Battaglia, Z. O., Kersten, J. T., Nicol, E. M., Whitworth, P., Wheeler, K. A., Hall, C. L., Potticary, J., Hamilton, V., Hall, S. R., D'Ambruoso, G., Matsumoto, M., Warren, S. D., \& Cremens, M. E. (Accepted/In press). Crystal structure and Hirshfeld analysis of 3'-bromo-4-methylchalcone and 3'-cyano-4- methylchalcone. Acta Crystallographica Section E: Crystallographic Communications, E76, 1496-1502. https://doi.org/10.1107/S2056989020011135

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1107/S2056989020011135

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via International Union of Crystallography at http://scripts.iucr.org/cgi-bin/paper?S2056989020011135. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 21 July 2020
Accepted 13 August 2020

Edited by B. Therrien, University of Neuchâtel, Switzerland
\neq Authors contributed equally.

Keywords: crystal structure; chalcone; bromo; cyano; halogen bond; π stacking; edge-to-face.

CCDC references: 2023082; 2023081

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld analysis of 3'-bromo-4-methylchalcone and 3'-cyano-4methylchalcone

Zachary O. Battaglia, ${ }^{\mathbf{a}} \ddagger$ Jordan T. Kersten, ${ }^{\text {a }} \ddagger$ Elise M. Nicol, ${ }^{\text {a }} \ddagger$ Paloma
Whitworth, ${ }^{\text {a }} \ddagger$ Kraig A. Wheeler, ${ }^{\text {b }}$ Charlie L. Hall, ${ }^{\text {c }}$ Jason Potticary, ${ }^{\text {c }}$ Victoria Hamilton, ${ }^{\text {c }}$ Simon R. Hall, ${ }^{\text {c }}$ Gemma D. D'Ambruoso, ${ }^{\text {a }}$ Masaomi Matsumoto, ${ }^{\text {a }}$ Stephen D. Warren ${ }^{\text {a }}$ and Matthew E. Cremeens ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Chemistry \& Biochemistry, Gonzaga University, 502 E Boone Ave, Spokane, WA 99258, USA,
${ }^{\mathbf{b}}$ Department of Chemistry, Whitworth University, 300 W. Hawthorne Rd, Spokane, WA 99251, USA, and ${ }^{\text {c School of }}$ Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, England. *Correspondence e-mail: cremeens@gonzaga.edu

Two crystal structures of chalcones, or 1,3-diarylprop-2-en-1-ones, are presented; both contain a methyl substitution on the 3 -Ring, but differ on the 1-Ring, bromo versus cyano. The compounds are 3^{\prime}-bromo-4-methylchalcone [systematic name: 1-(2-bromophenyl)-3-(4-methylphenyl)prop-2-en-1-one], $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}$, and 3^{\prime}-cyano-4-methylchalcone \{systematic name: 2-[3-(4-methyl-phenyl)prop-2-enoyl]benzonitrile\}, $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}$. Both chalcones meaningfully add to the large dataset of chalcone structures. The crystal structure of 3^{\prime}-cyano-4-methylchalcone exhibits close contacts with the cyano nitrogen that do not appear in previously reported disubstituted cyanochalcones, namely interactions between the cyano nitrogen atom and a ring hydrogen atom as well as a methyl hydrogen atom. The structure of 3^{\prime}-bromo-4-methylchalcone exhibits a type I halogen bond, similar to that found in a previously reported structure for 4-bromo-3'-methylchalcone.

1. Chemical context

Chalcones are organic molecules commonly found in nature consisting of two phenyl rings connected by an α, β-unsaturated ketone, or enone. Interest in chalcone molecules has risen because of their potential pharmaceutical properties, electronic properties, and straightforward synthesis via a Claisen-Schmidt condensation between a benzaldehyde and acetophenone (Zhuang et al., 2017). Pharmaceutical attributes shown by some chalcones include antioxidant, anti-inflammatory, anti-cancer, and cytotoxic properties (Sahu et al., 2012). Additionally, some chalcones have been shown to be fluorescent, making them potential probes for mechanistic investigations and imaging (Lee et al., 2012).

This paper compares the structure and packing of two newly crystallized chalcone molecules, 3'-cyano-4-methylchalcone [Sm6p] or $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and 3^{\prime}-bromo-4-methylchalcone [Dm6p] or $m^{\prime} \mathrm{Br}^{2} \mathrm{CH}_{3}$, where Sm 6 p and Dm6p are internal codes tied to a large, long-term project. Each chalcone

Table 1
Selected angles (${ }^{\circ}$).
The $\Phi 1, \Phi 2$, and $\Phi 3$ dihedrals are defined by $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2, \mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$, and $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 11$, respectively.

Chalcone	$\Phi 1$	$\Phi 2$	$\Phi 3$	1-Ring 3-Ring Twist	
$m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$	$-154.58(10)$	$-169.15(10)$	$-163.34(10)$	$49.11(4)$	1-Ring 3-Ring Fold
$m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$	$-153.51(16)$	$-169.73(17)$	$-161.99(18)$	$49.15(6)$	$0.67(4)$

examined consists of a variable meta substitution at C6 of the 1-Ring, and methyl substitution at C13 of the 3-Ring, see Figs. 1 and 2. Substitution on the 1-Ring has been utilized to further understand the packing and structure of chalcone crystals based upon their ring substituents.

2. Structural commentary

The chalcones under observation, $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$, differ at the meta position on the 1-Ring, cyano and bromo respectively, Figs. 1 and 2. Note that the following summary of dihedrals, which represents the planarity of the chalcones, references data in Table 1 where non-rounded angles and errors can be found. The enone core exhibits small (10-11 $)$ deviations from planarity ($\Phi 2$) for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$. The 1-Ring/carbonyl twists ($\Phi 1$) show similar deviations from planarity $\left(25-27^{\circ}\right)$ for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$. The 3-Ring/ alkene twists ($\Phi 3$) also show similar deviations from planarity $\left(16-18^{\circ}\right)$ for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3} . m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and

Figure 1
Three key dihedrals describing the chalcone planarity for 3^{\prime}-cyano-4methylchalcone $\left(m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}\right)$ and 3^{\prime}-bromo-4-methylchalcone ($m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$); the 1-Ring and 3-Ring are labelled, where $R=\mathrm{CN}, \mathrm{Br}$.
$m^{\prime} \mathrm{Br}^{\prime} \mathrm{CH}_{3}$ exhibit similar 1-Ring/3-Ring twist angles (approximately 49°) and fold angles ($1-2^{\circ}$). Based on the angle values, $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ do not vary greatly in torsions despite their different substituents. Both chalcones are similarly twisted and show a pairwise antiparallel arrangement of the enone core (Fig. 3), which are related by inversion symmetry. A closer look at the supramolecular properties (see below) reveals similarities and differences for the crystal structures.

Figure 2
The asymmetric units of $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ (left) and $m^{\prime} \mathrm{Br}^{2} \mathrm{CH}_{3}$ (right) showing the atom labeling with displacement ellipsoids drawn at the 50% probability level.

