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Abstract

Bioinformatics of high throughput omics data (e.g. microarrays and proteomics)
has been plagued by uncountable issues with reproducibility at the start of the
century. Concerns have motivated international initiatives such as the FDA’s led
MAQC Consortium, addressing reproducibility of predictive biomarkers by means
of appropriate Data Analysis Plans (DAPs). For instance, repreated cross-validation
is a standard procedure meant at mitigating the risk that information from held-out
validation data may be used during model selection. We prove here that, many
years later, Data Leakage can still be a non-negligible overfitting source in deep
learning models for digital pathology. In particular, we evaluate the impact of
(i) the presence of multiple images for each subject in histology collections; (ii)
the systematic adoption of training over collection of subregions (i.e. “tiles” or
“patches”) extracted for the same subject. We verify that accuracy scores may be
inflated up to 41%, even if a well-designed 10× 5 iterated cross-validation DAP
is applied, unless all images from the same subject are kept together either in the
internal training or validation splits. Results are replicated for 4 classification tasks
in digital pathology on 3 datasets, for a total of 373 subjects, and 543 total slides
(around 27, 000 tiles). Impact of applying transfer learning strategies with models
pre-trained on general-purpose or digital pathology datasets is also discussed.

1 Introduction

The community-wide research effort of the MAQC-II project demonstrated that a well-designed Data
Analysis Plan (DAP) is mandatory to avoid selection bias flaws in the development of models in
f � n conditions, where the f features can be highly correlated [1]. Ioannidis and coll. [2] found
that almost 90% of papers in a leading journal in genetics were not repeatable due to methodological
or clerical errors. High impact on reproducibility has been linked with inaccuracies in managing
batch effects [3], or data normalization derived on development and validation data together, as used
in proteomics [4]. In general, data leakage is a form of selection bias that happens when information
from outside the training dataset is used during model development or selection. For instance, one of
the preclinical sub-datasets of the MAQC-II study had microarray data from mice triplets for each
experimental condition. It was found that lab mice can be expected to be almost identical in their
response; in these cases, the repeated cross-validation DAP must keep replicates together either in
the training or in internal validation batches [1]. The goal of this study is to provide evidence that
similar issues are still lurking, ready to emerge in the everyday practice of machine learning for
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Dataset Tot. Subjects Tot. WSIs WSIs per Subject Tot. Tiles Tiles per Subject
Min Max Med Min Max Med

GTEx [18] 82 252 1 7 4 23, 266 16 782 246.5
HF [19] 209 209 1 2, 299 11

BreaKHis [5] 82 82 1 2, 013 9 62 21

Table 1: Dataset statistics

digital pathology. BreaKHis [5] - one of the most popular histology dataset for breast cancer - has
been used in more than 30 scientific papers to date as a benchmark for classification algorithms,
and data analysis strategies targeting binary or multi-class problems, with results spanning a broad
range of performances. Notably, in a non negligible number of studies, overfitting effects due to data
leakage are affecting the reported outcomes [6, 7, 8, 9, 10, 11].

Typical deep learning pipelines work on subsamples of the Whole Slide Images (WSIs) to operate on
smaller memory chunks on GPUs (e.g 512× 512 patches extracted from a 83, 663× 64, 804 WSI).
Further, a significant upscale of the amount of training data available for the deep learning pipeline
is obtained by adding a data augmentation step, usually by applying random rotations or flipping.
Besides the presence of replicates due to the augmentation process, the situation is anyway complex
at the origin because often WSI datasets include images of multiple slices or subregions of the same
tissue portion. In summary, a population of hundreds of subimages from the same pathology sample
may enter in the WSI analysis [12] [13], thus opening the door to data leakage. Protocols for data
partitioning (e.g. a repeated cross-validation DAP) are indeed not immunized against replicates and
they should take into account the provenance of samples to avoid any bias induced by overfitting
slides or patches related to the same subjects [14]. Such bias will inflate the accuracy estimates on
the development data, leading to disappointment on novel held-out data.

