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Abstract: 

The impact response of sandwich panels is not only dependent on the facesheet but 

also on the core material. The choice of the core has a strong effect on the strength 

and durability of the structure. This paper compares the dynamic response of 

sandwich panels with different core materials when subjected to medium velocity 

impacts. The sandwich panels were made of aluminium facesheets with five different 

cores, viz., low density balsa wood, high density balsa wood, cork, polypropylene 

honeycomb, and polystyrene foam. All the specimens were impacted by a 384.4 g 

instrumented projectile with a hemispherical steel head at three impact energies of 43, 

85 and 120 J. An accelerometer attached to the projectile and a high speed camera 

were used to collect data and record the impact process. 3D scanning technique was 

used to measure the deformation of front and back faces after impact. The impact 

properties of the sandwich panels with the five different cores were compared in 

terms of contact force, energy absorption, depth of indentation, overall bending 

deflection, etc. Post-mortem sectioning was also conducted to examine the impact 



induced failures such as facesheet rupture, crush of core material, and debonding 

between facesheet and core. 

Keywords: core material; energy absorption; failure mechanism; impact; sandwich 

panel. 

 

1. Introduction 

The increasing effort to develop lightweight structures characterised by better mechanical 

performance has led to the development and employment of sandwich structures. A sandwich 

structure may be defined as a composite component featuring a lightweight core placed 

between two relatively thin high-strength facesheets or skins. The facesheets are designed to 

resist bending loads and are usually made of aluminium or fibre reinforced polymers. The 

core separates and stabilises the outer sheets against buckling under edgewise compression, 

torsion or bending and is usually made of woods, expanded metals, polymer and metal foams, 

and polymer and metal honeycombs [1]. An adhesive bonding between the facesheets and 

core ensures the load transfer between them. Sandwich structures are lightweight composite 

materials that have been widely used in numerous application fields such as aerospace, 

marine, automotive, and energy industries for their desirable properties like high specific 

bending stiffness, excellent thermal insulation, acoustic damping, etc. However, sandwich 

composite structures are susceptible to impact loading and may be subjected to different 

impacts such as tool drops, bird strikes, hail stones, and runway debris during the service life 

[2]. These impacts may cause significant damage, such as local core crushing and debonding 

of the facesheet from the core, which severely compromises the structural integrity of the 

sandwich panel [3]. The study on the behaviour of sandwich structures subjected to impact 

loading is usually accomplished by experimental testing [4-6]. The effects of impact variables 



(such as impact velocity and energy, impactor shape and diameter) and sandwich 

construction parameters (core material and thickness, facesheet type) on the impact behaviour 

and resulting damage are the major concerns in many studies. According to Ozdemir et al. [7], 

the core material and thickness is one of the main factors determining the impact behaviour 

of sandwich structures and it was shown that the energy absorption capacity of sandwich 

composites increased with increasing core thickness. 

The core materials are usually divided into four groups: balsa woods, corrugated sheets, 

honeycombs and cellular foams [8]. Aluminium honeycombs have been used in the aerospace 

industry but suffer from corrosion damage to the core from water ingress. According to 

Shipsha [8], though honeycomb cored sandwich structures offer the highest stiffness to 

weight ratio, many industrial applications prefer cellular foam cores such as polyvinyl 

chloride (PVC) foam because of their relative low cost, water resistance, and a possibility to 

use traditional manufacturing methods such as hand layup. Foam materials have a cellular 

structure with a three-dimensional array of cells and this microscopic cellular structure 

determines their superior performance as an energy absorbing material [9]. Another 

advantage of foam cores is the increased support surface for bonding with the facesheets [10]. 

Foams that are used as core materials for sandwich structures include polyurethane foams, 

phenolic foams, expanded and extruded polystyrene (EPS and XPS) foams and 

polymethacrylimide (PMI) foams [11]. Cantwell et al. [5] compared the impact response of 

sandwich structures with balsa wood and PVC foam cores for use in marine applications. 