Figure 3
The unit cells of $m^{\prime} \mathrm{CN}_{\mathrm{N}} \mathrm{CH}_{3}\left(P 2_{1} / c\right.$ space group, left) and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}(P \overline{1}$ space group, right), with the a, b, and c axes indicated in red, green, and blue, respectively.

Figure 4
Electrostatic potentials at the wB97XD/6-311++G(d,p) level of theory for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ (left) and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ (middle and right). The range for all three plots is from -1.0 eV (red) to +1.0 eV (blue); electrostatic potential maps were plotted on the 0.0004 SCF density surface. Single point energy calculations were performed on the geometric coordinates of the asymmetric unit (Frisch et al., 2009).

3. Supramolecular features

Electrostatic potentials are shown in Fig. 4, and Hirshfeld analyses are presented in Figs. 5-7 for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$. The electrostatic potentials show a greater polarization for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ than for $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$, which is expected because the cyano functional group is a stronger electronwithdrawing group than bromine. Consequently, the 1-Ring hydrogen atoms of $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ exhibit greater partial positive character; nonetheless, the 1-Rings for both $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ show $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, see discussion below. Additionally, the small and slightly positive region on Br 1 (Fig. 4, right) hints toward a σ-hole and an opportunity for a halogen bond in $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$. The Hirshfeld analyses below highlight the main intermolecular interactions found in $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ (Spackman \& Jayatilaka, 2009); see the supporting information for fingerprint plots showing the percentage distribution of the intermolecular interactions represented by the $d_{\text {norm }}$ surface in Fig. 5.

From a Hirshfeld analysis, the $d_{\text {norm }}$ surfaces indicate close contacts (red regions) near $\mathrm{H} 7, \mathrm{H} 8, \mathrm{H} 11, \mathrm{H} 17 A, \mathrm{C} 7, \mathrm{C} 11$, and N 1 for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $\mathrm{H} 8, \mathrm{C} 11$, and Br 1 for $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$. Upon closer inspection of these atoms, $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ contain multiple $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, which can be seen in Fig. 6 as red regions. Note that the following summary of short contacts between two atoms, which have distances less than the sum of their van der Waals (vdW) radii, references data found in Table 2 where non-rounded distances and errors can also be found. Notable hydrogen-carbon short contacts for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ are $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{C} 11^{\text {iv }} \quad(2.88 \AA)$ and $\mathrm{C} 11-$ $\mathrm{H} 11 \cdots \mathrm{C}^{\mathrm{iii}}$ ($2.82 \AA$). In comparison, similar short contacts for

Figure 5
Hirshfeld surfaces of $m^{\prime} \mathrm{CN}^{2} \mathrm{CH}_{3}$ (top) and $m^{\prime}{\mathrm{Br} p \mathrm{CH}_{3} \text { (bottom). Surfaces }}^{\text {(b) }}$ are mapped with $d_{\text {norm }}$ (left), the shape-index (middle), and d_{e} (right). Note that close contacts involving the aromatic rings visualized in $d_{\text {norm }}$ are also supported in both the shape-index and d_{e}, as indicated by the red regions over the rings.

Figure 6
Hirshfeld short contact ($d_{\text {norm }}$) plots of $m^{\prime} \mathrm{CN}_{\mathrm{N}} \mathrm{CH}_{3}$ (left) and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ (right) showing the $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{C} 11$ (top) and $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{C} 7$ (bottom) interactions. Red, white, and blue surface colors indicate contacts less than the sum of the van der Waals radii, close to, or greater than, respectively. For $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{Br}_{\mathrm{p}} \mathrm{CH}_{3}$, the interacting chalcone molecules are antiparallel to one another with the carbonyl groups facing opposite each other.
$m^{\prime} \mathrm{Br}^{2} \mathrm{CH}_{3}$ are $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{C} 11^{\mathrm{iii}}(2.80 \AA)$ and $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{C} 7^{\mathrm{ii}}$ $(2.89 \AA) . m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ contains some notable $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions, which can be seen in Fig. 7 as red regions. The hydrogen-nitrogen short contacts for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ are $\mathrm{C} 7-$ $\mathrm{H} 7 \cdots \mathrm{~N} 1^{\mathrm{ii}}(2.60 \AA)$ and $\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{~N} 1^{\mathrm{i}}(2.62 \AA)$. For the sake of comparison to $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}, \mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Br}^{\mathrm{v}}(3.24 \AA)$ and $\mathrm{C} 16-\mathrm{H} 16 A \cdots \operatorname{Br} 1^{\mathrm{i}}\left(3.10 \AA\right.$) in $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$, which can be seen in Fig. 7 as white regions, have distances that are greater than the sum of bromine and hydrogen vdW radii ($3.05 \AA$). Nonetheless, $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ contains a $\mathrm{Br} \cdots \mathrm{Br}$ interaction, see the red region associated with Br1 in Fig. 7. This type I halogen bond exhibits a short contact for $\mathrm{Br} 1 \cdots \mathrm{Br} 1^{\text {iv }}$ of 3.5565 (5) A (Cavallo et al., 2016).

For aromatic rings, π-stacking can exhibit multiple orientations, e.g. sandwich, parallel-displaced, and edge-to-face (Wheeler, 2011), arising largely from dispersion and/or electrostatic interactions. The $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions of $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ resemble the edge-to-face orien-

Figure 7
Hirshfeld short contact ($d_{\text {norm }}$) plots of $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ (left) and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ (right) showing the $\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{~N} 1$ and $\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{Br} 1$ (top), as well as $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 1, \mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Br} 1$, and $\mathrm{C} 6-\mathrm{Br} 1 \cdots \mathrm{Br} 1$ (bottom) interactions. Red, white, and blue surface colors indicate contacts less than the sum of the van der Waals radii, equal to, or greater than, respectively. Note that the $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 1$ interaction for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ involves three molecules, while for $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ both $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Br} 1$ and $\mathrm{Br} \cdots \mathrm{Br} 1$ interactions are needed to support a similar three-molecule arrangement.

Table 2
Distances (\AA) for close contacts.
Distances to the 1 -Ring and 3 -Ring reflect the distances to the centroids of those rings. The sums of the van der Waals radii (A) for hydrogen plus carbon, nitrogen, or bromine are $2.9,2.75$, and 3.05 , respectively, while the sum for bromine plus bromine is 3.7 . The symmetry codes apply to those molecules interacting with the asymmetric unit. Estimated standard deviations are listed in parentheses.