In this study, we demonstrate the importance of subject-wise split procedures with a group of
experiments on digital pathology images. All experiments are based on DAPPER [15], an environment
for predictive digital pathology composed by a core deep learning network ("backbone") as feature
encoder and alternative (task-related) classification models, e.g. Random Forest or Fully-Connected
Networks (see Fig. 1). We test the impact of different train-test splitting strategies considering multiple
deep learning backbone architectures, i.e. DenseNet [16] and ResNet models [17], fine-tuned to the
digital pathology domain using transfer learning (see Sec. 3 for more details).

2 Dataset

Three publicly available image classification datasets for digital pathology are considered, namely
GTEx [18], Heart Failure (HF) [19], and BreakHis [5]. Statistics of the datasets are reported in Table 1.

GTEx: The dataset comprises a total of 7, 051 H&E stained WSIs (20× native magnifica-
tion), gathered from a cohort of 449 donors. In this paper, we consider a subset of 252 WSI randomly
selected from 82 subjects, further organised according to their corresponding histological types. The
selected 11 tissue types (classes) are 1) adrenal gland, 2) bladder, 3) breast, 4) liver, 5) lung, 6)
ovary, 7) pancreas, 8) prostate, 9) testis, 10) thyroid, 11) uterus. These types have been chosen as
they all share a comparable number of slides in the original dataset [18]. A total of 23, 266 random
tiles of size 512× 512 have been extracted from the WSIs, each available at different magnification
levels (i.e. 20×, 10×, 5×). With no loss of generality, in this study we use tiles at 5× magnification.

HF: A collection of 209 WSIs of the left ventricular tissue, each corresponding to a single subject.
The learning setting is to classify slides of heart failure (N=94) from those labelled as non-heart
failure (N=115). In particular, the first class includes slides categorised as ischemic cardiomyopathy
(N=51), idiopathic dilated cardiomyopathy (N=41), and undocumented (N=2). On the other hand,
subjects with no heart failure are also grouped in normal cardiovascular function (N=41), non-HF,
no other pathology (N=72), non-HF, other tissue pathology (N=2). The WSIs, originally acquired at
20× magnification, have been downsampled at 5× magnification, and 11 non-overlapping images of
regions of interest randomly extracted [19]. The entire collection of 2, 299 tiles is publicly available
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on the Image Data Resource repository 1.

BreaKHis: An histopathological dataset composed by 7, 909 tiles of malignant or benign
breast tumours, collected from a cohort of 82 patients at different magnification factors (40×, 100×,
200×, 400×) [5]. For comparability with state-of-the-art, only tiles at 200× magnification are used
in our experiments. The dataset currently contains four histological distinct types of benign breast
tumours, and four malignant tumours. In details: Adenosis (N=444); Fibroadenoma (N=1, 014);
Tubular Adenoma (N=453); Phyllodes Tumor (N=569); Ductal Carcinoma (N=3, 451), Lobular
Carcinoma (N=626); Mucinous Carcinoma (N=792); Papillary Carcinoma (N=560). In this study,
we use this dataset for two classification tasks: (a) binary classification of benign and malignant
tumour tissues (BreaKHis-2); (b) classification of the 8 distinct tumour subtypes (BreaKHis-8).

3 Method

The experimental environment defined in this paper is organised into three main steps: (A) WSI
processing and tiles generation; (B) the feature extraction protocol; (C) the DAP for machine
learning models. Fig. 1 represents the three steps in details. This pipeline leverages on the DAPPER
environment [15], which has been further extended by (i) integrating specialised train-test splitting
protocols, i.e. Tile-Wise and Patient-Wise; (ii) updating the feature extractor component with new
backbone network architectures; (iii) considering two different transfer learning strategies as for
feature embeddings.

(A) Tiles generation A data preprocessing pipeline is used to prepare the WSIs. First the tissue
region of interest is automatically identified in each WSI (i.e. the box “Detect Tissue Region” in
Fig. 1); then at most 100 tiles of size 512× 512 pixel are extracted from each slide. Tiles in which the
area of extracted tissue accounts for less than the 85% of the whole patch are rejected. This process
combines binarization method, also referred to as Otsu-threshold [20], with dilation and hole-filling.
At the end of this step, the dataset of tiles is generated.