Bernard and Lagace [12] studied the impact resistance of composite sandwich plates with 

graphite/epoxy facesheets and three different cores which were aluminium honeycomb, 

Nomex honeycomb and Rohacell foam using low energy impact tests. Atas and Sevim [13] 

compared the impact damage process of sandwich samples with PVC foam and balsa wood 

cores by cross-examining the load–deflection curves, energy profile diagrams, and damaged 



specimens. Another popular type of core used for manufacturing sandwich panels is metallic 

foam. Mohan et al. [14] experimentally investigated the response of bare aluminium foam 

blocks and their sandwich panels with various tailored facesheets under a drop-weight impact 

loading; the results showed increase in foam thickness and the use of facesheet enhanced the 

impact energy absorption capacity. Rajaneesh et al. [15] compared the relative performance 

of sandwich plates consisting of aluminium alloy foam and PVC foam with aluminium 

facesheets under low velocity impact, and it was found that the contact radius was higher for 

a sandwich plate with a stronger foam for a given impact load. Hou et al. [16] conducted 

ballistic impact experiments on metallic sandwich panels with aluminium foam core, and it 

was revealed an approximate linear relationship between ballistic limit and relative core 

density. Moreover, the ballistic limit of the specimens with a thicker core had a more rapid 

increase with the relative density than their counterparts with thinner core. 

The understanding of the impact phenomenon and the damage mechanisms are essential for 

developing improved materials [17]. The impact problem can be classified as low velocity 

impact by a large mass (like a dropped tool), which is simulated using a falling weight or a 

swinging pendulum, and medium/high velocity impact by a small mass (such as runway 

debris, small firearms, etc.), which is simulated with a gas gun or some other ballistic 

launchers [18]. It is generally accepted that low velocity impact are impacts at velocities 

below 10 m/s, medium velocity impact has velocities ranging from 10 to 50 m/s, and high 

velocity impact occurs in the 50 to 1000 m/s velocity range [18, 19]. While low velocity 

impact [14, 15, 20-23] and high velocity impact [4, 16, 24] response of sandwich panels are 

well represented in the literature, the response of sandwich panels subjected to medium 

velocity impacts has rarely been studied experimentally. In this paper, sandwich panels with 

aluminium facesheets and five different core materials are impacted at different energies 



using a medium velocity gas gun and a comparison based on the force–displacement response 

and failure modes of the panels is presented. 

 

2. Experimental methodology 

2.1. Materials used 

The sandwich panels tested in this study were manufactured of identical facesheets combined 

with five different core materials using a wet layup process. The material of the facesheet was 

Aluminium 2024-T3, and the core materials were Balsa wood of low density (LD) and high 

density (HD), Cork, Polypropylene (PP) honeycomb, and Polystyrene (PS) foam. It was 

found that the core height has a significant influence on the impact response of sandwich 

structures [7, 16, 25, 26], so the thicknesses of cores were kept nominally constant to 

eliminate the geometry effect on the bending stiffness, leaving only the effect of the material 

properties of the core as the variable. Table 1 summarises the properties of all the materials 

used: the thickness and density were measured directly while the Young’s modulus, 

compressive strength, and shear strength were obtained from the manufacturer’s data and 

published literature [27, 28]. The core materials were chosen as representative of the different 

types of cores used in sandwich construction. The balsa wood core supplied by Baltek is 

reported to have optimum physical properties due to its honeycomb-like cell structure 

obtained by cutting perpendicular to the grain direction. Toson et al. [29] reported that wood 

material such as balsa is of particular interest for application as a core material in sandwich 

panels because of its transversely isotropic behaviour, i.e., it is stiff and strong in the 

direction of the fibres (axial) and transversely compliant (in directions that are tangential and 

radial to it growth rings). The expanded polystyrene foam supplied by Polyfoam is a closed 

cell, thermoplastic, lightweight, and rigid cellular plastic material and is chosen for its 



excellent energy absorbing and damping properties. Polypropylene honeycomb supplied by 

Polycore with cell size of 8 mm was chosen for sandwich core material with honeycomb 

construction. The natural honeycomb structure of the closed cells of cork core was chosen for 

its low density, high compressibility and excellent recovery characteristics. 

