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COLLECTIVE HOLD-UP

MATIAS IARYCZOWER AND SANTIAGO OLIVEROS

Abstract. We consider dynamic processes of coalition formation in which a prin-
cipal bargains sequentially with a group of agents. This problem is at the core of
a variety of applications in economics and politics, including a lobbyist seeking to
pass a bill, an entrepreneur setting up a start-up, or a firm seeking the approval of
corrupt bureaucrats. We show that when the principal’s willingness to pay is high,
strengthening the bargaining position of the agents generates delay and reduces
agents’ welfare. This occurs in spite of the lack of informational asymmetries or
discriminatory offers. When this collective action problem is severe enough, agents
prefer to give up considerable bargaining power in favor of the principal.
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1. Introduction

In this paper, we study dynamic processes of coalition formation in which a principal

bargains sequentially with a group of agents. This type of problem, in which one of the

players takes a central role in organizing collective action, is pervasive in applications.

Consider, for instance, a lobbyist seeking to influence legislators to pass a policy

proposal, an entrepreneur seeking to form a start-up, or a firm negotiating with

buyers the adoption of a new technology with network externalities.

A salient feature of these problems is that the principal often bargains with agents

sequentially. In legislative politics, for instance, lobbyists and party principals rarely

make proposals simultaneously to all members in the floor of the chamber. Instead,

they typically strike individual deals with committee members, gradually accumulat-

ing support in favor of their preferred alternative. Whenever this is the case, the offers

the principal makes to, or receives from, an agent, will generally depend on how ad-

vanced the negotiation process is. This consideration becomes important when agents

are strategically farsighted, because the principal’s ability to successfully negotiate

with each agent depends on their expectations about the nature of future trades.

We show that in this context, efficiency requires power to be sufficiently concentrated

in the principal. When instead agents have a relatively stronger say in bilateral

negotiations, the equilibrium of the decentralized bargaining process entails inefficient

delay. Moreover, due to the destruction of surplus caused by delay, decentralizing

bargaining power from the principal to the agents reduces their welfare. These results

hold irrespective of the presence or the direction of externalities on uncommitted

agents, and without asymmetric information, discriminatory contracts or deadlines.

In our model, a principal negotiates sequentially with a group of n agents over an

infinite horizon. In each meeting, the principal bargains with an agent over the terms

by which the agent would commit his support to the principal. If an agreement

is reached, the agent commits his support to the principal and exits negotiations,

otherwise he remains uncommitted. The principal needs to obtain the agreement of

q < n agents to implement a reform, action, or policy change which affects the payoffs

of all players. When this happens, the principal obtains a payoff v > 0, agents who

committed their support to the principal obtain z > 0, and agents who remained

uncommitted obtain w ∈ R, where w > 0 (w < 0) implies that there are positive
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(negative) externalities on uncommitted agents. All players have a discount factor

δ ∈ (0, 1).

One of the key innovations of our model is to consider arbitrary allocations of bar-

gaining power between the principal and each agent (while maintaining the structure

of the game fixed).1 To do this, we assume that in a bilateral meeting the principal

makes an offer with probability φ ∈ [0, 1], and the agent makes an offer with probabil-

ity 1− φ.2 This introduces a technical complexity absent with the usual assumption

that the principal has full bargaining power, because both principal and agents can

extract rents from each other. As a result, the system of difference equations char-

acterizing equilibrium payoffs can not be decoupled. We solve for symmetric Markov

perfect equilibria of this game, in order to rule out “discriminatory contracts” that

exploit coordination failures among agents.3

In our main theorem we show that decentralizing bargaining power induces inefficient

delay in reaching agreements. The inefficiency results from the intersection of two ele-

ments. One resembles the traditional hold-up problem, where the initial transactions

take the role of investments for the principal, who is carrying the coalition formation

process. This happens because when agents have a strong bargaining position, agents

trading late in the process can extract a large fraction of the rents from the principal.

As a result, the principal is not willing to pay much to agents trading early on. The

second key component is inter-temporal competition among agents. In fact, it is this

form of competition among agents which can lead to delay instead of a sequence of

increasing prices, as in Blanchard and Kremer (1997) and Olken and Barron (2009).

Interestingly, delay can arise with positive externalities, no externalities, or even nega-

tive externalities on uncommitted agents. All else equal, a larger negative externality

1The literature on sequential contracting has generally maintained the assumption that the principal
has full bargaining power. See Rasmusen, Ramseyer, and Wiley Jr (1991), Rasmusen and Ramseyer
(1994), Jehiel and Moldovanu (1995a,b), Segal and Whinston (2000), Genicot and Ray (2006),
Iaryczower and Oliveros (2017)). Cai (2000) considered an alternating offer protocol. Galasso (2008)
compared a finite horizon alternating-offers game with a one-shot game in which the principal makes
a TIOLI offer to agents.
2This formulation is formally equivalent to nesting an infinite horizon bilateral bargaining in our
game, where one of the sides decides whether to enter in negotiations or not, and in any period of
the negotiation phase after a proposal is rejected, the principal (agent) makes offers with probability
φ (respectively, 1− φ).
3We show in Section 5.5 that the unique symmetric MPE we identify is the unique symmetric
subgame perfect Nash equilibrium with bounded recall, as in Jehiel and Moldovanu (1995a).
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on uncommitted agents lowers the value of holding-out. But when agents have suf-

ficient bargaining power and the principal’s willingness to pay is sufficiently large,

holding out can still be attractive, and the main logic for delay is unaltered. This

illustrates the possibly surprising effect of increasing the principal’s willingness to pay

on equilibrium outcomes. In fact, for any given allocation of bargaining power for

which there is delay, the expected delay grows continuously with v, and in the limit

as v →∞, the expected time for completion goes to infinity.

In addition to our main results on concentration of power and efficiency, the model

yields rich empirical implications. Consider first the properties of delay for a fixed

allocation of bargaining power. In principle, delay could occur in the early stages

or in the late stages of the bargaining process. Or there could be regions of delay

followed by states in which trade is efficient. Moreover, the probability of trade could

be non-monotonic, having stages in which the negotiation process accelerates after

every trade followed by periods in which it slows down with subsequent commitments.

In fact, we show that whenever there is delay in negotiations, delay occurs from the

beginning of the bargaining process, but the pace of negotiations slows down as the

process of negotiations move forward, possibly until some point in which the process

unravels and all further transactions occur without delay.

The fact that delay is front-loaded for any given allocation of bargaining power φ

means that delay occurs in early transactions, i.e., when there principal still needs

more than m(φ) agents in order to win. We show that the cutpoint m(·) is non-

increasing in φ and has full range. Thus, the range of transaction situations (states)

with positive expected delay is decreasing in the principal’s bargaining power. As bar-

gaining power is transferred from agents to the principal, we move from an equilibrium

in which there is delay in all but the critical state, to more efficient outcomes, even-

tually reaching a fully efficient equilibrium when power is sufficiently concentrated in

the principal.

The efficiency loss induces a tradeoff for agents. Keeping the strategy profile fixed,

agents would prefer to retain as much power as possible. However, decentralizing

power to agents also increases the range of states in which negotiations suffer delay.

We show that (also for large v), agents’ welfare is maximized when they relinquish

significant bargaining power to the principal.

After presenting our main results, we consider two important special cases of the

model. In section 5.1, we study equilibria as bargaining frictions vanish (δ → 1),
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and in section 5.2, we consider the special case in which bargaining power is fully

decentralized to agents. Both cases provide important lessons. We then consider two

extensions of the model. In section 5.3, we allow the payoff of agents who commit

to be non-positive, z ≤ 0, as it would be the case in corporate takeovers (z = 0). In

section 5.4, we consider a version of the model in which transfers between principal

and agent are contingent on the completion of the project. All proofs are in the

Appendix.

2. Related Literature

Our paper touches on three sets of papers. Most directly, it contributes to the litera-

ture on sequential contracting between a principal and a group of agents (in particular

Jehiel and Moldovanu (1995a,b), Segal and Whinston (2000), Cai (2000), Genicot and

Ray (2006), Chowdhury and Sengupta (2012), Iaryczower and Oliveros (2017)). It

also contributes to, and is informed by, papers on multilateral bargaining and non-

cooperative dynamic coalition formation.

Beginning with Grossman and Hart (1980), one of the central contributions of the

literature that focused on understanding contracting problems between a principal

and a group of agents is to emphasize the role of externalities.4 The importance of

positive and negative externalities in contracting models was further highlighted in a

static setting by Segal (1999, 2003), and is also a central component in the dynamic

setup of Jehiel and Moldovanu (1995a,b). It has also emerged as a key consideration

in the literature on non-cooperative coalitional bargaining games, which has shown

that externalities can lead to breakdown of efficiency (see Bloch (1996), Ray and

Vohra (1999), Ray and Vohra (2001), Gomes (2005), and Gomes and Jehiel (2005)).

Coalitional bargaining games without externalities, instead, generally have efficient

equilibria.5

A second important lesson from the literature is that the principal’s ability to treat

agents asymmetrically (either building on primitive heterogeneity among agents, or

simply using “discriminating contracts” that treat similar agents differently) can allow

the principal to exploit a subset of agents. Segal and Whinston (2000) show that

4This is indeed the key point of Grossman and Hart (1980), which showed that externalities across
shareholders (here free-riding) can prevent takeovers that add value to the company.
5See however Chatterjee, Dutta, Ray, and Sengupta (1993), Ray and Vohra (1999) and Gomes
(2005), which provide examples featuring delay in general bargaining models
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discrimination allows the incumbent firm to take advantage of the externalities that

exist across buyers without relying on coordination failures. Instead, the firm can

turn buyers against one another offering an exclusionary contract to only a subset

of the buyers, who then impose the externality of no entry on the other buyers (see

also Chowdhury and Sengupta (2012)). A fundamental lesson from Genicot and Ray

(2006) is that the reason the principal can exploit the agents in the Rasmusen et al

and Segal papers – as opposed to say in efficient takeovers – is that by signing an

exclusive contract a buyer imposes a negative externality on other buyers.6,7

With negative externalities, delay can be welfare improving for agents. In fact, Jehiel

and Moldovanu (1995a,b) and Genicot and Ray (2006) show that heterogeneity and

discriminatory contracts can lead to (efficient) delay in these settings.8 Cai (2000)

shows that discriminatory contracts can also lead to inefficient delay. In his model, the

principal bargains with n agents in a pre-specified order, and has to obtain unanimous

support from all agents, i.e., q = n. When players are sufficiently patient, there are

multiple equilibria, including equilibria with and without delay. Differently than

in our paper, delay here appears as a result of discriminating offers, which can be

constructed using the predetermined order of meetings.

The bargaining literature provided other explanations for delay with complete infor-

mation, less directly related to this paper. Fershtman and Seidmann (1993) and Ma

and Manove (1993) show that deadlines can lead to delay. Merlo and Wilson (1995)

show that efficient delay can emerge when the size of the surplus to be divided evolves

stochastically over time. Yildiz (2004) and Ali (2006) show delay in bargaining with

heterogeneous priors, and Acharya and Ortner (2013) show that delay can arise in

bargaining over multiple issues with partial agreements.