$m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$	Distance	$m^{\prime} \mathrm{Br}^{\prime} \mathrm{CH}_{3}$	Distance
C8-H8 . . $\mathrm{C} 11^{\text {iv }}$	2.8835 (11)	C8-H8* ${ }^{\text {C }} 11^{\text {iii }}$	2.8019 (16)
C8-H8 $\cdots 3-\mathrm{Ring}^{\text {iv }}$	2.7391 (4)	C8-H8 $\cdots 3-\mathrm{Ring}^{\text {iii }}$	2.709 (2)
C11-H11...C7iii	2.8187 (11)	$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{C} 7^{\mathrm{ii}}$	2.8936 (17)
C11-H11..1-Ring ${ }^{\text {iii }}$	2.8866 (4)	C11-H11 $\cdots 1-\mathrm{Ring}^{\text {ii }}$	3.061 (2)
1-Ring. . 3 -Ring ${ }^{\text {iv }}$	4.6036 (6)	1-Ring $\cdots 3$-Ring ${ }^{\text {iii }}$	4.5176 (10)
3-Ring $\cdots 1$-Ring ${ }^{\text {iii }}$	4.7132 (6)	3-Ring $\cdots 1-$ Ring ${ }^{\text {ii }}$	4.8989 (11)
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 1^{\text {ii }}$	2.5999 (9)	$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Br} 1^{\mathrm{v}}$	3.2379 (4)
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	2.6168 (11)	$\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{Br} 1^{\mathrm{i}}$	3.0962 (3)
		$\mathrm{Br} 1 \cdots \mathrm{Br} 1^{\text {iv }}$	3.5556 (5)

Symmetry codes for $m^{\prime} \mathrm{CN}^{\prime} \mathrm{CH}_{3}$: (i) $1-x, 1-y, 1-z$; (ii) $-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (iii) $-x, 1-y$, $1-z$; (iv) $-x,-y, 1-z$. Symmetry codes for $m^{\prime} \operatorname{Br}^{2} \mathrm{CH}_{3}$: (i) $1-x, 1-y, 1-z$; (ii) $1-x$, $2-y, 1-z$; (iii) $-x, 2-y, 1-z$; (iv) $2-x, 2-y,-z$; (v) $1-x, 2-y,-z$.
tation, which is also referred to as a T-shaped orientation. More specifically, the H8‥3-Ring and H11 $\cdots 1$-Ring interactions of $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ resemble a bent T-shaped orientation, or the so-called B-T1 orientation as defined by Dinadayalane \& Leszczynski (2009). A computationally derived centroid-to-centroid distance for the B-T1 orientation is $4.63 \AA$ (Dinadayalane \& Leszczynski, 2009), which is close to the centroid distances for the 1-Ring...3-

Ring $^{\text {iv }}$ of $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3} \quad\left(4.60 \AA\right.$), the 1-Ring. $\cdot 3$-Ring ${ }^{\text {iii }}$ of $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ (4.52 \AA), the 3-Ring. $\cdot 1$-Ring ${ }^{\text {iii }}$ of $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ (4.71 \AA), and the 3-Ring. $\cdot 1$-Ring ii of $m^{\prime} \operatorname{Br}^{\text {P }} \mathrm{CH}_{3}(4.90 \AA)$. See Table 2 for non-rounded distances and errors.

Inspection of packing diagrams indicate that the $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ molecules form antiparallel sheets, Fig. 8. The interactions that contribute the most to this stacking are the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions ($\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{C} 11^{\text {iv }}$ or 1 -Ring $\cdots 3-\mathrm{Ring}^{\text {iv }}$ and $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{C} 7^{\mathrm{iii}}$ or 3-Ring $\cdots 1$-Ring ${ }^{\text {iii }}$) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions $\left(\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{~N} 1^{\mathrm{i}}\right)$, Figs. 6 and 7. All of these short contacts are less than their respective sum of vdW radii and are expected to contribute to the packing structure. Packing diagrams for $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ also show antiparallel sheets, Fig. 8. Similar to $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$, the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions ($\mathrm{C} 8-$ $\mathrm{H} 8 \cdots \mathrm{C} 11^{\mathrm{iii}}$ or 1 -Ring $\cdots 3$-Ring ${ }^{\text {iii }}$ and $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{C} 7^{\mathrm{ii}}$ or 3-Ring..-1-Ring ${ }^{\mathrm{ii}}$) are also contributors to this stacking arrangement. Both chalcones have strong interactions that contribute to the lateral arrangement of molecules in the packing diagrams. For $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ this interaction is the $\mathrm{C} 7-$ $\mathrm{H} 7 \cdots \mathrm{~N} 1^{\mathrm{i}}$ interaction visualized in Fig. 7. For $m^{\prime} \mathrm{Br}_{\mathrm{p}} \mathrm{CH}_{3}$, the $\mathrm{Br} 1 \cdots \mathrm{Br} 1^{\text {iv }}$ interaction, or type 1 halogen bond, contributes to the lateral arrangement.

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, November 2019; Groom et al., 2016), which excluded

Figure 8
Selected packing displays for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ (left) and $m^{\prime} \mathrm{Br}_{\mathrm{C}} \mathrm{CH}_{3}$ (right) showing identical lateral interactions for $\mathrm{C} 16-\mathrm{N} 1 \cdots \mathrm{H} 7$ and the $\mathrm{Br} 1 \cdots \mathrm{Br} 1$ type I halogen bond (top), as well as the stacking interactions $\mathrm{N} 1 \cdots \mathrm{H} 17 A, \mathrm{C} 11 \cdots \mathrm{H} 8, \mathrm{C} 7 \cdots \mathrm{H} 11$, and $\mathrm{Br} 1 \cdots \mathrm{H} 16 A$ (bottom). The symmetry codes apply to those molecules interacting with the asymmetric unit. Additional $\mathrm{N} 1 \cdots \mathrm{H} 7$ and $\mathrm{Br} 1 \cdots \mathrm{Br} 1$ interactions are included to serve as a visual aid. Symmetry codes for $m^{\prime} \mathrm{CN}_{\mathrm{C}} \mathrm{CH}_{3}$: (i) $1-x, 1-y, 1-z$; (ii) $-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (iii) $-x, 1-y, 1-z$; (iv) $-x,-y, 1-z$. Symmetry codes for $m^{\prime} \mathrm{Br}^{2} \mathrm{CH}_{3}$: (i) $1-x, 1-y$, $1-z$; (ii) $1-x, 2-y, 1-z$; (iii) $-x, 2-y, 1-z$; (iv) $2-x, 2-y,-z$.

research communications

chalcones substituted with additional rings, did not yield any mono-substituted cyanochalcone structures. The only disubstituted cyanochalcones found contained a $p \mathrm{CN}$ group on the 3-Ring; 4-cyano-2'-fluorochalcone [Bo19p] (LERXOW; P $\overline{1}$; Braun et al., 2006a) and 4-cyano-4'-diethylaminochalcone [Qp19p] (NAWCEU; $P 2_{1} / c$; Braun et al., 2006b). Two of the CN structures, NAWCEU and $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ [Sm6p], share the same space group, $P 2_{1} / c$, while LERXOW belongs to the $P \overline{1}$ space group. $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ is the first cyanochalcone crystal structure with a meta-cyano substituent and is the first disubstituted cyano-methyl-chalcone structure. Analysis of the close contacts for LERXOW and NAWCEU reveals different interactions than for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$. Both structures display no strong interactions involving the cyano substituent, and instead both have strong interactions involving the carbonyl oxygen and the aromatic hydrogen atoms. LERXOW has a strong interaction between O 1 and H 3 and H 11 , while the oxygen interaction of note for NAWCEU is between O1 and H14. Additionally, $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions have a lesser impact on the packing structure, as indicated by Hirshfeld analysis. More data are required to assess whether these differences are a function of meta versus para cyano substitution.