(B) Feature extraction The dataset resulting from the previous step is then used as input to train
a backbone deep neural network for feature extraction. Therefore, training set and test set are
then generated, considering 80% and 20% split ratio for the two sets, respectively. In this study,
two data partitioning strategies are considered: in the Tile-Wise (TW) protocol, tiles are randomly
split between training and test datasets, with no consideration of the original WSI. On the other
hand, the Patient-Wise (PW) protocol takes into consideration the patient from which the tiles are
extracted from, and splits tiles in training and test sets, accordingly. Fig. 2 (B) depicts an example
of training/test sets as resulted by the two splitting protocols. Both the two protocols are combined
with stratification of samples over corresponding classes. Any class imbalance is accounted for by
weighting the error on generated predictions.

The goal of the backbone network is to learn a representation of features for tiles (i.e. feature
embedding) that will be used as input for machine learning models within a DAP. In this study, two
different backbone architectures are considered, namely DenseNet-201 [16] and ResNet-152 [17].
Similar to [13] and [15], we start from off-the-shelf versions of these models pre-trained on ImageNet,
and then we fine-tune them to the digital pathology domain using transfer learning. We train the whole
network for 50 epochs with a learning rate η = 1e−5. The Adam algorithm [21] is used as optimizer,
in combination with the categorical cross-entropy loss. The β1 and β2 parameters of the optimizer
are respectively set to 0.9 and 0.999, with no weight decay as suggested in the original paper. The
fine-tuning is done using the training set exclusively. We use data augmentation, i.e. random rotation
and flipping of input tiles, to reduce the risk of overfitting. Furthermore, we investigate the impact
of applying transfer learning using backbone models pre-trained on the combination of ImageNet
(general purpose) and the GTEx (domain specific) datasets.

(C) Data Analysis Plan (DAP) The last step of the pipeline comprises the application of the DAP
for machine learning models. We adopted a 10×5-fold CV schema [1]. The input datasets are the two
separate training and test sets, as resulted from the 80− 20 train-test splitting protocol (see Feature
Extraction). The test set is kept completely unseen to the model, and only used for the final model

1idr.openmicroscopy.org/
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Figure 1: Experimental Environment: (A) WSI preprocessing and tiles generation. (B) Feature
extraction protocol. (C) The Data Analysis Plan for machine learning models.

evaluation. The training set further undergoes a 5-fold CV iterated 10 times, resulting in 50 separated
internal validation sets. These validation sets are generated adopting the same protocols used in the
previous train-test splitting, i.e. Tile-Wise or Patient-Wise. The overall performance of the model is
evaluated across all the iterations, in terms of average Matthews Correlation Coefficient (MCC) and
Accuracy (ACC) with 95% Studentized bootstrap confidence intervals (CI); and then on the test set.
As for multi-class problems, we consider the extension of the MCC metric as defined in [22].

We compared the performance of two machine learning models, i.e. Random Forest (RF) and Fully-
Connected Head (FCH), considering two sets of input features: (FE1) Feature Embedding generated
by a backbone model fine-tuned from ImageNet (transfer learning); (FE2) Feature Embedding
generated by a backbone model fine-tuned from ImageNet and GTEx (two-step transfer learning).

As an additional strategy to corroborate the validity of predictions, the DAP adopts a random labels
schema (RLab). In this setting, a number of artificially generated labels are provided as reference
ground truth for machine learning models. If the adopted data partitioning protocol is immune by any
source of data leakage, no signal should be learnt by models, resulting in an average MCC score near
zero (MCC ≈ 0). To emphasise evidence of data leakage derived by the two splitting protocols, the
RLab validation is applied: the labels for all the tiles of a single patient are changed consistently, thus
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Figure 2: Random Labels experimental settings. A) tiles labels are randomly shuffled patient-wise.
B) The train/test split is then performed either Patient-Wise or Tile-Wise.

all these tiles share the same random labels (Fig. 2-A); the Patient-Wise (Fig. 2-B1) and the Tile-Wise
(Fig. 2-B2) protocols are alternatively used within the DAP.

4 Results and Discussion

Results obtained using a ResNet-152 backbone model pre-trained on ImageNet (i.e. FE1) are
reported in Table 2 and Table 3, considering the Tile-Wise and the Patient-Wise partitioning protocols,
respectively. The average cross validation MCCv and ACCv with 95% CI are reported, along with
results on the test set (i.e. MCCt, and ACCt). Corresponding state of the art results (i.e. Others)
are also reported for comparison, whenever available. in this regard, it is worth mentioning that
experimental protocols used in related work are all different, and they are not consistent even in
the case of the same dataset (i.e. BreakHis). Therefore, we report here for completeness a short
description of these settings for state of the art papers we consider in the comparisons.

