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Competing active and passive interactions drive amoebalike crystallites
and ordered bands in active colloids
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Swimmers and self-propelled particles are physical models for the collective behavior and motility of a wide
variety of living systems, such as bacteria colonies, bird flocks, and fish schools. Such artificial active materials
are amenable to physical models which reveal the microscopic mechanisms underlying the collective behavior.
Here we study colloids in a dc electric field. Our quasi-two-dimensional system of electrically driven particles
exhibits a rich and exotic phase behavior exhibiting passive crystallites, motile crystallites, an active gas, and
banding. Amongst these are two mesophases, reminiscent of systems with competing interactions. At low field
strengths activity suppresses demixing, leading to motile crystallites. Meanwhile, at high field strengths, activity
drives partial demixing to traveling bands. We parametrize a particulate simulation model which reproduces the
experimentally observed phases.

DOI: 10.1103/PhysRevE.102.032609

I. INTRODUCTION

From living organisms to synthetic colloidal particles,
active systems display exotic phenomena not attainable by
matter at thermal equilibrium [1–12], such as swarming
[13,14], cluster formation [15–18], phase separation in the
absence of attractions [6,19–22], banding [23], and unusual
crystallization behavior [24]. This is due to continuous energy
consumption which occurs in a wide range of systems which
can result in collective behavior at very different length scales,
from the cell cytoskeleton [25,26], tissues [27], and bacterial
colonies [28–31] to larger scales such as insect swarms [32],
fish schools [33], and bird flocks [34]. Artificial active materi-
als, composed of microswimmers, active colloids or vibrating
granular particles [7,15,24,29,35], or even synthetically modi-
fied living systems such as bacteria [21,36], provide a suitable
testing ground where the behavior of active matter may be
carefully probed to extract the new physical principles of this
class of matter.

While some progress has been made in the context of
mapping to equilibrium behavior [6,19,37–40], with no-
table exceptions [6,41–43], theoretical approaches remain less
developed. Key to the development of a theoretical under-
standing is to use simple models of active particles. While
these capture some of the complex behavior observed ex-
perimentally, for example, collective motion and demixing
[6,41,44–52], the link between experiment and theory in
active matter is often rather qualitative. As a result, a com-
prehensive understanding of how and which microscopic

mechanisms lead to the emergence of complex structures in
experimental active systems remains elusive. Here, we use
particle-resolved studies to observe the Quincke roller sys-
tem, active colloids which exhibit swarming and flocking. We
parametrize our experimental system at the microscopic level
of the interacting particles [53,54]. While intriguing boundary
phenomena are observed in this system [55], here we focus on
bulk phase behavior.

At low-to-moderate motility, we reveal the importance of
competing passive interactions (long-ranged attractions) driv-
ing crystallization and activity which leads to meltinglike and
evaporationlike behavior. At high motility, the role of passive
and active interactions is reversed: Activity drives demixing
resulting in a banding phase, whose ordered local structures
result from the repulsive core of the particles. This competi-
tion between passive and active interactions is reminiscent of
well-known passive systems with competing interactions such
as amphiphiles, block copolymers, and mixtures of charged
colloids and nonabsorbing polymer where competing interac-
tions lead to modulated phases such as clusters and lamellae
[56–59], which indeed resemble some structures we find here
and which have been shown to persist in active systems
[17,41]. Our approach shows how one may use bottom-up
designs of particulate active matter with precisely controllable
macroscopic behavior.

In the system we study, the application of a uniform dc
electric field above a critical field strength EQ induces Quincke
rotation of colloidal particles, which leads to directed motion
by coupling their translation and diffusion near a surface
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FIG. 1. Phase diagram of Quincke rollers as a function of activity. (a) Schematic representation of mechanism of Quincke rolling. The
charge distribution around the sphere forms a dipole oriented inversely to the field direction, and any fluctuation in the dipole orientation leads
to particle rotation with a constant angular speed �. The field-dependent activity is translated to the Péclet number, as described in the text.
(b) Experimental setup. Colloidal particles are suspended within a sample cell made of conductive glass slides. Colloids are confined by an
electrokinetic flow to the region of interest and they become active (blue particles). The induced electrohydrodynamic flow is represented by
the solid lines in the amplified illustration. This flow field leads to long-ranged electrohydrodynamic interactions between the particles [72].
(c) Phase behavior in the area fraction: Péclet number plane. In the low activity regime, electrohydrodynamic interactions due to flow fields
[see inset in (b)] result in (passive) crystallite formation at sufficient area fraction. On increasing the activity, e.g., Pe = 2 (E = EQ, with
EQ ≈ 8 × 105 V m−1), the particles self-propel sufficiently that the dynamics change markedly [see Supplemental Material, Fig. S2(b) and
Movie 1 [67]], and the active crystals split and coalesce with one another. With a further increase of activity, the crystallites melt and we find
polar bands propagating through active gas. Black and white symbols represent experimental and numerical data, respectively. Symbols: �
represent passive crystals (X), � active gas (G), � active crystals and gas (A+G), � bands and gas (B+G). Solid lines are drawn guides.
Experimental snapshots for every phase in the diagram are indicated by arrows. Particles are colored according to their hexagonal order
parameter ψ6, whose magnitude is indicated by the color bar. Scale bars represent 10 μm.