The same survey, again excluding molecules containing additional rings, showed multiple chalcones containing a bromo substitution, nine of which are substituted in the meta position of the 1-Ring, and two of which are disubstituted with a bromo and a methyl group. 3'-Bromochalcone [Dm-1] (CICLUW; $P \overline{1}$; Rosli et al., 2007) and $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ [Dm6p] belong to the same space group, $P \overline{1}$. The two disubstituted chalcones most similar to $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}, 4^{\prime}$-bromo-4-methylchalcone [Dp6p] (IZEFOI; P2 ${ }_{1} / c$; Wang et al., 2004) and 3-bromo-4'-methylchalcone [Fp4m] (IGAPAI; P $\overline{1}$; Li et al., 2008), are the only disubstituted $\mathrm{Br} / \mathrm{CH}_{3}$ chalcones. Of the two disubstituted chalcones, only IGAPAI shares the same space group as $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$, and IGAPAI also exhibits a type I halogen bond (Cavallo et al., 2016), similar to $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$. IZEFOI does display $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, but these support a parallel arrangement, with the 3-Ring forming close contacts with the 3 -Ring of a neighboring molecule, as opposed to the antiparallel nature of the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions for $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3} . m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ is the first methyl-substituted chalcone structure with an $m^{\prime} \mathrm{Br}$ atom. Note that the codes Bo19p, Dm-1, Dm6p, Dp6p, Fp4m, Qp19p, and Sm6p are internal codes tied to a large, long-term project.

5. Synthesis and crystallization

Synthesis. The preparations of $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ [Sm6p] (Merchant et al., 1965) and $m^{\prime} \operatorname{Br} p \mathrm{CH}_{3}$ [Dm6p] have previously been reported (Budakoti et al., 2008; Ellsworth et al., 2008; Rangarajan et al., 2016; Soni \& Patel, 2017; Zhang et al., 2017). Ethanol ($1.5 \mathrm{~mL}, 95 \%$) and a magnetic stir bar were added to two separate Biotage microwave vials $(2-5 \mathrm{~mL})$; one contained 4-methylbenzaldehyde (3 mmol) and the other contained 3^{\prime}-acetophenone (3 mmol). Each vial was heated gently over a hot plate until complete dissolution and then cooled to room temperature; solids may precipitate upon
cooling depending on the solubility of the starting material. Once cooled, $\mathrm{NaOH}(\mathrm{aq})(0.4 \mathrm{~mL}, 50 \%$ by wgt) was added to a benzaldehyde-acetophenone mixture. The resulting reaction mixture was vigorously agitated with a microspatula until a slurry formed. Water (2 mL) was added to the vial and its contents were agitated. The vial was capped, centrifuged for one minute, and decanted. This trituration was repeated three times. Methanol (2 mL) was added to the vessel and sealed; the microwave-safe vials are safe at high pressures, up to 30 bar. Over a hot plate while stirring, the contents were heated until complete dissolution. Once removed from the heat, the vial was allowed to cool, and crystal growth was observed. Crystals were isolated and dried using vacuum filtration. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, referenced to TMS): δ (ppm) for $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ are $8.13(t, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 7.93(d d d, 1 \mathrm{H}$, $J=7.8,1.4,1.0 \mathrm{~Hz}), 7.80(d, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 7.70(d d d, 1 \mathrm{H}, J=$ $8.0,2.0,1.0 \mathrm{~Hz}), 7.55(d, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.40(m, 2 \mathrm{H}), 7.23(d$, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 2.40(s, 3 \mathrm{H})$; and for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ are $8.28(t$, $1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 8.23(d d d, 1 \mathrm{H}, J=7.9,1,7,1.2 \mathrm{~Hz}), 7.84(m$, $2 \mathrm{H}), 7.64(t, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.56(d, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.43(d$, $1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 7.25(d, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 2.41(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, referenced to solvent, 77.16 ppm): δ (ppm) for $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ are 189.25, 145.97, 141.63, 140.29, 135.63, 132.01, 131.60, 130.32, 129.91, 128.77, 127.10, 123.07, 120.51, 21.72; and for $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ are 188.48, 146.82, 142.01, 139.29, $135.65,132.53,132.20,131.73,129.98,129.77,128.87,119.83$, 118.21, 113.20, 21.74.

Crystallization. $m^{\prime} \mathrm{Br} p \mathrm{CH}_{3}$ and $m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$ were crystallized through slow cooling in a Dewar hemispherical low-form flask. Chalcone (20 mg), methanol (0.5 mL), and a magnetic spin vane were added to a conical Biotage microwave vial $(0.5-2 \mathrm{~mL})$ and sealed. The tube was placed in boiling water for $1-5$ minutes until complete dissolution. While the tube was submerged, two Dewar hemispherical low-form flasks were filled with boiling water and allowed to sit. When the chalcone had nearly dissolved, the Dewar flasks were emptied, and one was placed in a Styrofoam cooler. The Biotage microwave vial was removed from boiling water and placed in the Dewar inside the cooler. The Dewar was filled with boiling water to completely submerge the microwave vial. A round silicone gasket was placed to cover the rim of this Dewar flask before inverting the second Dewar and placing it on top to create a chamber. The cooler was closed with a Styrofoam lid on a lowvibration table in a temperature-regulated room. After 24 h, the vials were removed from the Dewar and crystals were collected using vacuum filtration.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The X-ray intensity data for each chalcone derivative was measured at 100 K on a Bruker Photon II D8 Venture diffractometer equipped with both $\mathrm{I} \mu \mathrm{S}$ Cu and $\mathrm{I} \mu \mathrm{S}$-Mo microfocus X-ray sources. The $\mathrm{Cu} K \alpha(\lambda=$ $1.54178 \AA$ A) source was used for all crystallographic investigations. Data sets were corrected for Lorentz and polarization effects as well as absorption. The criterion for observed

Table 3
Experimental details.

	$m^{\prime} \mathrm{CN} p \mathrm{CH}_{3}$	$m^{\prime} \mathrm{Br}^{\prime} \mathrm{CH}_{3}$
Crystal data		
Chemical formula	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}$	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}$
M_{r}	247.28	301.17
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$	Triclinic, $P \overline{1}$
Temperature (K)	100	100
$a, b, c(\AA)$	7.2986 (1), 5.8504 (1), 29.7783 (5)	5.9282 (6), 7.3614 (8), 14.6747 (16)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 94.525 (1), 90	88.532 (3), 82.199 (3), 87.457 (3)
$V\left(\AA^{3}\right)$	1267.56 (4)	633.73 (12)
Z	4	2
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.296	1.578
Radiation type	$\mathrm{Cu} K \alpha$	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.64	4.28
Crystal shape	Transparent plate	Transparent plate
Colour	Colourless	Colorless
Crystal size (mm)	$0.35 \times 0.21 \times 0.09$	$0.39 \times 0.25 \times 0.11$
Data collection		
Diffractometer	Bruker D8 Venture	Bruker D8 Venture
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.676, 0.754	0.531, 0.754
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	13801, 2494, 2213	8397, 2461, 2440
$R_{\text {int }}$	0.028	0.023
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.617	0.617
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.033, 0.087, 1.03	0.026, 0.065, 1.09
No. of reflections	2494	2461
No. of parameters	173	164
H -atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.21, -0.18	0.63, -0.40

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2017), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and X-SEED (Barbour, 2001).
reflections is $I>2 \sigma(I)$. Lattice parameters were determined from least-squares analysis of reflection data. Empirical absorption corrections were applied using SADABS (Krause et al., 2015). Structures were solved by direct methods and refined by full-matrix least-squares analysis on F^{2} using $X-S E E D$ equipped with $S H E L X T$ (Barbour, 2001 and Sheldrick, 2015a). All non-hydrogen atoms were refined anisotropically by full-matrix least-squares on F^{2} using the SHELXL program (Sheldrick, 2015b). H atoms (for OH and NH) were located in a difference-Fourier synthesis and refined isotropically with independent $\mathrm{O} / \mathrm{N}-\mathrm{H}$ distances or restrained to 0.85 (2) \AA. The remaining H atoms were included in idealized geometric positions with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom) or $1.5 U_{\text {eq }}$ (C-methyl).

