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Abstract 

In the context of tropospheric chemistry, Criegee intermediates denote carbonyl oxides with 

biradical / zwitterionic character (R1R2COO) that form during the ozonolysis of alkenes. First 

discovered almost 70 years ago, stabilized versions of Criegee intermediates formed via 

collisional removal of excess energy have interesting kinetic and mechanistic properties. The 

direct production and detection of these intermediates were not reported in the literature until 

2008. However, recent advances in their generation through the ultraviolet irradiation of the 

corresponding diiodoalkanes in excess O2 and detection by various spectroscopic techniques 

(photoionization, ultraviolet, infrared, microwave and mass spectrometry) have shown that 

these species can react rapidly with closed shell molecules, in many cases at or exceeding the 

classical gas-kinetic limit, via multiple reaction pathways. These reactions can be complex, and 

laboratory measurements of products and the temperature and pressure dependence of the 

reaction kinetics have also revealed unusual behaviour. The potential role of these 

intermediates in atmospheric chemistry is significant, altering models of the oxidising capacity 

of the Earth's atmosphere and the rate of generation of secondary organic aerosol. 

Keywords: Criegee Intermediates, Reaction Mechanisms, Atmospheric Chemistry  

1. Background to Criegee intermediates 

Alkene ozonolysis reactions are widely accepted to proceed via the Criegee mechanism [1]. 

On addition of ozone to an alkene, a primary ozonide is formed which undergoes rapid 
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exothermic decomposition to form a carbonyl oxide (referred to as a Criegee intermediate) and 

a stable carbonyl compound, as shown in Scheme 1. The decomposition products of the 

ozonide depend upon the substitution of the alkenes. This exothermic decomposition generates 

a substantial amount of vibrational excitation in the Criegee intermediate. This internal energy 

enables further rapid unimolecular loss, often yielding hydroxyl radicals (OH), in competition 

with collisional quenching in ambient air to produce stabilized Criegee intermediates (sCIs) 

that can undergo slower isomerization or fragmentation. However, sCIs remain reactive 

because of their biradical/zwitterion character and have a sufficiently long lifetimes to undergo 

bimolecular reactions with atmospheric trace gases [2-5]. Different sCIs may have substantially 

different reactivity, which is demonstrated by experimental studies of their chemistry [6-13].  

 

Scheme 1. Ozonolysis of alkene generating primary ozonide (POZ) which dissociates to form a Criegee 

intermediate and a carbonyl compound. 

For many years, the existence of sCIs was inferred through indirect experimental evidence in 

numerous laboratory studies [9, 10, 14-17], from which estimates were made of reaction rate 

coefficients.  In many cases, the analysis of such measurements relied on kinetic models, which 

increases uncertainties in the rate coefficient determinations. In 2008, the simplest sCI, 

CH2OO, was generated directly and detected [18], and in 2012 a method was discovered to 

generate more substantial concentrations of sCI, allowing direct time resolved kinetic studies 

to be performed [2, 3, 19]. These direct studies suggested that sCIs reacted far more rapidly 

than had previously been appreciated with a wide range of species in the atmosphere, and that 

for some of these trace atmospheric constituents sCIs could be a key reaction partner. The first 

direct experimental detection of CH2OO in the gas-phase ozonolysis of ethylene was reported 

by McCarthy and co-workers in 2015 using Fourier Transform microwave spectroscopy 

coupled with a pulsed nozzle expansion [20]. Recently, Berndt et al. [21] reported direct and 

sensitive detection of steady state sCI from the ozonolysis of alkenes in a free-jet flow system 

by means of chemical ionization mass spectrometry, with a detection limit of ~104 − 105 

molecule cm-3, approaching the sensitivities required for direct tropospheric detection. 
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Earlier reviews by Osborn and Taatjes [22], Y. P. Lee [23] and Lin and Chao [24], and Taatjes 

[25] have highlighted the advances in direct detection and production methods of the sCIs as 

well as spectroscopy and reactivity of the simpler sCIs. Reviews by Taatjes and Khan et al. 

have focused on reactivity of Criegee intermediates and their impacts on the troposphere [25, 

26]. A further article by Lester and Klippenstein [27] described the unimolecular dissociation 

dynamics of Criegee intermediates to produce OH radical. Here, we focus on recent advances 

in the methods to generate sCIs, detect them in the laboratory, and study their gaseous reactions 

to learn about reaction pathways, transition states, transient intermediates, and reaction 

products.  