[53,60]. In the absence of a field, the particles behave as con-
ventional passive Brownian colloids. At low field strengths,
while remaining nonmotile, particles agglomerate into crys-
tals due to to long-ranged attractive interactions which arise
from electro-osmotic flows [Fig. 1(a)] [61–63]. Above EQ,
the particles undergo Quincke rotation [64–66] and become
motile [Fig. 1(b)] so that the electro-osmotically generated
crystallites transition into a highly mobile active state remi-
niscent of amoebae (see Supplemental Material, Movies 1–3
[67]).

Unlike “living crystals” [16], and systems exhibiting
motility-induced phase separation [6,18,20,21], here the ag-
gregation is driven by long-ranged electrohydrodynamic
interactions [61–63]. These “amoebae” are motile and charac-
terized by a highly dynamic outer surface, and dissolve into an

isotropic active gas as we increase the field strength. Finally,
at very high field strengths we find that the system transitions
to a inhomogeneous polar state (“banding”) that has previ-
ously been investigated numerically and analytically in active
matter systems [23,44,68–70], and experimentally observed
[53,71], but here we find a significant degree of local ordering.
We investigate the rich structural and dynamical properties
of our system using a range of static and dynamic order
parameters.

Central to our approach is to capture, quantitatively,
the behavior of the experimental system with a simula-
tion model which captures the essentials of the system
[53]. In this way, we provide the means to predict the
behavior of active matter systems in a rather accurate
fashion.
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II. METHODOLOGY

A. Experiments

A more extensive description of the experimental setup
shown schematically in Fig. 1(b) is included in the Appendix.
We use the so-called Quincke electrorotation mechanism of
colloidal rollers [53]. A uniform electric field E is applied to
the suspension. Above a critical field strength EQ, the sym-
metry of the electric charge distribution at the colloid surface
breaks spontaneously. As a result, an electric torque acting
on the colloids leads to rotation with a constant rate around
a random axis transverse to the field E [Fig. 1(a)] [64,65].
Upon sedimentation, a quasi-two-dimensional (quasi-2D) sys-
tem forms, and rotation couples with translation. As a result,
roller motion along a random direction is observed.

We use suspensions of colloidal particles of diameter σ =
2.92 μm in a nonaqueous ionic solution. Experiments are
performed using sample cells made of two indium-tin-oxide
(ITO) coated glass slides separated by double-sided tape. The
ITO layers are used for the application of the electric field in
the z direction. Simultaneously, rollers are confined within a
square region with the application of the field. This region is
created by the removal of a photoresist layer, as illustrated in
Fig. 1(b). Note that a nonzero current develops solely within
the square region of the cell. With Quincke rotation acting on
the system, the roller trajectories are restrained to the confine-
ment region. We translate the resultant field-dependent motion
to dimensionless Péclet numbers Pe, which characterize the
strength of the active motion with respect to the thermal
diffusive (colloidal) motion. We henceforth characterize the
static and dynamic behavior of the system with increasing
area fractions φ and field strengths. Throughout, we use the
Brownian time for a colloid to diffuse its own radius in 2D,
τ = σ 2/Dt ≈ 9 s, as the unit of time, where Dt is the transla-
tional diffusion constant.

B. Simulations

The Quincke rollers are subject to forces and torques due to
excluded volume repulsions, as well as self-propulsion, align-
ment, and attractions generated by the electrohydrodynamic
interactions of the particles with their environment and each
other [53,72]. They can be modeled as active Brownian parti-
cles with an additional active aligning torque, whose active
and passive forces and torques can be quantitatively speci-
fied. We implement Brownian dynamics simulations, with the
following equations of motion for positions and orientations
ri, θi:

ṙi = Dt

kBT
[Fi + f pP̂i] +

√
2Dtξ

t
i , (1)

θ̇i = Dr

kBT
Ti +

√
2Drξ

r
i , (2)

where Fi is the interparticle force on the ith roller, f p is
the magnitude of the active force, P̂i = (cos θi, sin θi ) is the
direction of motion of the ith roller, Ti is the torque on the
ith roller which incorporates alignment terms, and ξ t,r

i is a
Gaussian white noise of zero mean and unit variance. Dr is
the rotational diffusion constant. The direct interactions Fi

include a “hard”-core and long-range attraction, the latter to

model the electrohydrodynamic contribution. This pertains
to long-ranged hydrodynamic attractions induced by solvent
flow [61–63]. Further details of the model (which is partly
based on Ref. [53]) and the simulation parameters, and the
procedure by which the parameters were mapped to the ex-
periment may be found in the Appendix. We emphasize that
we use one set of interaction parameters to describe the simu-
lations, that is to say, we only vary the area fraction and Péclet
for all the state points studied.

