no
means complete given increasing interests in ML to advance
state-of-the-art graph-based adversarial attacks. For example,
in RBA, Chang et al. [12] recently proposed a graph signal-
processing-based approach to attack the graph filter of given
models, instead of directly attacking the loss function, thus
nullifying the need for any model information. Dai et al. [17]
proposed a genetic-algorithm-based attack in PBA (although
it requires additional information, e.g., a normality threshold,
to be available). However, all those approaches are evaluated
on the same citation network datasets, which are structurally
different from provenance graphs (§ 5.9). Further technical
discussion and evaluation of adversarial machine learning is
beyond the scope of this paper.

8 Related Work

Traditional approaches to securing software installations em-
phasize authentication [6] (e.g., code signing [70] and secure
content distribution [59]), policy-guided sandboxing [84], and
information flow control (IFC) [74]. Recent incidents [24,77]
show that attackers can compromise legitimate software dis-
tribution channels, bypassing cryptographic authentication
protection. Meanwhile, in an enterprise environment, sand-
boxing becomes impractical and is routinely bypassed through
social engineering and advanced exploit techniques [34]; so-
phisticated policy-driven IFC is still too complex to be widely
adopted [82].

SIGL leverages audit data easily collectable from enter-
prise workstations. Its core design lies at the intersection of
graph-based malware detection and provenance-based intru-
sion detection. We therefore place SIGL in the context of prior
work in these areas.
Graph-Based Malware Detection. Panorama [86] uses taint
graphs to detect privacy-breaching malware. It analyzes infor-
mation access and processing behavior of software to identify
violations of policies that indicate suspicious behavior traits.
Panorama generalizes signature-based malware detection to
a behavior problem like SIGL does, but ultimately requires a
“behavior-signature” that limits its detection scope.

Polonium [13] detects malware through large-scale graph
mining on a machine-file bipartite graph to compute file rep-
utation scores and identifies malware as files with low rep-

utation. Mastino [67] improves upon Polonium and intro-
duces URL nodes, in addition to machine and file nodes, to
graph analysis. Using a directed tripartite download graph, it
trains classifiers for URLs and files. Marmite [73] is a mal-
ware detection system that also leverages file reputation in a
download graph that consists of files and machines. These ap-
proaches require “global situation awareness” (i.e., network-
and system-level data from machines across the Internet)
that is unattainable in a typical enterprise, and they consider
only relationships between users (e.g., machines) and files
based on the assumptions that malicious files appear on few
machines and on machines with low reputation. Such assump-
tions however, are no longer valid as recent supply chain
attacks leverage legitimate channels to distribute malware to
a large number of victim machines.

Kwon et al. [46] proposed a downloader-graph abstraction
that describes relationships between downloaders and pay-
loads on 5 million end-point workstations. Using hand-crafted
graph features that are deemed strong indicators of malicious
activity, the authors constructed a random forest model for
malware detection. The approach however, requires a large
amount of data (e.g., information extracted from about 24 mil-
lion distinct files) to achieve high accuracy and any changes in
malware delivery mechanisms that affect those cherry-picked
features are likely to invalidate the model.

Many other graph-based malware detection approaches
exist, with the majority focusing on characterizing malware
delivery networks [36, 52, 72]. We omit discussions of those
approaches since SIGL targets local end-point protection with-
out knowledge of global malware networks. SIGL does not
rely on extracting indicators that signify typical cybercriminal
operations, but learns to generalize expected behavior of a
particular enterprise given easily-accessible audit information.
Nevertheless, a security-aware enterprise should leverage both
global and local information, complementing SIGL with ex-
isting global malware network analytic tools.
Provenance-Based Intrusion Detection. Frappuccino [28]
analyzes system-level provenance graphs to model the be-
havior of Platform-as-a-Service applications. It uses a dy-
namic sliding window algorithm to continuously monitor and
check if application instances conform to the learned model.
StreamSpot [49] uses a similar analytic framework but de-
tects anomalies in a streaming fashion. Both systems featurize
provenance graphs using a bag-of-subtrees approach and ap-
ply clustering algorithms to identify outlier graphs. Compared
to the graph LSTM architecture used in SIGL, learning graphs
using bag-of-subtrees is insufficient to capture the semantics
of system evolution represented in provenance graphs, due
to its insensitivity to the order of the events. This limitation
(i.e., order-insensitivity) is well-understood in NLP-related
learning models [75] and equally applicable in our domain.
Clustering bag-of-subtrees is a reasonable step to perform
outlier detection, but it ultimately burdens cyberanalysts with
labor-intensive investigation, because even a single outlier
usually entails investigating a provenance (sub)graph of a sub-
stantial size. SIGL lessens such a burden by triaging abnormal
process nodes within the graph.

