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ABSTRACT: A 12-step asymmetric synthesis of thromboxane B2 (TxB2) from 2,5-dimethoxytetrahydrofuran is described. The syn-

thesis employs our organocatalytic aldol reaction of succinaldehyde to give a key bicyclic enal intermediate. From here, the synthetic 

strategy involves a conjugate addition of an alkenyl side chain to the bicyclic enal, Baeyer-Villiger oxidation, and a highly Z-selective 

Wittig olefination of hemiacetals. Key to success was selecting the timing of the appropriate oxidation state of the different functional 

groups. 

Thromboxane B2 (TxB2) is a metabolite of thromboxane A2 (TxA2, 

t l/2 (37 °C) = 32 s at pH 7.40), a prostanoid which causes contrac-

tion of coronary vessels and platelet aggregation (throm-

bosis)(Scheme 1).1 Although TxB2 is generally regarded as biolog-

ically inert, there are reports that it inhibits the pulmonary inactiva-

tion of PGE2,2 and that it may play a role in the immune3  and vas-

cular systems too.4 It’s main use is as a marker for TxA2 and it is 

recognized as a valuable molecule for the studies of prostanoid-re-

lated biochemical processes.5 For example, Still employed TxB2 as 

a synthetic precursor to the biologically active TxA2.5a,6  The inter-

esting molecular architecture of the natural product TxB2 has made 

it an appealing target for chemists over the years.7 In this context, 

several asymmetric syntheses of TxB2 have been reported.8 How-

ever, the previous synthetic strategies are rather lengthy and lack 

atom economy, costing time and energy, and so improved synthe-

ses are still in demand.  

 

 

Figure 1. Structures of thromboxane A2 and thromboxane B2. 

 

We recently developed a short synthetic strategy to prostaglandins, 

completing the total synthesis of PGF2α in just 7 steps9a and applied 

this methodology to several prostaglandin-based drugs9b,9c and to 

12-PGJ3.9d The key step in the synthesis employed a (L)-proline 

catalysed double aldol dimerization of succinaldehyde to prepare 

the key bicyclic enal intermediate (8).9a,d We were keen to broaden 

the reach of this chemistry and in particular to demonstrate its 

application to other prostanoids. Just as the Corey lactone10 has 

been used for the preparation of a wide range of prostanoids, we 

see our enal intermediate, 8, as being perfectly set up for further 

transformations to access the whole family of prostanoids in an ef-

ficient manner. As part of this effort, we now report the application 

of this strategy to a 12-step synthesis of the natural prostanoid 

TxB2.11   

 

Scheme 1. Retrosynthetic analysis of thromboxane B2 from the key 

bicyclic enal intermediate 

 

 

 

Our retrosynthetic analysis for the stereoselective synthesis of 

TxB2 is shown in Scheme 1. We envisaged that the α-side chain 



 

 

could be introduced by a Wittig reaction on the corresponding hem-

iacetal 3. This could be obtained by selective reduction of lactone 

4, which itself could be synthesized by Baeyer-Villiger oxidation 

of ketone 5. Ketone 5 could be generated from a stereoselective 

conjugate addition of the chiral -side chain 6 to the key enal in-

termediate 7 followed by ozonolysis. Although selective redox 

steps are required (4→3), this analysis was deemed preferable over 

using the acetal since (i) the lactone is a crystalline compound (ii) 

it is a single diastereoisomer whereas the acetal is a mixture and 

(iii) it minimizes the use of protecting groups.  

We began our synthesis with the preparation of enal-lactone 7, 

available in just 3 steps on multigram scale with high ee using our 

L-proline-catalyzed double aldol reaction of succinaldehyde (9), 

generated by hydrolysis of commercially obtainable 2,5-dimethox-

ytetrahydrofuran (Scheme 2).9 Subsequent conjugate addition of 

the mixed vinyl cuprate 10 to 7 followed by trapping with TMSCl 

and selective ozonolysis9a,9b gave ketone 11 which was then con-

verted to the dilactone intermediate 12 via Baeyer-Villiger oxida-

tion12 [20% yield (unoptimized), over 3 steps]. Unfortunately, all 

attempts to selectively reduce dilactone 12 to the corresponding 

Wittig reaction precursor 14 via the formation of 13 using Proctor’s 

SmI2-H2O method13 led to complex reaction mixtures (see SI for 

detailed information). Although this method had been reported to 

reduce 6 membered lactones to the diol in the presence of 5 mem-

bered ring lactones, we observed the formation of multiple reaction 

products when applied to dilactone 12.  