6This is also the case in the single-principal vote buying model by Dal Bo (2007), which also imposes
negative externalities among agents. In this context, the principal can exploit agents even in a static
setting, by using pivotal contracts. Relatedly, Segal (2003) and Segal and Whinston (2000) show
that the principal can exploit agents in a static setting if she can make discriminatory offers.
7This is also the case in Galasso (2008), who shows that when there are negative externalities across
agents, and agents are sufficiently patient, the principal prefers to enter a finite horizon bargaining
game in which she is the last mover, to a one-shot game in which she makes a TIOLI offer to agents.
8In Genicot and Ray (2006) delay can be supported in equilibrium through history dependent strate-
gies when the principal can make offers to multiple agents at a time. Jehiel and Moldovanu (1995b)
considers a setup in which non-traders suffer a negative externality and there is a finite deadline.
Jehiel and Moldovanu (1995a) extend the model to allow for positive externalities and an infinite
horizon. They show that without deadlines, delay can occur with negative externalities (when it is
welfare-improving for agents), but not with positive externalities (when it would be inefficient).
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In recent years there has been a growing literature focusing on understanding the

nature of inefficiencies in legislative bargaining. On the one hand, Banks and Duggan

(2006) show that in a general version of the Baron Ferejohn model, equilibria will

have no delay.9 On the other hand, several papers have shown that inefficiencies

arise when the allocation of power changes over time because of voters behavior

(Battaglini and Coate (2008)), when present actions have effects on future available

actions (Acemoglu, Egorov, and Sonin (2008)), when players disagree on what to

do given the evolving environment (Dziuda and Loeper (2016)), when an agent can

act as an intermediary in legislative bargaining (Iaryczower and Oliveros (2016)), or

because coalition principals face a trade-off between efficiency and surplus extraction

(Battaglini (2019)). We contribute to this literature by highlighting a novel dynamic

effect that changes willingness to trade of all players.

3. The Model

There is a principal and a group of n agents who interact in an infinite horizon,

t = 1, 2, . . .. We say the principal wins if and when she obtains the support of q < n

agents. In each period t before the principal wins, any one of the k(t) agents who

remain uncommitted at time t meets the principal with probability 1/k(t) > 0. In

each meeting, principal and agent bargain over the terms of a deal by which i would

support the principal. With probability φ ∈ [0, 1] the principal makes an offer p ∈ R
to the agent, and with probability 1 − φ the agent makes an offer b ∈ R to the

principal. In both cases, the offer is a transfer from the principal to the agent (which

can be positive or negative). If the recipient of the offer accepts it, i commits his

support for the principal and the transfer takes place; if the offer is rejected, i remains

uncommitted. Upon completion, the principal gets a payoff v ∈ R+, committed agents

get z ∈ R+, and uncommitted agents get w ∈ R. In any period before completion,

all players get a payoff of zero, not including any transfer they have received or paid.

Principal and agents have a discount factor δ ∈ (0, 1).

The solution concept is symmetric Markov perfect equilibria (MPE). The restriction

to symmetric MPE rules out discriminatory contracts, in the spirit of Genicot and

Ray (2006). In particular, the strategies of principal and agents only condition on the

number of agents m ≤ q the principal still needs to obtain for completion. We let the

9A stationary equilibrium with delay can only exist if the status quo is in the core, which is generally
empty in multidimensional policy spaces, or when transfers are possible.
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state space be M ≡ {1, . . . , q}. The offers when the principal and agents propose in

state m are denoted p(m) and b(m), respectively. We let w(m) and wout(m) denote

the continuation values of an uncommitted and a committed agent in state m∈M ,

and v(m) denote the principal’s continuation value in state m∈M .

Although quite simple, the model has a number of applications. To fix ideas, we

sketch some of these here.

Corruption. Consider a firm or agent bribing corrupt bureaucrats, in the spirit of

Olken and Barron (2009). Olken and Barron observe bribes paid by truck drivers to

police, soldiers, and weigh station attendants in Indonesia. They model checkpoints

as a chain of vertical monopolies, where the sequence of meetings is exogenously given,

and the agreement of each checkpoint is needed for completion. In our model, instead,

a firm needs to get the approval of q out of n bureaucrats, and does not have to get

these approvals in a given sequence.10 We assume that if the project is greenlighted,

the firm gets an expected payoff v > 0, and the bureaucrat who supports the project

obtains z > 0 (possibly due to more benefits down the line), while w ≥ 0 or w ≤ 0

depending on whether the project benefits or hurts the population at large.

New Technologies with Increasing Returns to Scale. Consider exclusive deals

contracts for the introduction of a new product with network externalities (Katz and

Shapiro (1992), Segal and Whinston (2000)). Suppose there are n buyers and an

incumbent producing with an old technology, in a market that can accommodate at

most one supplier due to increasing returns to scale or network externalities. Under

the incumbent supplier, buyers obtain a per period payoff which we normalize to zero.

A challenger P can supply the market with a new technology, but entry is profitable

only if it can serve at least q buyers. In each period, the challenger negotiates with

a potential buyer an exclusive deal contract, which can include some advantage in

service or tailored design. If q buyers sign exclusive deals, the challenger enters and

the incumbent drops out. In this case the challenger firm gets a payoff v > 0, buyers

who didn’t sign get w > 0 and buyers who signed agreements get z ≥ w.

Start-Ups. A firm needs to hire q specialized workers to produce a new product.

Upon starting production, the firm obtains an expected payoff of v > 0, while each

10McMillan and Zoido (2004) – which documents the details of corruption in Peru in the 1990s
under President Alberto Fujimori – show that bribes typically involve a subset of bureaucrats and
politicians in the relevant organizations. McMillan and Zoido (2004) and Olken and Barron (2009)
show that equilibrium bribes are in part set through ex post bargaining.



8 MATIAS IARYCZOWER AND SANTIAGO OLIVEROS

of the workers gets profit participation leading to an expected value z > 0. To sign

the workers to the company, the firm negotiates with each worker a sign-up bonus.

Workers that are not hired by the firm do not benefit (or suffer) from the company’s

activities, so w = 0. Notice that in this application there are no externalities towards

uncommitted agents.

In Section 5.3 we consider the case z ≤ 0. This allows us to extend our analysis to

other applications, including corporate takeovers (z=0) or vote buying with audience

costs (z <0). We show that – differently to the case of z > 0, in this case there is a

breakdown of negotiations.

4. Existence and Uniqueness of Equilibrium Outcomes

We begin by establishing some basic properties of equilibria. Suppose the principal

has the opportunity to make an offer to agent i in state m ∈ M . Note that the

agent will accept an offer p(m) from the principal only if his continuation value after

accepting the offer, δwout(m− 1)+ p(m), is at least as large as his continuation value

after rejecting the offer, δw(m), and will accept the offer with probability one if this

inequality holds strictly. Thus, whenever the principal makes an offer to agent i in

state m, she offers

(1) p(m) = −δ[wout(m− 1)− w(m)].

Similarly, whenever the agent makes an offer to the principal he offers

(2) b(m) = δ[v(m− 1)− v(m)].

While the offers are pinned down, equilibrium strategies can differ in the probability

of trade in each state; i.e., the probability that the proposer makes an offer and that

this offer is accepted. Let λm (resp., λ̂m) denote the probability of trade in state

m∈M when the principal (resp, the agent) has the opportunity to propose, and let

µm ≡ φλm + (1−φ)λ̂m denote the ex ante probability of trade in state m ∈M . Note

that when she has the opportunity to propose, the principal is willing to make the

offer (1) iff p(m) ≤ δ[v(m − 1) − v(m)], or (substituting) iff the bilateral surplus of

moving forward is nonnegative:

(3) s(m) ≡ [v(m− 1)− v(m)] + [wout(m− 1)− w(m)] ≥ 0.
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As usual, if in equilibrium s(m) > 0, we must have trade with probability one;

i.e., λm = 1.11 However if s(m) = 0, both the principal and the agent are indifferent

between trading with transfer p(m) or not trading. Thus λm ∈ (0, 1) only if s(m) = 0.

By the same logic, when the agent has the opportunity to propose, we must have trade

with probability one when s(m) > 0, no transaction when s(m) < 0, and λ̂m ∈ (0, 1)

only if s(m) = 0.

Since the surplus s(m) depends on the continuation values of principal and agent,

pinning down the equilibrium probability of trade requires that we learn more about

these equilibrium payoffs. Using (1) and (2), and letting s+(m) = max{s(m), 0}, the

values of principal and uncommitted agents can be written recursively as follows (see

Appendix A.1 for details).

(4) v(m) =

(
δ

1− δ

)
φs+(m),

(5) w(m) =

[
δβ(m)

1− δβ(m)

]
(1− φ)s+(m) +

[
1 +

(
1− δ

1− β(m)

)
1

δµm

]−1
w(m− 1),

where β(m) denotes the probability that an agent meets the principal in state m ∈M .

As equation (4) shows, the principal’s equilibrium payoff in state m is proportional

to the surplus s(m) by a factor that increases with the principal’s nominal bargaining

power φ.12 Because delay can only occur in equilibrium if s(m) = 0, this means that

if there is delay in state m in equilibrium, then v(m) = 0. The agent’s equilibrium

payoff in state m, on the other hand, has two components. The first comes from the

events in which the agent is negotiating with the principal, and is proportional to

the surplus s(m) by a factor that increases with the agents’ bargaining power 1− φ.

But differently to the principal’s value, the agent’s value w(m) is positive even when

s(m) = 0. This second component is increasing in the probability of trade µm and

the lagged value w(m − 1), and is due to the fact that as long as the negotiation

process moves forward in state m with positive probability, the agent receives some

value even when he does not meet the principal in that state.

11First, note that the agent must accept the offer (1) with probability one, for otherwise the principal
could obtain a discrete gain in payoffs by increasing her offer slightly, as any such offer would be
accepted. Then it must be that the principal makes this offer with probability one.
12The expression eliminates the dependency on the probability of trade λm using the fact that if
s(m) > 0 then λm = 1, if s(m) < 0 then λm = 0, and that s(m) = 0 when λm ∈ (0, 1).
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The value of a committed agent, on the other hand, only depends on the probability

that the process moves forward or not: if there is a transaction (with probability

µm) the committed agent gets a continuation payoff δwout(m− 1), and otherwise gets

δwout(m). Solving recursively, we obtain

(6) wout(m) =

[
m∏
k=1

(
δµk

1− δ(1− µk)

)]
z

We can now present the main result of this section. We show that equilibrium exists,

is unique up to the probability of trade µ, and that trade never collapses. We char-

acterize the probability of trade in each state m ≤ q as a function of continuation

values wout(m− 1), v(m− 1) and w(m− 1). Letting Γ(m) ≡ w(m)/(v(m) +wout(m))

for any state m ∈M , we have:

Theorem 4.1. There exists an essentially unique equilibrium, characterized by trade

probabilities

(7) µm = min

{
1,

(
1− δ
δ

)(
1

1− β(m)

)(
1

Γ(m− 1)− 1

)}
> 0 ∀m ∈M.

The proof is by induction. Note first that with v, z > 0, a critical meeting (m = 1)

must have trade with positive probability, and thus v(1) + wout(1) > 0. In fact, for

large v, a critical meeting must result in trade with probability one (lemma A.1). Now

suppose that for all k < m there are transactions with positive probability, and take

the implied continuation values wout(m− 1), v(m− 1) and w(m− 1) as given. Note

that since in all states k < m there is trade with positive probability, the values of a

committed agent and of the principal in state m−1 are positive. Thus inaction at m is

not an equilibrium, for then v(m) = w(m) = 0 and s(m) = v(m−1)+wout(m−1) > 0,

giving principal and agent an incentive to trade. We then show that the “one-shot”

game in state m, in which payoffs are given by the continuation payoffs, has a unique

SPE. This game has delay if Γ(m− 1) is large enough.