2. Production of Criegee intermediates 

Until recently, laboratory measurements extensively used ozonolysis of alkenes, as shown in 

Scheme 1, to produce sCI and infer their reactivity [28]. Various scavengers such as SO2, H2O, 

organic acids and carbonyl compounds were employed during ozonolysis experiments, and 

resulting changes in final product yields used to estimate stabilization of Criegee intermediates 

along the reaction pathway. The sCI yields are variable because their formation depends on the 

temperature, pressure, and the nature of the substituents of the reactant alkenes [29, 

30].Theoretical and indirect experimental studies have reported a range of sCIs yields for 

different alkenes, as summarized in Table 1.  

Table 1. Yield of stabilized Criegee intermediates from ozonolysis of alkenes.   

Alkenes sCI yield Conditions (T/K, p) sCI scavenger References 

Ethene 0.59 ± 0.17 

0.39 ± 0.05 

0.39 ± 0.11 

0.54 ± 0.12 

0.40-0.50 

0.50± 0.04 

0.52± 0.06 

0.35 ± 0.05 

0.37 ± 0.02 

0.38 ± 0.06 

0.47 

0.40 ± 0.18 

0.42 

0.37 ± 0.04 

0.48 ± 0.05 

0.21-0.29 

298K and 1 atm 

298K and 1 atm 

298K and 1 atm 

298K and 1 atm 

295K and 730 Torr 

296K and 730 Torr 

295K and 730 Torr 

298K and 700 Torr 

282-303K and 700 Torr 

291-299K and 700 Torr 

297K and 758 Torr 

293K and 1 atm 

293K and 730 Torr 

296-303K and 1 atm 

300K and 1 atm 

300K and 1 atm 

CH3COOH 

SO2 

H2O 

CO 

HCOOH, CH3COOH, 

CH3OH 

CF3COCF3 

CF3COCF3, CH3CHO 

HCHO 

HCHO 

HCHO 

SO2 

H2O 

SO2 

Theoretical 

Theoretical 

Yajima et al. [31] 

Hatakeyama et al. [32] 

Hasson et al. [33] 

Alam et al. [34] 

Neeb et al. [35] 

Neeb et al. [36] 

Horie et al. [37] 

Niki et al. [38] 

Kan et al. [39] 

Su et al. [40] 

Horie and Moortgat [10] 

Berndt et al. [41] 

Neeb et al. [[42] 

Newland et al. [43]  

Nguyen et al. [44] 

Olzmann et al. [16] 

Propene 0.25-0.44 

0.22 

0.25 ± 0.02 

0.14 (CH2OO) 

 

296K and 1 atm 

298K and 1 atm 

293K and 730 Torr 

Review 

SO2 

SO2 

H2O 

Finlayson-Pitts and Pitts [45] 

Rickard et al. [9] 

Hatakeyama et al. [15] 

Neeb et al. [42] 

Isobutene 0.17 ± 0.03 

0.13 (CH2OO) 

298K and 1 atm 

293K and 730 Torr 

SO2 

H2O 

Hatakeyama et al. [15] 

Neeb et al. [42] 

1-Butene 0.27 298K and 1 atm H2O Hasson et al.[46] 
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2-methyl-2-

butene 

0.10 296K and 1 atm 

 

SO2 

 

Rickard et al. [9] 

 

2,3-dimethyl-

2-butene 

0.62 ± 0.28 

0.10 ± 0.03 

0.30 

0.11 

0.29 

0.32 ± 0.02 

0.45 ± 0.20 

0.37 ± 0.02 

0.15 ± 0.02 

293K and 1 atm 

298K and 1 atm 

298K and 700 Torr 

296K and 1 atm 

295K and 730 Torr 

296-303K and 1 atm 

278-343K and 1 atm 

298K and 900 Torr 

298K and 50 Torr 

SO2 

H2O 

HCHO 

SO2 

CF3COCF3 

SO2, H2O 

SO2 

SO2 

SO2 

Berndt et al. [47] 

Hasson et al. [46] 

Niki et al. [48] 

Rickard et al. [9] 

Horie et al.[37] 

Newland et al. [43] 

Berndt et al. [49] 

Hakala and Donahue [50] 

Hakala and Donahue [50] 

trans-2-

butene 

0.28 ± 0.03 

0.53 ± 0.24 

0.49 ± 0.22 

0.19-0.42 

0.19 ± 0.03 

0.24 ± 0.07 

0.13 

0.22 

0.42 

0.45 

296-303K and 1 atm 

293K and 1 atm 

278-343K and 1 atm 

 