Nirschl et al. [19] apply a patient-wise 50-50 train-test split on the HR dataset. Data augmentation
is applied in training. Augmentation operations include random cropping, rotation, mirroring, stain
color augmentation. Experiments are repeated 3 times.

As for the BreaKHis dataset, Jiang et al. [9] adopt a Tile-Wise partitioning protocol. In particular,
60-40 train-test split is used for BreaKHis-2, whilst 70-30 split is used for BreaKHis-8. Experiments
are repeated 3 times, with data augmentation in the training process (i.e. flipping, shifting). Authors
in [7], and [8] adopt a similar experimental protocol, but no data augmentation is used, and the
average of 5 trials are reported. Finally, Motlagh et al. [10] use a Tile-Wise 90-10 train-test split with
data augmentation (i.e. resizing, rotations, cropping and flipping); whereas Alom et al. [23] use a
70-30 Patient-Wise partitioning protocol, and data augmentation (i.e. rotation, shifting, flipping).

As expected, estimates are more favourable for the TW protocol with respect to the PW one, consis-
tently for all the datasets (both in validation and in test). Moreover, the inflation of the Tile-Wise
estimates is amplified in the multi-class setting (e.g. see BreaKHis-2 vs BreaKHis-8). Notably, these
results are comparable with those in the literature, suggesting the evidence of a data leakage for those
adopting the Tile-Wise splitting strategy. Results on GTEx do not suggest significant differences
using the two protocols; however they are in a very high range for both MCC and ACC metrics.

Analogous results (not reported here) were obtained using the DenseNet-201 backbone model, further
confirming the generality of the derived conclusions. However, this model has almost the double
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number of parameters2, and so a higher demand of computation. Therefore diagnostic experiments
and transfer learning were performed only using the ResNet-152.

Table 2: DAP results for each classifier head, using the Tile-Wise partitioning protocol, and the FE1

feature embedding using the ResNet-152 backbone model. The average cross validation MCCv and
ACCv with 95% CI are reported, along with results on the test set (i.e. MCCt, and ACCt)

Dataset FCH RF FCH RF Others
MCCv MCCt MCCv MCCt ACCv ACCt ACCv ACCt ACCt

GTEx 0.999 0.998 0.999 0.997 0.999 0.999 0.999 0.998 -(0.999, 0.999) (0.999, 0.999) (0.999, 0.999) (0.999, 0.999)

HF 0.959 0.956 0.956 0.960 0.980 0.978 0.978 0.980 -(0.956, 0.963) (0.953, 0.959) (0.978, 0.982) (0.977, 0.980)

BreaKHis-2 0.989 0.988 0.990 0.994 0.995 0.994 0.996 0.997 0.993 [9](0.987, 0.991) (0.988, 0.992) (0.994, 0.996) (0.995, 0.997)

BreaKHis-8 0.945 0.922 0.929 0.921 0.959 0.940 0.946 0.940 0.985 [10](0.942, 0.949) (0.925, 0.932) (0.956, 0.962) (0.943, 0.949)

Table 3: DAP results for each classifier head, using the Patient-Wise partitioning protocol, and the
FE1 feature embedding using the ResNet-152 backbone model. The average cross validation MCCv

and ACCv with 95% CI are reported, along with results on the test set (i.e. MCCt, and ACCt)

Dataset FCH RF FCH RF Others
MCCv MCCt MCCv MCCt ACCv ACCt ACCv ACCt ACCt

GTEx 0.998 0.998 0.997 0.997 0.998 0.998 0.997 0.997 -(0.998, 0.998) (0.997, 0.997) (0.998, 0.998) (0.997, 0.998)

HF 0.852 0.856 0.848 0.833 0.927 0.915 0.924 0.915 0.932 [19](0.847, 0.858) (0.836, 0.860) (0.924, 0.929) (0.918, 0.930)

BreaKHis-2 0.695 0.801 0.709 0.863 0.870 0.924 0.876 0.946 0.973 [23](0.665, 0.724) (0.671, 0.746) (0.856, 0.882) (0.859, 0.892)

BreaKHis-8 0.561 0.541 0.594 0.471 0.679 0.644 0.701 0.600 0.973 [23](0.529, 0.594) (0.562, 0.631) (0.655, 0.703) (0.681, 0.732)

4.1 Random Labels

Table 4: Random Labels (RLab) results using ResNet-152 backbone model, and Tile-Wise (TW)
and Patient-Wise (PW) train-test split protocols. The average MCCRL and ACCRL with 95% CI are
reported.