Unit cells were visualized with Mercury 2020.1 (Macrae et al., 2020), Hirshfeld analyses were executed with Crystal Explorer 17.5 (Turner et al., 2017), while distance/angle measurements as well as ORTEP images were captured using OLEX2 (Dolomanov et al., 2009).

Acknowledgements

The GU co-authors thank S. Economu, B. Hendricks, A. Hinz, J. Hazen, C. Sciammas, M. Plese, T. Cherry, A. Fijalka, and C. Mozo-Olazcon for their assistance, as well as the Howard Hughes Medical Institute for supporting equipment acquisition through its Undergraduate Science Education Program. Support also came from the Gonzaga Science Research

Program as well as Gonzaga's Department of Chemistry and Biochemistry.

Funding information

Funding for this research was provided by: EPSRC (grant No. EP/L015544/1 to C. L. Hall; grant No. EP/L016648/1 to V. Hamilton); European Union's Horizon 2020 Research and Innovation Programme (grant No. 736899); funding for the Bruker Photon II D8 Venture diffractometer was provided by NSF-MRI \#1827313.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Braun, R. U., Ansorge, M. \& Müller, T. J. J. (2006a). Chem. Eur. J. 12, 9081-9094.
Braun, R. U., Müller, T. J. J. \& Polborn, K. (2006b). Private communication (refcode NAWCEU). CCDC, Cambridge, England.
Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
Budakoti, A., Bhat, A. R., Athar, F. \& Azam, A. (2008). Eur. J. Med. Chem. 43, 1749-1757.
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. \& Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.
Dinadayalane, T. \& Leszczynski, J. (2009). Struct. Chem. 20, 11-20.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Ellsworth, B. A., Meng, W., Patel, M., Girotra, R. N., Wu, G., Sher, P. M., Hagan, D. L., Obermeier, M. T., Humphreys, W. G., Robertson, J. G., Wang, A., Han, S., Waldron, T. L., Morgan, N. N., Whaley, J. M. \& Washburn, W. N. (2008). Bioorg. Med. Chem. Lett. 18, 4770-4773.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. \& Fox, D. J. (2009). Gaussian 09, Revision D. 01. Gaussian Inc., Wallingford, CT, USA.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lee, S. C., Kang, N. Y., Park, S. J., Yun, S. W., Chandran, Y. \& Chang, Y. T. (2012). Chem. Commun. 48, 6681-6683.

Li, H., Sarojini, B. K., Raj, C. G. D., Madhu, L. N. \& Yathirajan, H. S. (2008). Acta Cryst. E64, o2238.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Merchant, J. R., Mehta, J. B. \& Desai, V. B. (1965). Indian J. Chem. 3, 561-4.
Rangarajan, T. M., Devi, K., Verma, A. K., Singh, R. P. \& Singh, R. P. (2016). J. Fluor. Chem. 186, 101-110.

Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2501.

Sahu, N. K., Balbhadra, S. S., Choudhary, J. \& Kohli, D. V. (2012). Curr. Med. Chem. 19, 209-225.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Soni, H. I. \& Patel, N. B. (2017). Asia. J. Pharm. Clin. Res. 10, 209214.

Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.
Wang, L., Zhang, Y., Lu, C.-R. \& Zhang, D.-C. (2004). Acta Cryst. C60, o696-0698.
Wheeler, S. E. (2011). J. Am. Chem. Soc. 133, 10262-10274.
Zhang, M., Xi, J., Ruzi, R., Li, N., Wu, Z., Li, W. \& Zhu, C. (2017). J. Org. Chem. 82, 9305-9311.
Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. \& Miao, Z. (2017). Chem. Rev. 117, 7762-7810.

supporting information

Acta Cryst. (2020). E76, 1496-1502 [https://doi.org/10.1107/S2056989020011135]

Crystal structure and Hirshfeld analysis of 3'-bromo-4-methylchalcone and 3'-cyano-4-methylchalcone

Zachary O. Battaglia, Jordan T. Kersten, Elise M. Nicol, Paloma Whitworth, Kraig A. Wheeler, Charlie L. Hall, Jason Potticary, Victoria Hamilton, Simon R. Hall, Gemma D. D'Ambruoso, Masaomi Matsumoto, Stephen D. Warren and Matthew E. Cremeens

Computing details

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

2-[3-(4-Methylphenyl)prop-2-enoyl]benzonitrile (I)

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}$
$M_{r}=247.28$
Monoclinic, $P 2_{1} / c$
$a=7.2986$ (1) \AA
$b=5.8504$ (1) \AA
$c=29.7783(5) \AA$
$\beta=94.525(1)^{\circ}$
$V=1267.56(4) \AA^{3}$
$Z=4$

Data collection

Bruker D8 Venture diffractometer
Radiation source: Microsource IuS Incoatec 3.0
Double Bounce Multilayer Mirrors
monochromator
Detector resolution: 7.9 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.087$
$S=1.03$
2494 reflections
$F(000)=520$
$D_{\mathrm{x}}=1.296 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 7537 reflections
$\theta=3.0-72.1^{\circ}$
$\mu=0.64 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Transparent plate, colourless
$0.35 \times 0.21 \times 0.09 \mathrm{~mm}$
$T_{\text {min }}=0.676, T_{\text {max }}=0.754$
13801 measured reflections
2494 independent reflections
2213 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=72.1^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-9 \rightarrow 8$
$k=-7 \rightarrow 7$
$l=-36 \rightarrow 36$