C. Determining the Péclet number

Before moving to the discussion of our results, we first
describe our mapping of field strength to Péclet number
between experiment and simulation. We obtain the bare
translational diffusion coefficient of the passive system Dt

measured at equilibrium. Particle velocity υ and the charac-
teristic timescale for the rotational diffusion τr = D−1

r for a
dilute sample with area fraction φ ≈ 0.001 are obtained from
the fitting to the mean square displacement (MSD) of active
particles in the dilute (gas) regime,

〈
r2(t )〉 = 4Dtt + υ2τ 2
r

3

[
2t

τr
+ exp

(
−2t

τr

)
− 1

]
. (3)

To extract the parameters of Eq. (3) from the experiments
we consider a series of similarly dilute samples at different
field strengths. We estimate the dimensionless Péclet number
as Pe = 3υτr/σ , for each measured velocity in the differ-
ent states obtained in the experiment. The Péclet number is
defined in terms of Quincke rotation. However, since this is re-
lated to the threshold field strength EQ where Quincke rotation
is initiated, we find that for low field strengths, Pe is small and
only weakly dependent on the field E � EQ, Pe ∼ 0. Once
the particles become motile, for our system the two appear to
coupled for E > EQ, as Pe scales with [(E/EQ)2 − 1]1/2, (see
Fig. S1 in the Supplemental Material [67]). Note that because
the particles are colloidal, they can only be quasi-2D, and we
expect slip boundary conditions between the particles and the
substrate.

III. RESULTS

We now present our main findings. First, we consider
the phase behavior of the system as a function of the ac-
tivity, represented by the Péclet number which we obtain
from measuring particle mobility, and as a function of area
fraction. At zero field strength (Pe = 0), we obtain Brown-
ian hard disks which form a 2D colloidal fluid for the area
fractions we consider. Upon increasing the field strength for
φ � 0.03, the system exhibits a novel phase behavior owing
to a coupling between nonequilibrium electrohydrodynamic
interactions due to solvent flow and electrically induced ac-
tivity (Quincke rotation). Then, by the use of a variety of
dynamic and static order parameters, we identify the nature
of the transitions between these states.

A. Crystallization

At sufficient area fraction, we find that particle condensa-
tion to form crystallites emerges at low field strength, e.g.,
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Pe ≈ 0 (E < EQ). This is due to the long-ranged electrohy-
drodynamic interactions [Fig. 1(b)] [72]. In our experiments,
colloids act as dielectric regions perturbing the electric charge
distribution, therefore inducing a flow of ions with a compo-
nent tangential to the substrate [72]. In the vicinity of such
an electro-osmotic flow, the particles experience transverse
motion leading to the formation of crystallites [Fig. 1(b)]. We
find crystallization for area fractions φ � 10−2. We emphasize
that this may be due to the finite size of our experimental cells.
That is to say, even the passive system is likely out of equi-
librium and for sufficient waiting time, we expect crystallite
formation for φ � 10−2.

B. Activity-induced phase transitions

Upon increasing the field strength, we can exploit
the Quincke mechanism that triggers spontaneous rotation
[Fig. 1(a)] to study the behavior of self-propelled rollers.
For this to occur, the viscous torque acting on the particle
must be overcome, hence the field needs to be sufficient to
initiate rolling (E � EQ). When increasing the activity above
Pe ≈ 2 (E = EQ), we observe crystallite motility, that is to
say, the crystallites are mobile by themselves (see Supple-
mental Material, Movie 1 [67]), related to clustering behavior
in Quincke rollers modified to exhibit run-and-tumble be-
havior [73]. These active crystallites arise from the interplay
of electrohydrodynamic interactions [61,72] and the Quincke
electrorotation of the rollers. Note that for our system, the
aggregation resulting from passive interactions does not fully
suppress motility, as recently suggested for high-density ac-
tive solids [55].

