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Correlations of multiplicative functions and

applications

Oleksiy Klurman

Abstract

We give an asymptotic formula for correlations∑
n6x

f1(P1(n))f2(P2(n)) · · · · · fm(Pm(n))

where f . . . , fm are bounded “pretentious” multiplicative functions, under certain nat-
ural hypotheses. We then deduce several desirable consequences. First, we characterize
all multiplicative functions f : N→ {−1,+1} with bounded partial sums. This answers
a question of Erdős from 1957 in the form conjectured by Tao. Second, we show that if
the average of the first divided difference of multiplicative function is zero, then either
f(n) = ns for Re(s) < 1 or |f(n)| is small on average. This settles an old conjec-
ture of Kátai. Third, we apply our theorem to count the number of representations of
n = a+b where a, b belong to some multiplicative subsets of N. This gives a new ”circle
method-free” proof of the result of Brüdern.

1. Introduction

Let U denote the unit disc, and let T be the unit circle. It is of current interest in analytic number
theory to understand the correlations∑

n6x

f1(P1(n))f2(P2(n)) · · · · · fm(Pm(n))

for arbitrary multiplicative functions f1, . . . , fm : N→ U, and arbitrary polynomials P1, . . . , Pm ∈
Z[x]. For example, Chowla’s conjecture that for any distinct natural numbers h1, . . . hk∑

n6x

λ(n+ h1) . . . λ(n+ hk) = o(x)

where λ(n) is a Liouville function. These problems are still widely open in general, though spec-
tacular progress has been made recently due to the breakthrough of Matomäki and Radziwi l l [MR]
and subsequent work of Matomäki, Radziwi l l and Tao [MRT]. In particular, this led Tao [Taob]
to establish a weighted version of Chowla’s conjecture in the form∑

n6x

λ(n)λ(n+ h)

n
= o(log x)

for all h > 1. Combining this with ideas from the Polymath5 project, and a new “entropy
decrement argument”, led to the resolution of the Erdős Discrepancy Problem.
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Following Granville and Soundararajan [GS07a], we define the “distance” between two mul-
tiplicative functions f, g : N→ U

D(f, g; y;x) =

 ∑
y6p6x

1− Re (f(p)g(p))

p

 1
2

,

and D(f, g;x) := D(f, g; 1;x). The crucial feature of this “distance” is that it satisfies the triangle
inequality

D(f, g; y;x) + D(g, h; y;x) > D(f, h; y;x)

for any multiplicative functions f, g, h bounded by 1.

Halász’s theorem [Hal71], [Hal75] implies Wirsing’s Theorem that for multiplicative f : N→
[−1, 1], the mean value satisfies a decomposition into local factors,

1

x

∑
n6x

f(n) =
∏
p

Mp(f) + o(1) (1)

when x→∞, where we define the multiplicative function fp for each prime p to be

fp(q
k) =

{
f(qk), if q = p

1, if q 6= p,
(2)

for all k > 1, and

Mp(f) := lim
x→∞

1

x

∑
n6x

fp(n) =

(
1− 1

p

)∑
k>0

f(pk)

pk
.

This last equality, evaluating Mp(f), is an easy exercise. Substituting this into (1) one finds that
the mean value there is � exp(−D(f, 1;∞))2, and so is non-zero if and only if D(f, 1;∞) < ∞
and each Mp(f) 6= 0. Moreover, using our explicit evaluation of Mp(f), we see that Mp(f) = 0 if
and only if p = 2 and f(2k) = −1 for all k > 1. We also note that one can truncate the product
in (1) to the primes p 6 x, and retain the same qualitative result.

1.1. Mean values of multiplicative functions acting on polynomials. Our first goal is to
prove the analog of (1) for the mean value of f(P (n)) for any given polynomial P (x) ∈ Z[x].
This is not difficult for linear polynomials P but, as the following example shows, it is not so
straightforward for higher degree polynomials:

Proposition 1.1. There exists a multiplicative function f : N→ [−1, 1] such that D2(1, f ;x) =
2 log log x+O(1) for all x > 2 and

lim sup
x→∞

∣∣∣∣∣1x∑
n6x

f(n2 + 1)

∣∣∣∣∣ > 1

2
+ o(1).

In the proof of Proposition 1.1 (see Section 2), the choice of f(p) for certain primes p > x
have a significant impact on the mean value of f(n2 + 1) up to x. In order to tame this effect we
introduce the set

NP (x) = {pk, p > x | ∃n 6 x, pk||P (n)}

2
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for any given P ∈ Z[x], and modify the “distance” to

DP (f, g; y;x) =

 ∑
y6p6x

1− Re (f(p)g(p))

p
+

∑
pk∈NP (x)

1− Re (f(pk)g(pk))

x

 1
2

.

and DP (f, g;x) := DP (f, g; 1;x). Moreover, we define

Mp(f(P )) = lim
x→∞

1

x

∑
n6x

fp(P (n)),

and one easily shows that

Mp(f(P )) =
∑
k>0

f(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)
,

where ωP (m) := #{n (mod m) : P (n) ≡ 0 (mod m)} for every integer m (and note that ωP (.)
is a multiplicative function by the Chinese Remainder Theorem). We establish the following
analog of (1):

Corollary 1.2. Let f : N→ U be a multiplicative function and let P (x) ∈ Z[x] be a polynomial.
Then

1

x

∑
n6x

f(P (n)) =
∏
p6x

Mp(f(P )) +O

(
DP (1, f ; log x;x) +

1

log log x

)
.

This implies that if D(1, f ;x) <∞ and∑
pk∈NP (x)

1− Re(f(pk)) = o(x)

then
1

x

∑
n6x

f(P (n)) =
∏
p6x

Mp(f(P )) + o(1) =
∏
p>1

Mp(f(P )) + o(1)

when x→∞.

1.2. Mean values of correlations of multiplicative functions. We now move on to corre-
lations. For P,Q ∈ Z[x], we define the local correlation

Mp(f(P ), g(Q)) = lim
x→∞

1

x

∑
n6x

fp(P (n))gp(Q(n)). (3)

Evaluating these local factors is also easy yet can be technically complicated, as we shall see
below in the case that P and Q are both linear.

More generally we establish the following

Theorem 1.3. Let f, g : N→ U be multiplicative functions. Let P,Q ∈ Z[x] be two polynomials,
such that res(P,Q) 6= 0. Then,

1

x

∑
n6x

f(P (n))g(Q(n)) =
∏
p6x

Mp(f(P ), g(Q)) + Error(f(P ), g(Q), x)

where

Error(f(P ), g(Q), x)� DP (1, f ; log x;x) + DQ(1, g; log x;x) +
1

log log x
·

3
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Theorem 1.3 implies that if D(1, f ;x),D(1, g;x) < ∞ and
∑

p∈NP (x) 1 − Re(f(pk)) = o(x),∑
p∈NQ(x) 1− Re(g(pk)) = o(x) then

1

x

∑
n6x

f(P (n))g(Q(n)) =
∏
p6x

Mp(f(P ), g(Q)) + o(1) =
∏
p>1

Mp(f(P ), g(Q)) + o(1).

If DP (f, nit;∞),DP (g, niu;∞) < ∞ then we let f0(n) = f(n)/nit and g0(n) = g(n)/niu so that
DP (1, f0;∞),DP (1, g0;∞) <∞. We apply Theorem 1.3 to the mean value of f0(P (n))g0(Q(n)),
and then proceed by partial summation to obtain

1

x

∑
n6x

f(P (n))g(Q(n)) = Mi(f(P ), g(Q), x)
∏
p6x

Mp(f0(P ), g0(Q)) + Error(f0(P ), g0(Q), x)

where, if P (x) = axD + . . . and Q(x) = bxd + . . . then we define T = Dt+ du and

Mi(f(P ), g(Q), x) :=
1

x

∑
n6x

P (n)itQ(n)iu = aitbiu
xiT

1 + iT
+ o(1).

Here, o(1) term depends on the polynomials P,Q ∈ Z[x] and

Error(f0(P ), g0(Q), x)�t,u DP (1, f0; log x;x) + DQ(1, g0; log x;x) +
1

log log x

where the implied constant depends on t, u. The same method works for m-point correlations∑
n6x

f1(P1(n))f2(P2(n)) · · · · · fm(Pm(n))

for multiplicative functions fj : N→ U and polynomials Pj with each DPj (nitj , fj ,∞) <∞. We
give a more explicit version of our results in the case that P and Q are linear polynomials:

Corollary 1.4. Let f, g : N→ U be multiplicative functions with D(f, nit,∞), D(g, niu,∞) <
∞, and write f0(n) = f(n)/nit and g0(n) = g(n)/niu. Let a, b > 1, c, d be integers with (a, c) =
(b, d) = 1 and ad 6= bc. As above we have

1

x

∑
n6x

f(an+ c)g(bn+ d)) = Mi(f(P ), g(Q), x)
∏
p6x

Mp(f0(P ), g0(Q)) + o(1)

when x→∞ and o(1) term depends on the variables a, b, c, d, t, u.

We have

Mi(f(P ), g(Q), x) =
aitbiuxi(t+u)

1 + i(t+ u)
+ o(1)

when x→∞ and o(1) term and o(1) depends on a, b, t, u.

If p|(a, b) then Mp(f0(P ), g0(Q)) = 1. If p - ab(ad− bc), then

Mp(f0(P ), g0(Q)) = Mp(f0(P )) +Mp(g0(Q))− 1 = 1 +

(
1− 1

p

)∑
j>1

f0(p
j)

pj
+
∑
j>1

g0(p
j)

pj

 ·
In general, if p - (a, b) we have a more complicated formula

Mp(f0(P ), g0(Q)) =
∑

06i6k,
k>0,

pk||ad−bc

θ(pi)γ(pi)

pi
+ δb

∑
j>i

θ(pi)γ(pj)

pj
+ δa

∑
j>i

γ(pi)θ(pj)

pj


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and δl = 0 when p|l and δl = 1 otherwise. Here f0 = 1 ∗ θ and g0 = 1 ∗ γ.

For t = u = 0, some version of Corollary 1.4 also appeared in Hildebrand [Hil88a], El-
liot [Ell92], Stepanauskas [Ste02].