Recently, Han et al. [27] designed a realtime anomaly de-
tection system that analyzes streaming provenance graphs
generated from system activity. It learns a dynamic execu-
tion model as the host system evolves, thus capturing behav-
ioral changes in the model. This learning approach makes it
suitable for detecting long-running persistent threats. Gao et

15

al. [22] designed a domain-specific query language, SAQL,
to analyze large-scale provenance data and use various pre-
defined anomaly models to detect intrusions. To the best of
our knowledge, SIGL is the first provenance-based anomaly
detection system that secures software installations without
prior attack knowledge.

9 Conclusion

We present SIGL, a malware detection system that secures
software installation by analyzing the behavior of end-point
systems through software installation graphs. SIGL uses a
novel deep graph learning architecture to understand instal-
lation behavior and assist attack attribution. Our evaluation
results show that SIGL achieves high detection performance
using only a small amount of training data, while accurately
guiding human analysts to identify the cause of alarms. SIGL
is therefore a practical tool that can be deployed in any enter-
prise for effective and labor-saving malware detection.

Acknowledgments

We thank the anonymous reviewers and our shepherd Kon-
rad Rieck who helped improve the paper. This research was
supported in part by the US National Science Foundation
under grant NSF 14-50277. We acknowledge the support
of the Natural Sciences and Engineering Research Council
of Canada (NSERC). Cette recherche a été financée par le
Conseil de recherches en sciences naturelles et en génie du
Canada (CRSNG). The views, opinions, and/or findings con-
tained in this paper are those of the authors and should not
be interpreted as representing the official views or policies,
either expressed or implied, of the sponsors.

References

[1] Deep graph library. https://www.dgl.ai.
[2] Internet security threat report, 2019. https:

//www.symantec.com/security-center/
threat-report?om_ext_cid=biz_vnty_istr-24_
multi_v10195.

[3] AN, J., AND CHO, S. Variational autoencoder based
anomaly detection using reconstruction probability. Spe-
cial Lecture on IE (2015).

[4] ARNTZ, P. Threat spotlight: Crysis, aka dharma
ransomware, causing a crisis for businesses,
2019. https://blog.malwarebytes.com/threat-
analysis/2019/05/threat-spotlight-crysis-aka-dharma-
ransomware-causing-a-crisis-for-businesses/.

[5] AXELSSON, S. The base-rate fallacy and its implica-
tions for the difficulty of intrusion detection. In Confer-
ence on Computer and Communications Security (1999),
ACM.

[6] BELLISSIMO, A., BURGESS, J., AND FU, K. Secure
software updates: Disappointments and new challenges.
In HotSec (2006).

[7] BERG, A., AHLBERG, J., AND FELSBERG, M. Unsu-
pervised learning of anomaly detection from contami-
nated image data using simultaneous encoder training.
arXiv preprint arXiv:1905.11034 (2019).

[8] CABALLERO, J., GRIER, C., KREIBICH, C., AND PAX-
SON, V. Measuring pay-per-install: the commoditization
of malware distribution. In Security Symposium (2011),
USENIX.

[9] CARAGEA, C., WU, J., CIOBANU, A., WILLIAMS, K.,
FERNÁNDEZ-RAMÍREZ, J., CHEN, H.-H., WU, Z.,
AND GILES, L. Citeseer x: A scholarly big dataset. In
European Conference on Information Retrieval (2014),
Springer, pp. 311–322.