173 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Hydrogen site location: inferred from neighbouring sites

supporting information

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.045 P)^{2}+0.4265 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All nonhydrogen atoms were located in a single difference Fourier electron density map and refined using anisotropic displacement parameters. All C-H hydrogen atoms were placed in calculated positions with Uiso $=1.2 \mathrm{xUeqiv}$ of the connected C atoms (1.5 xUeqiv for methyl groups).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	0.22192 (11)	0.72690 (13)	0.47783 (2)	0.02168 (19)
N1	0.13188 (15)	0.75910 (19)	0.27529 (3)	0.0286 (2)
C1	0.21471 (14)	0.52052 (18)	0.47083 (3)	0.0165 (2)
C2	0.26906 (14)	0.35011 (18)	0.50599 (3)	0.0174 (2)
H2	0.282576	0.194303	0.497894	0.021*
C3	0.29943 (14)	0.41308 (18)	0.54913 (3)	0.0160 (2)
H3	0.282067	0.570173	0.555670	0.019*
C4	0.14995 (14)	0.43210 (18)	0.42488 (3)	0.0159 (2)
C5	0.16826 (14)	0.57332 (18)	0.38769 (3)	0.0163 (2)
H5	0.221501	0.720872	0.391577	0.020*
C6	0.10757 (14)	0.49562 (19)	0.34474 (3)	0.0171 (2)
C7	0.02732 (14)	0.27968 (19)	0.33848 (4)	0.0187 (2)
H7	-0.013000	0.227830	0.309115	0.022*
C8	0.00746 (14)	0.14251 (19)	0.37570 (4)	0.0189 (2)
H8	-0.049184	-0.003134	0.371874	0.023*
C9	0.06980 (14)	0.21624 (18)	0.41866 (4)	0.0176 (2)
H9	0.057822	0.119396	0.443864	0.021*
C10	0.35662 (14)	0.26495 (18)	0.58726 (3)	0.0152 (2)
C11	0.33577 (14)	0.34331 (19)	0.63106 (3)	0.0173 (2)
H11	0.287002	0.491628	0.635291	0.021*
C12	0.38509 (15)	0.20805 (19)	0.66834 (3)	0.0186 (2)
H12	0.366765	0.263493	0.697639	0.022*
C13	0.46133 (14)	-0.00854 (19)	0.66336 (3)	0.0173 (2)
C14	0.48597 (14)	-0.08447 (18)	0.61969 (4)	0.0171 (2)
H14	0.540026	-0.229971	0.615618	0.021*
C15	0.43333 (14)	0.04771 (18)	0.58221 (3)	0.0164 (2)
H15	0.449373	-0.009384	0.552915	0.020*
C16	0.12291 (15)	0.6427 (2)	0.30610 (4)	0.0206 (2)
C17	0.51598 (16)	-0.1542 (2)	0.70393 (4)	0.0227 (2)
H17A	0.627558	-0.091602	0.719826	0.034*
H17B	0.539551	-0.310760	0.694210	0.034*
H17C	0.416382	-0.154959	0.724164	0.034*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0290(4)$	$0.0159(4)$	$0.0197(4)$	$0.0010(3)$	$-0.0009(3)$	$-0.0006(3)$
N1	$0.0352(6)$	$0.0302(6)$	$0.0197(5)$	$-0.0055(5)$	$-0.0016(4)$	$0.0035(4)$
C1	$0.0144(5)$	$0.0176(5)$	$0.0178(5)$	$0.0007(4)$	$0.0024(4)$	$-0.0003(4)$
C2	$0.0185(5)$	$0.0157(5)$	$0.0179(5)$	$0.0019(4)$	$0.0012(4)$	$0.0001(4)$
C3	$0.0137(5)$	$0.0149(5)$	$0.0196(5)$	$-0.0004(4)$	$0.0019(4)$	$-0.0003(4)$
C4	$0.0139(5)$	$0.0163(5)$	$0.0174(5)$	$0.0035(4)$	$0.0011(4)$	$0.0000(4)$
C5	$0.0146(5)$	$0.0149(5)$	$0.0192(5)$	$0.0016(4)$	$0.0007(4)$	$0.0000(4)$
C6	$0.0155(5)$	$0.0186(5)$	$0.0172(5)$	$0.0031(4)$	$0.0010(4)$	$0.0015(4)$
C7	$0.0171(5)$	$0.0205(5)$	$0.0182(5)$	$0.0033(4)$	$-0.0013(4)$	$-0.0039(4)$
C8	$0.0168(5)$	$0.0152(5)$	$0.0244(5)$	$0.0006(4)$	$-0.0003(4)$	$-0.0013(4)$
C9	$0.0164(5)$	$0.0162(5)$	$0.0202(5)$	$0.0022(4)$	$0.0014(4)$	$0.0023(4)$
C10	$0.0128(5)$	$0.0164(5)$	$0.0161(5)$	$-0.0023(4)$	$0.0005(4)$	$-0.0005(4)$
C11	$0.0167(5)$	$0.0156(5)$	$0.0195(5)$	$-0.0010(4)$	$0.0018(4)$	$-0.0023(4)$
C12	$0.0205(5)$	$0.0209(5)$	$0.0146(5)$	$-0.0024(4)$	$0.0017(4)$	$-0.0034(4)$
C13	$0.0160(5)$	$0.0193(5)$	$0.0164(5)$	$-0.0036(4)$	$-0.0004(4)$	$0.0015(4)$
C14	$0.0162(5)$	$0.0148(5)$	$0.0205(5)$	$-0.0001(4)$	$0.0020(4)$	$-0.0004(4)$
C15	$0.0158(5)$	$0.0185(5)$	$0.0150(5)$	$-0.0010(4)$	$0.0021(4)$	$-0.0014(4)$
C16	$0.0210(5)$	$0.0222(6)$	$0.0182(5)$	$-0.0011(4)$	$-0.0013(4)$	$-0.0024(5)$
C17	$0.0260(6)$	$0.0230(6)$	$0.0188(5)$	$-0.0008(5)$	$-0.0001(4)$	$0.0039(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C1	1.2257 (13)	C8-H8	0.9500
N1-C16	1.1487 (15)	C9-H9	0.9500
C1-C2	1.4771 (15)	C10-C15	1.4017 (15)
C1-C4	1.5038 (14)	C10-C11	1.4021 (14)
C2-C3	1.3380 (15)	C11-C12	1.3875 (15)
C2-H2	0.9500	C11-H11	0.9500
C3-C10	1.4629 (14)	C12-C13	1.3965 (16)
C3-H3	0.9500	C12-H12	0.9500
C4-C5	1.3966 (15)	C13-C14	1.3992 (15)
C4-C9	1.3980 (15)	C13-C17	1.5062 (14)
C5-C6	1.3961 (14)	C14-C15	1.3869 (15)
C5-H5	0.9500	C14-H14	0.9500
C6-C7	1.3988 (16)	C15-H15	0.9500
C6-C16	1.4482 (15)	C17-H17A	0.9800
C7-C8	1.3852 (16)	C17-H17B	0.9800
C7-H7	0.9500	C17-H17C	0.9800
C8-C9	1.3920 (15)		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	122.61 (10)	C4-C9-H9	119.8
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4$	119.98 (9)	C15-C10-C11	118.03 (9)
C2-C1-C4	117.41 (9)	C15-C10-C3	123.08 (9)
C3-C2-C1	120.63 (10)	C11-C10-C3	118.89 (10)
C3-C2-H2	119.7	C12-C11-C10	121.16 (10)