Next we apply Theorem 1.3 to obtain a number of consequences. The key idea for our appli-
cations is that one expands

1

x

∑
n6x

∣∣∣∣∣
n+H+1∑
k=n+1

f(k)

∣∣∣∣∣
2

=
∑
|h|6H

(H − |h|)
∑
n6x

f(n)f(n+ h) +O

(
H2

x

)
and then one observes that the h = 0 term equals H if each |f(n)| = 1. Therefore if the above
sum is small then

1

x

∑
n6x

f(n)f(n+ h)� 1

for some h, 1 6 |h| 6 H. As Tao showed, if some weighted version of this is true, then
D(f(n), χ(n)nit;x) � 1 for some primitive character χ. Therefore, to understand the above
better, we need to give a version of Theorem 1.3 for functions f with D(f(n), χ(n)nit;x)� 1.

1.3. Correlations with characters. Now we will suppose that D(f(n), nitχ(n),∞) < ∞ for
some t ∈ R where χ is a primitive character of conductor q. We define F to be the multiplicative
function such that

F (pk) =

{
f(pk)χ(pk)p−ikt, if p - q
1, if p | q,

and

Mp(F, F ; d) = lim
x→∞

1

x

∑
n6x

Fp(n)Fp(n+ d).

In Section 3 we prove

Theorem 1.5. Let f : N → U be a multiplicative function such that D(f(n), nitχ(n);∞) < ∞
for some t ∈ R and χ is a primitive character of conductor q. Then for any non-zero integer d we
have

1

x

∑
n6x

f(n)f(n+ d) =
∏
p6x
p-q

Mp(F, F ; d)
∏
pl||q

Mpl(f, f , d) + o(1)

when x→∞. Here, o(1) term depends on d, χ, t and

Mpl(f, f , d) =


0, if pl−1 - d
1− 1

p , if pl−1||d(
1− 1

p

)∑k
j=0

|f(pj)|2
pj

− |f(p
k)|2
pk

, if pl+k||d

for any k > 0 and if pn||d for some n > 0, then

Mp(F, F , d) = 1− 2

pn+1
+

(
1− 1

p

)∑
j>n

(
F (pn)F (pj)

pj
+
F (pn)F (pj)

pj

)
.

In particular, the mean value is o(1) if q - d
∏
p|q p.

5
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The same method works for correlations∑
n6x

f(n)g(n+m)

where D(f(n), nitχ(n);∞), D(g(n), niuψ(n);∞) <∞.
1.4. The Erdős discrepancy problem for multiplicative functions. The Polymath5 project
showed, using Fourier analysis, that the Erdős discrepancy problem can be reduced to a statement
about completely multiplicative functions. In particular, Tao [Taoa] established that for any
completely multiplicative f : N→ {−1, 1},

lim sup
x→∞

∣∣∣∣∣∑
n6x

f(n)

∣∣∣∣∣ =∞.

In [Erd57], [Erd85a], [Erd85b], Erdős along with the Erdős discrepancy problem, asked to classify
all multiplicative f : N→ {−1, 1} such that

lim sup
x→∞

∣∣∣∣∣∑
n6x

f(n)

∣∣∣∣∣ <∞. (4)

In [Taoa], Tao, partially answering this question, proved that if for a multiplicative f : N →
{−1, 1}, (4) holds, then f(2j) = −1 for all j, and∑

p

1− f(p)

p
<∞. (5)

In Section 4, we resolve this question completely by proving

Theorem 1.6. [Erdős-Coons-Tao conjecture] Let f : N→ {−1, 1} be a multiplicative func-
tion. Then (4) holds if and only if there exists an integer m > 1 such that f(n+m) = f(n) for
all n > 1 and

∑m
n=1 f(n) = 0.

There are examples known with bounded sums, such as the multiplicative function f for
which f(n) = +1 when n is odd and f(n) = −1 when n is even. One can easily show f satisfies
the above hypotheses if and only if m is even, f(2k) = −1 for all k > 1, and f(pk) = f((pk,m))
for all odd prime powers pk. In particular if p does not divide m then f(pk) = 1.

It would be interesting to classify all complex valued multiplicative f : N→ T for which (4)
holds. Using Theorem 1.5 it easy to prove

Theorem 1.7. Suppose for a multiplicative f : N→ T, (15) holds. Then there exists a primitive
character χ of an odd conductor q and t ∈ R, such that D(f(n), χ(n)nit;∞) < ∞ and f(2k) =
−χk(2)2−ikt for all k > 1.

1.5. Distribution of (f(n), f(n+ 1)). Let f : N→ C be a multiplicative function and 4f(n) =
f(n+ 1)− f(n). Kátai conjectured and Wirsing proved (first in a letter to Kátai, and then in a
joint paper with Tan and Shao [WTS96]) that if a unimodular multiplicative function f satisfies
4f(n) → 0 then f(n) = nit (see also a nice paper of Wirsing and Zagier [WZ01] for a simpler
proof). One would naturally expect that if 4f(n)→ 0 in some averaged sense, than the similar
conclusion must hold. Kátai [Kát83] made the following conjecture which we prove in Section 5 :

6
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Theorem 1.8. [Kátai’s Conjecture, 1983] If f : N→ C is a multiplicative function and

lim
x→∞

1

x

∑
n6x

|4f(n)| = 0

then either

lim
x→∞

1

x

∑
n6x

|f(n)| = 0

or f(n) = ns for some Re(s) < 1.

Since f(n) = eh(n) is multiplicative, where h(n) : N → R is an additive function, one may
compare Theorem 1.8 with the following statement about additive functions, first conjectured by
Erdős [Erd46] and proved later by Kátai [Kát70] (and independently by Wirsing): if h : N→ C
is an additive function and

lim
x→∞

1

x

∑
n6x

|h(n+ 1)− h(n)| = 0,

then h(n) = c log n.

The conjecture attracted considerable attention of several authors including Kátai, Hilde-
brand, Phong and others. See, for example [Hil88b], [Pho14], [Pho00], [Kát91] for some of the
results and the survey paper [Kát00] with an extensive list of the related references.

1.6. Binary additive problems. A sequence A of positive integers is called multiplicative, if
its characteristic function, 1A, is multiplicative. We define

ρA(d) = lim
x→∞

1

x/d

∑
k6x/d

IA(kd),

with ρA = ρA(1), which is the density of A. Note that these constants all exist by Wirsing’s
Theorem.

Binary additive problems, which involve estimating quantities like

r(n) = |{(a, b) ∈ A×B : a+ b = n}|

are considered difficult. However, using a variant of a circle method Brüdern [Brü09], among other
things, established the following theorem, which we will deduce from Theorem 1.3 in section 6.

Theorem 1.9. [Brüdern, 2008] Suppose A and B are multiplicative sequences of positive
density ρA and ρB respectively. For k > 1, let

a(pk) = ρA(pk)/pk − ρA(pk−1)/pk−1

Define b(pk) in the same fashion. Then,

r(n) = ρAρBσ(n)n+ o(n)

when n→∞, where

σ(n) =
∏
pm||n

(
1 +

m∑
k=1

pk−1a(pk)b(pk)

p− 1
− pma(pm+1)b(pm+1)

(p− 1)2

)
·

Acknowledgement. I would like to thank Andrew Granville for all his support and en-
couragement as well as many valuable comments and suggestions. I am also grateful to Terence
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Tao and Imre Kátai for the insightful comments and corrections and the anonymous referee for
careful reading of the paper and many valuable suggestions. The research leading to the results
of this paper received funding from the NSERC discovery grant and the ISM doctoral award.

2. Multiplicative functions of polynomials

For any given polynomial P (x) ∈ Z[x] we define ωP (pk) to be the number of solutions of P (x) =
0(mod(pk)). Clearly, ωP (pk) 6 degP for all but finitely many primes p. We begin by showing
that the mean value of f(P (n)) in general significantly depends on the large primes. We restrict
ourselves to the case P (x) = x2+1 but the same arguments work for all polynomials P (x) ∈ Z[x]
that are not product of linear factors.

Lemma 2.1. Let P (x) = x2 + 1. For any x > 2, and any complex numbers g(pk) ∈ T, p 6 2x,
k > 1, there exists a multiplicative function f : N → T such that f(pk) = g(pk) for all p 6 2x
and ∣∣∣∣∣1x∑

n6x

f(P (n))

∣∣∣∣∣ > 1

2
+ o(1).

Proof. Let

M(x) = {np 6 x | ∃p ∈ NP (x), p|P (np)}.

We note that for each p > 2x, there exists at most one element np ∈ M(x) such that p|P (np) and
moreover all prime factors of P (np)/p are smaller than x. We have

2x log x+O(x) =
∑
n6x

logP (n) =
∑
n6x

∑
d|P (n)

Λ(d)

6 2
∑
p6x,

p=1 mod(4)

log p · x
p

+
∑
p>2x,
p|P (np),
np6x

log p+O(x)

6 x log x+ 2 log x · |M(x)|+O(x)

and therefore

|M(x)| > x

(
1

2
+ o(1)

)
.

Consider the multiplicative function f defined as follows: f(pk) = g(pk) for all primes p 6 2x
and

f(p) = eiφf

(
P (np)

p

)
if p > 2x and there exists np ∈ M(x) such that p|P (np), where

φ = arg

 ∑
n∈M(x)
n6x

f(P (n))

 .

8
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Define f(pk) = 1 for all other primes and all k > 1. Clearly,∑
n6x

f(P (n)) =
∑

n∈M(x)
n6x

f(P (n)) +
∑

np∈M(x)

f(P (np)) =
∑

n∈M(x),
n6x

f(P (n)) + eiφ|M(x)|.

Selecting φ so that the two sums point in the same direction, we deduce that∣∣∣∣∣1x∑
n6x

f(P (n))

∣∣∣∣∣ > |M(x)|
x

>
1

2
+ o(1).

Proposition 1.1. There exists a multiplicative function f : N→ [−1, 1] such that D2(1, f ;x) =
2 log log x+O(1) for all x > 2 and

lim sup
x→∞

∣∣∣∣∣1x∑
n6x

f(n2 + 1)

∣∣∣∣∣ > 1

2
+ o(1).