We further find coalescence and splitting of the crystallites,
yet the local hexagonal symmetry remains, as can be seen
in certain bacteria colonies [31] and chiral swimmers [74].
We term this an “amoeba phase” since the motility leads the
aggregate to constantly reshape in a fashion reminiscent of
the motion of amoebae, as shown by the time sequence in
Fig. S2(b) (also see Supplemental Material, Movie 1 [67]).
These amoebae appear to be in a nonequilibrium steady state.
However, such an inhomogeneous state is reminiscent of
mesophases in passive systems, but here activity suppresses
demixing, playing the role of long-ranged repulsion in so-
called “mermaid” systems [57–59,75] and consistent with
some recent predictions of active liquids [41]. We note that,
for this emergence of motility, E is substantially larger than
EQ. There may be some suppression of the transition to
Quincke rotation by the dense packing in the crystallites, but
we caution that EQ is approximate in any case.

On further increasing the field to E = 1.75EQ (Pe = 44),
with φ � 4 × 10−2 Quincke rotation triggers breakdown of
the active crystallites into an “active gas” of colloidal rollers
undergoing displacement in random directions [Fig. 1(c)].
Previously, it was shown experimentally that the increase in
area fraction results in homogeneous polar phases and vortices
[53,54]. Here, we note that the onset to polar collective motion
occurs experimentally with area fraction φ = 4 × 10−2 and
Pe � 63. Further increase in area fraction results in traveling
bands through the gas at lower activity values, i.e., Pe ≈ 32.

These bands form perpendicular to the direction of par-
ticle motion (which self-organizes into a strongly preferred

direction) (see Supplemental Material, Movies 4 and 5 [67]).
This is related to banding observed in earlier experiments with
Quincke rollers [53], but here the area fraction in the band
is very much higher, leading to local hexagonal order [see
Fig. 1(c)].

The traveling bands are akin to the liquid fractions in
flocking models [70,76], but here the high local area fraction
leads to hexagonal order in the bands. However, within the
activity and density values measured no homogeneous phase
develops as in earlier experiments with Quincke rollers [53].
In our simulations, we see one band in the box. We leave the
analysis of whether this is activity-driven microphase separa-
tion, or full demixing for a later finite-size scaling analysis.
This local hexagonal order within the bands contrasts with the
unstructured bands seen in the Vicsek model [23]. Here, it is
the activity which drives the banding, i.e., particle demixing.
This is quite unlike the case of the amoebae above, where
activity suppresses full demixing.

C. Local structure

Having qualitatively introduced the behavior we encounter
in our system in Fig. 1, we now proceed to consider the
phase transitions in more detail. In order to determine the
nature of the transitions we require suitable order parame-
ters. We first consider the structural properties of the phases
we encounter: Passive fluid, passive crystal, active crystallite
(“amoebae”), active gas, and bands. Given the richness of the
phase behavior, it is unlikely that one single order parameter
will prove sufficient, and we find this to be the case. We
begin with the 2D bond-orientational order parameter ψ6 =
(1/N )

∑N
i=1 |ψ i

6|. Perfect hexagonal ordering is indicated by
ψ6 = 1, whereas a completely disordered configuration gives
ψ6 = 0. See Appendix, Sec. 3, for more details of ψ6.

In Fig. 2(a), we plot the average ψ6 as a function of Pe
and the applied electric field for both experiment and simu-
lation. We emphasize that, given the simplicity of our model,
and of our mapping, the agreement between experiment and
simulation is remarkable. We find low ordering of the passive
Brownian system (at E = 0 or Pe = 0). With a slight increase
in the field strength to E < EQ, we observe a rapid rise in ψ6 to
≈0.9 that corresponds to the crystallization transition driven
by the electrohydrodynamic interactions. In this regime, the
system is composed of many crystallites that barely move. It
is possible that there may be a condensed liquid (or hexatic)
phase [77], although this is not apparent in our data, and
the transition appears first order within the field strengths we
have sampled. We believe this to be similar to equilibrium 2D
attractive systems undergoing crystallization and move on to
consider the activity-driven transitions.

Increasing the activity further into the amoeba phase, ψ6

starts to decrease. However, ψ6 remains significantly above
zero indicating the amoeba clusters are crystal-like. While this
state is far from equilibrium, the ψ6 value exhibits temporal
fluctuations consistent with a steady state [Supplemental Ma-
terial, Fig. S2(a) [67]] and local order parameter ψ6 reveals
rotational motion of the ameobae. We infer that to distinguish
the (passive) crystallites from the amoebae, some kind of
dynamic order parameter may prove suitable, and return to
this below. At larger Pe (11 � Pe � 40), the value of ψ6,
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FIG. 2. Changes in local structure as a function of field strength for Quincke rollers. (a) Local order determined with the bond-orientational
parameter ψ6 upon increasing Pe values. (b) Fluctuations of the bond-orientational parameter χ6 as defined in the text. Inset displays
experimental measurements where a peak develops at the transition between the crystallites and the amoeba phase. Symbols and lines
in (a) represent experimental and numerical data respectively for both (a) and (b). (c) Orientational correlation functions g6(r) for Pe as
indicated in the color bar. Data obtained from simulations with φ = 0.15. In (a) and (b) and in subsequent figures, the phases are denoted as X
(crystallites), A (amoebae), B + G [(active) gas and banding].

drops markedly, as the amoebae “dissolve,” apparently in a
continuous fashion. Finally, at very high Pe (Pe � 40), we see
the emergence of banding, a form of phase separation driven
by activity. The value of ψ6 again shows signs of increase for
φ < 0.16.