Table 1. Material properties. 

Material Al 2024-T3 Balsa LD Balsa HD Cork PS Foam PP Honeycomb 

Thickness (mm) 1.06 10.45 10.32 10.23 9.52 10.74 

Density (kg/m3) 2614.42 101.77 145.04 150.43 32.39 145.21 

Young’s Modulus 

(MPa) 

73100 10~18 10~18 5.1 8~20 97 

Compressive 

Strength (MPa) 

483 2.5 2.5 0.3 0.3 2.2 

Shear Strength 

(MPa) 

283 9 9 5.9 4.5 19 

The bonding surface of the aluminium facesheet must be free of any contaminants such as 

grease, oil, wax or mold release. The surface of facesheet was cleaned of oxide material and 

contaminant using abrasive sand paper and acetone. The facesheets were bonded on each side 

of the core material using the West System two-part epoxy resin, and the sandwich panel was 

placed in a vacuum bag to cure for 24 hours at room temperature. The cured sandwich panels 

were cut into 150 mm × 150 mm squares for impact test. 

2.2. Impact testing 



The medium velocity impact response of sandwich structures is typically tested using a gas 

gun [30]. A steel projectile with a hemispherical nose having a diameter of 20 mm, as shown 

in Fig. 1 (a), was used to impact the centre of sandwich panels perpendicularly. A 

piezoelectric accelerometer mounted within the projectile with flexible wires and connected 

to a National Instruments high-speed data acquisition system with a sampling rate of 100 kHz 

was employed to capture the uniaxial acceleration history of the projectile during impact. The 

wires were made to snap if the projectile rebound out of the reach of the wires. The recorded 

acceleration data was cleaned of spurious noise by a Butterworth low pass filter (cut-off 

frequency of 5000 Hz) and converted to force by multiplying it by the total mass of the 

projectile which was 384.4 g. A vertical gas gun, as shown in Fig. 1 (b), was employed to 

propel the projectile to three different velocities which were 15, 21, and 25 m/s resulting in 

impact energies of 43, 85, and 120 J. Only one sample of each type of sandwich panels was 

tested in the three initial velocity conditions. According to Cantwell and Morton [18], the 

impact test fixture should be designed to simulate the loading conditions to which a 

composite component is subject in operational service and then reproduce the failure modes 

and mechanisms likely to occur. The square sandwich specimen was clamped horizontally 

using two steel annular solids with an internal diameter of 135 mm, as seen in Fig. 1 (d). The 

top solid was removable while the bottom one was fixed on a rigid stand. Four bolts were 

tightened to a torque of 5 N∙m in order to provide a consistent clamping condition from test to 

test. Similar circular fixtures were used to evaluate the low velocity impact response of 

sandwich panels [2, 31] and composite laminates [32, 33] under drop weight impact tests. A 

protective cage, as shown in Fig. 1 (c), was placed around the mounting stand in order to 

prevent the projectile ricocheting and hitting the surrounding equipment during the impact 

tests. Two sides of the cage were made of ply wood while the other two sides were covered 

using transparent Perspex in order to observe and record the impact process using a high 



speed camera. The top side consisted of wire mesh and a rubber ‘rebound catcher’ (see Fig. 1 

(e)) which allowed the projectile to pass through without any loss of velocity but not rebound 

out of the protective cage and collide with the shaft of the gas gun. 

 

Fig. 1. Experimental setup: (a) instrumented projectile; (b) vertical gas gun; (c) protection 

cage; (d) clamping device; (e) rubber ‘rebound catcher’. 

The impact velocity of the projectile can be varied by adjusting the chamber pressure of air 

that operates the gas gun. The relationship between the impact velocity and the chamber 

pressure was calibrated before conducting the impact tests with the sandwich panels. A pair 

of Omron E32 fibre optic sensors were positioned 100 mm apart, along the path of flight of 

the projectile to measure the initial impact velocity. The velocity counters were not used 

(a) (b) (c) 

(d) (e) 



during the actual test in order to prevent accidental damage from the projectile. Fig. 2 shows 

the calibration results based on ten different pressures from 0.1 to 0.6 MPa, and there were 

three shots carried out for each pressure. It is clear that the relationship between the impact 

velocity and air pressure approximately follows a second-order polynomial. 