Proof. Take the sequence xk = 22
k

for k > 1 and define completely multiplicative function f
inductively: f(p) = −1 for all primes in p ∈ (xk, xk+1] unless p ∈ NP (xk), in which case we define
the function as in the proof of Lemma 2.1. This guarantees that for all k > 1,∣∣∣∣∣ 1

xk

∑
n6xk

f(n2 + 1)

∣∣∣∣∣ > 1

2
+ o(1).

Since NP (x) contains at most x elements, we have∑
p∈NP (x)

1/p 6
∑

x<p62x log x

1/p� (log log x)/ log x,

so that
∑

k>1

∑
p∈NP (xk) 1/p�

∑
k>1 k/2

k � 1. Therefore

D2(1, f ;x) >
∑
p6x

p/∈∪k>1NP (xk)

2

p
> 2 log log x−O(1).

For technical reasons, we define an equivalent distance

D∗(f, g;x) =

∑
pk6x

1− Re(f(pk)g(pk))

pk

 1
2

.

We thus focus on the class of functions such that f(p) is close to 1 on large primes p > x where
the distance is given by DP (1, f ;x) where

D2
P (1, f ;x) �

∑
p

(1− Re f(pk)) · 1

x

∑
n6x,

pk||P (n)

1,

which generalizes D(1, f ;x) where

D2(1, f ;x) � D∗2(1, f ;x) �
∑
p

(1− Re f(pk)) · 1

x

∑
n6x,
pk||n

1.

9
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In order to prove Theorem 1.3, we begin by proving a few auxiliary results. The following lemma
is a simple consequence of the Turán-Kubilius type inequality for the polynomial sequences.

Lemma 2.2. Let h : N→ C be an additive function such that h(pk) = 0 for pk > x and |h(pk)| 6 2
for all p and k > 1. Suppose P (x) ∈ Z[x] is irreducible. Define

µh,P =
∑
pk6x

h(pk)

pk

(
ωP (pk)− ωP (pk+1)

p

)
and

σ2h,P =
∑
pk6x

|h(pk)|2

pk

(
ωP (pk)− ωP (pk+1)

p

)
.

Then ∑
n6x

|h(P (n))− µh,P |2 � x
∑
pk6x

|h(pk)|2

pk
+ x

(log log x)3

log x
· (6)

Proof. By multiplicativity, we have

|{n 6 x | d|P (n)}| = ωP (d)

d
x+ rd

where rd = O(ωP (d)). Furthermore, by Proposition 4 from [GS07b] applied to the additive
functions in place of strongly additive

∑
n6x

|h(P (n))− µh,P |2 6 C2xσ
2
h,P +O

(max
p6y
|h(pk)|2

)∑
p6x

ωP (p)

p

2 ∑
d=p1p2,
pi6x

|rd|

 .

The error term is bounded by(
max
p6x
|h(pk)|2

)∑
p6x

ωP (p)

p

2 ∑
d=p1p2,
pi6x

|rd| � max
p6x
|h(pk)|2(log log x)2 · x log log x

log x
·

Combining this observation with the estimate

σ2h,P �
∑
pk6x

|h(pk)|2

pk

we conclude the proof of (6).

In what follows, we are going to focus on two-point correlations but the same method actually
works for m− point correlations with mostly notational modifications. Let

µh,P =
∑
pk6x

h(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)
and

P(f ;P ;x) =
∏
p6x

∑
k>0

f(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

) .

10
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We also introduce equivalent distance

D∗P (f, g; y;x) =

 ∑
y6pk6x

1− Re (f(pk)g(pk))

pk
+

∑
pk∈NP (x)

1− Re (f(pk)g(pk))

x

 1
2

.

We begin by proving the concentration inequality for the values of a multiplicative function
f : N→ U.

Proposition 2.3. Let f : N→ U be a multiplicative function. Let P (n) ∈ Z[x]. Then∑
n6x

|f(P (n))− P(f ;P ;x)|2 � xD∗2P (1, f ;x) +
x(log log x)3

log x
·

Proof. We begin by proving the proposition for the multiplicative function f such that f(pk) = 1
for all pk > x. Note ez−1 = z+O(|z− 1|2) for |z| 6 1. By repeatedly applying triangle inequality
we have that for all |zi|, |wi| 6 1∣∣∣∣∣ ∏

16i6n

zi −
∏

16i6n

wi

∣∣∣∣∣ 6 ∑
16i6n

|zi − wi|. (7)

Therefore,

∏
pk||P (n)

ef(p
k)−1 =

∏
pk||P (n)

(
f(pk) +O(|f(pk)− 1|2)

)
=

∏
pk||P (n)

f(pk) +O

 ∑
pk||P (n)

|f(pk)− 1|2


and

f(P (n)) =
∏

pk||P (n)

f(pk) =
∏

pk||P (n)

ef(p
k)−1 +O

 ∑
pk||P (n)

|f(pk)− 1|2
 .

We now introduce an additive function h, such that h(pk) = f(pk)− 1. Clearly,∑
n6x

|f(P (n))− eh(P (n))|2 �
∑
n6x

|f(P (n))− eh(P (n))|

�
∑
n6x

∑
pk||P (n),

pk6x

|f(pk)− 1|2 � x
∑
pk6x

|f(pk)− 1|2

pk
� xD∗2(f, 1;x).

Since |ea − eb| � |a− b| for Re (a),Re (b) 6 0, Lemma 2.2 implies∑
n6x

|eh(P (n)) − eµh,P |2 �
∑
n6x

|h(P (n))− µh,P |2 6 xD∗2(f, 1;x) +
x(log log x)3

log x
·

We introduce µh,P =
∑

p6x µh,p, where

µh,p =
∑
pk6x

h(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)
and observe

eµh,p = 1 + µh,p +O(µ2h,p) =
∑

16pk6x

f(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)
+O

1

x
+

1

p

∑
pk6x

|h(pk)|
pk

 ·

11
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Note that |eµh,p | 6 1. Using (7) and the Cauchy-Schwarz inequality once again yields

|eµh,P − P(f ;P ;x)|2 6

∑
p6x

∣∣∣∣∣∣eµh,p −
∑

16pk6x

f(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)
+O

(
1

x

)∣∣∣∣∣∣
2

�

∑
pk6x

1

p

|f(pk)− 1|
pk

+
∑
p6x

1

x

2

� D∗2(f, 1;x) +
1

log2 x

which together with the triangle inequality completes the proof of the lemma in the special case
when f(pk) = 1 for pk > x.

We now consider any multiplicative function f and decompose f(n) = fs(n)fl(n) where

fs(p
k) =

{
f(pk), if pk 6 x

1, if pk > x

and

fl(p
k) =

{
1, if pk 6 x

f(pk), if pk > x.
.

Note that for a fixed prime power pk ∈ NP (x),

|{n 6 x | pk|P (n)}| 6 ωP (pk)

and each P (n) is divisible by � degP elements of NP (x). Using the Cauchy-Schwarz inequality
yields

∑
n6x

|f(P (n))− fs(P (n))|2 �
∑
n6x

 ∑
pk||P (n),

pk>x

|f(pk)− 1|


2

� x ·
∑

pk∈NP (x)

|f(pk)− 1|2

x
·

We are left to collect the error terms and note that

D∗2(1, f ;x) +
∑

pk∈NP (x)

1− Re f(pk)

x
= D∗P

2(1, f ;x).

Proposition 2.3 immediately implies the following corollary which will be used in the proof
of Theorem 1.3.

Corollary 2.4. Let f : N→ U be a multiplicative function and let g : N→ U be any function.
Let P (n) ∈ Z[x]. Then

∑
n6x

f(P (n))g(n) = P(f ;P ;x)
∑
n6x

g(n) +O

(
xD∗P (1, f ;x) +

x(log log x)
3
2

√
log x

)
·

12
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Proof. Using Proposition 2.3, the triangle inequality and the Cauchy-Schwarz inequality gives∑
n6x

f(P (n))g(n)− P(f ;P ;x)
∑
n6x

g(n)�
∑
n6x

|f(P (n))− P(f ;P ;x)|

�

(
x
∑
n6x

|f(P (n))− P(f ;P ;x)|2
) 1

2

� xD∗P (1, f ;x) +
x(log log x)

3
2

√
log x

·

Let f, g : N→ U be multiplicative functions. For any two irreducible polynomials P,Q ∈ Z[x]
we define

M(f, g;x) =
1

x

∑
n6x

f(P (n))g(Q(n)).

We define ω(pk, pl) to be the quantity such that

{n 6 x | pk||P (n), pl||Q(n)} = xω(pk, pl) +O(1).

We note that if p - res(P,Q) then ω(pk, pl) = 0 unless k = 0 or l = 0. In the latter case,

ω(pk, 1) =
ωP (pk)

pk
− ωP (pk+1)

pk+1

and

ω(1, pl) =
ωQ(pl)

pl
−
ωQ(pl+1)

pl+1
·

Furthermore, by the Chinese Remainder Theorem we have

{n 6 x | d1|P (n), d2|Q(n)} = xF (d1, d2) +O(ωP (d1)ωQ(d2)) = xF (d1, d2) +Oε(x
ε).

for some multiplicative function F (d1, d2) and any ε > 0. Our main goal in this section is to
prove that the mean value M(f, g;x) satisfies the “local-to-global” principle. We first evaluate
the local correlations.

Lemma 2.5. Let f, g : N→ U be multiplicative functions. Define fp, gp as in (2). Let P,Q ∈ Z[x]
and res(P,Q) 6= 0. Then,

1

x

∑
n6x

fp(P (n))gp(Q(n)) =
∑

pk,pl>1

f(pk)g(pl)ω(pk, pl) +O

(
log x

x log p

)
.

In particular, if p - res(P,Q), then

1

x

∑
n6x

fp(P (n))gp(Q(n))

=

∑
k>0

f(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)
+
∑
k>0

g(pk)

(
ωQ(pk)

pk
−
ωQ(pk+1)

pk+1

)
− 1

+O

(
log x

x log p

)
.