To gain further insight into these transitions, in Fig. 2(b)
we plot the fluctuations in the hexatic bond-orientation order
parameter which we take as χ6 = 〈ψ2

6 〉 − 〈ψ6〉2 where the
average is over different snapshots. Further details are pro-
vided in the Appendix, Sec. 3. At low Péclet numbers, we see
good agreement between the experiment and simulation, but
when the motility is higher, the simulations decay toward the
active gas faster than the experiments. However, we find no
enhancement in χ6 around the amoeba-gas phase boundaries,
indicating that the transition is a crossover rather than a first-
order-like transition between different phases.

To quantify the spatial correlations in ψ6, in Fig. 2(c), we
plot g6(r) defined as

g6(r = |ri − r j |) = 〈
ψ i

6
∗
ψ

j
6

〉
, (4)

where ψ i
6 is the (complex) value of the hexatic bond-

orientation order parameter for particle i at position ri. At
low Pe, we observe long-ranged orientational correlations
in the crystal and amoeba regimes. Such correlations are
significantly shorter ranged for the active gas. Interestingly,
for the largest Pe in the banding regime, we find that the
bond-orientational order parameter is correlated over a larger
domain than in the gas regime. Therefore, formation of the
bands not only increases ψ6, but also enhances its spatial
correlations.

D. Dynamical analysis

In our analysis of the local structure in Fig. 2, we noted that
some kind of dynamical order parameter would be appropriate
to distinguish the crystallites from the amoebae. In Fig. 3,
we use such an order parameter to perform this analysis, the
overlap [24],

Q(t ) =
〈

1

N

N∑
i=1

exp −
(

[ri(t ′ + t ) − ri(t ′)]2

a2

)〉
t ′
, (5)

which we evaluate at a = σ . We fit the resulting dynamic
correlation functions with a stretched exponential form, where
b is the stretching exponent, Q(t ) = exp[−(t/τα )b], as shown
in Fig. 3(a) to determine a timescale for relaxation in our
system τα . We plot this timescale against the Péclet number
in Fig. 3(b).

Most striking in the crystal-amoeba transition is the mas-
sive drop in relaxation time [Fig. 3(b)]: At a total of five
decades, this is a very substantial dynamical change for
particle-resolved studies of colloids, active or passive [78].
Thus, the crystallites are effectively solids, while the amoe-
bae exhibit timescales of colloidal liquids, even though their
local structure is crystalline. Despite this precipitous drop in
relaxation time, we find that the transition from crystallites to
amoeba is apparently continuous in nature. We thus conclude
that the crystallite-amoebae and amoeba-active gas transitions

X A G B + G

(a) (b)

FIG. 3. Dynamics of the Quincke rollers across various phases.
(a) Dynamical overlap function Q(t ), using Eq. (5). Symbols rep-
resent experimental data for φ = 0.11. Solid lines are exponential
fits as described in the text, where the stretching exponent b is con-
strained to 1 for both experiment and simulation. Color bar indicates
the correspondent Pe for each line. Data are scaled by the Brownian
time τ . (b) Relaxation time τα from stretched-exponential fitting to
symbols in (a). Symbols represent experiments, solid line is obtained
from simulations, and dashed line is a guide. The phases are denoted
as X (crystallites), A (amoebae), B + G [(active) gas and banding].
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X A G B + G X A G B + G

(a) (b)

FIG. 4. Characteristics of the clusters formed by the Quincke
rollers. (a) Size of clusters as a function of activity. Rapid increase
is observed as crystallites form. Symbols represent experiments and
lines are from numerical analysis. (b) Polar order for different Pe
values. Symbols are data obtained from many velocity measurements
over different regions in the sampling cell. As above, the phases are
denoted as X (crystallites), A (amoebae), B + G [(active) gas and
banding].

we have found are both continuous, at least insofar as we can
detect.