Dataset MCCRL ACCRL
TW PW TW PW

HF 0.107 0.004 0.553 0.502
(0.078, 0.143) (-0.042, 0.048) (0.534, 0.570) (0.474, 0.530)

BreaKHis-2 0.354 -0.065 0.637 0.560
(0.319, 0.392) (-0.131, 0.001) (0.613, 0.662) (0.506, 0.626)

BreaKHis-8 0.234 0.013 0.318 0.097
(0.173, 0.341) (-0.042, 0.065) (0.215, 0.506) (0.056, 0.143)

A caveat emptor concern comes from the experiments with the RLab validation schema, in which
results are consistently over the expected MCC ≈ 0 using the Tile-Wise partitioning. For instance, as
for BreaKHis-2 and FCH, MCCRL= 0.354 (0.319, 0.392) in the Tile-Wise setting, to be compared
with MCCRL= −0.065 (−0.131, 0.001) using the Patient-Wise protocol. Full MCCRL results
considering 5 trials of the RLab test are reported in Table 4. Corresponding ACCRL values are also
included for completeness. Fig.3 shows the boxplot of the distributions of MCCRL scores for all
the datasets, and the two compared partitioning protocols. All the tests using the Patient-Wise split
perform as expected, with median values near 0, whereas results of the Tile-Wise case exhibit a high
variability. The worst case is for the BreaKHis-2 dataset in which evidence of some signal learnt by
the model are reported, and so consequently of a data leakage.

4.2 Transfer Learning

We then investigate the impact of using the two-step transfer learning setting, in combination with
the Patient-Wise leakage-free partitioning protocol. In particular, two feature extractor backbone
models are considered for the task: ResNet-152 pre-trained on ImageNet (FE1), and ResNet-152
pre-trained on ImageNet and then GTEx (FE2). Experimental results for this two-step setting is
reported in Table 5, to be compared with Table 3.

2 DenseNet-201: u 12 M parameters; ResNet-152: u 6 M parameters.
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Figure 3: Boxplots of the MCCRL results using the Tile-Wise and the Patient-Wise protocols.

Table 5: DAP results for each classifier head, using the Patient-Wise partitioning protocol, and the
FE2 feature embedding using the ResNet-152 backbone model. The average cross validation MCCv

and ACCv with 95% CI are reported, along with results on the test set (i.e. MCCt, and ACCt)

Dataset FCH RF FCH RF Others
MCCv MCCt MCCv MCCt ACCv ACCt ACCv ACCt ACCt

HF 0.956 0.964 0.955 0.950 0.978 0.982 0.977 0.978 0.932 [19](0.952, 0.960) (0.943, 0.958) (0.976, 0.980) (0.975, 0.979)

BreaKHis-2 0.864 0.948 0.912 0.961 0.941 0.980 0.963 0.984 0.973 [23](0.839, 0.888) (0.892, 0.932) (0.930, 0.952) (0.955, 0.971)

BreaKHis-8 0.573 0.478 0.586 0.482 0.685 0.603 0.699 0.606 0.973 [23](0.539, 0.602) (0.552, 0.621) (0.661, 0.712) (0.675, 0.724)

The adoption of a domain-specific dataset (i.e. GTEx) in transfer learning is beneficial over the use
of ImageNet only. In fact, predictive performance of machine learning models with a Patient-Wise
partitioning protocol and the FE2 embedding are higher, and comparable to those obtained using
FE1, but with the inflated TW splitting (see also Table 2 for comparisons). However, very slight
improvements are achieved on the BreaKHis-8 task, and results are still below the current state of the
art. Notably, the BreaKHis dataset is highly imbalanced in the multi-class task. As a countermeasure,
Han and coll. [24] adopted a balancing strategy in the data augmentation pre-processing, that we did
not introduce here for comparability with the other experiments.