13
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Proof. We first suppose that p - res(P,Q). In this case we have

1

x

∑
n6x

fp(P (n))gp(Q(n)) =
1

x

 ∑
pk6x,
pk||P (n)

f(pk) +
∑
pl6x,
pl||Q(n)

g(pl) +
∑
n6x,

p0||P (n)Q(n)

1


=

∑
k>0

f(pk)

(
ωP (pk)

pk
− ωP (pk+1)

pk+1

)
+
∑
k>0

g(pk)

(
ωQ(pk)

pk
−
ωQ(pk+1)

pk+1

)
− 1

+O

(
log x

x log p

)
.

More generally,

1

x

∑
n6x

fp(P (n))gp(Q(n)) =
1

x

∑
pk,pl6x,
pk||P (n),

pl||Q(n)

f(pk)g(pl) =
∑

pk,pl>1

f(pk)g(pl)ω(pk, pl) +O

(
log x

x log p

)
.

This completes the proof of the lemma.

Theorem 1.3. Let f, g : N→ U be multiplicative functions. Let P,Q ∈ Z[x] be two polynomials,
such that res(P,Q) 6= 0. Then,

1

x

∑
n6x

f(P (n))g(Q(n)) =
∏
p6x

Mp(f(P ), g(Q)) + Error(f(P ), g(Q), x)

where

Error(f(P ), g(Q), x)� DP (1, f ; log x;x) + DQ(1, g; log x;x) +
1

log log x
·

Proof. Choose y = (1− ε) log x. We begin by decomposing f(n) = fs(n)fl(n) where

fs(p
k) =

{
f(pk), if pk 6 y

1, if pk > y

and

fl(p
k) =

{
1, if pk 6 y

f(pk), if pk > y.

By analogy, we write g(n) = gs(n)gl(n). We apply Corollary 2.4 to get∑
n>1

fl(P (n))fs(P (n))g(Q(n)) = P(fl;P ;x)
∑
n6x

fs(P (n))g(Q(n))

+O

(
xD∗P (1, fl; y;x) +

x(log log x)
3
2

√
log x

)
.

We now apply Corollary 2.4 to the inner sum to arrive at∑
n6x

gl(Q(n))gs(Q(n))fs(P (n)) = P(gl;Q;x)
∑
n6x

fs(P (n))gs(Q(n))

+O

(
xD∗P (1, fl; y;x) + xD∗Q(1, gl; y;x) +

x(log log x)
3
2

√
log x

)
.
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Combining the last two identities we conclude∑
n6x

f(P (n))g(Q(n)) = P(fl;P ;x)P(gl;Q;x)
∑
n6x

fs(P (n))gs(Q(n))

+O

(
xD∗P (1, fl; y;x) + xD∗Q(1, gl; y;x) +

x(log log x)
3
2

√
log x

)
.

Let fs = 1 ∗ θs, gs = 1 ∗ γs. Then θs(p
k) = 0 and γs(p

k) = 0 whenever pk > y. Since
∏
pk6y p =

ey+o(y) 6 x as long as y 6 (1−ε) log x the following sums are supported on the integers d1, d2 6 x.
Hence,∑

n6x

fs(P (n))gs(Q(n)) =
∑

d1,d26x,
p|di⇒p6y

θs(d1)γs(d2)
∑
n6x,

d1|P (n),
d2|Q(n)

1

=
∑
d6x,

d|res(P,Q)

∑
d1,d26x,
(d1,d2)=d,
p|di⇒p6y

θs(d1)γs(d2)F (d1, d2)x+O

xε ∑
d1,d26x

|θs(d1)γs(d2)|



=
∑
d6x,

d|res(P,Q)

∑
d1,d2>1,
(d1,d2)=d,
p|di⇒p6y

θs(d1)γs(d2)F (d1, d2)x+O

xε ∑
d1,d26x

|θs(d1)γs(d2)|

 .

To estimate the error term we observe

∑
d1,d26x

|θs(d1)γs(d2)| 6 x
1
2

∑
d>1

|θs(d)|
d

1
4

∑
d>1

|γs(d)|
d

1
4

 (8)

6 x
1
2

∏
p6y

∑
k>0

|θs(pk)|
p
k
4

∏
p6y

∑
k>0

|γs(pk)|
p
k
4


� x

1
2

∏
p6y

(
1 +

2

p
1
4

)2

� x
1
2 exp

(
3y3/4

log y

)
·

The last sum is O(x
1
2
+ε) for y � log x and y → ∞. It easy to see that for p 6 y, Lemma 2.5

implies

Mp(f, g) =
∑

pk,pl>1

θ(pk)γ(pl)F (pk, pl),

where Mp(f, g) defined as in (3). By multiplicativity the contribution of small primes is∑
d|res(P,Q)

∑
d1,d2>1,
(d1,d2)=d,
p|di⇒p6y

θs(d1)γs(d2)F (d1, d2) =
∏
p6y

Mp(f, g). (9)
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We are left to estimate P(fl;P ;x)P(gl;Q;x). The contribution of primes pk > y and p 6 y is

∏
pk>y,
p<y

1 +
∑
i>k

θl(p
k)ωP (pk)

pk

 ∏
pk>y,
p<y

1 +
∑
i>k

γl(p
k)ωQ(pk)

pk

 = 1 +O

∑
pk>y
p<y

1

pk


= 1 +O

(
1

y
· y

log y

)
= 1 +O

(
1

log y

)
.

Furthermore, for p > y we clearly have (p, res(P,Q)) = 1 and

P(fl;P ;x)P(gl;Q;x)

=

(
1 +O

(
1

log y

))
·
∏

y<p6x

1 +
∑
k>1

θl(p
k)ωP (pk)

pk

 ∏
y<p6x

1 +
∑
k>1

γl(p
k)ωQ(pk)

pk


=

(
1 +O

(
1

log y

))

×
∏

y<p6x

1 +
∑
k>1

θ(pk)ωP (pk)

pk
+
∑
k>1

γ(pk)ωQ(pk)

pk
+
∑
k>1

θ(pk)ωP (pk)

pk

∑
k>1

γ(pk)ωQ(pk)

pk


=

(
1 +O

(
1

log y

))
exp

O
 ∑
y6p6x

1

p2

 ∏
y<p6x

1 +
∑
k>1

θ(pk)ωP (pk)

pk
+
∑
k>1

γ(pk)ωQ(pk)

pk


=

(
1 +O

(
1

log y

)) ∏
y<p6x

1 +
∑
k>1

θ(pk)ωP (pk)

pk
+
∑
k>1

γ(pk)ωQ(pk)

pk


and thus

P(fl;P ;x)P(gl;Q;x) =
∏
p>y

Mp(f, g) +O

(
1

log y

)
.

We note that D∗P (1, f ; log x;x) can be replaced with DP (1, f ; log x;x) at a cost O( log log xlog x ). Com-
bining all of the above we arrive at the result claimed.

Applying Theorem 1.3 and Lemma 2.5 with g = 1 an we deduce the following corollary.

Corollary 1.2. Let f : N→ U be a multiplicative function and P ∈ Z[x] Then

1

x

∑
n6x

f(P (n)) =
∏
p6x

Mp(f(P )) +O

(
DP (1, f ; log x;x) +

1

log log x

)
.

3. Corollaries required for further applications

To state some corollaries required for our future applications we introduce a few notations. We fix
two integer numbers a, b > 1. For multiplicative functions f, g : N→ C such that D(1, f ;∞) <∞,
D(1, g;∞) <∞, we set f = 1 ∗ θ, g = 1 ∗ γ. For (r, (a, b)) = 1 we define

G(f ; g; r;x) = G(r, x) :=
∏

pk||r, p6x

(
θ(pk)γ(pk) + δb

∑
i>k

θ(pk)γ(pi)

pi−k
+ δa

∑
i>k

γ(pk)θ(pi)

pi−k

)
(10)
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and δl = 0 when p|l and δl = 1 otherwise. We remark that in (10) we allow k = 0 if p - r. For
(r, (a, b)) > 1 we set

G(r, x) := 0.

We can now deduce the following corollary.

Corollary 3.1. Let f, g : N → U be multiplicative functions. Suppose that D(1, f ;∞) < ∞,
D(1, g;∞) <∞. Let a, b > 1, c, d be integers with (a, c) = (b, d) = 1 and ad 6= bc. Then,

1

x

∑
n6x

f(an+ c)g(bn+ d) =
∑

r|ad−bc

G(f ; g; r;x)

r
+ o(1)

when x→∞ and the error term o(1) depends on the coefficients a, b, c, d.

Proof. We note that ∣∣∣{n 6 x | ∃pk > x, pk|an+ c}
∣∣∣� x

log x

and thus the contribution of terms with large prime power factors can be absorbed into the
error term. We can now apply Theorem 1.3 (using the same notations) with P (n) = an+ c and
Q(n) = bn + d and note that res(P,Q) = ad − bc, ωP (pk) = 1 for p - a and ωP (pk) = 0 for p|a,
ωQ(pk) = 1 for p - b and ωQ(pk) = 0 for p|b, pk 6 x. We are left to note that

F (d1, d2) =
1

[d1, d2]

and the terms coming from small primes p 6 y, such that (r, (a, b)) = 1

Gs(r) =
∑

d1,d2>1
(d1,d2)=r
(d1,a)=1
(d2,b)=1
p|rdi⇒p6y

θs(d1)γs(d2)

[d1, d2]

each has an Euler product

Gs(a) :=
∏

pk||a, p6y

(
θ(pk)γ(pk) + δb

∑
i>k

θ(pk)γ(pi)

pi−k
+ δa

∑
i>k

γ(pk)θ(pi)

pi−k

)

and δl = 0 when p|l and δl = 1 otherwise.

We will require the following extension of Corollary 3.1 to all “pretentious” functions.

Corollary 1.4. Let f, g : N→ U be multiplicative functions with D(f, nit,∞), D(g, niu,∞) <∞,
and write f0(n) = f(n)/nit and g0(n) = g(n)/niu. Let a, b > 1, c, d be integers with (a, c) =
(b, d) = 1 and ad 6= bc. As above we have

1

x

∑
n6x

f(an+ c)g(bn+ d)) = Mi(f(P ), g(Q), x)
∏
p6x

Mp(f0(P ), g0(Q)) + o(1)

when x→∞ and o(1) term depends on the variables a, b, c, d, t, u.