E. Characteristics of the active and passive crystallites

In Fig. 2, the ψ6 bond-orientational order parameter gave
somewhat limited insight as to the nature of the crystallite-
amoeba transition, as both exhibit hexagonal local symmetry.
Therefore, we now seek other structural measures. Figure 4(a)
shows how the mean cluster size varies in different regimes.
We consider four particles as the minimum cluster size. The
system is composed of a few large clusters at very low Pe.
Upon increasing the activity, those big clusters break up to
smaller ones until in the inhomogeneous regime where the
system is dominated by monomers and small clusters from
collisions. Hence, the low mean size in Fig. 4(a), despite the
emergence of denser bands. Note that in the regime where our
simulations indicate banding, finite-size effects in the simul-
ations (which have 10 000 particles) may influence the cluster
size somewhat as the bands span the simulation box. The same
holds for the passive crystals at low field strength.

F. Nature of the transitions at higher activity:
Amoeba to active gas and active gas to ordered bands

In addition to the transitions we have already discussed,
we encounter more at higher field strength. First, the amoe-
bae “dissolve” to form an “active gas.” At the densities we
consider, this transition is characterized by a substantial, but
continuous, drop in the ψ6 bond-orientational order parameter
[Fig. 2(a)] consistent with our discussion of the continuous
change in dynamics above.

At higher field strengths, we encounter banding, strong
density fluctuations perpendicular to the preferred direction of
travel. Interestingly, this inhomogeneous state exhibits some
degree of local order, as the value of the bond-orientational
order parameter 〈ψ6〉 ≈ 0.2. At higher densities, e.g., φ �
10−1, the local order of dense bands is notably higher, with

〈ψ6〉 > 0.5 [see B+G panel Fig. 1(c)]. While far from indi-
cating full hexagonal order (〈ψ6〉 = 1), this is nevertheless
significantly larger than zero. Furthermore, as we can see in
Fig. 1(c), some particles are in a very high state of crystalline
order (appearing blue), although most are not. Previous work
did not observe hexagonal ordering [53,54]; we believe this
is due to the fact the bands in our case form at much higher
area fraction, such that excluded volume effects contribute to
the ordering. We note that here we use polymethylmethacry-
late particles, while Bricard et al. [53,54] used polystyrene
particles whose electrostatic charging properties may be
different.

Rather striking, in the case of the transition to the banded
phase is the alignment between the dipoles of the Quincke
rollers, which defines the direction of rotation. In Fig. 4(b),
we see a very strong increase in the alignment upon banding,
suggesting that this is a suitable order parameter in this case.
Taking the polarization |〈P〉| as an order parameter for the
transition between active gas and bands, we find that it is
continuous.

IV. DISCUSSION

We have shown that the Quincke roller system exhibits a
rich and complex phase behavior, with passive fluid, crys-
tal, amoebalike active crystallites, active gas, and an ordered
banding phase. We reveal an intriguing reversal in the roles
of active and passive interactions. At low field strength, activ-
ity suppresses demixing, while (passive) electrohydrodynamic
interactions drive partial demixing in the “amoeba” phase.
At high field strength, the situation is quite reversed: Here
activity drives partial demixing into bands. This is consistent
with recent theoretical predictions for active liquids [41] and
the well-known phenomenon of motility-induced phase sepa-
ration [6].

We have used a variety of static and dynamic order parame-
ters to probe the nature of the transitions between these states,
and find that they are continuous in nature except the (passive)
fluid-crystal transition which is consistent with first order. One
intriguing question concerns the universality of such states in
active matter with attractions, and the role of hydrodynamics
[79].

For the simulation model, we have quantitatively
parametrized the components of the Quincke roller system by
treating the electrohydrodynamic attraction with long-ranged
potential, “hard”-core, active force, and electrohydrodynamic
alignment terms. Remarkably, when we rescale our results to
compare the same Péclet numbers in experiments and simula-
tions, we obtain a quantitative agreement between the two.
With the model, we have revealed that a key ingredient of
the phase behavior is the interplay between active and passive
interactions.

To date, there are few examples of quantitative agreement
between particular models and experiments in active matter,
and it is in this quantitative agreement between simulation
and experiment that our work is significant. Our work opens
the way to using simple, intuitive minimal models which
correctly capture the microscopic interactions to describe,
quantitatively, the macroscopic physical behavior of complex
active systems which are far from equilibrium.
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APPENDIX: MATERIALS AND METHODS