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.7
C2-C3-C10	126.70 (10)
C2-C3-H3	116.6
C10-C3-H3	116.6
C5-C4-C9	119.63 (10)
C5-C4-C1	118.38 (10)
C9-C4-C1	121.98 (9)
C6-C5-C4	119.38 (10)
C6-C5-H5	120.3
C4-C5-H5	120.3
C5-C6-C7	121.03 (10)
C5-C6-C16	119.71 (10)
C7-C6-C16	119.24 (9)
C8-C7-C6	119.06 (10)
C8-C7-H7	120.5
C6-C7-H7	120.5
C7-C8-C9	120.57 (10)
C7-C8-H8	119.7
C9-C8-H8	119.7
C8-C9-C4	120.32 (10)
C8-C9-H9	119.8
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	11.34 (17)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-169.15 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10$	-178.91 (9)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	24.95 (15)
C2- $21-\mathrm{C} 4-\mathrm{C} 5$	-154.58 (10)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 9$	-153.88 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 9$	26.59 (14)
C9-C4-C5-C6	-0.58 (15)
C1-C4-C5-C6	-179.43 (9)
C4-C5-C6-C7	0.60 (16)
C4-C5-C6-C16	178.85 (9)
C5-C6-C7-C8	0.34 (16)
C16-C6-C7-C8	-177.92 (10)
C6-C7-C8-C9	-1.30 (16)
C7-C8-C9-C4	1.34 (16)

$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$	119.4
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11$	119.4
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$120.86(10)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	119.6
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	119.6
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$117.92(9)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 17$	$120.70(9)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 17$	$121.37(10)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$121.54(10)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14$	119.2
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14$	119.2
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$	$120.45(10)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$	119.8
$\mathrm{C} 10-\mathrm{C} 15-\mathrm{H} 15$	119.8
$\mathrm{~N} 1-\mathrm{C} 16-\mathrm{C} 6$	$109.83(12)$
$\mathrm{C} 13-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	109.5
$\mathrm{C} 13-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	109.5
$\mathrm{H} 17 \mathrm{~A}-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	109.5
$\mathrm{C} 13-\mathrm{C} 17-\mathrm{H} 17 \mathrm{C}$	109.5
$\mathrm{H} 17 \mathrm{~A}-\mathrm{C} 17-\mathrm{H} 17 \mathrm{C}$	109.5
$\mathrm{H} 17 \mathrm{~B}-\mathrm{C} 17-\mathrm{H} 17 \mathrm{C}$	
	$-0.38(15)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$178.43(9)$
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$17.24(17)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 15$	$-163.34(10)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 11$	$-1.61(15)$
$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$178.95(9)$
$\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$1.57(16)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-0.10(16)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$179.55(10)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 17$	$1.32(16)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$179.03(10)$
$\mathrm{C} 17-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$16(15)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$	C
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	C
$\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$10)$

1-(2-Bromophenyl)-3-(4-methylphenyl)prop-2-en-1-one (II)

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}$
$M_{r}=301.17$
Triclinic, $P \overline{1}$
$a=5.9282$ (6) \AA
$b=7.3614$ (8) \AA
$c=14.6747(16) \AA$
$\alpha=88.532(3)^{\circ}$
$\beta=82.199(3)^{\circ}$

$$
\begin{aligned}
& \gamma=87.457(3)^{\circ} \\
& V=633.73(12) \AA^{3} \\
& Z=2 \\
& F(000)=304 \\
& D_{\mathrm{x}}=1.578 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54178 \AA \\
& \mathrm{Cell} \text { parameters from } 1318 \text { reflections } \\
& \theta=6.0-71.7^{\circ}
\end{aligned}
$$

$\mu=4.28 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$

Data collection

Bruker D8 Venture diffractometer
Radiation source: Microsource IuS Incoatec 3.0
Double Bounce Multilayer Mirrors monochromator
Detector resolution: 7.9 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.065$
$S=1.09$
2461 reflections
164 parameters
0 restraints

Transparent plate, colorless
$0.39 \times 0.25 \times 0.11 \mathrm{~mm}$
$T_{\text {min }}=0.531, T_{\text {max }}=0.754$
8397 measured reflections
2461 independent reflections
2440 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=72.2^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-6 \rightarrow 7$
$k=-9 \rightarrow 9$
$l=-18 \rightarrow 18$

Primary atom site location: structure-invariant direct methods
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0313 P)^{2}+0.5783 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.63$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.40 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All nonhydrogen atoms were located in a single difference Fourier electron density map and refined using anisotropic displacement parameters. All C-H hydrogen atoms were placed in calculated positions with Uiso $=1.2 \mathrm{xUeqiv}$ of the connected C atoms (1.5 xUeqiv for methyl groups).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.80035(3)$	$0.89029(3)$	$0.08237(2)$	$0.02192(9)$
O1	$0.7329(2)$	$0.7890(2)$	$0.45698(9)$	$0.0223(3)$
C1	$0.5354(3)$	$0.7917(2)$	$0.44225(13)$	$0.0170(4)$
C2	$0.3466(3)$	$0.7319(3)$	$0.51279(13)$	$0.0192(4)$
H2	0.199245	0.718770	0.495759	0.023^{*}
C3	$0.3817(3)$	$0.6965(2)$	$0.59951(13)$	$0.0186(4)$
H3	0.530796	0.713033	0.613915	0.022^{*}
C4	$0.4726(3)$	$0.8590(2)$	$0.35130(13)$	$0.0155(3)$
C5	$0.6366(3)$	$0.8439(2)$	$0.27330(13)$	$0.0161(3)$
H5	0.783980	0.791310	0.277957	0.019^{*}
C6	$0.5803(3)$	$0.9069(2)$	$0.18959(12)$	$0.0167(3)$
C7	$0.3658(3)$	$0.9867(2)$	$0.18070(13)$	$0.0189(4)$
H7	0.330243	1.029208	0.122449	0.023^{*}
C8	$0.2067(3)$	$1.0024(2)$	$0.25840(14)$	$0.0192(4)$