Note that the denominator of Γ(m−1), v(m−1)+wout(m−1), is the surplus in state

m when in equilibrium µm = 0 (as in this case v(m) = w(m) = 0), and therefore the

largest s(m) could possibly be given continuation values in m − 1. Call this s0(m).

Equation (7) says that there will be inefficient delay in a state m when the amount
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of resources available to compensate the agent for trading in state m is small relative

to his payoff of remaining uncommitted, w(m − 1), even when he anticipates a very

low probability of trade µm.

This mechanism is at the core of the paper. For an inefficiency to appear in state m,

the agent anticipates that the gains from trade will be larger when the negotiation

is further along, and that he will be able to capture a large enough fraction of this

surplus in equilibrium. In this case, the principal anticipates that agents trading late

in the process will extract a large fraction of the surplus, and as a result is not willing

to pay much to agents trading early on.

The key problem results from the intersection of two elements. One is a manifestation,

in this setting, of the traditional hold-up problem, where the initial transactions are

investments for the principal, who is carrying the coalition formation process. The

second is the inter-temporal competition among agents. In fact, note that with fixed

trading positions for the agents, this mechanism can lead to increasing prices, as

in Blanchard and Kremer (1997) and Olken and Barron (2009), but no inefficiency.

Here, however, agents have a chance to change their trading position by not accepting

the deal. It is this form of competition among agents which can lead to delay, and

what we call a collective hold-up problem.

In the next section, we explore this collective hold-up problem in depth. We focus on

the case in which the principal’s willingness to pay is high, which induces a strong

competition among agents to capture these rents, and results in a severe collective

hold-up problem.

5. Main Results

In this section, we characterize equilibrium outcomes when the collective hold-up

problem is severe. We address how the allocation of bargaining power between prin-

cipal and agents affect the efficiency of collective decisions, how the characteristics

of the collective decision affect efficiency, how delay appears in the negotiation pro-

cess, and how agents’ bargaining power affect their welfare. We also reconsider these

questions in the limiting cases when frictions vanish, and when all bargaining power

is concentrated in the agents.
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Our main result, Theorem 5.4, provides a complete characterization of equilibria for

large v.13 This shows that redistributing bargaining power from the principal to the

agents creates inefficient delay, and reduces agents’ welfare.

Theorem 5.4 builds on three key results. First, we provide a necessary and sufficient

condition for trading efficiency in any state m∈M given an arbitrary probability of

trade of the m−1 subgame. As the discussion of the previous section illustrates, a

key step to be able to do this is to solve the value functions of the principal and of

an uncommitted agent. The difficulty here comes from the fact that – differently to

the standard assumption in the literature – in our model both principal and agents

make proposals with positive probability. When the principal has all the bargaining

power, one can solve for agents’ values independently, use these values to express

transfers as a function of primitives, and then solve for the principal’s equilibrium

payoffs. In our case, instead, the principal can extract rents from agents, agents can

extract rents from the principal, and agents can extract rents from other agents. As

a result, the system of difference equations characterizing equilibrium payoffs can not

be decoupled.

To tackle this difficulty, we use a transformation to express the system of value func-

tions as a second order difference equation, which we then solve. With this, we are

able to characterize agents’ equilibrium payoffs in each state m ∈M as a function of

primitives, for any given probability of trade ~µm ≡ (µ1, . . . , µm) in the m-subgame,

w̃(m|~µm) (see Lemma A.2 in the Appendix). Armed with this result, we can then pro-

vide a necessary and sufficient condition for full trade in any state m for an arbitrary

probability of trade of the m− 1 subgame.

Lemma 5.1. Consider any m∈M . For any trading probabilities ~µm in the m sub-

game, s(m) ≥ (≤)0 if and only if

T (m|~µm) ≡ w̃(m|~µm)

β(m)
−

(
m∏
j=1

δµj
1− δ(1− µj)

)
(v +mz + (n− q)w) ≤ (≥)0

As a direct application of lemma 5.1, we obtain a necessary and sufficient condition for

inefficiency of equilibrium outcomes. To do this, we first use Lemma A.2 (with µj = 1

for all j ∈M) to obtain an expression for payoffs with efficient trading w†(m), v†(m) in

terms of primitives of the model. We then use Lemma 5.1, with T †(m) ≡ T (m||~µm =

13Here and in the rest of the paper, we write the statement “for v large, [A] is true” to mean that
for fixed parameters other than v, there exists a v > 0 such that if v ≥ v, [A] is true.
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1), to provide a condition for existence of an efficient equilibrium. We refer to this as

a full trading equilibrium (FTE), and to w†(m), v†(m) as FTE payoffs.

Proposition 5.2 (Efficiency). There exists a FTE in the subgame starting in state

m′ iff T †(m) ≤ 0 ∀m ≤ m′. Moreover, for large v the following is true: for any

state m > 1, there exist φ(m) < 1 and φ(m) > 0 such that:

(1) if φ > φ(m), the unique MPE of the m-subgame is a FTE, and

(2) if φ < φ(m), the unique MPE of the m-subgame entails delay.14

Proposition 5.2 shows that the allocation of bargaining power has efficiency conse-

quences. As long as the principal has enough bargaining power, the unique equilib-

rium for any z ∈ R+ and w ∈ R is efficient. But when bargaining power is decentral-

ized to agents, on the other hand, the equilibrium of any m-subgame, m > 1, involves

inefficient delay.15

While this is an important result, the proposition is silent about many of the ques-

tions we seek to answer. In particular, we still know very little about the properties

of delay for a fixed allocation of bargaining power. In principle, delay could be front-

loaded (occur at the beginning of the bargaining process), back-loaded, or occur in

some interior subset of states. Or the set of states with delay could potentially be

unconnected, with regions of delay followed by states in which trade is efficient.16

Moreover, even if delay occurs in connected sets of states, the probability of trade

could be non-monotonic, having stages in which the negotiation process accelerates

after every trade followed by periods in which it slows down with subsequent com-

mitments.

Our third building block sharply restricts the kinds of outcomes we can observe in

equilibrium for large v. First, we show that delay is in fact front-loaded: if in equilib-

rium there is delay in a state m′ < q, then there is delay in all states m > m′. Second,

we show that while delay is front-loaded, the pace of negotiations must slow down as

14Note that this does not say that if there is delay in a state m > 1, there must be delay in all states
m′ < m, but only that for any subgame m ∈M , some transaction involves delay.
15Recall that for large v, in a critical state m = 1 there is trade with probability one (see the
discussion following Theorem 4.1, or lemma A.1 in the Appendix).
16For instance, in the context of negotiations between the seller of a good and several potential buyers,
Jehiel and Moldovanu (1995a) show that when the seller is sufficiently patient and externalities
between buyers are negative, SPNE in pure strategies with bounded recall have the property that
long periods of waiting alternate with short periods of activity (When externalities are positive there
is no delay in equilibrium within this class).
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the process of negotiations move forward. In fact, the probability of trade decreases

at a rate that is independent of the discount factor, the principal’s bargaining power

or her willingness to pay. We state the general version of this result in the proposition.

Proposition 5.3 (Inefficiency for Fixed φ).

(1) Suppose in equilibrium µm ∈ (0, 1) for all m ∈ {m, . . . ,m}. Then

µm+1 − µm
µm

= β(m) ∀m ∈ {m+ 1, . . . ,m− 1},

and thus µm+1 > µm for all m ∈ {m+ 1, . . . ,m− 1}.

(2) For large v, if there is inefficient delay in a state m′ < q, there must also be

inefficient delay in all states m > m′.

In other words, whenever there is delay in negotiations, this occurs from the be-

ginning of the bargaining process, and negotiations get harder as the negotiations

move forward, possibly until some point in which the process unravels and all further

transactions occur without delay.

The fact that for large v delay is front-loaded might be surprising at first. However,

note that the reason there is delay in a state m is that – given what she anticipates

paying in the future – the principal is not willing to pay the agent trading in that

position enough to prevent him from passing on the deal in order to put himself in the

position of being one of the agents trading later. But then backloaded delay cannot

be consistent with equilibrium, for the farsighted principal would only be willing to

pay agents trading early if she could appropriate enough of the surplus to pay agents

trading later.

Proposition 5.3 takes as given the existence of delay for a fixed allocation of bargaining

power between principal and agents, and characterizes how the inefficiency would

manifest itself in the negotiation process. We already know that this is not a vacuous

result, because proposition 5.2 says that for any m > 1, in equilibrium there is delay

in a state m′ ≤ m if agents have enough bargaining power. Moreover, since this is

true for state m = 2, the second part of proposition 5.3 implies that when agents have

enough bargaining power, in equilibrium there is delay in all but the critical state.

Since we already know that the equilibrium is efficient when the principal has enough

bargaining power, this gives us a full characterization of equilibrium outcomes for

extreme allocations of bargaining power. However, our previous results leave open
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Figure 1. Trade probability, equilibrium payoffs, surplus in an example (v =
300, z = w = 30, δ = 0.95, n = 51, q = 26, φ = 0.2.)

the possibility that the range of states in which negotiations are inefficient varies

non-monotonically with the principal’s bargaining power for intermediate values of

φ. Theorem 5.4 shows that this is not the case.

The proof of this result builds on the fact that the agents’ FTE payoff w†(m) is

decreasing in the principal’s bargaining power φ whenever the equilibrium of the

m-subgame is a FTE. This result is intuitive, because the direct effect of reducing

φ is to increase the ability of agents to extract from the principal (all else equal,

this increases the value of agents, even those trading in earlier states). The general

argument is slightly more involved, because reducing φ has the indirect effect of

lowering the principal’s willingness to pay in earlier states, thus reducing the value

of agents transacting early. We show, however, that in a full trading equilibrium, the

direct effect dominates.

To see this, recall that the value of the principal is proportional to the surplus, by a

factor that is increasing in φ: v(m) =
(

δ
1−δ

)
φs+(m) (eq. (4)). Since in a FTE the

surplus s(m) does not change with φ, it follows that v†(m) is increasing in φ. Now,

total welfare in state m is

J(m) ≡ v(m) + (n− q +m)w(m) + (q −m)wout(m)

Since in a FTE both J(m) and wout(m) are constant in φ, it follows that

v†(m;φ)− v†(m;φ′) = −(n− q +m)[w†(m;φ)− w†(m;φ′)],

and thus w†(m) is decreasing in φ.
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We can now establish the main result of the paper:

Theorem 5.4 (Characterization for large v). For any φ ∈ [0, 1] there exists a unique

cutpoint m(φ) ∈ M such that, in equilibrium, there is delay in each state m∈M s.t.

m > m(φ), and full trading in any m ≤ m(φ). The cutpoint m(·) is weakly increasing

in φ and has range M . Moreover, for any m > m(φ) + 1,

(8) µm =
1− δ
δβ(m)

(
β(m)δmz

w†(m)− δmz + β(m)v†(m)

)
is decreasing in v and goes to zero as v → +∞.

Theorem 5.4 unifies our previous results and provides a complete characterization of

equilibria when the collective hold-up problem is severe.17 We are now in a position

to answer the questions we posed in the introduction.