[10] CARATA, L., AKOUSH, S., BALAKRISHNAN, N.,
BYTHEWAY, T., SOHAN, R., SELTZER, M., AND HOP-
PER, A. A primer on provenance. ACM Queue (2014).

[11] CHANDOLA, V., BANERJEE, A., AND KUMAR, V.
Anomaly detection: A survey. ACM computing surveys
41, 3 (2009), 15.

[12] CHANG, H., RONG, Y., XU, T., HUANG, W., ZHANG,
H., CUI, P., ZHU, W., AND HUANG, J. A restricted
black-box adversarial framework towards attacking
graph embedding models. In Conference on Artificial
Intelligence (2020), AAAI.

[13] CHAU, D. H. P., NACHENBERG, C., WILHELM, J.,
WRIGHT, A., AND FALOUTSOS, C. Polonium: Tera-
scale graph mining and inference for malware detection.
In International Conference on Data Mining (2011),
SIAM.

[14] CHECK POINT RESEARCH. Naikon
apt: Cyber espionage reloaded, 2020.
https://research.checkpoint.com/2020/
naikon-apt-cyber-espionage-reloaded/.

[15] CLABURN, T. Dear planet earth: Patch web-
min now – zero-day exploit emerges for po-
tential hijack hole in server control panel, 2019.
https://www.theregister.co.uk/2019/08/19/
webmin_project_zero_day_patch/.

[16] CROFFORD, C., AND MCKEE, D. Ransomware
families use nsis installers to avoid detection, analysis,
2017. https://securingtomorrow.mcafee.com/other-
blogs/mcafee-labs/ransomware-families-use-nsis-
installers-to-avoid-detection-analysis/.

[17] DAI, Q., LI, Q., TANG, J., AND WANG, D. Adver-
sarial network embedding. In Conference on Artificial
Intelligence (2018), AAAI.

[18] DONG, Y., CHAWLA, N. V., AND SWAMI, A. metap-
ath2vec: Scalable representation learning for heteroge-
neous networks. In International Conference on Knowl-
edge Discovery and Data Mining (2017), ACM.

[19] DU, M., LI, F., ZHENG, G., AND SRIKUMAR, V.
Deeplog: Anomaly detection and diagnosis from system
logs through deep learning. In Conference on Computer
and Communications Security (2017), ACM.

[20] FILEHIPPO. Popular software, n.d. https://
filehippo.com/popular/.

[21] FIREEYE. The numbers game: How many alerts is too
many to handle?, 2015. https://www2.fireeye.com/
StopTheNoise-IDC-Numbers-Game-Special-Report.
html.

[22] GAO, P., XIAO, X., LI, D., LI, Z., JEE, K., WU, Z.,
KIM, C. H., KULKARNI, S. R., AND MITTAL, P. Saql:
A stream-based query system for real-time abnormal sys-
tem behavior detection. In Security Symposium (2018),
USENIX.

16

https://www.dgl.ai
https://www.symantec.com/security-center/threat-report?om_ext_cid=biz_vnty_istr-24_multi_v10195
https://www.symantec.com/security-center/threat-report?om_ext_cid=biz_vnty_istr-24_multi_v10195
https://www.symantec.com/security-center/threat-report?om_ext_cid=biz_vnty_istr-24_multi_v10195
https://www.symantec.com/security-center/threat-report?om_ext_cid=biz_vnty_istr-24_multi_v10195
https://research.checkpoint.com/2020/naikon-apt-cyber-espionage-reloaded/
https://research.checkpoint.com/2020/naikon-apt-cyber-espionage-reloaded/
https://www.theregister.co.uk/2019/08/19/webmin_project_zero_day_patch/
https://www.theregister.co.uk/2019/08/19/webmin_project_zero_day_patch/
https://filehippo.com/popular/
https://filehippo.com/popular/
https://www2.fireeye.com/ StopTheNoise- IDC- Numbers- Game- Special- Report.html
https://www2.fireeye.com/ StopTheNoise- IDC- Numbers- Game- Special- Report.html
https://www2.fireeye.com/ StopTheNoise- IDC- Numbers- Game- Special- Report.html

[23] GEHANI, A., AND TARIQ, D. Spade: support for prove-
nance auditing in distributed environments. In Middle-
ware Conference (2012), ACM/IFIP/USENIX.