298K and 1 atm 

298K and 1 atm 

296K and 1 atm 

295K and 730 Torr 

297K and 758 Torr 

295K and 1 atm 

SO2, H2O 

SO2 

SO2 

Review 

SO2 

H2O 

SO2 

CF3COCF3 

HCHO 

SO2 

Newland et al. [43] 

Berndt et al. [47] 

Berndt et al. [49] 

Finlayson-Pitts and Pitts [45] 

Hatakeyama et al. [15] 

Hasson et al. [46] 

Rickard et al. [9] 

Horie et al. [37] 

Horie and Moortgat [10] 

Cox and Penkett [51] 

cis-2-butene 0.38 ± 0.05 

0.19 

0.18 

0.43 

296-303K and 1 atm 

296K and 1 atm 

298K and 760 Torr 

295K and 1 atm 

SO2, H2O 

SO2 

HCHO 

SO2 

Newland et al. [43] 

Rickard et al. [9] 

Niki et al. [52] 

Cox and Penkett [51] 

Isoprene 0.58 ± 0.26 

0.56 ± 0.03 

0.26 

0.30 (CH2OO) 

0.28 

293K and 1 atm 

287-302K and 750 Torr 

298K and 1 atm 

293K and 730 Torr 

296K and 1 atm 

SO2 

SO2 

H2O 

H2O 

SO2 

Sipilä et al. [53] 

Newland et al. [54] 

Hasson et al. [46] 

Neeb et al. [42] 

Rickard et al. [9] 

1-Pentene 0.29 298K and 1 atm H2O Hasson et al. [46] 

cyclopenetene 0.05 ± 0.01 298K and 1 atm SO2 Hatakeyama et al. [15]  

cyclohexene 0.03 ± 0.02 298K and 1 atm SO2 Hatakeyama et al. [15] 

cycloheptene 0.03 ± 0.02 298K and 1 atm SO2 Hatakeyama et al. [15] 

1-Octene 0.35 

0.10 (C7-SCI) 

298K and 1 atm 

298K and 1 atm 

H2O 

Theoretical 

Hasson et al. [46] 

Paulson and Seinfeld [55] 

Methylene 

cyclohexane 

0.18 

0.22 ± 0.03 

298K and 1 atm 

298K and 1 atm 

H2O 

SO2 

Hasson et al. [46] 

Hatakeyama et al. [15] 

1-methyl-

cyclohexene 

0.16 ± 0.07 

0.10 ± 0.07 

293K and 1 atm 

298K and 1 atm 

SO2 

SO2 

Berndt et al. [40] 

Hatakeyama et al. [15] 

-pinene 0.15 ± 0.07 

0.13 ± 0.04 

0.19 ± 0.01 

0.15 

0.05 

0.34 

293K and 1 atm 

298K and 1 atm 

287-302K and 750 Torr 

298K and 740 Torr 

298K and 110 Torr 

298K and 1 atm 

SO2 

SO2 

SO2 

CF3COCF3 

CF3COCF3 

Theoretical 

Sipilä et al. [53] 

Hatakeyama et al. [15] 

Newland et al. [54] 

Drozd and Donahue [29] 

Drozd and Donahue [29] 

Zhang and Zhang [56] 

-pinene 0.14 

0.25± 0.02 

0.27 

0.44 

0.27  

0.60 ± 0.03 

0.46 (C9-SCI-

0.36, CH2OO-0.10) 
0.51 (C9-SCI-

0.35, CH2OO-0.16) 

0.30 (C9-SCI-

0.22, CH2OO-0.08) 

0.42 (C9-SCI-

0.37, CH2OO-0.05) 

296K and 1 atm 

298K and 1 atm 

298K and 1 atm 

295-298K and 1 atm 

295K and 1 atm 

287-302K and 750 Torr 

298K and 340 Torr 

 

296K and 730 Torr 

 

298K and 1 atm 

298K and 1 atm 

SO2 

SO2 

H2O 

SO2 

H2O and CH3COOH 

SO2 

SO2 

 

HCHO, HCOOH, H2O 

 

Theoretical 

Theoretical 

Rickard et al. [9] 

Hatakeyama et al. [15] 

Hasson et al. [46] 

Kotzias et al. [57] 

Ma and Marston [58] 

Newland et al. [54] 

Ahrens et al. [59] 

 

Winterhalter et al. [60] 

 