How does the allocation of bargaining power between principal and agents affect the

efficiency of collective decisions? The theorem shows that redistributing bargaining

power from the principal to the agents creates delay and reduces agents’ welfare. In

particular, the number of transactions with positive expected delay is decreasing in φ,

so that giving more power to the agents increases the number of bargaining positions

in which transactions fail with positive probability.

How do the characteristics of the collective decision affect this inefficiency? Theorem

5.4 confirms the intuitions regarding the effect of changes in the agents’ preferences:

a higher value for belonging to the coalition (z large) reduces delay, as it increases the

incentive to trade, while a large positive externality on uncommitted agents (large

w) has the opposite effect. However, the theorem also shows the possibly surprising

effect of increasing the principal’s willingness to pay. As we have shown, for any given

φ for which there is delay in more than one state, expected delay grows continuously

with v and in the limit with v →∞, the expected time for completion goes to infinity.

How does this delay appear in the negotiation process? For a given allocation of

bargaining power φ inducing delay, the expected delay for each transaction increases

17 While Theorem 5.4 focuses on the case in which the collective hold-up problem is severe, most
of our results apply generically, for all values of v. In particular, there is still trade with positive
probability in all states, the equilibrium exists and is still essentially unique, the characterization of
values is unchanged, as is the condition for no delay, and the growth of the probability of trade in
contiguous states. The result that holds for large v but does not hold in general is the second part
of Proposition 5.3. In fact, we have constructed examples in which, for low v, delay is backloaded,
or occurs in an intermediate set of states.
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as we move further along the process in the first q −m −1 transactions, possibly

decreasing in the last transaction with delay. But once the principal obtains the

support of q − m agents, the remaining transactions occur without delay. In the

special case in which the agents have full or almost full bargaining power, delay

occurs in all but the critical state, and the expected delay is monotonically increasing

until the critical state as we move further along the process.

How does agents’ bargaining power affect their welfare? As we showed above, in

the efficient equilibrium, agents’ welfare increases with their bargaining power. As

a result, keeping the strategy profile fixed, agents would prefer to retain as much

power as possible. However, as we have seen, decentralizing power to agents also

increases the range of states in which negotiations suffer delay. Moreover, in each of

these states, delay is increasing in the principal’s willingness to pay, v. This poses a

tradeoff for agents’ welfare: a larger v increases the total surplus from transacting,

but also leads to larger delay.

Using our previous results, it is easy to show that the larger delay more than com-

pensates for the increase in total surplus, and leads to a loss of welfare for the agents.

This leads to the counterintuitive result that, for large v, agents’ welfare is maximized

when they relinquish significant bargaining power to the principal. Note that from

(5) we can express the equilibrium payoff of an uncommitted agent as

w(q) =

[
q∏

k=m+1

(
1 +

(
1− δ

1− β(k)

)
1

δµk

)−1]
w†(m) ≤ w†(m)

It follows directly from the expression above that if there are at least two states with

delay, the probability of trade vanishes as v → ∞, and thus w(q) → 0. Thus, we

have:

Corollary 5.5. For large enough v, any φ such that m(φ) < q − 1 leads to lower

equilibrium payoffs for the agents than giving complete bargaining power to the prin-

cipal, φ = 1. In particular, agents are better off if the principal has full bargaining

power than if agents have full bargaining power.

In turn, since w†(q) is decreasing in φ when a FTE exists, agents prefer the smallest

φ such that a FTE exists to φ = 1. It follows that for large enough v, agents prefer φ

such that either m(φ) = q − 1 or m(φ) = q, granting considerable bargaining power

to the principal.
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Overall, the basic intuition of how bargaining power affects outcomes works well in a

FTE, but when the collective hold up problem is severe, the intuition breaks down.

Instead, concentrating bargaining power in the principal reduces inefficiencies and

improves agents’ welfare.

In the next sections, we consider two important special cases of the model. In section

5.1, we study equilibria as bargaining frictions vanish (δ → 1), and in section 5.2, we

consider the special case in which bargaining power is fully decentralized to agents

(φ = 0). Both cases provide important lessons. We then consider two extensions

of the model. In section 5.3, we allow the payoff of agents who commit to be non-

positive, z ≤ 0, as it would be the case in corporate takeovers (z = 0) and vote buying

with audience costs (z < 0). In section 5.4, we consider a version of the model in

which transfers between principal and agent are contingent on the completion of the

project.

5.1. Vanishing Frictions. In Theorem 5.4, we characterized equilibrium outcomes

for fixed δ < 1, and sufficiently large v. A natural question is how do equilibrium

outcomes change for fixed v as frictions vanish. In fact, the results in the literature

on delay in bargaining with complete information have generally been established

for large δ. This is the case for delay caused by deadlines in Fershtman and Seid-

mann (1993), for the monopolist selling a good to heterogeneous buyers in Jehiel and

Moldovanu (1995a), for delay through discriminatory contracts in Cai (2000), and in

the example provided by Gomes (2005) in a general model of coalitional bargaining.

From the expression for the trading probability µm in the theorem, one might be

tempted to conclude that for fixed v, the probability of trade goes to zero as δ → 1,

so that when bargaining frictions vanish negotiations slow down almost to a halt.

This would be incorrect, for the threshold m(φ) is itself a function of δ. Making the

dependence of m(φ) on δ explicit, we have that as long as z ≥ w, mδ(φ) → q as

δ → 1. Thus for any given φ > 0 and v > 0 there is a δ > 0 such that if δ ≥ δ, the

unique equilibrium is a FTE.

To see this more directly, note that from (27), for any m ∈M ,

lim
δ→1

w†(m) = w and lim
δ→1

v†(m) = v +m(z − w).
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Thus, from proposition 5.2, the condition for existence of a FTE boils down to

v ≥ −m(z − w) ∀m ∈M.

and is therefore satisfied for any v > 0 whenever z ≥ w.

To understand the result, consider the critical state m = 1. Note that p(1) = −[z −
w(1)] = −(z − w), so that when the principal can make an offer, she keeps v and

can extract the differential z − w > 0. But even when the agent proposes, the agent

gets b(1) = v − v(1) = −(z − w) = p(1). Thus, the critical agent cannot extract δv

from the principal, and there are no incentives to hold out, and no collective hold-up

problem. The result is due to simple economics. When both principal and agents

do not discount the future, both principal and agents are willing to wait to get a

better deal, but the principal is a monopolist, while the agent faces competition from

other agents. This means that the critical agent cannot extract any surplus from the

principal. Because agents are willing to wait, all agents are guaranteed w. But the

principal, being the short side of the market, gets the differential z−w entirely. And

once this happens in m = 1, then by the same logic b(m) =p(m) = −(z − w) for all

m∈M , and thus w†(m) = w and v†(m) = v +m(z − w).

Note that the necessary and sufficient condition v ≥ −m(z − w) for all m ∈ M for

existence of a FTE is independent of φ, provided φ > 0. This is because for any φ > 0,

the probability that the principal gets to propose within T periods is arbitrarily close

to one for sufficiently large T . Thus, these cases are strategically similar for the very

patient principal.

5.2. Full Decentralization. In this section, we consider the limiting case in which

bargaining power is fully decentralized to agents. There are two reasons to do this.

First, for fixed δ < 1, the φ = 0 case allows us to present the key arguments in a

stark and simple manner. We are also able to provide a full analysis of equilibrium

outcomes for all v. Second, we want to shed light on the model for φ = 0 in the

limit case as δ → 1, which as we discussed in the previous section, is a special case.

We show that in this case, the model yields massive delay, with negotiations almost

breaking down, and the expected time to completion going to infinity.

The case in which agents have all bargaining power offers two useful simplifications.

First, because the principal is never able to make a proposal, the agent negotiating in

the critical state extracts all the principal’s surplus from completion of the project.
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Since the continuation value of the principal in state m is δv(m) independently of

whether the agent makes an offer or not. It follows that v(m) = δv(m), which implies

that v(m) = 0 for all m ≥ 1. As a result, the principal is not willing to pay in previous

states to move the process forward; i.e., b(1) = δv, and b(m) = 0 for m ≥ 2. In the

absence of side payments, the probability of trade depends on the relative value for

an agent of moving the process along supporting the principal for free, wout(m− 1),

versus holding out support with the goal of extracting the rent δv in late trading,

w(m).

The second simplification is that because the principal is not able to capture rents

from the agents, the value function of an uncommitted agent becomes a stand alone

difference equation, which is considerably easier to solve. Note that the payoff of an

uncommitted agent in state m > 1 in this case is simply

w(m) = λ̂m [β(m)δwout(m− 1) + (1− β(m)) δw(m− 1)] + (1− λ̂m)δw(m).

Thus, solving recursively,

(9) w(m) =

[
m∏
j=1

δλ̂j

1− δ(1− λ̂j)

]
(w + β(m)v) .

With (9) – and since the value of committed agents is still given by (6) – the condition

for trade with positive probability at m > 1 that wout(m− 1) ≥ w(m) boils down to

(10) w ≥

[
δλ̂m

1− δ(1− λ̂m)

]
(w + β(m)v)

For delay to occur with positive probability at m, we need (10) to hold with equality.

Now, note that the right hand side is a continuous increasing function f(·;m) of

λ̂m such that f(0;m) = 0 and f(1;m) = δ (w + β(m)v). Since (10) is satisfied with

λ̂m = 0, this implies that in equilibrium there is always trade with positive probability

in all states m > 1. On the other hand, there exists a (unique) solution λ̂m ∈ (0, 1)

satisfying (10) with equality if and only if

(11) w < δ (w + β(m)v) ⇐⇒ m <
δ

(1− δ)
v

w
− (n− q) ≡ m̂
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It follows immediately from this that there exists a unique cutpoint m̂ > 2 such that,

in equilibrium, there is delay in each state m ∈ M : 2 ≤ m < m̂, and trade with

probability one in any m ≥ m̂.18

From eq. (11), the set of states in which there is delay is weakly increasing in v/w,

which captures the relative value of holding out, and for any m∈M there is a v/w

large enough such that m < m. The ratio v/w also increases the probability of delay

in states below the cutpoint. In fact, note that when there is delay in state m, the

probability of trade is given by λ̂m ∈ (0, 1) solving wout(m− 1) = w(m), or

(12) λ̂m =

(
1− δ
δ

)
w

v

1

β(m)

Note that from (12), the probability of trade is increasing in m. Therefore, we expect

transactions to occur at a faster pace initially, with the process of negotiations slowing

down as it goes along, as in proposition 5.3.

Now, note that as δ → 1, the threshold m in (11) goes to +∞, so that in equilibrium

there is delay in all non-critical states. Moreover, from (12), limδ→1 λ̂m = 0, so that

in each state m > 2, negotiations slow down almost to a halt. This contrasts with our

discussion in Section 5.2, were we showed that for any φ > 0, the equilibrium for large

enough δ is a FTE. The difference in outcomes reflects the fact that for any φ > 0,

the probability that the principal gets to propose within T periods is arbitrarily close

to one for sufficiently large T , but is still zero for any T when φ = 0.

To conclude this section, note that in this case it is easy to compute agents’ equilib-

rium payoffs (in terms of primitives). For v large enough so that in equilibrium there

is delay in all but the critical state (i.e., m = q + 1), this is

w(q) =

(
q−1∏
j=2

w

w + β(j)v

)
δw, and lim

v→∞
w(q) = 0.