[24] GREAT, A. Operation shadowhammer, 2019. https:
//securelist.com/operation-shadowhammer/
89992/.

[25] GROVER, A., AND LESKOVEC, J. node2vec: Scalable
feature learning for networks. In International Confer-
ence on Knowledge Discovery and Data Mining (2016),
ACM.

[26] GUTHRIE, D., ALLISON, B., LIU, W., GUTHRIE, L.,
AND WILKS, Y. A closer look at skip-gram modelling.
In LREC (2006), pp. 1222–1225.

[27] HAN, X., PASQUIER, T., BATES, A., MICKENS, J.,
AND SELTZER, M. Unicorn: Runtime provenance-
based detector for advanced persistent threats. In NDSS
(2020).

[28] HAN, X., PASQUIER, T., RANJAN, T., GOLDSTEIN,
M., AND SELTZER, M. Frappuccino: fault-detection
through runtime analysis of provenance. In Workshop
on Hot Topics in Cloud Computing (2017), USENIX.

[29] HAN, X., PASQUIER, T., AND SELTZER, M.
Provenance-based intrusion detection: Opportuni-
ties and challenges. In Workshop on the Theory and
Practice of Provenance (2018), USENIX.

[30] HARRIS, Z. S. Distributional structure. Word 10, 2-3
(1954), 146–162.

[31] HASAN, R., SION, R., AND WINSLETT, M. Preventing
history forgery with secure provenance. Transactions
on Storage 5, 4 (2009), 12.

[32] HASSAN, W. U., GUO, S., LI, D., CHEN, Z., JEE, K.,
LI, Z., AND BATES, A. Nodoze: Combatting threat
alert fatigue with automated provenance triage. In NDSS
(2019).

[33] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-
term memory. Neural Computation (1997).

[34] HOSSAIN, M. N., MILAJERDI, S. M., WANG, J., ES-
HETE, B., GJOMEMO, R., SEKAR, R., STOLLER, S. D.,
AND VENKATAKRISHNAN, V. Sleuth: Real-time attack
scenario reconstruction from cots audit data. In Security
Symposium (2017), USENIX, pp. 487–504.

[35] HU, Z., CHEN, T., CHANG, K.-W., AND SUN, Y.
Few-shot representation learning for out-of-vocabulary
words. arXiv preprint arXiv:1907.00505 (2019).

[36] INVERNIZZI, L., MISKOVIC, S., TORRES, R.,
KRUEGEL, C., SAHA, S., VIGNA, G., LEE, S.-J., AND
MELLIA, M. Nazca: Detecting malware distribution in
large-scale networks. In NDSS (2014).

[37] JENKS, G. F. The data model concept in statistical map-
ping. International Yearbook of Cartography (1967).

[38] JIANG, B. Head/tail breaks: A new classification
scheme for data with a heavy-tailed distribution. The
Professional Geographer 65, 3 (2013), 482–494.

[39] KAPRAVELOS, A., SHOSHITAISHVILI, Y., COVA, M.,
KRUEGEL, C., AND VIGNA, G. Revolver: An auto-
mated approach to the detection of evasive web-based
malware. In Security Symposium (2013), USENIX.

[40] KHANDELWAL, S. Ccleaner attack timeline –
here’s how hackers infected 2.3 million pcs,
2018. https://thehackernews.com/2018/04/
ccleaner-malware-attack.html/.

[41] KHASAIA, L. Unpacking shade ransomware,
2017. https://secrary.com/ReversingMalware/
UnpackingShade/.