Finally, to verify how much of previous domain-knowledge can be still re-used for the original
digital pathology task (i.e. GTEx classification) we devised the following experiment: we retained
the Feature Extractor component (i.e. Convolutional Layers) of the model pre-trained on GTEx and
fine-tuned on BreakHis-2, and re-attached the Fully-Connected Head of the model trained on GTEx.
Notably, we could reach back full predictive performance (i.e. MCCt=0.983) on the GTEx task after
only one single epoch of full training using the GTEx samples.

4.3 Patient-level Performance Analysis

In order to assess the ability of machine learning model to generalise on unseen patients, patient-wise
performance metrics have been defined in the literature [5, 23, 19]. Two metrics will be considered in
this study: (1) Winner-takes-all (WA), and (2) Patient Score (PS).

Let Ŷp = {ŷt} be the set of labels predicted by a machine learning model for all the tiles t of a single
patient p ∈ P ; Np = |Ŷp|, whilst Nrec is the total number of tiles in Ŷp correctly classified.
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In the Winner-takes-all metric, the label associated to each patient corresponds to the majority of the
labels predicted for their tiles. More formally, for each patient p:

ŷp = ŷt : {ŷt}n ∈ Ŷp, n = 2k + 1 ≥ j,∀{ȳt}j ∈ Ŷp

Using this strategy, the overall performance indicator can be either standard ACC or MCC using ŷp
as reference predictions for all the patients. In this study we used ACC, for comparability with the
PS metric, and results reported in the literature.

On the other hand, the PS metric is defined as an accuracy restricted to tiles in Ŷp [5], for each
patient. The overall performance is then calculated using the global recognition rate (RR), defined
as the average of all the PS scores for all the patients. Therefore:

PS =
Nrec

Np
; RR =

∑
PS

|P |

In this paper, the WA metric is used to compare our patient-level results with those reported in [19],
for the HR dataset. The PS metric is used for comparison on the BreaKHis dataset.

Patient-level results for both Tile-Wise and Patient-Wise partitioning protocols are reported in Table 6,
using the ResNet-152 backbone model, and the FE1 feature embeddings. Results of patient-level
metrics for FE2 and Patient-Wise protocol are reported in Table 7.

Table 6: Patient-level results for each classifier head, using the Patient-Wise and Tile-Wise partitioning
protocols, and the FE1 feature embedding with the ResNet-152 backbone model. The average
cross-validation Patient-level accuracy with 95% CI (ACCv), and corresponding scores on the test
set (ACCt), are reported.

Dataset Patient-level Partitioning FCH RF Others
Metric Protocol ACCv ACCt ACCv ACCt ACCt

HF WA
TW 0.984 0.995 0.984 0.995 -(0.982, 0.987) (0.981, 0.986)

PW 0.981 0.951 0.977 0.927 0.940 [19](0.975, 0.986) (0.971, 0.983)

BreaKHis-2 PS
TW 0.995 0.997 0.997 0.998 0.872 [8](0.994, 0.996) (0.996, 0.998)

PW 0.864 0.885 0.883 0.893 0.976 [23](0.851, 0.877) (0.869, 0.898)

BreaKHis-8 PS
TW 0.963 0.950 0.957 0.962 0.964 [7](0.960, 0.967) (0.955, 0.959)

PW 0.687 0.752 0.705 0.725 0.967 [23](0.667, 0.709) (0.685, 0.728)

Table 7: Patient-level results for each classifier head, using the Patient-Wise partitioning protocol, and
the FE2 feature embedding with the ResNet-152 model. The average cross-validation Patient-level
accuracy with 95% CI (ACCv), and corresponding scores on the test set (ACCt), are reported.

Dataset Patient-level FCH RF Others
Metric ACCv ACCt ACCv ACCt ACCv

HF WA
0.992 0.976 0.989 0.976 0.940 [19](0.989, 0.995) (0.984, 0.992)

BreaKHis-2 PS
0.941 0.971 0.958 0.991 0.976 [23](0.930, 0.951) (0.948, 0.968)

BreaKHis-8 PS
0.691 0.721 0.699 0.724 0.967 [23](0.669, 0.716) (0.676, 0.723)
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