We have

Mi(f(P ), g(Q), x) =
aitbiuxi(t+u)

1 + i(t+ u)
+ o(1)
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when x → ∞ ad o(1) term and o(1) depends on a, b, t, u. If p|(a, b) then Mp(f0(P ), g0(Q)) = 1.
If p - ab(ad− bc), then

Mp(f0(P ), g0(Q)) = Mp(f0(P )) +Mp(g0(Q))− 1 = 1 +

(
1− 1

p

)∑
j>1

f0(p
j)

pj
+
∑
j>1

g0(p
j)

pj

 ·
In general, if p - (a, b) we have a more complicated formula

Mp(f0(P ), g0(Q)) =
∑

06i6k,
k>0,

pk||ad−bc

θ(pi)γ(pi)

pi
+ δb

∑
j>i

θ(pi)γ(pj)

pj
+ δa

∑
j>i

γ(pi)θ(pj)

pj



and δl = 0 when p|l and δl = 1 otherwise. Here f0 = 1 ∗ θ and g0 = 1 ∗ γ.

Proof. We observe D(f0, 1,∞) <∞ and D(g0, 1,∞) <∞ and let

M(x) =
∑
n6x

f0(an+ c)g0(bn+ d).

Corollary 3.1 implies

M(y) = y
∑

r|ad−bc

G(f0; g0; r; y)

d
+ o(y).

Recall that for any r > 1, (r, (a, b)) = 1

G(f0; g0; r;x) = G(r, x) :=
∏

pk||r, p6x

(
θ(pk)γ(pk) + δb

∑
i>k

θ(pk)γ(pi)

pi−k
+ δa

∑
i>k

γ(pk)θ(pi)

pi−k

)
.

Note that D(1, f0,∞) <∞ together with the fact that Re (θ(p)) 6 0 imply

−
∑
p>1

Re (θ(p))

p
<∞

and thus for y � r we have

G(r, y)� exp

∑
p>1

Re (θ(p))

p
+

Re (γ(p))

p

 = O(1).
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Furthermore, since Re (θ(p))
p 6 0 and Re (γ(p))

p 6 0 we use (7) to estimate

G(r, x)−G(r, y) = G(r, y)

 ∏
y<p6x

1 +
∑
k>1

θ(pk)

pk
+
∑
k>1

γ(pk)

pk

− 1

 (11)

= G(r, y)

exp

log
∑
y<p6x

1 +
∑
k>1

θ(pk)

pk
+
∑
k>1

γ(pk)

pk

− 1


�

∣∣∣∣∣∣exp

 ∑
y6p6x

Re (θ(p))

p
+

Re (γ(p))

p

(1 +O

(
1

y

))
− 1

∣∣∣∣∣∣
�

 ∑
y<p6x

1

p

� log

(
log x

log y

)
·

For (r, (a, b)) > 1 we have G(r, x) = G(r, y) = 0 and (11) holds. Hence,∑
r|ad−bc

G(r, y)

r
=

∑
r|ad−bc

G(r, x)

r
+O

(
log

(
log x

log y

))
Since

M(y) = y
∑

r|ad−bc

G(r, y)

r
+ o(y)

we have

M(y)

y
=
M(x)

x
+O

(
log

(
log x

log y

))
.

Summation by parts yields∑
n6x

f(an+ c)g(bn+ d) =
∑
n>1

(an+ c)it(bn+ d)iuf0(an+ c)g0(bn+ d)

=

∫ x

1
(ay + c)it(by + d)iud(M(y))

= M(x)(ax+ c)it(bx+ d)iu −
∫ x

1
M(y)

[
(ay + c)it(by + d)iu

]′
dy

= M(x)(ax+ c)it(bx+ d)iu − 1

x

∫ x

1
M(x)y

[
(ay + c)it(by + d)iu

]′
dy

+O

(∫ x

2
y log

(
log x

log y

) ∣∣∣[(ay + c)it(by + d)iu
]′∣∣∣ dy)

=
M(x)

x

∫ x

2
(ay + c)it(by + d)iudy

+O

(∫ x

2
y log

(
log x

log y

) ∣∣∣[(ay + c)it(by + d)itu
]′∣∣∣ dy)

Note,

y
∣∣∣[(ay + c)it(by + d)iu

]′∣∣∣� y

ay + c
+

y

by + d
= O(1),
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and so the error term is bounded by∫ x

2
log

(
log x

log y

)
dy � x

log x
= o(x).

Since |(ay + c)it − (ay)it| = O
(
t
y

)
, we have∫ x

2
(ay + c)it(by + d)iudy =

∫ x

2
(ay)it(by)iudy + o(x).

Evaluating the last integral and performing simple manipulations with the Euler factors we
conclude ∑

r|ad−bc

G(f0; g0; r;x)

r
=
∏
p6x

Mp(f0(P ), g0(Q)) + o(1)

and the result follows.

Remark 3.2. Let fk(n), k = 1,m be multiplicative functions such that |fk(n)| 6 1 and
D(fk(n), nitk ;∞) < ∞ for all n ∈ N. Following the lines of the proof one can generalize Corol-
lary 1.4 to compute correlations of the form∑

n6x

f1(a1n+ b1)f2(a2n+ b2) · · · · · fm(amn+ bm).

Finally, we will require the following special case of Corrolary 3.1.

Corollary 3.3. Let f : N→ U be a multiplicative function such that D(1, f ;∞) <∞, m ∈ N.
Then,

1

x

∑
n>1

f(n)f(n+m) =
∑
r|m

G0(r)

r
+ o(1)

when x→∞ and o(1) depends on m, where f = 1 ∗ θ and

G0(r) :=
∏
pk||r

(
|θ(pk)|2 + 2

∑
i>k

Re (θ(pk)θ(pi)

pi−k

)
.

Proof. We apply Corollary 3.1 with g = f, a = b = 1, d = 0, c = m and observe∏
p>x

(
|θ(pk)|2 + 2

∑
i>k

Re (θ(pk)θ(pi))

pi−k

)
=
∏
p>x

(
1 + 2

∑
i>1

Re (θ(pi))

pi

)
→ 1.

Hence, the Euler factors

G(a) :=
∏

pk||a, p6x

(
|θ(pk)|2 + 2

∑
i>k

Re (θ(pk)θ(pi))

pi−k

)
converge to

G0(a) :=
∏
pk||a

(
|θ(pk)|2 + 2

∑
i>k

Re (θ(pk)θ(pi))

pi−k

)
.

Let f be a multiplicative function such that |f(n)| 6 1 and D(f(n), nitχ(n);∞) < ∞ for
some t ∈ R where χ is a primitive character of conductor q. We define F to be the multiplicative
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function such that

F (pk) =

{
f(pk)χ(pk)p−ikt, if p - q
1, if p | q,

(12)

and

Mp(F, F ; d) = lim
x→∞

1

x

∑
n6x

Fp(n)Fp(n+ d).

We are now ready to establish the formula for correlations when f “pretends” to be a modulated
character.

Theorem 1.5. Let f : N → U be a multiplicative function such that D(f(n), nitχ(n);∞) < ∞
for some t ∈ R and χ is a primitive character of conductor q. Then, for any non-zero integer d
we have

1

x

∑
n6x

f(n)f(n+ d) =
∏
p6x
p-q

Mp(F, F ; d)
∏
pl||q

Mpl(f, f , d) + o(1)

when x→∞. Here, o(1) term depends on d, χ, t and

Mpl(f, f , d) =


0, if pl−1 - d
1− 1

p , if pl−1||d(
1− 1

p

)∑k
j=0

|f(pj)|2
pj

− |f(p
k)|2
pk

, if pl+k||d

for any k > 0 and if pn||d for some n > 0, then

Mp(F, F , d) = 1− 2

pn+1
+

(
1− 1

p

)∑
j>n

(
F (pn)F (pj)

pj
+
F (pn)F (pj)

pj

)
.

In particular, the mean value is o(1) if q - d
∏
p|q p.

Proof. We partition the sum according to r, s > 1 such that r|n and rad(r)|q, (n/r, q) = 1 and
s|(n+ d) and rad(s)|q, ((n+ d)/s, q) = 1. Note that (r, s)|d. We write

n = m · lcm(r, s) + rb(r)

such that sb(s)− rb(r) = d for some integers b(r), b(s). The sum can now be rewritten as∑
n6x

f(n)f(n+ d) =
∑
r,s

f(r)f(s)
∑

m∗6 x
lcm(r,s)

f

(
m∗

s

(r, s)
+ b(r)

)
f

(
m∗

r

(r, s)
+ b(s)

)
where the inner sum runs over m∗ such that(

m∗
s

(r, s)
+ b(r), q

)
= 1

and (
m∗

r

(r, s)
+ b(s), q

)
= 1.

We can therefore define the function f1 such that f1(p
k) = f(pk) for all primes p - q and
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f1(p
k) = 0 otherwise. In this case, Corollary 1.4 implies∑

m∗6 x
lcm(r,s)

f

(
m∗

s

(r, s)
+ b(r)

)
f

(
m∗

r

(r, s)
+ b(s)

)
(13)

=
∑

m6 x
lcm(r,s)

f1

(
m

s

(r, s)
+ b(r)

)
f1

(
m

r

(r, s)
+ b(s)

)
where now m runs over all integers up to x

lcm(r,s) . We can now factor f1(n) = χ(n)F (n). Note

D(F, 1,∞) <∞. Let m = kq+ a where a runs over residue classes mod(q). The sum in (13) can
be rewritten as∑

r,s

f(r)f(s)
∑

a mod(q)

χ

(
a

s

(r, s)
+ b(r)

)
χ

(
a

r

(s, r)
+ b(s)

)

×
∑

k6 x
qlcm(r,s)

F

(
kq

s

(r, s)
+ a

s

(r, s)
+ b(r)

)
F

(
kq

r

(r, s)
+ a

r

(r, s)
+ b(s)

)
.

We apply Corollary 1.4 to the inner sum and observe that

a2b1 − a1b2 =
dq

(r, s)

and the asymptotic in Corollary 1.4 does not depend on b1, b2 and consequently on the residue
class a(mod(q)). Hence, up to a small error the innermost sum is equal to∑

m6 x
q[s,r]

F

(
m

s

(r, s)
+ b(r)

)
F

(
m

r

(r, s)
+ b(s)

)
.