H8	0.061052	1.058189	0.253582	0.023^{*}
C9	$0.2567(3)$	$0.9378(2)$	$0.34359(13)$	$0.0175(4)$
H9	0.144730	0.947060	0.396286	0.021^{*}
C10	$0.2121(3)$	$0.6346(2)$	$0.67464(13)$	$0.0180(4)$
C11	$0.2535(3)$	$0.6525(2)$	$0.76554(14)$	$0.0197(4)$
H11	0.393474	0.699115	0.777189	0.024^{*}
C12	$0.0940(3)$	$0.6036(3)$	$0.83870(13)$	$0.0204(4)$
H12	0.124142	0.620360	0.899810	0.025^{*}
C13	$-0.1104(3)$	$0.5301(2)$	$0.82409(13)$	$0.0188(4)$
C14	$-0.1492(3)$	$0.5068(2)$	$0.73322(13)$	$0.0191(4)$
H14	-0.285712	0.453991	0.721786	0.023^{*}
C15	$0.0076(3)$	$0.5594(3)$	$0.65972(13)$	$0.0195(4)$
H15	-0.023652	0.544247	0.598635	0.023^{*}
C16	$-0.2846(4)$	$0.4761(3)$	$0.90371(14)$	$0.0243(4)$
H16A	-0.238535	0.357702	0.928866	0.036^{*}
H16B	-0.433393	0.467934	0.882360	0.036^{*}
H16C	-0.295102	0.567581	0.951623	0.036^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.02062(13)$	$0.02741(13)$	$0.01669(12)$	$-0.00258(8)$	$0.00161(8)$	$0.00044(8)$
O1	$0.0152(7)$	$0.0321(7)$	$0.0196(7)$	$-0.0023(5)$	$-0.0024(5)$	$0.0007(5)$
C1	$0.0174(9)$	$0.0142(8)$	$0.0194(9)$	$-0.0018(7)$	$-0.0019(7)$	$-0.0021(6)$
C2	$0.0175(9)$	$0.0191(9)$	$0.0206(9)$	$-0.0019(7)$	$-0.0008(7)$	$-0.0013(7)$
C3	$0.0176(9)$	$0.0142(8)$	$0.0237(9)$	$0.0005(7)$	$-0.0015(7)$	$-0.0026(7)$
C4	$0.0150(8)$	$0.0131(8)$	$0.0188(9)$	$-0.0030(6)$	$-0.0025(7)$	$-0.0012(6)$
C5	$0.0136(8)$	$0.0143(8)$	$0.0205(9)$	$-0.0026(6)$	$-0.0024(7)$	$-0.0016(7)$
C6	$0.0163(9)$	$0.0167(8)$	$0.0168(8)$	$-0.0043(7)$	$0.0005(7)$	$-0.0012(6)$
C7	$0.0198(9)$	$0.0174(8)$	$0.0208(9)$	$-0.0042(7)$	$-0.0070(7)$	$0.0020(7)$
C8	$0.0140(9)$	$0.0167(8)$	$0.0275(10)$	$-0.0003(7)$	$-0.0048(7)$	$-0.0008(7)$
C9	$0.0147(9)$	$0.0157(8)$	$0.0215(9)$	$-0.0018(7)$	$0.0001(7)$	$-0.0021(7)$
C10	$0.0183(9)$	$0.0148(8)$	$0.0209(9)$	$0.0002(7)$	$-0.0026(7)$	$0.0011(7)$
C11	$0.0196(9)$	$0.0155(8)$	$0.0259(10)$	$-0.0007(7)$	$-0.0099(8)$	$0.0010(7)$
C12	$0.0245(10)$	$0.0175(9)$	$0.0207(9)$	$0.0020(7)$	$-0.0092(8)$	$0.0001(7)$
C13	$0.0206(9)$	$0.0142(8)$	$0.0218(9)$	$0.0030(7)$	$-0.0045(7)$	$0.0000(7)$
C14	$0.0187(9)$	$0.0167(8)$	$0.0230(9)$	$-0.0025(7)$	$-0.0058(7)$	$-0.0003(7)$
C15	$0.0217(10)$	$0.0189(9)$	$0.0189(9)$	$-0.0027(7)$	$-0.0054(7)$	$-0.0012(7)$
C16	$0.0244(10)$	$0.0272(10)$	$0.0211(9)$	$0.0001(8)$	$-0.0027(8)$	$-0.0006(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 6$	$1.9053(18)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9500
$\mathrm{O} 1-\mathrm{C} 1$	$1.219(2)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9500
$\mathrm{C} 1-\mathrm{C} 2$	$1.491(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.399(3)$
$\mathrm{C} 1-\mathrm{C} 4$	$1.500(3)$	$\mathrm{C} 10-\mathrm{C} 15$	$1.401(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.334(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.382(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	$\mathrm{C} 11-\mathrm{H} 11$	0.9500

C3-C10	1.465 (3)
C3-H3	0.9500
C4-C9	1.399 (3)
C4-C5	1.401 (3)
C5-C6	1.380 (3)
C5-H5	0.9500
C6-C7	1.398 (3)
C7-C8	1.382 (3)
C7-H7	0.9500
C8-C9	1.391 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	122.32 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4$	120.48 (17)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	117.20 (16)
C3-C2-C1	120.92 (17)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.5
C2-C3-C10	126.21 (18)
C2-C3-H3	116.9
C10-C3-H3	116.9
C9-C4-C5	120.03 (17)
C9-C4-C1	121.39 (17)
C5-C4-C1	118.57 (16)
C6-C5-C4	118.80 (17)
C6-C5-H5	120.6
C4-C5-H5	120.6
C5-C6-C7	121.94 (17)
C5-C6-Br1	119.84 (14)
C7- $66-\mathrm{Br} 1$	118.21 (14)
C8-C7-C6	118.60 (17)
C8-C7-H7	120.7
C6-C7-H7	120.7
C7-C8-C9	120.93 (17)
C7-C8-H8	119.5
C9-C8-H8	119.5
C8-C9-C4	119.69 (17)
C8-C9-H9	120.2
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	9.4 (3)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-169.73 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10$	-179.08 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 9$	-151.81 (18)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 9$	27.3 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	27.4 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	-153.51 (16)
C9-C4-C5-C6	-0.4 (3)
C1-C4-C5-C6	-179.54 (16)
C4-C5-C6-C7	0.7 (3)

$\mathrm{C} 12-\mathrm{C} 13$	$1.393(3)$
$\mathrm{C} 12-\mathrm{H} 12$	0.9500
$\mathrm{C} 13-\mathrm{C} 14$	$1.400(3)$
$\mathrm{C} 13-\mathrm{C} 16$	$1.508(3)$
$\mathrm{C} 14-\mathrm{C} 15$	$1.384(3)$
$\mathrm{C} 14-\mathrm{H} 14$	0.9500
$\mathrm{C} 15-\mathrm{H} 15$	0.9500
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	0.9800
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	0.9800
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	0.9800

$\mathrm{C} 4-\mathrm{C} 9-\mathrm{H} 9 \quad 120.2$
C11-C10-C15 118.05 (18)
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 3 \quad 119.08$ (17)
C15-C10-C3 122.87 (17)
C12-C11-C10 121.11 (18)
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11 \quad 119.4$
$\mathrm{C} 10-\mathrm{C} 11$ - $\mathrm{H} 11 \quad 119.4$
C11-C12-C13 120.94 (18)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \quad 119.5$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12 \quad 119.5$
C12-C13-C14 118.08 (18)
C12-C13-C16 121.12 (18)
C14-C13-C16 120.80 (18)
C15-C14-C13 121.21 (18)
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14 \quad 119.4$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14 \quad 119.4$
C14-C15-C10 120.57 (18)
C14-C15-H15 119.7
C10-C15-H15 119.7
$\mathrm{C} 13-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A} \quad 109.5$
$\mathrm{C} 13-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} \quad 109.5$
$\mathrm{H} 16 \mathrm{~A}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} \quad 109.5$
$\mathrm{C} 13-\mathrm{C} 16-\mathrm{H} 16 \mathrm{C} \quad 109.5$
$\mathrm{H} 16 \mathrm{~A}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{C} \quad 109.5$
$\mathrm{H} 16 \mathrm{~B}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{C} \quad 109.5$

$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$-0.6(3)$
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$178.53(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 11$	$-161.99(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 15$	$17.3(3)$
$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-2.3(3)$
$\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$177.07(16)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$1.8(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$0.2(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 16$	$179.84(17)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-1.6(3)$

supporting information

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{Br} 1$	$179.46(13)$	$\mathrm{C} 16-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$178.69(17)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$0.0(3)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$	$1.1(3)$
$\mathrm{Br} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-178.79(13)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$0.8(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-1.0(3)$	$\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$-178.51(17)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$1.3(3)$		