1. Experimental setup

Our experimental Quincke roller model consists of
poly(methyl methacrylate) (PMMA) spheres of diameter σ =
2.92 μm determined with SEM. These are suspended in a
0.15-mM solution of dioctyl sulfosuccinate sodium (AOT) in
hexadecane. Imaging and application of a uniform dc field
take place in sample cells made of two indium tin oxide (ITO)-
coated glass slides (Solems ITOSOL12), separated with a
layer of adhesive tape of thickness H = 100 μm. Addition-
ally, a layer of photoresist (Microposit S1818) of 2 μm in
thickness is deposited on the top electrode. Square confine-
ment regions of 5 mm × 5 mm are created using conventional
lithography techniques. The same electric field E that triggers
Quincke rotation induces a lateral electric potential gradient
between the conductive region and the insulating photoresist
layer. As a result, an electrokinetic inward flow confines the
rollers at the bottom electrode [61]. The electric field is ap-
plied by a power supply (Elektro Automatik, PS-2384-05B)
and amplified (Trek 606E-6). Image sequences are obtained
using brightfield microscopy (Leica DMI 3000B) with a 10×
objective and recorded with a frame rate of 354 fps (Basler
Ace). All measurements were performed when the rollers
reached a steady state. Individual rollers are identified and
particle trajectories are reconstructed using a Python version
of conventional tracking methods [80].

2. Determination of the critical strength

We follow the description of Lemaire and coworkers
[65,81] to estimate the critical field strength EQ. The spon-
taneous rotation of particles, known as Quincke rotation,
strongly depends on the charge distribution at the particle-
liquid interface and the respective charge relaxation times,
given by τp,l = εp,l/sp,l , where εp,l and sp,l are the dielectric
constant and conductivity of the particle and the liquid, re-
spectively. In the case of having τl > τp, the induced dipole
P is stable with respect of field direction. On the other
hand, with τp > τl , P is unstable with respect to the field
direction [see Fig. 1(a) in main text], and any perturba-
tion results in an electrostatic torque T e = P × E, from the
dipole rotation. Nevertheless, even if τp > τl is satisfied, T e

needs to overcome the viscous torque exerted on the parti-
cle by the liquid to initiate rotation, T H = −αω, where the

angular velocity is given by ω and α = πησ 3 is the rota-
tional friction coefficient. We use polymethyl methacrylate
colloids of diameter σ = 2.92 μm, with εp = 2.6ε0, and a
0.15 mM AOT/hexadecane solution with η = 4.3 mPa, sl ≈
10−8 S m−1 [82], sp ≈ 10−14 S m−1 [65], and εl ≈ 2ε0 for our
system. The critical threshold is given by

EQ = [
1
2πεlσ

3(P0 − P∞)τMWα−1
]−1/2

, (A1)

where the polarizability factors

P0 = sp − sl

sp + 2sl
(A2)

and

P∞ = εp − εl

εp + 2εl
(A3)

account for the conductivities and permittivities of the particle
and liquid, respectively. The characteristic dipole relaxation
timescale is given by the Maxwell-Wagner time

τMW = εp + 2εl

sp + 2sl
. (A4)

3. Order-parameter details

Here, we take the mean of the bond-orientational order
parameter ψ6 across N particles

ψ6 = 1

N

N∑
j=1

∣∣ψ j
6

∣∣. (A5)

The value of the order parameter for each particle is

ψ
j

6 ≡ 1

Zj

Z j∑
k=1

exp
(
i6θ

j
k

)
, (A6)

where Zj is the coordination number of particle j obtained
from a Voronoi construction and θ

j
k is the angle made be-

tween a reference axis and the bond between particle j and
its kth neighbor. ψ6 = 1 indicates perfect hexagonal ordering,
whereas completely disordered structures give ψ6 = 0. Fig-
ure 2(a) shows that for a passive Brownian system there is
almost no hexagonal order. We quantify the fluctuations in ψ6

by defining the susceptibility

χ6 ≡ 〈
ψ2

6

〉 − 〈
ψ6

〉2
, (A7)

where ψ2
6 = 1/N

∑N
j=1 |ψ j

6 |2.

4. Simulation details

Brownian dynamics simulations were performed on a 2D
system composed of N = 10 000 interacting Quincke rollers.
We integrate the overdamped Langevin equations [Eq. (2)]
using the stochastic Euler scheme with a time step of dt =
10−5τ . In our simulations, the interparticle force on the ith
roller Fi = −∇i(Hattr + Hexc) while the torque on the ith
roller Ti = −∂Ralign/∂θi. The particle diameter σ , thermal
energy ε = kBT , and Brownian time τ = σ 2/Dt are chosen
as basic units for length, energy, and time, respectively. We
take Dr = 3Dt/σ

2, as expected for a spherical particle in the
low-Reynolds-number regime. We study the phase behavior of
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the system as a function of two dimensionless parameters; Pé-
clet number Pe = f pσ/kBT and the area fraction φ = Nπσ 2

4L2 ,
where L is the linear size of the simulation box.