We now focus on the sum ∑
a mod(q)

χ

(
a

s

(r, s)
+ b(r)

)
χ

(
a

r

(s, r)
+ b(s)

)
. (14)

Let q = pa11 p
a2
2 ...p

ak
k and χ = χpa11

χpa2 · ... · χpakk , where each χpaii
is a primitive character of

conductor paii . By the Chinese Remainder Theorem the sum (14) equals∑
a mod(q)

χ

(
a

s

(r, s)
+ b(r)

)
χ

(
a

r

(s, r)
+ b(s)

)

=
∏
pk||q

∑
a mod(pk)

χpk

(
a

s

(r, s)
+ b(r)

)
χpk

(
a

r

(s, r)
+ b(s)

)
.

We claim that the last sum is zero unless r = s. Indeed, if r 6= s, then there exists prime p such
that pi||r and pj ||s for j > i. Since (r/(r, s), p) = 1 we can make change of variables

a→ ar

(r, s)
(mod(pk))

and the p−th factor can rewritten∑
a mod(pk)

χpk(apj−it+ b1(r))χpk(a+ b1(s))
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where (t, p) = 1. If j − i > k, then the first term is fixed and the second runs over all residues
modulo pk. So the sum is zero. If j − i < k, we write a = A + pk−(j−i)L where A runs over
residues mod(pk−(j−l)) and L runs over residues modulo pj−i. Then, our sum becomes∑

A mod(pk−(j−l))

χpk(Apj−it+ b1(r))
∑

L modpj−i

χpk(A+ b1(s) + pk−j+iL).

It is easy to show that the inner sum∑
L modpj−i

χ(A+ b1(s) + pk−j+iL) = 0.

Thus, the main contribution comes from the terms r = s = R. In this case we have R(b(s) −
b(r)) = d = bR and we can take b(r) = 0, b(s) = b. Our character sum can be rewritten as∑

a mod(q)

χ(a)χ(a+ b).

To evaluate the last sum, we split it into prime powers. Now if pk||q and pi||b (possibly i = 0)
then we have nonzero contribution if and only if i > k − 1. Indeed, let b = pib1, (b1, p) = 1. We
note

∑
a mod(pk)

χpk(a)χpk(a+ b) =
∑

c mod(pk),
(c,p)=1

χpk(pic+ 1).

This sum is 0 if i 6 k − 2 and equals to −pk−1 whenever i = k − 1 and φ(pk) whenever i > k.
We thus have ∑

a mod(q)

χ(a)χ(a+ b) =
∏
pk||q
pi||b
i6k−1

µ(pk−i)pi
∏
pk||q
pk|b

φ(pk)

and the result follows by combining this with Corollary 1.4 and easy manipulations with the
Euler products.

Combining the last proposition with Corollary 3.3 we deduce

Corollary 3.4. Let f : N→ U be a multiplicative function with D(f(n), nitχ(n);∞) <∞ for
some primitive character χ of conductor q. Then

1

x

∑
n6x

f(n)f(n+ 1) =
µ(q)

q

∏
p>1
p-q

2 Re

(
1− 1

p

)∑
k>0

f(pk)χ(pk)p−ikt

pk

− 1

+ o(1)

when x→∞ and o(1) depends on χ, t.

We remark that using the same arguments one may establish the formula for the correlations∑
n6x

f(n)g(n+m)

for D(f(n), nit1χ(n),∞) < ∞ and D(g(n), nit2ψ(n),∞) < ∞. We state here one particular case
when m = 1.
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Proposition 3.5. Let f, g : N→ U be two multiplicative functions with D(f(n), nit1χ(n),∞) <
∞ and D(g(n), nit2ψ(n),∞) < ∞ for some primitive characters χ, ψ. Let R =

qψ
(qχ,qψ)

and S =
qχ

(qχ,qψ)
, Q = [qχ, qψ]. Then

1

x

∑
n6x

f(n)g(n+ 1) =
Rit1Sit2

i(t1 + t2) + 1
f(R)g(S)

∑
a mod(Q)

χ(aS + b(R))ψ(aR+ b(S))

×
∏
p6x
p-Q

(1− 1

p

)∑
k>0

f(pk)p−ikt1

pk

+

(
1− 1

p

)∑
k>0

g(pk)p−ikt2

pk

− 1

+ o(1)

when x→∞ and o(1) depends on parameters t1, t2, χ, ψ.

Proof. We follow the lines of the proof of Proposition 1.5 and note that in this case (r, s) = 1
and the only term that contributes is

r = R =
qψ

(qχ, qψ)

and

s = S =
qχ

(qχ, qψ)
·

4. Application to the Erdős-Coons-Tao conjecture

In this sections we are going to study multiplicative functions f : N→ T, such that

lim sup
x→∞

|
∑
n6x

f(n)| <∞. (15)

We first focus on the complex valued case and the proof of Theorem 1.7. The key tool is the
following recent result by Tao [Taob].

Theorem 4.1. [Tao] Let a1, a2 be natural numbers, and let b1, b2 be integers such that a1b2 −
a2b1 6= 0. Let ε > 0, and suppose that A is sufficiently large depending on ε, a1, a2, b1, b2. Let
x > ω > A, and let g1, g2 : N → U be multiplicative functions with g1 non-pretentious in the
sense that ∑

p6x

1− Re(g1(p)χ(p)pit)

p
> A

for all Dirichlet character χ of period at most A, and all real numbers |t| 6 Ax. Then∣∣∣∣∣∣
∑

x/ω<n6x

g1(a1n+ b1)g2(a2n+ b2)

n

∣∣∣∣∣∣ 6 ε logω.

We will require the following technical lemma.

Lemma 4.2. Let a > 1 be given and let xn be an increasing sequence such that xn < xn+1 6 xan.
Suppose that for each xm, there exists a primitive character χm of conductor O(1) and a real
tm with |tm| � xm such that D(f(n), nitmχm(n), xm) = O(1). Then, there exists t ∈ R and a
primitive character χ such that D(f(n), nitχ(n),∞) <∞.
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Proof. Without loss of generality, we may assume that xn+1 = xan (otherwise we can choose a
suitable subsequence and modify the values of a if necessary). We note that there exists k = O(1)
such that for all n > 1, χkn(p) = 1 for all but finitely many primes p. Triangle inequality now
implies that

D(fk(n), niktm , xm) = D(fk(n), niktmχkm(n), xm) +O(1) > kD(f(n), nitmχm(n), xm) = O(1).

Moreover,

D2(fk(n), niktm , xm+1) 6 O(1) +
∑

xm6p6xm+1

2

p
6 O(1) + 2 log

log xm+1

log xm
= O(1)

and therefore applying triangle inequality once again we end up with

O(1) > D(fk(n), niktm , xm+1) + D(fk(n), niktm+1 , xm+1) > D(1, nik(tm+1−tm), xm+1).

Clearly k|tm+1 − tm| � xm+1 and therefore by the classical zero-free region we get

|tm+1 − tm| �
1

log xm+1
·

Iterating last inequality we conclude that there exists t such that

|tm − t| �
1

log xm+1

for all m > 1. Since there are only finitely many options of characters χm, we can pass to the
subsequence and assume that χm = χ is fixed. Triangle inequality now implies

D(f(n), nitmχ(n), xm) + D(1, ni(t−tm), xm) > D(f(n), nitχ(n), xm) +O(1).

We are left to note that

D(1, ni(t−tm), xm) = O(1)

as long as |tm − t| � 1/ log xm and we can replace tm with t at a cost of O(1). This completes
the proof of the lemma.

Lemma 4.3. Suppose that for a multiplicative f : N → T, (15) holds. Then there exists a
primitive character χ and t ∈ R, such that D(f(n), χ(n)nit,∞) <∞.

Proof. Let H ∈ N. Suppose that for each 1 6 h 6 H we have

1

log x

∑
n6x

f(n)f(n+ h)

n
6

1

2H
·

Consider

T (x) :=
1

log x

∑
n6x

1

n

∣∣∣∣∣
n+H+1∑
k=n+1

f(k)

∣∣∣∣∣
2

Expanding the square we get

T (x) =
∑

16h1 6=h26H

1

log x

∑
n6x

f(n+ h1)f(n+ h2)

n
·

The diagonal contribution h1 = h2 is 1 + o(1). For h2 > h1 we introduce h = h2−h1 and replace
n in the denominator by N = n + h1 at a cost � H/ log x. We change the range for N from
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1 + h1 6 N 6 x+ h1 to 1 6 n 6 x at a cost of � logH/ log x. Therefore

T (x) = H + o(1)−
∑
|h|6H

(H − |h|) · 1

log x

∑
N6x

f(N)f(N + h)

N

> H − (H2 −H) · 1

2H
+ o(1) =

H

2
+O(1)

for x→∞. This contradicts (15) for sufficiently large H > 1. Thus, for a fixed H > 1, and large
every large x� 1, there exists 1 6 hx 6 H such that

1

log x

∑
n6x

f(n)f(n+ hx)

n
� 1.

Since hx 6 H, we can apply Theorem 4.1 to conclude that there exists A = A(H) > 0 such that
for any sufficiently large x, there exists tx ∈ R, |tx| 6 Ax and a primitive character χ of modulus
D 6 A, such that D(f(n), nitxχ(n);x) 6 A, namely∑

p6x

1− Re(f(p)p−itxχ(p))

p
6 A2.

Since latter holds uniformly for all large x, Lemma 4.2 implies the result.

We now refine the result of Lemma 4.3.

Theorem 1.7. Suppose for a multiplicative f : N→ T, (15) holds. Then there exists a primitive
character χ of an odd conductor q and t ∈ R, such that D(f(n), χ(n)nit;∞) < ∞ and f(2k) =
−χk(2)2−ikt for all k > 1.

Proof. Applying Lemma 4.3, we can find a primitive character χ of conductor q and t ∈ R such
that D(f(n), χ(n)nit;∞) <∞. Theorem 1.5 implies that for any d > 0, we have

Sd = lim
x→∞

1

x

∑
n6x

f(x)f(x+ d) =
∏
p6x
p-q

Mp(F, F ; d)
∏
pl||q

Mpl(f, f , d).