 

Fig. 2. Calibration of the relationship between impact velocity and chamber pressure. 

A high speed digital camera (Redlake MotionPro X3) was used to record the impact process 

at a sampling rate of 5000 fps. Fig. 3 shows the selected high speed video frames displaying 

the process of 43 J impact on PS foam core sandwich panel. A datum point was painted on 

the projectile for tracking using image analysis software. The velocities of projectile just 

before and after impact were determined from the high speed camera images. Since there was 

some scatter in the calibration plots shown in Fig. 2, the initial impact velocity measured 

from the high speed camera pictures was used to calculate the initial kinetic energy for each 

test. 
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The data recorded from accelerometer and high speed camera were used to plot the contact 

force–time and force–displacement curves. The energy absorbed by the different sandwich 

panels, calculated from the area under the force–displacement curves, was compared. After 

the test, the deformations of the front and back facesheets were measured by 3D scanning 

technique; the overall bending deflection and local indentation depth on the front and back 

faces were quantitatively compared. Finally, the tested panels were cut transversely through 

the impact centre and the cross sections were examined to investigate the internal damage to 

the sandwich panels. 

 

Fig. 3. Selected high-speed video frames showing the process of 43 J impact on PS foam core 

sandwich panel. 

 

datum 

point 

9.6 ms 8 ms 6.4 ms 4.8 ms 
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3. Results and discussion 

3.1. Sensor measurements 

 

Fig. 4. Contact force histories of 43 J impact on sandwich panels. 

The force history of every test was plotted to analyse how the contact force changed with 

time. The peak force and impact duration were determined as well. Fig. 4 shows the contact 

force histories of sandwich panels subjected to impact energy of 43 J. It can be seen that the 

force histories of all the sandwich panels irrespective of the core material show the same 

tendency, namely, the force history curve exhibiting an almost linear increase as the 

projectile contacts the panel and is followed by a prolonged contact with the core. There is a 

sudden drop in the force after it reaches the first peak value, which indicates a loss of 

stiffness caused by debonding or crack in the core. In some cases, the densification of core 

material causes the force to rise again after the initial drop. The sandwich panel is unloaded 

after the maximum force value is reached. It should be mentioned that there is oscillation 

existing in the force histories which is caused by the elastic wave propagation in the 
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sandwich panel and projectile. So the magnitudes of the measured peak forces are only 

accurate to a certain extent. 

 

 

Fig. 5. (a) Velocity histories and (b) displacement histories of 43 J impact on sandwich 

panels. 
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Fig. 5 shows the velocity and displacement histories of the projectile during the 43 J impact 

on the sandwich panels. The velocity history of projectile was calculated from integrating the 

acceleration data and using the initial impact velocity obtained from the high speed camera. 

Subsequently, the corresponding displacement history of the projectile was then calculated 

from integrating the velocity. 

 

Fig. 6. Peak force of sandwich panels subjected to different impact energies. 

The peak contact force of all the sandwich panels subjected to different impact energies are 

summarised in Fig. 6. It is clear that the peak force of sandwich panel with Balsa HD core is 

the highest among the five panels for all the three impact energies. When the impact energy is 

increased from 43 to 85 J, the peak forces dramatically increase for all the five panels. 

However, when the impact energy is further increased to 120 J, the peak force keeps almost 

constant for sandwich panels with Balsa LD, Balsa HD, and Cork cores. This suggests a 

critical peak force for particular sandwich configuration. It is interesting that the peak force 

drops from 11398 to 8439 N for PP honeycomb core panel, which may be caused by the non-
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uniformity of honeycomb structure at different locations. The PP honeycomb has a cell size 

of 8 mm; it is possible that the response to an impact at the centre of a cell will be slightly 

different from that at an intersection of walls. However, the influence of this detail was not 

examined. 

