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Science background

Transit spectroscopy of exoplanets

There have been a slew of planet detections outside our own solar system over the past two
decades and several characterisation methods can be used to determine their chemical com-
positions. One of them is transit spectroscopy. With this technique, astronomers measure
the star light passing through an exoplanet’s atmosphere while it is transiting in front of
its host star. Imprinted on this light are the absorption signatures of different materials -
atoms and molecules in the gas phase, or solid or liquid aerosols - in the transiting planet’s
atmosphere. Using a spectrograph the flux is recorded as a function of wavelength, allow-
ing scientists to construct absorption/transmission spectra, with the goal of identifying the
chemical composition of the atmosphere.
There are many different chemical components that transit spectroscopy can reveal in an
exoplanet, but a majority of the exoplanets studied via transmission spectroscopy are on
close-in orbits around their stars lasting only several days, most of them giant Jupiter- or
Neptune-sized worlds. For these giant, close-in exoplanets, the most dominant source of
absorption will be from water vapour, which is expected to be well-mixed throughout their
atmosphere. H2O has strong absorption in the near-infrared (IR) with broad peaks at 0.9, 1.4,
1.9, and 2.7 µm. However, these absorption features cannot be measured from the ground
as the Earth’s atmosphere, filled with water vapour, gets in the way. To measure H2O in the
atmospheres of exoplanets, astronomers use the Hubble Space Telescope’s Wide Field Camera
3 (HST WFC3) infrared capabilities to detect the absorption signatures of H2O at 0.9 µm
with the G102 grism, and at 1.4 µm with the G141 grism (e.g. Kreidberg et al., 2015; Sing
et al., 2016; Spake et al., 2018; Wakeford et al., 2018, 2017).

Calibration of instrument systematics with marginalisation

While all telescopes aim at recording the light of distant worlds as accurately as possible,
every instrument will have its own signature that it superimposes on the collected signal.
These effects that contaminate our data are called “instrument systematics” and need to be
calibrated out before an observation can be interpreted truthfully. All the different systematics
that influence the result recorded by an instrument are combined into a systematic instrument
model to be used during the calibration. These models are not always obvious and different
authors often suggest differing systematic instrument models being applied to data from the
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same instrument, often favouring models that work particularly well for any given data set.
This makes it hard to compare data sets to each other, yielding moderately different results
for the parameters of a transiting planet when a different systematic model was applied to the
data.
The solution that was applied to WFC3 data in Wakeford, Sing, Evans, Deming, & Mandell
(2016) performs a marginalisation across a grid of systematic models that take different
corrections across an exoplanet transit data set into account. Following the method proposed
by Gibson (2014), a Levenberg-Marquardt least-squares minimisation is performed across
all systematic models, which yields a set of fitted transit parameters for each systematic
model. We then use the resulting Akaike Information Criterion (AIC) to calculate each model’s
evidence (marginal likelihood) and normalised weight. These weights are then used to calculate
the marginalised fit parameters, leading to results that will not depend as heavily on the
individual choice of systematic model. Finally, performing this for each lightcurve constructed
at each wavelength from the measured spectrum results in the measured transmission spectrum
of the exoplanet.

The ExoTiC-ISM package

Functionality

ExoTiC-ISM (Exoplanet Timeseries Characterisation - Instrument Systematic Marginalisation)
is an open-source Python package that computes the transit depth from a timeseries lightcurve,
while sampling a grid of pseudo-stochastic models to account for instrument based systematics
that may impact the measurement, following the method proposed by Gibson (2014) and
implemented by Wakeford et al. (2016). While there are a number of Python solutions
to create and fit transiting planet light curves, ExoTiC-ISM is a lightcurve fitting tool that
focuses particularly on the statistical method of marginalisation. It allows for a transparent
method of data analysis of systematics impacting a measurement. While other methods,
such as Gaussian processes (GP), can account for the likelyhood of systematics impacting
your measurement, these methods can typically not easily determine which systematics are
the most important, and which combination of systematics is specifically affecting your data
set. ExoTiC-ISM allows you to evaluate a grid of instrument systematic models to obtain the
needed information on the dominant systematics enabling you to design the next observation to
be more efficient and precise. As the authors of the original method paper state (Wakeford et
al., 2016): “The use of marginalisation allows for transparent interpretation and understanding
of the instrument and the impact of each systematic [model] evaluated statistically for each
data set, expanding the ability to make true and comprehensive comparisons between exoplanet
atmospheres.”
The currently implemented instrument systematic grid is composed of a series of 49 polyno-
mial functions that are specifically designed to account for systematics associated with the
detectors on HST WFC3 (Wakeford et al., 2016). However, this can be adapted to other in-
struments. The package performs the Levenberg-Marquardt least-squares minimisation across
all models with the sherpa package (Burke et al., 2019; Doe et al., 2007; Freeman, Doe,
& Siemiginowska, 2001) for modeling and fitting data, and then calculates the AIC and nor-
malised weight to marginalise over the fit parameters (e.g. transit depth rl, inclination i, a/R∗,
center of transit time) using each systematic model. This method is different from evaluating
each systematic model independently and selecting the “best” one purely by minimising the
scatter of its residuals as that would not include a penalisation for increased model complexity
nor information from similarly likely systematic corrections.
The original code was written in IDL, which was used to publish marginalised transit parameters
for five different exoplanets (Wakeford et al., 2016) observed in the IR with the G141 grism on
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HST’s WFC3. The ExoTiC-ISM package described in this paper implements a marginalisation
for that same grism and extends its functionality to the G102 grism, which uses the same grid
of systematic models (see results by Wakeford et al., 2017, 2018).

Dependencies and usage

ExoTiC-ISM is written in Python with support for Python 3.6 and 3.7 on MacOS and Linux.
It makes use of the packages numpy (Oliphant, 2006; van der Walt, Colbert, & Varoquaux,
2011), astropy (Astropy Collaboration et al., 2013; Price-Whelan et al., 2018), pandas
(McKinney, 2010; Reback et al., 2019), matplotlib (Caswell et al., 2019; Hunter, 2007),
sherpa (Burke et al., 2019; Doe et al., 2007; Freeman et al., 2001), as well as some custom
functions, like an implementation of the transit function by Mandel & Agol (2002). It applies
a 4-parameter limb darkening law as outlined in Claret (2000) and Sing (2010), using either
the 1D Kurucz stellar models or the 3D stellar atmosphere models by Magic, Chiavassa, Collet,
& Asplund (2015).
The required inputs for the analysis are two text files that contain the uncorrected lightcurve
of the observed object, and a wavelength array. Input parameters are rendered from a confi
g.ini file and we provide an environment.yml file to build a conda environment to run the
package in. Development in Python and hosting the repository on GitHub will facilitate the
usage of the package by researchers, as well as further functional development; an introductory
tutorial is provided in the form of a Jupyter Notebook.

Outlook

While its current capabilities are limited to WFC3 data taken with the G141 and G102 grism,
the package’s functionality will be extended to the UVIS G280 grism (Wakeford et al., 2020)
and the G430L and G750L gratings of the Space Telescope Imaging Spectrograph (STIS) on
HST. This will lay the groundwork for the envisioned future extension to implement systematic
grids for select instruments on the James Webb Space Telescope (JWST) and obtain robust
transit spectra for JWST data.
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