18 At first sight, this result seems to run against our earlier results for large v, where we showed that
whenever there is delay, this must happen at the beginning of the negotiation process. However,
it should be clear that strictly back-loaded delay can only occur for v sufficiently small. For large
v, m̂ → ∞, and the unique equilibrium of the φ = 0 case entails delay in all non-critical states,
consistent with the result for small φ in proposition 5.3 (see footnote 17 for additional details).
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When the principal has all the bargaining power, instead, agents’ equilibrium payoff

is (use (27) with φ = 1)

w†(q) =

(
q∏
j=1

1

1− δβ(j))

)(
n− q
n

)
δqw > 0

It follows that for v sufficiently large, agents are better off when the principal has full

bargaining power than when agents have full bargaining power.19

5.3. Breakdown of Negotiations. Up to this point, we maintained the assumption

that in the event the principal obtains the support of q agents, an agent who commit-

ted his support to the principal obtains a positive payoff z > 0. In some applications,

however, it is reasonable to assume that z = 0 (e.g., corporate takeovers) or even

z < 0 (e.g., vote buying with audience costs). Here we consider the case z ≤ 0.

Consider for example a dynamic version of corporate takeovers model of Grossman

and Hart (1980). Grossman and Hart analyze a problem in which a company (the

raider) acquires shares of a target company to control its board of directors. It is

assumed that the raider can improve the value of the company. To capture this

feature, we assume that under the raider’s control, the value of a share is w > 0,

and we normalize the value of a share under the incumbent management to zero.

We distinguish the payoff that a shareholder obtains when the raider wins if the

shareholder does not sell to the raider (w > 0) from the payoff he obtains if he does

sell to the raider (z = 0).20

We show that whenever there are positive externalities on uncommitted agents (w >

0), the condition z > 0 is necessary for robust delay. In particular, we show that

when contracting with the principal leads to a negative payoff for the agent when the

principal wins, in equilibrium there can only be delay in the initial state m = q, a

result which holds for a “small” (but not measure zero) set of parameter values. With

19As the equation shows, this particular conclusion does not hold under unanimity, which is the
classic railroad-farmers example considered by Coase (see Cai (2000), Olken and Barron (2009),
Chowdhury and Sengupta (2012)). This is because with q = n, β(1) = 1, so in the critical state the
agent cannot free ride on others. Thus w(1) = δw(1), which implies w(1) = 0. But then, recursively,
w(m) = 0 for all m∈M . Thus, while the agents’ equilibrium payoff when φ = 0 approaches 0 as
v →∞, agents are still better off by retaining bargaining power.
20As in Grossman and Hart (1980) and Segal (2003), we assume that shareholders are homogeneous.
Unlike Grossman and Hart, we suppose that shareholders are fully aware of the effect of their action
on the outcome of the raid attempt.
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this exception, equilibrium is either a FTE or is such that there are no transactions

in the initial state and thus w(q) = 0.

The result follows from Lemma 5.6 below. In it we establish two results. First we

show that if z ≤ 0 < w, there cannot be cycles of trade with probability one and

trade failure with positive probability; in fact, if in equilibrium there is trade with

probability one in a state m′, then this also has to be the case in all states m < m′.

This means that if there is delay, delay is front-loaded. The second part of the

proposition establishes that there cannot be delay in two contiguous states m and

m + 1. Together, the two results imply that with the exception of possibly mixing

in the initial state, the equilibrium is either a FTE, involves no transactions in any

state, or has a FTE in a m′-subgame off the equilibrium path for some m′ < q, with

no trade for m > m′, which implies that the process of transactions never starts.

Lemma 5.6. Suppose z ≤ 0 < w. Then (i) s(m − 1) ≤ 0 ⇒ s(m) ≤ 0. Moreover,

(ii) if s(m′) ≤ 0 for some m′ < q, then µm = 0 for all m > m′ and w(q) = v(q) = 0.

Why no delay in contiguous states? Suppose there is delay in m′ in equilibrium.

Since s(m′ + 1) ≤ 0, either trade collapses in m′ + 1 or again there is delay. If there

is delay in both m′ and m′ + 1, v(m′) = v(m′ + 1) = 0, so s(m′ + 1) = 0 if and only

if w(m′ + 1) = wout(m
′). But w(m′ + 1) ≥ 0, as it is the value obtained from being

uncommitted and depends on w > 0, while wout(m
′) =

[∏m′

k=1

(
δµk

1−δ(1−µk)

)]
z < 0, so

this is impossible. With no possible payments from the principal, all incentives to

trade have to come from diminishing the value of holding out through delay. But delay

can only lower the (positive) value of not trading, and thus by itself is insufficient to

induce agents to trade when z ≤ 0.

The next proposition builds on Lemma 5.6 to provide a characterization of equilibria

with z ≤ 0. To do this, we first show that if there exists a FTE, this is the unique

MPE. We then provide a necessary and sufficient condition for existence of a FTE.

This condition follows as a corollary of previous results. An examination of the

proof of Lemma 5.2 shows that these results do not require the assumption that

z > 0, and thus also hold for z ≤ 0. Thus, agents’ FTE payoffs are still given by

w†(·) as defined by (27), and there exists a FTE in the m′-subgame if and only if

T †(m) ≤ 0 for all m ≤ m′. Moreover, we know from Lemma 5.6 that when z ≤ 0

, s(m) > 0 ⇒ s(m − 1) > 0. As a result, a necessary and sufficient condition for

existence of a FTE when z ≤ 0 is that T †(q) ≤ 0.
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Proposition 5.7. Suppose z ≤ 0 < w. The (unique) equilibrium, (i) is a FTE iff

T †(q) ≤ 0, and (ii) has breakdown of negotiations iff T †(q − 1) > 0. Otherwise, in

equilibrium there is delay in the initial state q, and trade with probability one for all

m < q.

Note that adopting the project without delay is efficient for members of the coalition

if v+qz ≥ 0, and is efficient for the group as a whole if v+qz+(n−q)w ≥ 0. Thus, for

large enough v, it is efficient to adopt the project even if w, z < 0. In fact, we know

from part (ii) of Lemma 5.2 that for large v, if the principal has enough bargaining

power the unique MPE of the m-subgame is a FTE. So here the coalition should form,

and it does form in equilibrium when the principal has enough bargaining power. On

the other hand, part (iii) of the same lemma shows that when the agents have enough

bargaining power there is no full trading equilibrium for large v, even when this would

be efficient.

The main point of the GH paper is that externalities across shareholders can prevent

takeovers that add value to the company. The idea is that since shareholders that do

not sell can capture the increase in value brought by the raider, no shareholder will

tender his shares at a price that would allow the raider to profit from the takeover.

GH work with a static model, and assume that shareholders ignore the impact of

their actions on the outcome of the bid. In our version of the GH model – where the

principal buys shares one at a time and shareholders are fully forward looking and

strategic – efficient takeovers are not prevented by externalities when δ < 1 as long as

the raider has enough nominal bargaining power.21 But when agents do have enough

bargaining power, efficient takeovers can fail to occur due to the collective hold-up

problem: with z ≤ 0 the collective hold-up problem still exists, but leads not to delay

but to breakdown of negotiations.

5.4. Robustness I: Contingent Offers. In the model, we assumed that the trans-

fers between principal and agent are a quid pro quo contingent on the behavior of

the agent transacting with the principal, but not contingent on the completion of the

project. This assumption is by far the most prevalent in the literature, and fits many

21Holmstrom and Nalebuff (1992) show that when shareholdings are divisible the free-riding problem
does not prevent the takeover process in the GH model. In our model with φ = 1, the raider’s profit
goes to zero as δ → 1. Thus, with fixed costs, efficient raids would be prevented in the limit. This
result is similar to that of Harrington and Prokop (1993), who consider a dynamic version of GH in
which the raider can re-approach the shareholders who have not sold (taking all offers at the posted
price in each period).
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applications well. In some other cases, however, the transfers between principal and

agents only occur if and when the principal attains the prize.

An interesting example where this occurs is corporate restructuring in bankruptcy

proceedings. In these cases, the firm or government in distress often negotiates new

terms with creditors bilaterally and sequentially, as in our model.22 But the debt

shaving that each creditor agrees to is only realized upon completion of the entire

restructuring package.

A natural question is whether our results hold in this modified setting. In fact, the

standard hold-up logic would suggest that they would not: since agents contracting

early can commit the principal’s rents and leave nothing up for other agents to grab

later on in the bargaining process, incentives to hold out disappear. We show, how-

ever, that while contingent contracts allow other equilibria, collective hold up can still

occur. When agents have all the bargaining power, the unique equilibrium outcomes

in the benchmark model are still an equilibrium when transfers are contingent on

completion of the project. We state this result formally for ease of reference (the

proof is included in Appendix B.1).

Remark 5.8. Consider a variant of the model in which transfers are contingent on

completion of the project, and suppose φ = 0 and z = w > 0. For v large, there is an

equilibrium with trading at m = 1 and delay in all m : 2 ≤ m ≤ q, given by trading

probabilities (12).

A fundamental difference in the contingent transfer model is that by affecting the

amount of standing promises, agents can affect the equilibrium play of agents con-

tracting later.23 As a result, it is not generally optimal for an agent to propose a

transfer that extracts all the principal’s willingness to pay as it is the case in the

main model. Instead, the optimal transfer in a non-critical state is the one that max-

imizes the continuation value of the committed agent subject to the constraints that

22Consider for instance the city of Detroit’s bankruptcy restructuring. On December 2014, Detroit
exited bankruptcy protection, 18 months after the city filed for Chapter 9 bankruptcy. The city
negotiated a settlement with Bank of America and UBS in December 13’, with several bond insurers
in January of 14’, pension plans in May 14’, reached a deal with three Michigan counties over
regional water and sewer services in September, and bond insurers Syncora and FGIC in September
and October 14’.
23This implies, in particular, that the payoff-relevant state has to be extended to include both the
number of agents required for completion and the amount of standing promises.
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the principal accepts the offer and the agent is better off than remaining uncommit-

ted. However, in a critical state, the amount of the transfer does not affect future

behavior, and as a result incentives for the principal and agent are the same as in

the cash transfer model (corrected by using the principal’s value net of outstanding

promises). Because of this, the agent contracting in a critical state will extract any

surplus the principal arrives to that state with in equilibrium, and as a result, the

principal will not be willing to reward agents contracting in earlier states. It follows

that the decision of whether to transact or not with the principal is determined by

the same tradeoffs than in the cash transfers model, so if an agent anticipates the

same delay as in the equilibrium of the main model, he will likewise be indifferent

between trading and not trading with the principal.

While the equilibrium outcomes in the benchmark model are still an equilibrium

when transfers are contingent on completion of the project, the contingent payment

model allows other equilibria. The reason is that agents can use the principal as a

vessel to extract payments from agents contracting later. This requires the principal

to transitory carry a positive or negative balance even when she will not ultimately

benefit from monetary flows. Analyzing all equilibria of the contingent transfer model

is both interesting and important to understand sequential contracting in applications

such as bankruptcy restructuring, but it is also fundamentally different than the

analysis in this paper. We leave this for future research.