3.2. Force–displacement curves of sandwich panels 

The force and displacement histories are combined to obtain the force–displacement curves 

of the medium velocity impact on the sandwich panels. The force–displacement curves of 

projectile for 43, 85, and 120 J impact are shown in Fig. 7, Fig. 8, and Fig. 9 respectively. It 

is observed that all the force–displacement curves exhibit a quasi-linear behaviour for low 

values of displacement, followed by a non-linear regime. It is clear from the force–

displacement curves that the stiffness of sandwich panel, i.e. the slope of initial linear portion 

of the curve, is different among the panels with different core materials, implying that the 

behaviour of sandwich panel is dependent on the core properties even for low values of 

displacement. The stiffness of sandwich panels with Balsa LD, Balsa HD, and PP honeycomb 

cores are higher than that of Cork and PS foam core panels. The behaviour of sandwich panel 

after yield exhibits a core-dominant behaviour and follows regions of plastic plateau and 

densification of the core. It can be seen from the force–displacement curves that the sandwich 

panels with core material of Balsa LD, Balsa HD, Cork, and PS foam show three distinct 

regions: linear part, plateau and densification. The prolonged plateau region indicates the 

interaction of projectile through the core. 

At higher impact energy of 120 J, the core material is compressed and densified and the back 

facesheet begins to carry more load, a secondary peak value is observed. The different force–

displacement behaviour of PP honeycomb core sandwich panel is caused by the damage in 



honeycomb consists of the buckling of cell walls, while the damage in other cores is in the 

form of crushing and cracking. 

 

Fig. 7. Force–displacement curves of 43 J impact on sandwich panels. 

 

Fig. 8. Force–displacement curves of 85 J impact on sandwich panels. 
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Fig. 9. Force–displacement curves of 120 J impact on sandwich panels. 

3.3. Energy absorption 

The energy dissipated during the impact process can be calculated from the force–

displacement curve. The area enveloped by the closed curve is deemed as the absorbed 

energy of the sandwich panel under the specific impact and was found by numerical 

integration. If the impact energy is high enough, perforation will take place but this paper is 

limited to non-perforated impact events. The energy absorption is normalised by the total 

weight of the sandwich panel to take into account the different densities of the core materials. 

Fig. 10 summarises the specific energy absorption of sandwich panels during impact and it is 

clear that the absorbed energy increases with the impact energy for all the sandwich panels. 

This is in agreement with the observations on high velocity impact response of sandwich 

structures made of GFRP facesheets and polyurethane foams [24] and high velocity impact 

behaviour of metallic sandwich panels with aluminium foam core [16]. However, it was 

found that the energy absorption decreased as the impact load increased in the low velocity 
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impact tests on sandwich panels made of woven natural silk/epoxy composite facesheet and 

three different core materials [21], which is contrary to the trend observed here. The absorbed 

energy is a combination of energy for the plastic yielding and perforation of the facesheet as 

well as the crushing and failure processes in the core. The Balsa HD core sandwich panel 

absorbs the largest amount of specific energy among the five panels at impact energies of 43 

and 85 J, however, Balsa LD core specimen outperforms the higher density balsa at 120 J 

impact. The lightest sandwich panel with PS foam core absorbs the least energy of 74.3 J for 

an impact of 120 J and the performance is not improved even if we consider the specific 

energy value. 