For fixed H > 1, we can now write

lim
x→∞

1

x

∑
n6x

∣∣∣∣∣
n+H+1∑
k=n+1

f(k)

∣∣∣∣∣
2

= lim
x→∞

1

x

 ∑
h=0, n6x

Hf(n)f(n+ h) + 2
∑

16h6H

(H − h)
∑
n6x

f(n)f(n+ h)


= HS0 + 2

H∑
h=1

(H − h)Sh = H + 2

H−1∑
N=1

N∑
n=1

Sm.

We note that all Sm 6 1 and Theorem 1.5 implies that each Sm behaves like a scaled multi-
plicative function, since it is given by the Euler product. We are going to show that there exists
limN→∞

1
N

∑
n6N Sn = c and so

H + 2
H−1∑
N=1

N∑
n=1

Sm = O(1) ∼ H + 2
H∑
N=1

cn = cH2 +O(H).

Latter would imply that c = 0. We turn to the computations of the corresponding mean values.
Clearly

lim
N→∞

1

N

∑
n6N

Sn =
∏
p6N

S(p)
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where S(p) denotes the local factor that corresponds to prime p. If p - q, then using Theorem 1.5
and simple computations

Sp =
∑
k>0

(
1

pk
− 1

pk+1

)
Mp(F, F , p

k) =

∣∣∣∣∣∣
(

1− 1

p

)∑
k>0

F (pk)

pk

∣∣∣∣∣∣
2

.

If pl||q, then again using Theorem 1.5 we get

Sp =
∑
k>0

(
1

pk
− 1

pk+1

)
Mpl(f, f , p

k) =
1

pl−1

(
1− 1

p

)2

.

Since c = 0, one of the Euler factors has to be 0. The only possibility then is S2 = 0 and 2 - q
and F (2k) = −1 for all k > 1. This completes the proof.

Proof of the Erdős-Coons-Tao conjecture. We now move on to the proof of Theorem 1.6.
It turns out that periodic multiplicative functions with zero mean have the following equivalent
characterization that we will use throughout the proof.

Proposition 4.4. Suppose that f is multiplicative with each |f(n)| 6 1 for all n ∈ N. Then
there exists an integer m such that f(n + m) = f(n) for all n ∈ N and

∑m
n=1 f(n) = 0 if and

only if f(2k) = −1 for all k > 1 and there exists an integer M such that if prime power pk >M
then f(pk) = f(pk−1).

Proof. Suppose that f(n + m) = f(n) for all n > 1 and
∑m

n=1 f(n) = 0. From periodicity we
have f(km) = f(m) for all k > 1, and so if pa||m then f(pb) = f(pa) for all b > a. In particular
if p does not divide m then f(pb) = 1. Hence,

m∑
n=1

f(n) =
∑
d|m

f(d)φ
(m
d

)
=
∏
pa||m

pa(1− 1

p

) ∑
16k6a−1

f(pk)

pk

+ f(pa)

 .

Consequently, some factor has to be 0. The only possibility is then p = 2 and f(2k) = −1 for all
k > 1. The other direction immediately follows from the Chinese remainder theorem.

Our starting point is the following result:

Theorem 4.5. [Tao, 2015] If for a multiplicative f : N→ {−1, 1}

lim sup
x→∞

|
∑
n6x

f(n)| <∞,

then f(2j) = −1 for all j > 1 and

∑
p

1− f(p)

p
<∞.

In what follows we restrict ourselves to the multiplicative functions f : N → {−1, 1} such
that D(1, f,∞) < ∞, f = 1 ∗ g and f(2j) = −1 for all j > 1. For such such functions we are
going to drop the subscript and set

G0(a) = G(a) :=
∏
pk||a

|g(pk)|2 + 2
∑
i>k+1

g(pk)g(pi)

pi−k

 . (16)

27



Oleksiy Klurman

Here, we allow k = 0 if p - a. The following lemma summarizes properties of G(a) that we will
use throughout the proof.

Lemma 4.6. Let G(a) be as above. Then

(i) G(4a) = 0, a ∈ N;

(ii) G(2a) = −4G(a) for odd a;

(iii)
∑

a>1
G(a)
a2

= 0;

(iv) If f(3) = 1, then G(a) 6 0 for all odd a;

(v)
∑

a>1
G(a)
a = 1.

Proof. Note that g(2) = −2 and g(2i) = f(2i) − f(2i−1) = 0 for i > 2. Thus G(4a) = 0 and
G(2a) = −4G(a) for odd a. The third part immediately follows from∑

a>1

G(a)

a2
=

∑
a>1, a odd

G(a)

a2
+

∑
a>1, a odd

G(2a)

(2a)2
= 0.

To prove (4), fix p and suppose pk||a. We note that for k = 0, the Euler factor

Ep(a) = 1 + 2
∑
i>1

g(pi)

pi
> 1− 4

p− 1
> 0

for p > 5. Note E2(a) = 1−2 = −1. If 30||a, then g(3) = f(3)−1 = 0 and E3(a) > 1− 4
9 ·

3
2 = 1

3 > 0.
Suppose that pk||a and k > 1. Then,

Ep(a) = |g(pk)|2 + 2
∑
i>k+1

g(pk)g(pi)

pi−k
> 4− 8

p− 1
> 0

for p > 3. Hence the only negative Euler factor is E2 and (4) follows. To prove (5), we take m = 0
in Corollary 3.3 to arrive at

lim
x→∞

1

x

∑
n6x

f(n)f(n+ 0) = 1 =
∑
a|0

G(a)

a
=
∑
a>1

G(a)

a
·

Lemma 4.7. Suppose G(a) 6= 0. Then,

|G(a)| �
(

5

4

)ω(a)−1
· 2

5
· |G(1)|.

Proof. Recall,

G(a) =
∏
pk||a

|g(pk)|2 + 2
∑
i>k+1

g(pk)g(pi)

pi−k

 .

Note g(pk)g(pk+1) 6 0 and so if pk||a and k > 1 we have

Ep(a) = |g(pk)|2 + 2
∑
i>k+1

g(pk)g(pi)

pi−k
> 4− 8

p
· 1

1− 1
p2

= 4− 8p

p2 − 1
·
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For p = 3 the last bound reduces to E3(a) > 1 and for p > 5 we clearly have Ep(a) > 2. For
k = 0, we have

Ep(1) = 1 + 2
∑
i>1

g(pi)

pi
6 1 +

4

p
· 1

1− 1
p2

= 1 +
4p

p2 − 1
.

Consequently, for k > 1 and p > 3

Ep(p
k) >

5

4
Ep(1).

Taking into account p = 3 we conclude

|G(a)| =

∣∣∣∣∣∣
∏

pk||a, k>1

|g(pk)|2 + 2
∑
i>k+1

g(pk)g(pi)

pi−k

∣∣∣∣∣∣ >
(

5

4

)ω(a)−1
· 2

5
· |G(1)|.

In fact, it is easy to check that G(1) 6= 0 and thus the last lemma provides nontrivial lower
bound for G(a). In the next lemma we compute the second moment of the partial sums over the
interval of fixed length.

Lemma 4.8. Let H ∈ N. Then

1

x

∑
n6x

(
n+H+1∑
k=n+1

f(k)

)2

= −2
∑

a>1, a odd

G(a)

∥∥∥∥H2a
∥∥∥∥+ ox→∞(1).

Proof. Note

1

x

∑
n6x

(
n+H+1∑
k=n+1

f(k)

)2

=
1

x

 ∑
h=0, n6x

Hf(n)f(n+ h) + 2
∑

16h6H

(H − h)
∑
n6x

f(n)f(n+ h)

+ o(1)

=
∑
a>1

G(a)

a

H + 2
∑

16h6H,
a|h

(H − h)

+ ox→∞(1)

To compute the corresponding coefficient we write H = ra+ s, 0 6 s < a to arrive at

ra+ s+ 2
∑

16m6r

(ra+ s−ma) = ra+ s+ ar(r − 1) + 2rs

=
(ra+ s)2

a
+ a

(
s

a
−
(s
a

)2)
.

Plugging this into our formula and using (3), (1), (2) from the Lemma 4.6 we get

H2
∑
a>1

G(a)

a2
+
∑
a>1

G(a)

({
H

a

}
−
{
H

a

}2
)

=
∑
a>1

G(a)

({
H

a

}
−
{
H

a

}2
)

=
∑

a>1, a odd

G(a)

[({
H

a

}
−
{
H

a

}2
)
− 4

({
H

2a

}
−
{
H

2a

}2
)]

= −2
∑

a>1, a odd

G(a)

∥∥∥∥H2a
∥∥∥∥ ,
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since ({
H

a

}
−
{
H

a

}2
)
− 4

({
H

2a

}
−
{
H

2a

}2
)

= −2

∥∥∥∥H2a
∥∥∥∥ ,

where ‖x‖ denotes the distance from x to the nearest integer.

We are now ready to prove Theorem 1.6.

Theorem 1.6. Let f : N→ {−1, 1} be a multiplicative function. Then

lim sup
x→∞

∣∣∣∣∣∑
n6x

f(n)

∣∣∣∣∣ <∞,
if and only if there exists an integer m > 1 such that f(n + m) = f(n) for all n > 1 and∑m

n=1 f(n) = 0.

Proof. If f satisfies
∑m

i=1 f(i) = 0 and f(n) = f(n+m) for some m > 1, then for all x > 1,∣∣∣∣∣∑
n6x

f(n)

∣∣∣∣∣ 6 m

and the claim follows. In the other direction, we assume |
∑

n6x f(n)| = Ox→∞(1). By Theo-
rem 4.5 we must have f(2i) = −1 for all i > 1 and D(1, f,∞) <∞. By the Lemma 4.8 we must
have that for all H > 1,

1

x

∑
n6x

(
n+H+1∑
k=n+1

f(k)

)2

= −2
∑

a>1, a odd

G(a)

∥∥∥∥H2a
∥∥∥∥+ ox→∞(1) = Ox→∞(1).

Suppose that there is an infinite sequence of odd numbers {an}n>1 such that g(an) 6= 0.
Observe, |G(an)| � 1. Choose H = lcm[a1, . . . aM ]. If f(3) = 1, then by Lemma 4.6, part (4) we
have

−2
∑

a>1, a odd

G(a)

∥∥∥∥H2a
∥∥∥∥ > −2

∑
16n6M

G(an)

∥∥∥∥ H2an
∥∥∥∥�M.