5. Microscopic model of alignment interactions
in Quincke rollers

The following description is based on a microscopic model
describing the dynamics of a population of colloidal rollers

due to Quincke rotation. The direct interactions are captured
in the force Fi in Eq. (A8). Here we consider the alignment
terms. The equations of motion for the ith self-propelled par-
ticle are given by the following Langevin equations, where
for the rotational case we have rewritten the version in
the main text to explicitly consider the effective alignment
interaction:

ṙi = Dt

kBT
[Fi + f pP̂i] +

√
2Dtξ

t
i (A8)

and

θ̇i = − Dr

kBT

∂

∂θi

∑
j �=i

Ralign(ri j, P̂i, P̂ j ) +
√

2Drξ
r
i , (A9)

where the particle i is subject to a propulsion force of magnitude f p whose direction changes due to the alignment interaction and
noise ξi. We consider a pairwise alignment interaction between rollers that leads to a torque on particle i. Note that because the
simulations are strictly in 2D, the direction of the dipole P in Eq. (A9) is that of the rotation, i.e., the direction of self-propulsion,
rather than the (3D) induced dipole of the experimental system mentioned above.

Introduced by Caussin and Bartolo [53], the effective alignment interaction Ralign reads as

Ralign(r, P̂i, P̂ j ) = −A1(r)P̂i · P̂ j − A2(r)r̂ · (P̂i − P̂ j ) − A3(r)P̂ j · (2r̂r̂ − I) · P̂i, (A10)

where P̂i = (cos θi, sin θi ) is the direction of motion of the ith roller, and r̂ ≡ r/r. This has the minimum number of terms
required to describe the electrohydrodynamically induced alignment interactions with the correct symmetry and whose range is
set by the distance between plates in the experimental setup. We truncate Ralign at rc1 = 3.0 σ , where σ is the particle diameter.
We note that angular momentum is not conserved by these dynamics.

The coefficients A1(r), A2(r), and A3(r) incorporate the microscopic parameters, and are given by

A1(r) = 3μ̃s
σ 3

8r3
�(r) + 9

(
μ⊥
μr

− 1

)(
P∞ + 1

2

)(
1 − E2

Q

E2

)
σ 5

32r5
�(r) (A11a)

accounting for the short-ranged hydrodynamic interactions and electrostatic couplings that promote the alignment of directions
between particles i and j. Here, μ⊥ and μr are the mobility coefficients depending on the liquid viscosity and the distance
d between the surface and particle, respectively. From the expressions in [83–86] we obtain P∞ = 0.08, μ̃s = 11, and
μ⊥/μr = 1.5.

The electrostatic repulsion and the electrohydrodynamic interactions coupling are encoded in the A2(r) and A3(r) coefficients,
respectively,

A2(r) = 6

(
μ⊥
μr

− 1

)√
E2

E2
Q

− 1

[(
P∞ + 1

2

)
E2

E2
Q

− χ∞
]

σ 4

16r4
�(r), (A11b)

A3(r) = 2μ̃s
σ 2

4r2

σ

2H
+

[
μ̃s

σ 3

8r3
+ 5

(
μ⊥
μr

− 1

)(
P∞ + 1

2

)(
1 − E2

Q

E2

)
σ 5

32r5

]
�(r), (A11c)

where the hydrodynamic and electrostatic couplings are screened over distances proportional to the chamber distance, H = 100
μm. A more detailed description can be found in Refs. [53,54]. We estimate such coefficients considering the experimental field
intensity under which we observe the active gas phase (E � EQ, with EQ ≈ 8 × 105 V m−1), and average them over distances
r ∈ [σ, 3σ ]. For convenience we approximate the screening function as �(r) = 1 if r � H/π and �(r) = 0 otherwise.

The interparticle force on the ith roller reads as Fi = −∇i(Hattr + Hexc), where the electro-osmotic long-ranged attraction
[72] is modeled by a truncated and shifted (at rc2 = 5.0 σ ) potential of the form

Hattr = −A4 exp(−κr)/r2, (A12)

where κ = 1/3 σ−1 is the inverse screening length. The excluded volume interactions between rollers are represented by a
repulsive Weeks-Chandler-Anderson (WCA) interaction of the form Hexc = 4ε[(σ/r)12 − (σ/r)6] + ε, where ε = kBT is the
energy unit of the model. The WCA potential is truncated at rc3 = 21/6σ .

The coupling parameters in the alignment interactions are estimated to be A1 = 0.93kBT, A2 = 0.33kBT, and A3 = 0.48kBT
for our experimental conditions, and we chose the attraction strength to be A4 = 10kBT . We verified that the qualitative phase
behavior of the model remains the same if we vary the strength of the long-ranged attraction. We note that we have parametrized
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A1, A3 from the single-particle dynamics in the dilute gas phase, the attractive interactions A2, A4 are determined from the
experimental parameters.
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