[42] KHODAK, M., SAUNSHI, N., LIANG, Y., MA, T.,
STEWART, B., AND ARORA, S. A la carte embedding:
Cheap but effective induction of semantic feature vec-
tors. In Annual Meeting of the Association for Compu-
tational Linguistics (2018), pp. 12–22.

[43] KHOSHNEVISAN, F., AND FAN, Z. Rsm-gan: A convo-
lutional recurrent gan for anomaly detection in contami-
nated seasonal multivariate time series. arXiv preprint
arXiv:1911.07104 (2019).

[44] KING, S. T., AND CHEN, P. M. Backtracking intrusions.
ACM SIGOPS Operating Systems Review (2003).

[45] KING, S. T., MAO, Z. M., LUCCHETTI, D. G., AND
CHEN, P. M. Enriching intrusion alerts through multi-
host causality. In NDSS (2005).

[46] KWON, B. J., MONDAL, J., JANG, J., BILGE, L., AND
DUMITRAŞ, T. The dropper effect: Insights into mal-
ware distribution with downloader graph analytics. In
Conference on Computer and Communications Security
(2015), ACM.

[47] LEE, K. H., ZHANG, X., AND XU, D. High accuracy
attack provenance via binary-based execution partition.
In NDSS (2013).

[48] MANDIANT. M-trends 2015: A view from the front lines
threat report, 2015. http://www2.fireeye.com/rs/
fireye/images/rpt-m-trends-2015.pdf.

[49] MANZOOR, E., MILAJERDI, S. M., AND AKOGLU, L.
Fast memory-efficient anomaly detection in streaming
heterogeneous graphs. In International Conference on
Knowledge Discovery and Data Mining (2016), ACM.

[50] MANZOOR, E., MILAJERDI, S. M., AND AKOGLU,
L. Streamspot datasets, 2016. https://github.com/
sbustreamspot/sbustreamspot-data.

[51] MCCALLUM, A. Cora dataset.
[52] MEKKY, H., TORRES, R., ZHANG, Z.-L., SAHA, S.,

AND NUCCI, A. Detecting malicious http redirections
using trees of user browsing activity. In Conference on
Computer Communications (2014), IEEE.

[53] MICRO, T. Dharma ransomware uses av tool
to distract from malicious activities, 2019.
https://blog.trendmicro.com/trendlabs-security-
intelligence/dharma-ransomware-uses-av-tool-to-
distract- from-malicious-activities/.

[54] MICROSOFT. Ransomware operators are hid-
ing malware deeper in installer packages, 2017.
https://www.microsoft.com/security/blog/2017/03/15/
ransomware-operators-are-hiding-malware-deeper-in-
installer-packages/.

[55] MICROSOFT. Ransom:win32/wadhrama.a!rsm,
2017. http://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?
Name=ransom:win32/wadhrama.a!rsm&ThreatID=
2147720056.

[56] MICROSOFT. About event tracing, 2018.
https://docs.microsoft.com/en-us/windows/
win32/etw/about-event-tracing.

[57] MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO,
G. S., AND DEAN, J. Distributed representations
of words and phrases and their compositionality. In

17

https://securelist.com/operation-shadowhammer/89992/
https://securelist.com/operation-shadowhammer/89992/
https://securelist.com/operation-shadowhammer/89992/
https://thehackernews.com/2018/04/ccleaner-malware-attack.html/
https://thehackernews.com/2018/04/ccleaner-malware-attack.html/
https://secrary.com/ReversingMalware/UnpackingShade/
https://secrary.com/ReversingMalware/UnpackingShade/
http://www2.fireeye.com/rs/fireye/images/rpt-m-trends-2015.pdf
http://www2.fireeye.com/rs/fireye/images/rpt-m-trends-2015.pdf
https://github.com/sbustreamspot/sbustreamspot-data
https://github.com/sbustreamspot/sbustreamspot-data
http://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=ransom:win32/wadhrama.a!rsm&ThreatID=2147720056
http://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=ransom:win32/wadhrama.a!rsm&ThreatID=2147720056
http://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=ransom:win32/wadhrama.a!rsm&ThreatID=2147720056
http://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=ransom:win32/wadhrama.a!rsm&ThreatID=2147720056
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing

Advances in Neural Information Processing Systems
(2013), pp. 3111–3119.