This is clearly impossible if M is sufficiently large.

Suppose f(3) = −1. Let

G∗(a) =
∏

pk||a, p>3

|g(pk)|2 + 2
∑
i>k+1

g(pk)g(pi)

pi−k


and

S(H) = −2
∑

a>1, (a,6)=1

G∗(a)

∥∥∥∥H2a
∥∥∥∥ .

Note that

−2
∑

a>1, a odd

G(a)

∥∥∥∥H2a
∥∥∥∥ =

∑
i>0

E3

(
3i
)
S

(
H

3i

)
= O(1). (17)

If E3(1) > 0 then we proceed as in the previous case. If E3(1) < 0, then g(3) = f(3) − 1 = −2.
Since g(pk)g(pk+1) 6 0 for all k > 0 we get

E3(3) > 4− 8

9
· 1

1− 1
9

> 3
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and

0 > E3(1) = 1 + 2
∑
i>1

g(3i)

3i
> 1− 4

3
· 1

1− 1
9

= −1

2
.

Since E3(3
k) > 0 for all k > 1, applying triangle inequality in (17) yields

S(H) >
E3(3)S

(
H
3

)
−E3(1)

+O(1) > 6S

(
H

3

)
−M. (18)

If there is an infinite sequence {bn}n>1 such that g(bn) 6= 0 and (bn, 6) = 1, then we select H0 as
before such that S(H0) >M and S(3H0) >M. Then (18) yields S(3H0) > 5S(H0). By induction
one easily gets that for all n > 1,

S(3nH0) > 5nS(H0).

This implies, that for the sequence Hn = 3nH0 we have S(Hn)� H1+c
n . From the other hand∑

a>H, (a,6)=1

G∗(a)

a
= oH→∞(1)

and so

S(H) = −2
∑

a>1, (a,6)=1

G∗(a)

∥∥∥∥H2a
∥∥∥∥� ∑

a6H, (a,6)=1

G∗(a) +H
∑

a>H, (a,6)=1

G∗(a)

a

�
√
H

∑
a6
√
H, (a,6)=1

G∗(a)

a
+H

∑
√
H6a6H, (a,6)=1

G∗(a)

a
+ o(H)

and so S(H) = o(H).

To finish the proof we are left to handle the case g(3k) 6= 0 for infinitely many k > 1 and
there exists finitely many b1, b2 . . . , bm (bi, 6) = 1, i > 1 and g(bi) 6= 0. In this case we have

S(H) 6
m∑
i=1

G∗(bi) := M.

Choose H0 = lcm[b1, . . . , bm] and observe that S(3kH0) >M/2 for k = 1, . . .K. Then,

−2
∑

a>1,a odd

G(a)

∥∥∥∥3KH0

2a

∥∥∥∥ =
∑
i>0

E3

(
3i
)
S

(
3KH0

3i

)

>
∑

16i6K

E3

(
3i
)
S

(
3KH0

3i

)
− E3(1)S(H0)

>
M

2

∑
16i6K

E3(3
k)−M.

The last sum is bounded if E3(3
k) = 0 for all k > K0. Consequently, f(3k) = f(3k+1) for k > K0

and the result follows.

5. Applications to the conjecture of Kátai

Let f : N → C be a multiplicative function and 4f(n) = f(n + 1) − f(n). In this section we
focus on proving
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Theorem 1.8. If f : N→ C is a multiplicative function and

lim
x→∞

1

x

∑
n6x

|4f(n)| = 0 (19)

then either

lim
x→∞

1

x

∑
n6x

|f(n)| = 0

or f(n) = ns for some Re(s) < 1.

In [Kát00], Kátai, building on the ideas of Maclauire and Murata [MM80], showed that in
order to prove Theorem 1.8, it is enough to consider a multiplicative f with |f(n)| = 1 for all
n > 1. Observe, that if we denote

S(x) =
1

x

∑
n6x

|4(n)|

then (19) implies

∑
n6x

|4f(n)|2

n
6
∑
n6x

2|4f(n)|
n

�
∫ x

1

S(t)

t2
dt = o(log x).

We begin by proving the following lemma.

Lemma 5.1. Suppose that f : N→ T is multiplicative and∑
n6x

|4f(n)|2

n
6 2(1− ε) log x

for x sufficiently large and some 0 < ε < 1. Then, there exists a primitive character χ1(n) and
tχ1 ∈ R such that D(f(n), χ1(n)nitχ1 ;∞) <∞.

Proof. We note that

Re f(n)f(n+ 1) = 1− |4f(n)|2

2
and therefore ∑

n6x

Re f(n)f(n+ 1)

n
> ε log x+O(1).

We can now apply Lemma 4.3, since the only fact that was used in the proof is that the logarithmic
correlation is large to conclude the result.

Remark 5.2. The conclusion of the lemma also holds if f : N→ T satisfies∑
n6x

|4f(n)|2

n
> 2(1 + ε) log x

for some ε > 0. In other words, if
∑

n6x
|4f(n)|2

n is bounded away from 2 log x, then

D(f(n), χ1(n)nitχ1 ;∞) <∞.
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Proposition 5.3. Let f : N → T be a multiplicative function and D(f, nitχ(n);∞) < ∞ for
some t ∈ R and a primitive character χ of conductor q. Then∑

n6x

|4f(n)|2

n
= 2(1− E(f) + o(1)) log x

where

E(f) =
µ(q)

q

∏
p>1
p-q

2 Re

(
1− 1

p

)∑
k>0

f(pk)χ(pk)p−ikt

pk

− 1

 .

Proof. Applying Corollary 3.4 we have that

M(y) =
∑
n6y

f(n)f(n+ 1)) = y
µ(q)

q

∏
p>1
p-q

2 Re

(
1− 1

p

)∑
k>0

f(pk)χ(pk)p−ikt

pk

− 1

+ o(y).

Consequently,∑
n6x

Re f(n)f(n+ 1))

n
=
M(x)

x
+

∫ x

1

M(y)

y2
dy = log x · E(f) + o(log x)

and ∑
n6x

|4f(n)|2

n
= 2 log x− 2

∑
n6x

Re f(n)f(n+ 1))

n
+O(1) = 2(1− E(f) + o(1)) log x.

Corollary 5.4. Let f : N→ T be a multiplicative function such that D(f, nitχ(n);∞) <∞ for
some t ∈ R and a primitive character χ of conductor q. Suppose that∑

n6x

|4f(n)|2

n
= o(log x).

Then, f(n) = nit.

Proof. Proposition 5.3 implies that E(f) = 1. We have that for all p > 2, p - q, each Euler factor

Ep(f) = 2

(
1− 1

p

)∑
k>0

Re f(pk)χ(pk)p−ikt

pk
− 1 > 2

(
1− 1

p

)1−
∑
k>1

1

pk

− 1 =
p− 4

p
> −1

with the possible equality only at p = 2. From the other hand,

Ep(f) 6 2

(
1− 1

p

)∑
k>0

1

pk

− 1 = 1.

Consequently, we must have q = 1 and |Ep(f)| = 1 for all p > 2. Since E(f) = 1 > 0, we have
E2(f) 6= −1 and

2

(
1− 1

p

)∑
k>0

Re f(pk)p−ikt

pk
− 1 = 1.

This is possible if only if f(pk) = pkit for all p > 2 and k > 1. The result follows.
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Theorem 1.8 now follows from the following

Proposition 5.5. Let f : N→ T be a multiplicative function such that∑
n6x

|4f(n)|2

n
= o(log x).

Then, f(n) = nit for some t ∈ R.

Proof. Applying Lemma 5.1 we can find a primitive character χ and t ∈ R such that

D(f(n), χ(n)nit;∞) <∞.

We now apply Corollary 5.4 to conclude that f(n) = nit.

6. Applications to the binary additive problems

As was mentioned in the introduction Brüdern established the following result.

Theorem 1.9. [Brüdern, 2008] Suppose A and B are multiplicative sequences of positive den-
sity ρA and ρB respectively. For k > 1, let

a(pk) = ρA(pk)/pk − ρA(pk−1)/pk−1

Define b(h) in the same fashion. Then, r(n) = ρAρBσ(n)n+ o(n) when n→∞, where

σ(n) =
∏
pm||n

(
1 +

m∑
k=1

pk−1a(pk)b(pk)

p− 1
− pma(pm+1)b(pm+1)

(p− 1)2

)
.

We now sketch how one can derive this from our main result.

Proof. Let f(n) = IA(n) and g(n) = IB(n). Clearly both, f and g are multiplicative taking values
{0, 1}. Since ρA > 0, we have

lim sup
x

1

x

∑
n6x

f(n) > 0.

Theorem of Delange readily implies that D(1, f ;∞) <∞. By analogy, D(1, g;∞) <∞. Further-
more,

ρA = lim
x→∞

1

x

∑
n6x

f(n) = P(f, 1,∞)

and

ρB = lim
x→∞

1

x

∑
n6x

g(n) = P(g, 1,∞).

Notice that

r(m) =
∑
n6m

f(n)g(m− n).

We note that following the the proof of Corollary 1.4 we may let a = 1, c = 0, b = −1, d = m.
Despite the fact that d = m→∞ the error term is still bounded by (8). Corollary 1.4 gives

r(m) =
∑
l|m

G(f ; g; l;∞)

l
m+ o(m).
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A straightforward manipulation with the Euler factors shows that the latter has the Euler product
described above.

Remark 6.1. In case one of the sets A,B has density zero, say ρA = 0 we can apply Delange’s
theorem to conclude

r(m) =
∑
n6m

f(n)g(m− n) 6
∑
n6m

f(n) = o(m).
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Erd57 P. Erdős. Some unsolved problems. Michigan Math. J., 4:291–300, 1957.
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Hil88a A. Hildebrand. An Erdős-Wintner theorem for differences of additive functions. Trans. Amer.
Math. Soc., 310(1):257–276, 1988.

Hil88b A. Hildebrand. Multiplicative functions at consecutive integers. II. Math. Proc. Cambridge
Philos. Soc., 103(3):389–398, 1988.
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