5.5. Robustness II: History Independence. We have shown that the equilibrium

of Theorem 5.4 is the unique symmetric markov perfect equilibrium. As we argued

above, in our main analysis we focus on symmetric MPE because we know from Cai

(2000) that discriminatory contracting can sustain inefficient equilibria if players are

sufficiently patient. The question still remains of which outcomes survive if we relax

the markovian assumption and focus on symmetric subgame perfect equilibria. In

particular, allowing for symmetric but non-anonimous treatment of the agents allows

the principal to make her strategy a function of agents’ past actions, as in Genicot

and Ray (2006). In our case, this may reduce the incentives to hold-out and thus

affect our conclusions about delay.24

24Cai (2000) rules this out by imposing the refinement that offers cannot depend on previously
rejected offers. However, discriminatory contracts can still be constructed using the predetermined
order of meetings.
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Analogous to our definition of a critical state in the paper (m = 1), we define a critical

history as a history of play following which the principal only needs the support of one

additional player in order to win. Suppose for instance that the principal’s strategy

calls for the principal not to trade with agent i in any critical history for which the

principal met player i in the past, and the meeting resulted in no agreement. If

this profile were sustainable in equilibrium, delay may disappear. This is because

the principal’s strategy reduces the value of remaining uncommitted. As a result,

all agents may now may be willing to trade early, reducing delay and eliminating

collective hold-up.

While a characterization of the set of all subgame perfect Nash equilibria is beyond

the scope of the paper, we follow Jehiel and Moldovanu (1995a,b) and consider SPE

with bounded recall; i.e., we allow for history dependent strategies but restrict the

dependance to a finite number of rounds k > 0. This allows us to study the impact of

history and the possibility of history-dependent punishments in a manegeable way. In

the next proposition we show that, under bounded recall, the equilibrium of Theorem

5.4 is the unique symmetric SPE with trade.

Proposition 5.9. If strategies have bounded recall, the MPE of Theorem 5.4 is the

unique symmetric subgame perfect equilibrium with trade.

The key idea for the proof is the following. Consider an equilibrium strategy profile

and an arbitrary period t in a non-terminal history ht. By sequential rationality, when

player i makes an offer to player j, the offer will leave player j indifferent between

accepting the current offer or rejecting it and moving to the next period. The values

of all players in t + 1 following ht are a function of the continuation strategies from

t + 1 on. Since these continuation strategies can only depend on the preceding k

periods, they are a function of the actions that occurred between t− k+ 1 and t+ 1.

Since the values at t+ 1 determine the offers and acceptance rules at t, the strategies

at t do not depend on the t− k period actions. Recursively, it follows that strategies

are history independent.

Proposition 5.9 shows that bounded recall is sufficient for our MPE to be the unique

symmetric SPE. Establishing whether this assumption is necessary for this result is

beyond the scope of the paper. We do believe that some restriction regarding the

ability of histories to determine strategies is needed to make significant progress, as



28 MATIAS IARYCZOWER AND SANTIAGO OLIVEROS

characterizing all SPE in these setups is generally a daunting task (see the discussion

in Jehiel and Moldovanu (1995a)).

6. Conclusion

In this paper, we consider a dynamic process of coalition formation in which a princi-

pal bargains sequentially with a group of agents. We provide a complete characteriza-

tion of equilibrium outcomes when the principal’s willingness to pay is high, and un-

cover new tradeoffs absent in bilateral bargaining models. We show that redistributing

bargaining power from the principal to the agents generates delay and reduces agents’

welfare, even in the absence of informational asymmetries or discriminatory offers,

and even with negative externalities on uncommitted agents. Concentrating bargain-

ing power on the principal, instead, leads to efficient collective decision-making and,

for any non-unanimous decision rule, does not lead to complete rent extraction by

the principal.

Our results have implications for a number of diverse applications in economics and

politics, including lobbying, exclusive deals, start-ups, endorsements and corruption.

While the model abstracts away from some of the details pertinent to each application,

the results shed light on a common idea behind these apparently diverse problems:

bargaining institutions that decentralize power to agents can be detrimental to agents’

welfare by making the coalition formation process inefficient.

The source of the inefficiency has two parts. The first is a form of the traditional hold-

up problem: when agents have significant bargaining power relative to the principal,

the principal anticipates that agents trading late in the process will extract a large

fraction of the surplus, and as a result is not willing to pay much to agents trading

early on. This is similar to Blanchard and Kremer (1997) and Olken and Barron

(2009), where sequential bargaining under unanimity leads to increasing prices. But

when agents are not excluded from the negotiation process after rejecting a proposal,

inter-temporal competition among agents leads to delay whenever agents have too

much bargaining power. This is what we call a collective hold-up problem.

The collective hold-up problem emerges in our model in the absence of discriminatory

contracts or asymmetric equilibria, and do not require a particular form of external-

ities on uncommitted agents (non-traders). While we do not allow the principal to

bargain with multiple agents simultaneously, we can show that this is not crucial for
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our results. In fact it is sufficient to assume that the principal cannot contract with

q agents at once.

Other extensions of the model are more challenging, and are left for future work.

First, as we discussed in Section 5.4, we believe it is both interesting and important to

study sequential contracting in applications such as bankruptcy restructuring, where

contingent transfers are paramount. As we have shown in an example, in this case a

form of collective hold-up will still appear in equilibrium. Second, our model does not

allow for more general payoff structures in which payoffs depend on the size of the

coalition that supports the principal, and can accrue before the coalition is formed.

For example, in industries in which new technologies have a component of learning

by doing, earlier sales affect later payoffs. Here the incentives to hold out compete

with the benefits of joining early. This presents an interesting problem, where the

principal may optimally front payments and sell at a loss. In that sense, collective

hold-up may manifest itself in delayed learning.
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Appendix A. Proofs

A.1. Values. Consider the value of the principal in state m, v(m). With probability

φλm, the principal has agenda setting power and makes an offer that is accepted by

the agent, getting a payoff δv(m− 1)− p(m). With probability 1− φλm either there

is no transaction in m or there is a transaction following a proposal by the agent, and

the principal obtains a discounted continuation value δv(m). Thus

v(m) = φλm (δv(m− 1)− p(m)) + (1− φλm)δv(m).

Using (1), and subtracing φλmδv(m) on both sides, we have

v(m) =

(
δ

1− δ

)
φs+(m) (4.A),

where s+(m) = max{s(m), 0}. Equation (4.A) says that the value of the principal in

state m is proportional to the surplus in state m whenever this is positive, and zero

otherwise. The expression eliminates the dependency on the probability of trade λm

using the fact that if s(m) > 0 then λm = 1, if s(m) < 0 then λm = 0, and that

s(m) = 0 when λm ∈ (0, 1).

Consider instead the value of an uncommitted agent i in state m, w(m), recalling that

β(m) ≡ 1/(n+m− q) denotes the probability that agent i meets the principal. With

probability β(m)(1 − φ)λ̂m, agent i meets the principal, has agenda setting power,

and makes an offer b(m) (which is accepted), leading to a payoff δwout(m−1) + b(m).

With probability (1− β(m))µm another agent j 6= i meets the principal, and the

meeting results in a transaction, leading to a payoff δw(m − 1) for player i. In all

other cases (i meets the principal but either the principal has agenda setting power

or the transactions falls through, or some other agent j 6= i meets the principal but

the transaction falls through), agent i gets a continuation payoff δw(m):

w(m) = β(m)(1− φ)λ̂m [δwout(m− 1) + b(m)] + (1− β(m))µmδw(m− 1)

+
[
β(m)[φ+ (1− φ)(1− λ̂m)] + (1− β(m)) (1− µm)

]
δw(m)

Using (2) for the transfer b(m) and simplifying, we have that for all m ≥ 2,25

w(m) =

[
δβ(m)

1− δβ(m)

]
(1− φ)s+(m) +

[
1 +

(
1− δ

1− β(m)

)
1

δµm

]−1
w(m− 1). (5.A)

25As before, we have used the fact that if s(m) > 0 then λ̂m = µm = 1, if s(m) < 0 then λ̂m =
µm = 0, and that s(m) = 0 when µm ∈ (0, 1).
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Using (5.A), we can express the current value for an uncommitted agent as a function

of the final payoff w and the sequence of surpluses [sk] for k ≤ m:

(13) w(m) = (1− φ)
m∑
k=1

(
β(k)

1− β(k)

)
ekms

+(k) + e1mw ∀m ≥ 1,

where we have defined

ekm ≡

[
m∏
j=k

(
1 +

(
1− δ

1− β(j)

)
1

δµj

)]−1

A.2. Proofs.

Lemma A.1 (Equilibrium Trade in state m = 1). The equilibrium probability of

trade in state m = 1 is uniquely determined by the following conditions:

(1) If v + z ≤ 0, µ1 = 0 (no trade at m = 1),

(2) If 0 < v + z < δ
(

n−q
n−q+(1−δ)

)
w, µ1 ∈ (0, 1) (probabilistic trade at m = 1),

(3) If v + z ≥ δ
(

n−q
n−q+(1−δ)

)
w, µ1 = 1 (trade w.p. 1 at m = 1).

Proof of Lemma A.1. Fix a MPE σ. Since the principal only makes an offer if s(m) ≥
0, (4) implies v(m) ≥ 0 for all m, and in particular v(1) ≥ 0. Similarly, since the agent

only makes an offer if s(m) ≥ 0, if s(m) < 0 then λ̂m = 0. Therefore (13) implies

w(m) ≥ 0, and in particular w(1) ≥ 0. Since s(1) = v+z−v(1)−w(1), w(1), v(1) ≥ 0

imply s(1) ≤ v + z. It follows that if v + z < 0 then s(1) < 0 and there is no trade

in equilibrium at m = 1. Now suppose v + z = 0. Then s(1) = −[v(1) + w(1)]. If

µ1 > 0, then v(1), w(1) > 0, and thus s(1) < 0, which implies µ1 = 0, a contradiction.

Thus µ1 = 0 and v(1) = w(1) = 0. It follows that if v + z ≤ 0, in equilibrium there

is no trade in state m = 1.

Now suppose v+z > 0. If µ1 = 0 (no trade), then v(1) = w(1) = 0 and s(1) > 0, which

implies λ1 > 0, a contradiction. Suppose µ1 = 1. Then (4) gives v(1) = δ
1−δφs(1) and

(13) gives

w(1) =
δ(1− φ)β(1)

(1− δβ(1))
s(1) +

δ(1− β(1))

(1− δβ(1))
w

Substituting,

s(1)

[
1 +

δφ

1− δ
+

δ(1− φ)

(1− δβ(1))
β(1)

]
= v + z − δ(1− β(1))

(1− δβ(1))
w
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Thus s(1) ≥ 0, consistent with equilibrium, iff

v + z ≥ δ(1− β(1))

(1− δβ(1))
w

If instead

(14) 0 < v + z ≤ δ(1− β(1))

(1− δβ(1))
w = δ

(
n− q

n− q + (1− δ)

)
w

we have µ1 ∈ (0, 1). Note that with s(1) = 0, (4) implies v(1) = 0, and (13) implies

that

(15) w(1) =

 δµ1(
1−δ

1−β(1)

)
+ δµ1

w

Substituting in (3), the equilibrium probability of trade is given by

(16) µ1 =

(
1− δ
δ

)
1

1− β(1)

(
v + z

w − (v + z)

)
Note that the RHS of (16) ∈ (0, 1) iff (14) holds. �

Proof of Proposition 4.1. Fix an equilibrium in the subgame starting in state m− 1.