 

Scheme 2. Initial attempts to thromboxane B2 via the formation of 

dilactone 12 

 

 

Reagents and conditions: (a) [Cu(MeCN)4]OTf (5 mol %), 2'-Bi-

pyridine (5 mol %), TEMPO (5 mol %), NMI (10 mol %), CH3CN, 

Air, r.t., overnight, 91% yield. (b) Cuprate 10 (1.2 eq.), THF/Et2O, 

−78 °C; then TMSCl (5 eq.), Et3N (6 eq.), −78 °C to −20 °C. (c) 

O3-O2, CH2Cl2/MeOH (v/v, 3:1), −78 °C; then PPh3 (1.5 eq.). (d) 

m-CPBA (2.5 eq.), NaHCO3 (2.7 eq.), CH2Cl2, 0 °C to r.t., 36 h, 

20% yield, 3 steps. TEMPO, 2,2,6,6-tetramethyl-1-piperidinyloxy. 

NMI, N-methylimidazole. TBS, tert-butyldimethylsilyl. TMS, tri-

methylsilyl. m-CPBA, m-chloroperoxybenzoic acid. DDQ, 2,3-di-

chloro-5,6-dicyano-1,4-benzoquinone. 

 

Due to the difficulty in selectively reducing one of the two lactones, 

we decided to begin with the acetal in place, since the hemiacetal 

is formed directly from the proline catalyzed aldol reaction.  Fur-

thermore, this would avoid additional oxidation and reduction 

steps. We selected the para-methoxybenzyl acetal 15 to aid depro-

tection under neutral conditions (Scheme 3). Although this route 

has the acetal at the required oxidation state, it is complicated by 

the having to manipulate and carry through two diastereoisomers. 

In fact, we found it better to separate the acetal diastereomers and 

manipulate them separately, as this allowed us to monitor reactions 

more easily and purify and characterize compounds more fully. In-

itially, the major -isomer of the acetals was selected, and we car-

ried through the established 1,4-addition/ozonolysis/Baeyer-Vil-

liger oxidation, delivering the key lactone intermediate -17 (64% 

yield, over 3 steps). Following PMB deprotection with DDQ, we 

explored the Wittig reaction with (4-carboxybutyl)triphenyl-phos-

phonium bromide or [4-(4-Methyl-2,6,7-trioxabicyclo[2.2.2]oct-1-

yl)butyl]triphenylphosphonium iodide14 but these invariably led to 

intractable mixtures (Scheme 3b). We suspected that under basic 

conditions, the lactone moiety in intermediate 18 was interfering in 

this step causing side reactions, and so we decided to remove it. 

Initially, we considered reduction to the diol since, as shown in 

Scheme 3b, this could lead to a short synthesis of TxB2, simply 

requiring reduction, Wittig reaction, selective oxidation and depro-

tection. Unfortunately, whilst LiAlH4 reduction to diol 20 was suc-

cessful we were unable to deprotect the PMB group cleanly.  

We therefore considered an alternative strategy in which we con-

ducted a controlled reduction of the lactone to the required oxida-

tion state and employed a protecting group instead, i.e. conversion 

of lactone -17 into the methoxy acetal. Starting with -17, reduc-

tion (DIBAL-H, THF, –78 °C) and oxy-methylation of the “naked” 

anion generated by deprotonation with KHMDS in the presence of 

18-crown-6, afforded acetal -22 as a single diastereoisomer.15 The 

established 1,4-addition/ozonolysis/Baeyer-Villiger oxidation pro-

tocol was also applied to the minor α-isomer of PMB-acetals 15, 

affording lactone α-17 in 63% yield over 3 steps. Reduction with 

DIBAL-H, followed by oxy-methylation again furnished a single 

diastereomer α-22. Interestingly, the α- and β-isomers of hemiace-

tal 21 showed quite different reactivity: the α-isomer was far more 

labile under oxy-methylation conditions than the β-isomer giving 

several un-identified side products (36% yield for α vs. 73% yield 

for β). Following PMB deprotection of acetals 22 with DDQ, Wit-

tig olefination using phosphonium salt 24 with t-BuOK now suc-

cessfully gave the corresponding alkene 25 in 97% yield with Z/E 

> 95:5. Desilylation of the TBS group with TBAF gave the required 

thromboxane B2 methyl glycoside 26 in 89% yield. Finally, sub-

jecting methyl glycoside 26 to hydrolysis with excess Dowex-50 

resin in water, furnished thromboxane B2 (TxB2, 1) in 90% yield.16 

 