[58] MILAJERDI, S. M., GJOMEMO, R., ESHETE, B.,
SEKAR, R., AND VENKATAKRISHNAN, V. Holmes:
Real-time apt detection through correlation of suspi-
cious information flows. In Symposium on Security and
Privacy (2019), IEEE.

[59] MISRA, S., TOURANI, R., AND MAJD, N. E. Secure
content delivery in information-centric networks: De-
sign, implementation, and analyses. In Workshop on
Information-Centric Networking (2013), ACM.

[60] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A.,
BRAUN, U., AND SELTZER, M. I. Provenance-aware
storage systems. In Annual Technical Conference
(2006), USENIX, pp. 43–56.

[61] NEC CORPORATION. Automated security intel-
ligence (asi), 2018. https://www.nec.com/en/
global/techrep/journal/g16/n01/160110.html.

[62] PASQUIER, T., HAN, X., GOLDSTEIN, M., MOYER, T.,
EYERS, D., SELTZER, M., AND BACON, J. Practical
whole-system provenance capture. In Symposium on
Cloud Computing (2017), ACM, pp. 405–418.

[63] PASQUIER, T., HAN, X., MOYER, T., BATES, A., HER-
MANT, O., EYERS, D., BACON, J., AND SELTZER, M.
Runtime analysis of whole-system provenance. In Con-
ference on Computer and Communications Security
(2018), ACM.

[64] PENG, N., POON, H., QUIRK, C., TOUTANOVA, K.,
AND YIH, W.-T. Cross-sentence n-ary relation extrac-
tion with graph lstms. Transactions of the Association
for Computational Linguistics 5 (2017), 101–115.

[65] PEROZZI, B., AL-RFOU, R., AND SKIENA, S. Deep-
walk: Online learning of social representations. In Inter-
national Conference on Knowledge Discovery and Data
Mining (2014), ACM, pp. 701–710.

[66] POHLY, D. J., MCLAUGHLIN, S., MCDANIEL, P., AND
BUTLER, K. Hi-fi: collecting high-fidelity whole-
system provenance. In Computer Security Applications
Conference (2012), ACM, pp. 259–268.

[67] RAHBARINIA, B., BALDUZZI, M., AND PERDISCI, R.
Real-time detection of malware downloads via large-
scale url- file- machine graph mining. In Asia Confer-
ence on Computer and Communications Security (2016),
ACM, pp. 783–794.

[68] ŘEHŮŘEK, R., AND SOJKA, P. Software framework
for topic modelling with large corpora. In Workshop on
New Challenges for NLP Frameworks (2010), ELRA.

[69] RIJNETU, I. Security alert: Malware hides
in script injection, bypassing av detection,
2019. https://heimdalsecurity.com/blog/
security-alert-malware-script-injection/.

[70] SAMUEL, J., MATHEWSON, N., CAPPOS, J., AND DIN-
GLEDINE, R. Survivable key compromise in software
update systems. In Conference on Computer and Com-
munications Security (2010), ACM, pp. 61–72.

[71] SHEN, Y., MARICONTI, E., VERVIER, P. A., AND
STRINGHINI, G. Tiresias: Predicting security events
through deep learning. In Conference on Computer and
Communications Security (2018), ACM, pp. 592–605.

[72] STRINGHINI, G., KRUEGEL, C., AND VIGNA, G.
Shady paths: Leveraging surfing crowds to detect ma-

licious web pages. In Conference on Computer and
Communications Security (2013), ACM, pp. 133–144.

[73] STRINGHINI, G., SHEN, Y., HAN, Y., AND ZHANG, X.
Marmite: spreading malicious file reputation through
download graphs. In Annual Computer Security Appli-
cations Conference (2017), ACM, pp. 91–102.