 

Fig. 10. Specific energy absorption of sandwich panels subjected to different impact energies. 
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components on the front and back facesheets, as shown in Fig. 11 (b) and (c) respectively, are 

measured from the 3D scan of the tested sandwich samples. The total deformation, global 

bending deflection, and local indentation all have an increasing trend with impact energy on 

both of the faces. On the front facesheet, local indentation is the main component for 

sandwich panels with Balsa LD, Balsa HD, and PP honeycomb cores which have higher 

Young’s moduli compared to Cork and PS foam. The sandwich panel with the PP 

honeycomb core has the least overall bending deformations, which could be attributed to the 

PP honeycomb having the highest Young’s modulus of all the cores; however, its local 

deformation, especially on the front surface is quite high, indicating considerable core 

damage. For the sandwich panels with Cork core, except at the lowest impact energy, the 

local indentation of the top surface is lower than its global bending deformation. The top face 

local deformation is the least (and the bending deformation the highest) for sandwich panel 

with the PS foam core. It is also noteworthy that as the input energy increases from 43 to 120 

J, the increase in local deformation of the top face of the PS core panel is quite small from 

2.15 to 2.33 mm (unlike the other sandwich panels), while the global bending deformation 

increases by 150%. The relative magnitudes of the local indentation and global bending 

deformations of the back face of the PS foam core sandwich panel are similar to those of the 

front facesheet. On the other hand, in the majority of the other samples, especially the 

sandwich panel with the Balsa HD core, the deformation is more locally defined, both on the 

front as well as the rear facesheets. For Balsa LD core sandwich panel subjected to 120 J 

impact, the local indentation accounts for 40% of the total deformation on the back face, this 

is because the back facesheet was ruptured (see Section 3.5). 
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Fig. 11. (a) Schematic diagram of the deformation of sandwich panel, (b) total deformation 

on the front facesheet, and (c) total deformation on the back facesheet. 

The depth map of total deformation for both the front and back facesheets of all the sandwich 

panels subjected to impact of 120 J is given in Fig. 12. It is found that the sandwich panels 

with Balsa LD, Balsa HD, and PP honeycomb cores which have high stiffness show circular 

depth map on the front facesheet. However, the depth map of Cork and PS foam core 

sandwich panels exhibit a rhombus shape on the front facesheet, which suggests that the 

sandwich panel undergoes large deformation that the clamping force was different between 

corners and sides of the sample. This has a huge effect on the distortion of the panels with 

low stiffness. In hindsight, this clamp was not ideal for medium velocity impact as the square 

samples of 150 mm × 150 mm were clamped in circular ring with internal diameter of 135 

mm. Also, it is clear that the sandwich panel with PP honeycomb core has the smallest 

deformation both on the front and back facesheets. It is even almost undeformed in the area 

outside the impact location on both the front and back facesheets. 

Fig. 13 shows the depth map of deformation on the front facesheet for sandwich panels with 

Balsa HD and PS foam cores at the different energies of impact. The two core materials were 

chosen to illustrate the two different behaviours of highly local and global deformation of the 

sandwich panel, respectively. It can be seen that the deformations increase as the impact 

energy increases for both types of sandwich panels. 
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Fig. 12. Depth map of deformation on both the front and back facesheets of sandwich panels with different cores subjected to 120 J impact (unit: mm). 
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Fig. 13. Depth map of deformation on the front facesheet of sandwich panels with 

Balsa HD and PS foam cores subjected to different impact energies (unit: mm). 

3.5. Post-mortem damage analysis 

The tested sandwich panels were cut carefully through the impact point, and the cross 

section views of the panels after 120 J impact are presented in Fig. 14. It can be seen 

that the impact induced damage modes include facesheet rupture, core crushing, and 

debonding between facesheet and core. Table 2 summarises the damage modes 

induced by the 120 J impact on sandwich panels with different cores. ‘Y’ means the 

corresponding damage mode occurs in the specimen, while ‘N’ denotes the absence of 

visible signs of that damage mode. It is to be noted that while the front facesheet has 

ruptured in every other case, for the sandwich panel with the PS foam core, neither the 

front nor the rear facesheet has ruptured, there is no debonding of the facesheets and 

the core crushing, if any is minimal. It is clear that local damage is minimal for 



sandwich panel with PS foam core even under impacts of 120 J, which leads to the 

inference that the PS core would offer the most resistance against projectile 

penetration, even at higher energies. 