 

 

Scheme 3. Completion of the synthesis of thromboxane B2  

 

Reagents and conditions: (a) PMBOH (2 eq.), Amberlyst 15 (cat.), MgSO4 (2.5 eq.), CH2Cl2, 0 °C to r.t., 24 h; then MnO2 (6 eq.), r.t., 12 h, 

81% yield, 1.7:1 β/α. (b) Cuprate 10 (1.2 eq.), THF/Et2O, −78 °C; then TMSCl (5 eq.), Et3N (6 eq.), −78 °C to −20 °C. (c) O3-O2, 

CH2Cl2/MeOH (v/v, 3:1), −78 °C; then PPh3 (1.5 eq.). (d) m-CPBA (2.5 eq.), NaHCO3 (2.7 eq.), CH2Cl2, 0 °C to r.t., 36 h, 64% yield for β, 

63% yield for α, 3 steps. (e) DIBAL-H (3.0 eq.), THF, −78 °C, 3 h, 96% yield for β, 91% yield for α. (f) MeI (3 eq.), KHMDS (1.1 eq.), 18-

Crown-6 (1.1 eq.), THF, −78 °C, 18 h, single diastereomer, 73% yield for β, 36% yield for α. (g) DDQ (1.5 eq.), CH2Cl2/H2O (v/v, 9:1), 0 

°C to r.t., 6 h, 80% yield for β, 74% yield for α. (h) (4-carboxybutyl)triphenyl-phosphonium bromide (4 eq.), t-BuOK (8 eq.), THF, 0 °C to 

r.t., 2 h, 97% yield with Z/E > 95:5. (i) TBAF (2 eq.), THF, 0 °C to r.t.,12 h, 89% yield. (j) Dowex-50 Resin, H2O, r.t., 16 h, 90% yield. (k) 

DDQ (1.5 eq.), CH2Cl2/H2O (v/v, 9:1), 0 °C to r.t., 6 h, 81% yield. (l) LiAlH4 (1.2 eq.), THF, 0 °C to r.t., 6 h, 90% yield. (m) DDQ (1.5 eq.), 

CH2Cl2/H2O (v/v, 9:1), 0 °C to r.t., 6 h, messy. p-methoxybenzyl. TBS, tert-butyldimethylsilyl. TMS, trimethylsilyl. m-CPBA, m-chloroper-

oxybenzoic acid. DIBAL-H, diisobutylaluminum hydride. HMDS, bis(trimethylsilyl)amide. DDQ, 2,3-dichloro-5,6-dicyano-1,4-benzoqui-

none. TBAF, tetrabutylammonium fluoride. 

 

In conclusion, we have developed a highly stereoselective synthe-

sis of thromboxane B2 in 12 steps with an overall yield of 5%, uti-

lizing our key enal intermediate, which is readily available in two 

steps by a L-proline-catalyzed aldol dimerization of succinaldehyde 

in high ee. The key features include an efficient 1,4-addition/ozo-

nolysis/Baeyer-Villiger oxidation protocol, and a Wittig olefina-

tion of hemiacetals with excellent levels of Z selectivity. Although 

carrying through the diastereomeric acetals complicates analysis, it 

avoids additional redox steps enabling the synthesis to be com-

pleted in short order. The synthesis adds to the growing list of 



 

 

prostanoids that can now be accessed from our key enal intermedi-

ate, available on scale in high enantioselectivity in just two steps. 
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SI), mp. 91-94 °C, and [α]D
24 = +57.10 (c 1.0, EtOH) which matched 

the literature [lit.8b mp. 92.0-92.5 °C, [α]D
 = +56.50 (c 1.0, EtOH)]. 

However, 1H NMR spectrum of our sample was somewhat broad with 

multiple peaks, reflecting perhaps different aggregation states of the 

molecule in CDCl3. This has been documented in previous syntheses 

of TxB2.8k For comparison, we have included the 1H NMR of our sam-

ple with that of a commercial sample from Cayman in the SI.

 