[74] SZE, W. K., AND SEKAR, R. Provenance-based in-
tegrity protection for windows. In Annual Computer
Security Applications Conference (2015), ACM.

[75] TAI, K. S., SOCHER, R., AND MANNING, C. D. Im-
proved semantic representations from tree-structured
long short-term memory networks. arXiv preprint
arXiv:1503.00075 (2015).

[76] TSAI, C.-F., HSU, Y.-F., LIN, C.-Y., AND LIN, W.-
Y. Intrusion detection by machine learning: A review.
Expert systems with applications (2009).

[77] TWIST, J. Cyber threat report 17 sep-02 oct 2017.
[78] VAN KEMENADE, H. Top pypi packages, 2019. https:

//hugovk.github.io/top-pypi-packages/.
[79] W3C. Prov-overview: an overview of the prov family

of documents.
[80] WANG, B., AND GONG, N. Z. Attacking graph-based

classification via manipulating the graph structure. In
Conference on Computer and Communications Security
(2019), ACM.

[81] WANG, B., ZHANG, L., AND GONG, N. Z. Sybilscar:
Sybil detection in online social networks via local rule
based propagation. In Conference on Computer Com-
munications (2017), IEEE, pp. 1–9.

[82] WANG, F., KO, R., AND MICKENS, J. Riverbed: En-
forcing user-defined privacy constraints in distributed
web services. In NSDI (2019), pp. 615–630.

[83] WANG, G., HAO, J., MA, J., AND HUANG, L. A new
approach to intrusion detection using artificial neural
networks and fuzzy clustering. Expert systems with
applications 37, 9 (2010), 6225–6232.

[84] XU, K., YAO, D., MA, Q., AND CROWELL, A. De-
tecting infection onset with behavior-based policies. In
International Conference on Network and System Secu-
rity (2011), IEEE, pp. 57–64.

[85] XU, Z., NAPPA, A., BAYKOV, R., YANG, G., CA-
BALLERO, J., AND GU, G. Autoprobe: Towards au-
tomatic active malicious server probing using dynamic
binary analysis. In Conference on Computer and Com-
munications Security (2014), ACM.

[86] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND
KIRDA, E. Panorama: capturing system-wide infor-
mation flow for malware detection and analysis. In
Conference on Computer and Communications Security
(2007), ACM, pp. 116–127.

[87] ZAREMBA, W., AND SUTSKEVER, I. Learning to exe-
cute. arXiv preprint arXiv:1410.4615 (2014).

[88] ZÜGNER, D., AKBARNEJAD, A., AND GÜNNEMANN,
S. Adversarial attacks on neural networks for graph data.
In International Conference on Knowledge Discovery
and Data Mining (2018), ACM, pp. 2847–2856.

[89] ZÜGNER, D., AND GÜNNEMANN, S. Certifiable ro-
bustness and robust training for graph convolutional
networks. In International Conference on Knowledge

Discovery Data Mining (2019), ACM, pp. 246–256.

18

https://www.nec.com/en/global/techrep/journal/g16/n01/160110.html
https://www.nec.com/en/global/techrep/journal/g16/n01/160110.html
https://heimdalsecurity.com/blog/security-alert-malware-script-injection/
https://heimdalsecurity.com/blog/security-alert-malware-script-injection/
https://hugovk.github.io/top-pypi-packages/
https://hugovk.github.io/top-pypi-packages/

	Introduction
	Background & Motivation
	Problem Formulation and Threat Model
	Sigl Framework
	System Overview
	Software Installation Graphs
	Node Embedding for System Entities
	Deep Graph Learning on SIGs
	Anomaly Detection

	Evaluation
	Datasets
	Implementation & Experimental Setup
	Sigl Experimental Results
	Comparison Study
	Prioritizing Anomalous Processes
	Using Sigl in an Enterprise
	Sensitivity Analysis
	Robustness Against Data Contamination
	Robustness Against Adversarial Attacks
	Building Sigl Meta-Model
	Runtime Performance
	Sigl in Linux

	Case Studies
	Discussion & Limitations
	Related Work
	Conclusion