The front facesheets of all the sandwich panels except the PS foam core sandwich 

were perforated after 120 J impact. Kolopp et al. [4] found the front facesheet choice 

was very important for the target penetration resistance, and Abrate [34] also noted 

that the penetration resistance was strongly influenced by the facesheets. The 

facesheets used here are identical for all the sandwich panels, but a difference in 

penetration resistance is observed. This shows that the core material plays an 

important role in impact resistance and that other factors such as overall rigidity of the 

sandwich are also important. The sandwich panels with higher overall rigidity, like 

Balsa HD and PP honeycomb core specimens, have bigger local indentation but 

smaller overall bending deflection. The sandwich panels with lower rigidity present 

the opposite case. Balsa LD core panel is the only sandwich that shows the beginning 

of rupture in the back facesheet. The aluminium facesheets generally fail through plug 

initiation and the formation of petals, which is a typical damage mode of ductile plates 

[35]. The lower elastic modulus and the greater foundational support provided by the 

PS foam core has facilitated energy absorption mainly through global bending of the 

sandwich panel without local rupture of the facesheet. While such a magnitude of 

overall bending may not be desirable in all cases, it would appear that if resistance to 

local penetration is the key objective, then the PS foam would be the material of 

choice among all the different cores studied here. This study focuses on the impact 

without complete perforation of the sandwich panels, so the effect of core material on 

the perforation threshold cannot be established here. 



 

Fig. 14. Cross section views of sandwich panels after 120 J impact. 
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Table 2. Summary of damage mechanisms induced by 120 J impact on sandwich 

panels. 

Damage 

Mechanisms 

Facesheet Rupture 
Core 

Crushing 

Debonding 

Front Back Front Back 

Balsa LD Y Y Y Y Y 

Balsa HD Y N Y Y Y 

Cork Y N Y N Y 

PP Honeycomb Y N Y N N 

PS Foam N N N N N 

The deformation and damage in the core material is also visible in the Fig. 14. The 

occurrence of core crushing in the sandwich panels at a point immediately beneath the 

impact is consistent with that of front facesheet rupture, i.e., the impactor is in direct 

contact with the core after the rupture of the front facesheet. Interface debonding 

between the facesheet and core material was observed in the sandwich panels with 

Balsa LD, Balsa HD, and Cork cores. Additionally, Balsa LD core was even broken 

into pieces after 120 J impact. This suggests that there is radial crack propagation 

from the impact point to the periphery observed in the Balsa cores of both densities 

due to the brittleness of the balsa wood. Fig. 15 shows the Balsa HD core material 

after 120 J impact. A splintering failure at the point of impact followed by a radial 

cracking is evident for the wood core. The broken pieces of Balsa LD core is due to 

the combination of conical and radial cracks which is typical of brittle material failure. 



 

Fig. 15. Radial crack propagation from the impact point to the vicinity of Balsa HD 

core subjected to 120 J impact. 

It is also noted that the rigid core materials will constrain the out-of-plane deflection 

of the front facesheet and confine it to high local indentation which lead to front 

facesheet rupture and core crushing at the impact point, while soft core materials like 

PS foam allow the sandwich to bend globally over a larger area. It is observed that the 

residual deformation of the PS foam core specimen reaches the plate boundary, and 

the foam core becomes thinner after impact. On the contrary, the PP honeycomb core 

specimen is almost not deformed in the regions outside of the impact location. 

From the Figs. 10 and 14, it is possible to correlate the severity of damage to the 

energy absorption, i.e., the sandwich panel which suffers more damage absorbs more 

energy during the impact. Buitrago et al. [36] identified that the facesheets were the 

main factor responsible for the energy absorption at high velocity impact, noting that 

the front facesheet and the back facesheet accounted for 46% and 41% of the 

absorbed energy respectively, while the core was responsible for merely 13% at 287 



m/s impact in their study. This is true for sandwich samples with rigid cores that 

exhibit mainly local deflection. We can observe that facesheet rupture is associated 

with significant energy absorption in the sandwich panels with front facesheet 

perforation. However, for medium velocity impacts in the case of flexible core 

sandwich panels, the energy was mainly absorbed by the large plastic deformation of 

the facesheets that extended from the impact location to the boundary. Therefore it is 

clear from the results of this study that even when the core is not the main energy 

absorbing component, it greatly influences the energy absorption, damage 

mechanisms, and penetration resistance of the sandwich panel for medium velocity 

impacts. 