This produces continuation values ṽ(m− 1), w̃(m− 1) and w̃out(m− 1). Given these

continuation values, let v(m;µm) and w(m;µm) denote the values of the principal

and uncommited agent in state m when transaction probability µm, and let s(m;µm)

denote the surplus in state m when transaction probability µm.

From (4) and (5), v(m; 0) = w(m; 0) = 0. Thus s(m; 0) ≡ [ṽ(m − 1) − v(m; 0)] +

[w̃out(m−1)−w(m; 0)] = ṽ(m−1)+w̃out(m−1). It follows that if ṽ(m−1)+w̃out(m−
1) ≥ 0, inaction at m is not an equilibrium. But note that ṽ(m− 1) ≥ 0, and by (6),

if z > 0 and µk > 0 for all k < m, then wout(m) =
[∏m

k=1

(
δµk

1−δ(1−µk)

)]
z > 0. Thus

µm = 0 is not part of an equilibrium if µk > 0 for all k < m.

Suppose µm = 1. Using the expression for the principal’s value (4) and the expression

for the uncommitted agent’s value (5) in the definition of the surplus (3), we have
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s(m)

[
1 +

δ

1− δ
φ+

(
δ

1−δ

)
β(m)(1− φ)(

1 +
(

δ
1−δ

)
(1− β(m))

)]

= w̃out(m− 1) + ṽ(m− 1)− 1[
1 +

(
1−δ
δ

) (
1

1−β(m)

)]w̃(m− 1).

Equilibrium requires s(m) > 0. From the previous expression, s(m) > 0 iff

(17) 1 +

(
1− δ
δ

)(
1

1− β(m)

)
>

w̃(m− 1)

w̃out(m− 1) + ṽ(m− 1)
.

Next, suppose µm ∈ (0, 1). Equilibrium then requires s(m) = 0, which in turn implies

v(m) = 0 and then w(m) = ṽ(m− 1) + w̃out(m− 1). Also with s(m) = 0, (5) gives

w(m) =

 δµm(
1−δ

1−β(m)

)
+ δµm

 w̃(m− 1)

Substituting in w(m) = ṽ(m− 1) + w̃out(m− 1), and then solving for µm gives

(18) µm =

(
1− δ
δ

)(
1

1− β(m)

)(
ṽ(m− 1) + w̃out(m− 1)

w̃(m− 1)− (ṽ(m− 1) + w̃out(m− 1))

)
,

which is the statement in the proposition. This is less than one iff (17) doesn’t hold.

We have shown that if µk > 0 for all k < m, equilibrium play in state m is uniquely

determined, and is either µm = 1 if (17) holds or µm ∈ (0, 1) given in (18) if (17)

doesn’t hold. Finally note that by Lemma A.1, if v, z > 0 then µ1 > 0. An induction

argument then completes the proof. �

Lemma A.2. Let w̃(m|~µm) denote agents’ payoffs in state m ∈M given trade prob-

abilities ~µm in the m-subgame, and define θkm ≡
∏m

j=k

(
δφµj

1−δ+δµjφ(1−β(j))

)
. Then

(19)
w̃(m|~µm)

β(m)
≡ θ1m(n− q)w +

m∑
k=1

(
1− φ
φ

1− δ
δ

)
θkm
µk

 k∏
j=1

δµj

1− δ(1− µj)

 (v + kz + (n− q)w)

Proof of Lemma A.2. The value functions of the principal and agents satisfy

(20) v(m) = µm
δ

1− δ
φs(m)

and

(21) w(m) =
δβ(m)(1− φ)µm

1− δ + δ(1− β(m))µm
s(m) +

δ(1− β(m))µm
1− δ + δ(1− β(m))µm

w(m− 1)
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Substituting (20) in the surplus condition (3) and using that 1−β(m)
β(m)

= 1
β(m−1) we have

the system of difference equations:

(1− φ)s(m) =

(
1− δ
δµm

+ 1− β(m)

)
w(m)

β(m)
− w(m− 1)

β(m− 1)
(22)

1− δ + δφµm
1− δ

s(m) = µm−1
δ

1− δ
φs(m− 1) + wout(m− 1)− w(m)

Solving the first equation for s(m) and substituting in the second equation, we trans-

form the system of first order difference equations into a second order difference

equation. Letting αm ≡ δµm
1−δ(1−µm)

, and defining

(23) H(m) ≡ φ

1− φ
δ

1− δ

[(
1− δ
δφ

+ µm(1− β(m))

)
w(m)

β(m)
− µm

w(m− 1)

β(m− 1)

]
,

we can write this recursion as

H(m) = αmH(m− 1) + αmwout(m− 1) for m : 3 ≤ m ≤ m′(24)

Solving recursively, and using that wout(m) = αmwout(m− 1) we have

H(m) =

(
m∏
j=3

αj

)
H(2) + (m− 2)wout(m)

Therefore, letting τm = 1−δ
1−δ+δµmφ(1−β(m))

for convenience,

w(m)

β(m)
=

1− δ(1− µm)

1− δ
φτmαm

w(m− 1)

β(m− 1)
+ τm(1− φ)

[(
m∏
j=3

αj

)
H(2) + (m− 2)wout(m)

]

The boundary conditions follow by (22) for m = 1, 2 and (23) for H(2), which give

H(2) = α2α1

(
v + 2z +

w

β(0)

)
w(2)

β(2)
= τ2

(
α2

1

τ1
+

δ

1− δ
µ2φ

)
w(1)

β(1)
− α2τ2µ1

δ

1− δ
φ
w

β(0)
+ α2τ2(1− φ)wout(1)

w(1)

β(1)
= τ1φ

[
δ

1− δ
µ1

w

β(0)
+ α1

1− φ
φ

(
v + z +

w

β(0)

)]
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Using these initial conditions together with wout(m) =
(∏m

j=1 αj

)
z, we obtain a

simple recursive representation of the value functions

w(m)

β(m)
=

1− δ(1− µm)

1− δ
φτmαm

w(m− 1)

β(m− 1)
+ τm(1− φ)

(
m∏
j=1

αj

)
(v +mz + (n− q)w)

(25)

Solving recursively, we obtain

w(m)

β(m)
=

(
m∏
j=1

αj

)[
m∏
j=1

(
1− δ(1− µj)

1− δ
φτj

)]
(n− q)w

(26)

+ (1− φ)

(
m∏
j=1

αj

)
m−1∑
k=1

{[
m∏

j=k+1

(
1− δ(1− µj)

1− δ
φτj

)]
τk (v + kz + (n− q)w)

}

+ τm(1− φ)

(
m∏
j=1

αj

)
(v +mz + (n− q)w) ,

which is equivalent to (19). �

Proof of Lemma 5.1. Using (25) we get that the surplus condition (22) is equivalent

to

(22b)

(
δ

1− δ

)
φµms(m) =

(
m∏
j=1

δµj
1− δ(1− µj)

)
(v +mz + (n− q)w)− w(m)

β(m)

Therefore s(m) > (<)0 if and only if(
m∏
j=1

δµj
1− δ(1− µj)

)
(v +mz + (n− q)w) > (<)

w(m)

β(m)

�

Proof of Proposition 5.2. Part 0. From Lemma A.2, with µj = 1 for all j ∈ M , it

follows that the equilibrium payoffs of an uncommitted agent in a FTE, w†(m), are

(27)
w†(m)

β(m)
≡ θ1m(n− q)w +

m∑
k=1

1− δ
δ

1− φ
φ

θkmδ
k (v + kz + (n− q)w)
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where for convenience we have defined θkm ≡
∏m

j=k

(
δφ

1−δ+δφ(1−β(j))

)
. From (6)

(28) w†out(m) = δmz

Substituting in (4), and solving the difference equation, we then have

(29) v†(m) =

(
δφ

1− δ(1− φ)

)m
v −

(
m∑
r=1

(
δφ

1− δ(1− φ)

)r)
(w†(m)− δm−1z)

From Lemma 5.1 with T †(m) ≡ T (m||~µm = 1), it follows that the equilibrium of the

m-subgame is a FTE if and only if

(30) T †(m) ≡ w†(m)

β(m)
− δm (v +mz + (n− q)w) ≤ 0 ∀m ≤ m′.

Part 1. Consider m ∈M , and suppose v ≥ m(w− z). We show that there is a φ < 1

such that if φ > φ(m), the unique MPE of the m-subgame is a FTE.

From expression (27),

lim
φ→1

w†(m)

β(m)
=

(
m∏
j=1

δ

1− δβ(j)

)
(n− q)w

So in the limit T †(m) ≤ 0 iff(
m∏
j=1

δ

1− δβ(j)

)
(n− q)w ≤ δm (v +mz + (n− q)w)

or iff (
m∏
j=1

n+ j − q
n+ j − q − δ

)
≤
(
v +mz + (n− q)w

(n− q)w

)
Expanding the product, the LHS is smaller than n+m−q

n+1−δ−q <
n+m−q
n−q , so it is sufficient

that v ≥ m(w − z). Thus, for large φ, a sufficient condition for a FTE in the m-

subgame is v ≥ q(w − z).

Part 2. We show that: for any m ∈ M , there exists φ(m) > 0 and v(m) > 0 such

that if φ < φ(m) and v > v(m), the unique MPE of the m-subgame entails delay.
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From expression (27),

w†(m)

β(m)
=

m∑
j=1

(
m∏
k=j

δφ

(1− δ) + δφ(1− β(k))

)
1− δ
δ

(1− φ)

φ
δj (v + jz + (n− q)w)

+

(
m∏
j=1

δφ

(1− δ) + δφ(1− β(j))

)
(n− q)w

Note that for large v all terms are positive, except possibly the last one. Dropping

the first m−2 terms of the summation, and denoting the last term C for convenience,

we have

w†(m)

β(m)
>

(
δφ

1− δ + δφ(1− β(m− 1))

)(
(1− δ)(1− φ)

1− δ + δφ(1− β(m))

)
δm−1 (v + (m− 1)z + (n− q)w)

+

(
(1− δ)(1− φ)

1− δ + δφ(1− β(m))

)
δm (v +mz + (n− q)w) + C

So T †(m) ≡ w†(m)
β(m)

− δm (v +mz + (n− q)w) > 0 iff

(
(1− δ)(1− φ)

[1− δβ(m)]

)(
1

1− δ + δφ(1− β(m− 1))

)
(v + (m− 1)z + (n− q)w) + C̃

≥ (v +mz + (n− q)w) .

where C̃ is a term, possibly negative, that does not depend on v.

Taking derivatives of both sides with respect to v, the LHS increases faster than the

RHS iff

φ ≤ (1− δ)δβ(m)

(1− δ) + δ(1− δβ(m))(1− β(m− 1))
≡ φ(m)

It follows that if φ < φ, for v large enough T †(m) > 0. �

Proof of Proposition 5.3. Part 1. Here we prove that if in equilibrium µm ∈ (0, 1) for

all m ∈ J ≡ {m`, . . . ,mu}, then

µm+1 − µm
µm

= β(m) ∀m ∈ {m` + 1, . . . ,mu − 1},

and moreover, for all m ∈ {m` + 1, . . . ,mu},

µm =

(
n+m− q
n+m` − q

)(
1− δ
δ

)(
1

w(m`)/wout(m`)− 1

)
.
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(This second result will be useful in the proof of Theorem 5.4).