It is also clear from Fig. 14 that the sandwich panel with PS foam core has the least 

overall material damage, which indicates that the sandwich panel with the PS foam 

core will be able to absorb higher levels of energy (than we have tested) before it has 

penetration and starts failing. As can be seen from Fig. 6, the peak forces for 

corresponding energy levels are lower in the sandwich panel with PS foam than the 

other panels, which means that the local strains and stresses will be lower; hence the 

margin of safety for material failure higher. In the case of the other panels, if the 

impact energy is raised above 120 J soon they will suffer complete penetration of both 

front and rear surfaces and hence the energy absorbed will plateau; whereas, in the 

case of the sandwich panel with PS foam, complete penetration and plateauing will 

occur only at a much higher impact energy. Hence it can be concluded that the 

sandwich panel with the PS foam core will have the highest energy absorption before 

failure of all the panels tested. This may be attributed to (a) the lower overall bending 

stiffness of the panel with PS foam core, and (b) the fact that the PS foam appears to 

provide much greater foundational elastic support to the sandwich skins, allowing the 



deformation to spread throughout the entire panel much more evenly and allowing the 

skins to absorb a much greater fraction of energy through overall bending. So it 

appears that the sandwich panel with the PS foam would be the most suitable among 

those tested for applications in which we want resistance to penetration or higher 

energy absorption before failure. 

It can be seen from Fig. 10 that the increase in energy absorbed per unit weight is the 

least for the PS foam core sandwich, increasing less than 100% (from 296 to 564 J/kg) 

when the input impact energy nearly triples from 43 to 120 J. The peak of the force-

displacement curves indicate the point at which either projectile loses contact with the 

target (rebouncing) or the target suffers damage sufficient to reduce its resistance to 

impact. Thus the energy denoted by the area of the force-displacement curve up to the 

peak point is a key indicator of the energy absorption characteristic of panel before 

begins to fail. Fig. 16 shows the fraction of energy absorbed by each panel (strain 

energy up to the peak of the force-displacement curve divided by input energy). It can 

be seen that in all cases, except those of the panels with the Balsa HD and the PS 

foam cores, there is a significant drop at the impact of 120 J, indicating considerable 

rupture and failure of the panel and reduction in its load carrying capacity. In the case 

of sandwich panel with Balsa HD core, the energy fraction drops by 6% and 16% as 

the input energy increases from 43 to 85 and 120 J. In the case of the panel with PS 

foam core, reduction in energy fraction is under 10% when the input energy is 

increased to 120 J, indicating that it is quite capable of withstanding higher energy 

impacts. This is also supported by the absence of any significant damage observed in 

the post-mortem analysis. 



 

Fig. 16. Fraction of energy absorbed up to peak force. 

 

4. Conclusions 

This paper experimentally investigates the influence of core material on the response 

of sandwich structures subjected to medium velocity impact. Impact tests were 

conducted on sandwich panels with five different core materials using an 

instrumented gas gun. The sandwich panels were compared in terms of their force-

displacement curves, specific energy absorbed and damage mechanisms. The core 

material is found to be very important in the target deformation, energy absorption, 

damage mechanisms, and penetration resistance of the sandwich panel. Based on 

actual application requirements, the performance can be optimized with the proper 

choice of core material. If the primary design parameter is energy absorption and 

penetration resistance, Polystyrene foam is a promising core material but this requires 

further investigation. Polypropylene honeycomb is the optimal choice for core if 
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minimal back face deformation is chosen as the performance criterion.  The impact 

test results and the damage analysis of the sandwich panels provide the designer with 

some insight about the sandwich panels with different core materials. A combination 

of the experimental data presented in this paper and simulation results of the sandwich 

panels using finite element models will be an invaluable tool to the designer in 

choosing the appropriate material for their application. 
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