Suppose in equilibrium µm ∈ (0, 1) for all m ∈ J ≡ {m`, . . . ,mu}. Then s(m) =

v(m) = 0 for all m ∈M . Since s(m) = 0 for all m ∈ J , by (5),

(31) w(m) =

 δµm(
1−δ

1−β(m)

)
+ δµm

w(m− 1) ∀m ∈ J

Note that for all m ∈ {m` + 1, . . . ,mu}, v(m) = v(m − 1) = 0, and then s(m) = 0

implies w(m) = wout(m− 1). Then

w(m)

w(m− 1)
=
wout(m− 1)

wout(m− 2)
∀m ∈ {m` + 2, . . . ,mu},

Using (31) and (6), this is

(32)

 δµm(
1−δ

1−β(m)

)
+ δµm

 =

(
δµm−1

(1− δ) + δµm−1

)
∀m ∈ {m` + 2, . . . ,mu},

which implies that

(33) µm =

(
1

1− β(m)

)
µm−1 ∀m ∈ {m` + 2, . . . ,mu},

This gives the first result using the definition of β(m). This result directly implies

µm =

[
m∏

k=m`+2

(
1

1− β(k)

)]
µm`+1 ∀m ∈ {m` + 2, . . . ,mu}.

Now, by (7), and noting that v(m`) = 0,

µm`+1 =

(
1− δ
δ

)(
1

1− β(m` + 1)

)(
wout(m`)

w(m`)− wout(m`)

)
.

Substituting gives

µm =

[
m∏

k=m`+1

(
1

1− β(k)

)](
1− δ
δ

)(
1

w(m`)/wout(m`)− 1

)
,

for all m ∈ {m`+1, . . . ,mu}. Noting that 1−β(k) = n+m−q−1
n+m−q , and simplifying, gives

the result in the lemma.

Part 2. In Lemma 5.1 we showed that for any m ≤ q, and for any equilibrium

µ1, . . . , µm−1 of the m − 1 subgame, s(m) ≥ (≤)0 given µm ∈ [0, 1] if and only if
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T (m) ≤ (≥)0. We now show that for large v, T (m) ≤ 0⇒ T (m− 1) < 0. Note that

T (m− 1) =

(
1− δ + δµmφ(1− β(m))

φ[1− δ(1− µm)]

)
T (m)

+ z −
(

δβ(m)µm
1− δ(1− µm)

)
(v +mz + (n− q)w)

so if T (m) ≤ 0, we have

T (m− 1) ≤ z − δβ(m) (v +mz + (n− q)w) ,

where we have used the fact that T (m) ≤ 0 implies µm = 1. Since the RHS is

decreasing in v and goes to −∞ as v →∞, for sufficiently large v, then T (m) ≤ 0⇒
T (m− 1) < 0. �

Proof of Theorem 5.4. By Proposition 5.2 (part 2), for any m ∈ M , there exists

φ(m) > 0 and v(m) > 0 such that if φ < φ(m) and v > v(m), then T †(m|φ) > 0.

From part 1 of Proposition 5.2, on the other hand, we know that for any m ∈ M ,

there exists φ(m) > 0 and v(m) > 0 such that if φ > φ(m) and v > v(m), then

T †(m|φ) < 0. Since T †(m|φ) is continuous in φ, for any m there is a cm ∈ (0, 1) such

that T †(m|cm) = 0 (for v large, fixed). By part 2 of proposition 5.3, for large v in

equilibrium T (m′|cm) > 0 for all m′ > m. It follows that in the unique MPE for

φ = cm, we have µk = 1 for all k ≤ m and (provided m < q), µk ∈ (0, 1) for k > m.

We have shown before that T (m′|cm) > 0 = T †(m|cm) for all m′ > m, and that

if T †(m|φ) ≤ 0 then T †(m′|φ) is decreasing in φ for all m′ ≤ m (also for v large).

This implies that cm+1 > cm for all m ≤ q − 1, and that for any φ ∈ (cm, cm+1),

T †(m + 1|φ) > 0 and T †(m|φ) ≤ 0. It follows that the equilibrium characterization

above for φ = cm applies unchanged to all φ ∈ [cm, cm+1).

Now take φ ∈ [0, 1] given, and let m ∈ M denote the cutpoint such that, in equilib-

rium, there is delay in each state m∈M s.t. m > m, and full trading in any m ≤ m.

In the proof of part 1 of proposition 5.3 we show that if in equilibrium µm ∈ (0, 1)

for all m ∈ J ≡ {m`, . . . ,mu}, then

µm =

(
n+m− q
n+m` − q

)(
1− δ
δ

)(
1

w(m`)/wout(m`)− 1

)
∀m ∈ {m` + 1, . . . ,mu}

It follows that here (with m` = m+ 1 and mu = q), we have

(34)

µm =

(
n+m− q

n+m+ 1− q

)(
1− δ
δ

)(
1

w(m+ 1)/wout(m+ 1)− 1

)
∀m > m+ 1
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Note that the probability of trade in each state where there is delay is decreasing in

the ratio w(m+ 1)/wout(m+ 1). We now argue that this ratio is increasing in v, and

that µm → 0 as v →∞. Note that by (6),

wout(m+ 1)

wout(m)
=

(
δµm+1

1− δ(1− µm+1)

)
,

and by Proposition 4.1,

δµm+1 = (1− δ)
(

1

1− β(m+ 1)

)(
v(m) + wout(m)

w(m)− (v(m) + wout(m))

)
.

Substituting,

wout(m+ 1)

wout(m)
=

(
(v(m) + wout(m))

β(m+ 1)(v(m) + wout(m)) + (1− β(m+ 1))w(m)

)
.

Now, since µm+1 ∈ (0, 1), then v(m) +wout(m) = w(m+ 1). Substituting, and noting

that the equilibrium of the m subgame is a FTE,

wout(m+ 1)

w(m+ 1)
=

w†out(m)

(1− β(m+ 1))w†(m) + β(m+ 1)[(v†(m) + w†out(m))]
.

It follows that for m > m+ 1,

µm =

(
n+m− q

n+m+ 1− q

)(
1− δ
δ

)(
w†out(m)

(1− β(m+ 1))(w†(m)− w†out(m)) + β(m+ 1)(v†(m))

)

Now, w†out(m) = δmz is independent of v, while both v†(m) and w†(m) are increasing

in v, and unbounded. Thus for m > m+ 1, µm is decreasing in v and goes to zero as

v → +∞. This completes the proof. �

Proof of Proposition 5.6. Using (4), (13), (6) in (3) we obtain, for all m ≥ 2(
1 + φ

(
δ

1− δ

)
+ (1− φ)

δβ(m)

1− δβ(m)

)
s(m)(35)

= φ

(
δ

1− δ

)
s(m− 1) +

[
m−1∏
k=1

(
δµk

1− δ(1− µk)

)]
z − π(1)w

− (1− φ)
m−1∑
k=1

(
β(k)

1− β(k)

)
π(k)s(k)

Since w > 0, z ≤ 0, and π(k)s(k) ≥ 0, (35) implies
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(36)

(
1 + φ

(
δ

1− δ

)
+ (1− φ)

δβ(m)

1− δβ(m)

)
s(m) ≤ φ

(
δ

1− δ

)
s(m− 1)

It follows that in any equilibrium, s(m− 1) ≤ 0⇒ s(m) ≤ 0. So suppose s(m′) < 0

for some m′ < q. Then µm′ = 0, and thus w(m) = v(m) = 0 for all m ≥ m′ with no

transactions in equilibrium for m ≥ m′. Suppose instead s(m′) = 0 for some m′ < q.

If µm′ = 0, the same conclusion holds, so suppose in equilibrium µm′ ∈ (0, 1). Because

s(m′ + 1) ≤ 0, in equilibrium either µm′+1 = 0 or s(m′ + 1) = 0 and µm′+1 ∈ (0, 1).

If µm′+1 ∈ (0, 1), then v(m′) = v(m′ + 1) = 0, and then s(m′ + 1) = 0 implies

w(m′+1) = wout(m
′). But w(m′+1) ≥ 0, while wout(m

′) =
[∏m′

k=1

(
δµk

1−δ(1−µk)

)]
z < 0

by (6), which is a contradiction. It follows that if s(m′) ≤ 0 for some m′ < q, then

µm = 0 for all m > m′ and w(q) = v(q) = 0. �

Corollary A.3. Suppose z ≤ 0. If v + z < δ
(

n−q
n−q+(1−δ)

)
w, then s(m) = w(m) =

wout(m) = v(m) = 0 for all m ≥ 2.

Proof of Corollary A.3. In Lemma A.1 we showed that a necessary condition for trade

with probability one at m = 1 is that v + z ≥ δ
(

n−q
n−q+(1−δ)

)
w. Thus, when this

condition is violated, µ1 < 1. The result then follows from Proposition 5.6. �

Proof of Proposition 5.7. First we show that T †(q) ≤ 0 is a necessary and sufficient

condition for existence of a FTE. This follows as a corollary of previous results. First,

an examination of the proof of parts (i) and (ii) of Lemma 5.2 shows that these results

do not require the assumption that z > 0, and thus also hold for z ≤ 0. Thus, agents’

FTE payoffs are still given by w†(·) as defined by (27), and there exists a FTE in

the m′-subgame if and only if T †(m) ≤ 0 for all m ≤ m′. Moreover, we know from

Lemma 5.6 that when z ≤ 0 , s(m) > 0 ⇒ s(m − 1) > 0. As a result, a necessary

and sufficient condition for existence of a FTE when z ≤ 0 is that at the FTE profile,

s(q) > 0, or T †(q) ≤ 0.

Second, we show that if there exists a FTE, this is the unique MPE. Fix an equilibrium

in the subgame starting in state m−1. This produces continuation values ṽ(m−1) and

w̃out(m− 1). Given these continuation values, let v(m;µm) and w(m;µm) denote the

values of the principal and uncommited agent in state m when transaction probability
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µm, and let s(m;µm) denote the surplus in state m when transaction probability µm.

From (4) and (5), if ṽ(m− 1) > 0 and w̃out(m− 1) > 0, then v(m;µm) and w(m;µm)

are both increasing in µm, and therefore s(m;µm) = [ṽ(m−1)−v(m;µm)]+[w̃out(m−
1)− w(m;µm)] is decreasing in µm. It follows that if s(m; 1) > 0, then s(m;µm) > 0

for any µm ∈ (0, 1), and as a result, any such µm ∈ (0, 1) would not be consistent

with equilibrium.

We finish the proof of this step with an induction argument. First, note that if the

conditions for existence of a FTE are met, then by Lemma A.1 µ1 = 1 (the unique

MPE of the subgame starting at m = 1 is a FTE). Second, we argue that if the

unique MPE of the subgame starting in state m − 1 is a FTE, then µm = 1. The

two conditions establish the result. To prove the induction step, note that if the

unique MPE of the subgame starting in state m − 1 is a FTE, then existence of a

FTE in m ≤ q (guaranteed by Lemma 5.6 given the existence of a FTE) implies

that s(m; 1) > 0. Then our previous argument implies that s(m;µm) > 0 for any

µm ∈ (0, 1), and as a result we must have µm = 1.

Finally, from Proposition 5.6 we know that if T †(q) > 0 there are two possibilities:

either trade stops at some m < q and then w(q) = v(q) = 0, or there is a FTE in the

(q− 1)-subgame and delay in the initial state q. The first case holds if T †(q− 1) > 0,

and the latter in the intermediate case in which T †(q−1) ≤ 0 < T †(q). This concludes

the proof. �
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