Zhang and Zhang [56] 

Nguyen et al. [61] 

Limonene 0.27 ± 0.12 293K and 1 atm SO2 Sipilä et al. [53] 
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0.23 ± 0.01 287-302K and 750 Torr SO2 Newland et al. [54] 

Myrcene 0.30 287-302K and 750 Torr SO2 Newland et al. [54] 

Ocimene 0.30 287-302K and 750 Torr SO2 Newland et al. [54] 

styrene 0.26 ± 0.01 298K and 1 atm SO2 Hatakeyama et al. [15] 

vinyl chloride 0.23 ± 0.03 298K and 1 atm SO2 Hatakeyama et al. [15] 

 

The first direct detection of a stabilized Criegee intermediate labelled simply as a Criegee 

intermediate hereafter, was achieved by Taatjes et al. [18] using dimethyl sulphoxide 

(CH3S(O)CH3; DMSO) as a precursor to CH2OO. In DMSO oxidation, the reaction of 

CH3S(O)CH2 with O2 in a low-pressure flow cell produces CH2OO. Criegee intermediate 

formation by this technique is an exothermic process with an energy release of 52.3 kJ mol-1 

[62], which is small compared to the 200 to 250 kJ mol-1 exothermicity of formation from 

ozonolysis of ethene [30]. This method provided the first photolytic generation of gas-phase 

Criegee intermediates in sufficient yields to allow direct detection.  

 CH3S(O)CH3 + Cl  CH3S(O)CH2 + HCl    (1) 

 CH3S(O)CH2 + O2  CH3S(O) + CH2OO    (2)  

However, the signal-to-noise ratio for detected CH2OO was insufficient for kinetic 

experiments. Welz et al. [2] discovered a more efficient method for producing Criegee 

intermediates by the photolysis of diiodomethane (CH2I2) in the presence of excess molecular 

oxygen. The photolysis of CH2I2 produces an iodomethyl radical, CH2I which reacts rapidly 

with O2 through the competitive channels shown in 4a and 4b.  

               CH2I2 + hν  CH2I + I      (3) 

               CH2I + O2  CH2OO + I      (4a) 

               CH2I + O2  CH2IOO       (4b) 

This production method has proved effective and been widely used by different groups for 

kinetic and spectroscopic measurements. It has been used to generate CH2OO in both flow cell 

[2, 63-68] and molecular beam [69] experiments. A similar method with CH2Br2 has been used 

to generate CH2OO in a plasma discharge [70]. Various other Criegee intermediates have been 

produced following analogous methods, but with a variety of gem-diiodide precursors, e.g., 

CH3CHOO from CH3CHI2 [3, 19, 71-73] (CH3)2COO from (CH3)2CI2 [5, 74, 75], 

CH3CH2CHOO from CH3CH2CHI2 [74]. At low pressure, the yield of R(4a) approaches unity, 

but CH2IOO can be the dominant product at atmospheric pressure and at 295 K (approx. 80%) 
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although with a non-negligible branching ratio forming the Criegee intermediate [65, 76]. This 

technique may not be a viable route to higher Criegee intermediates (>C3) because the low 

vapour pressure of the diiodide limits the gas-phase concentration that can be generated, and 

because the competing formation of the iodoperoxy radical may dominate. Barber et al. [77] 

recently generated methyl vinyl ketone oxide (MVKOO) Criegee intermediate by the 

photolysis of 1,3-diiodobut-2-ene at 248 nm in the presence of O2 through the preferential 

dissociation of the weaker allylic C1-I bond rather than the vinylic C3-I bond, a consequence 

of the resonance stabilization of the allylic monoiodoalkenyl radical. Similarly, Vansco et al. 

[78] generated methacrolein oxide (MACROO) using 248 nm photolysis of (E)-1,3-diiodo-2-

methylprop-1-ene in the presence of O2. However, direct kinetic measurements of unimolecular 

and bimolecular reactions of MVKOO and MACROO Criegee intermediates have not yet been 

reported.   

3. Detection of Criegee intermediates  

Several spectroscopic methods have been used to detect Criegee intermediates following the 

methods of generation outlined in the previous section, and reviews can be found by Lee [23], 

Osborn and Taatjes [22], Taatjes et al. [79] and Taatjes [25]. Techniques that have been 

successfully used to detect gas phase Criegee intermediates include photoionization 

spectroscopy [2, 5, 19], ultraviolet spectroscopy [63, 64, 66-69, 80], infrared spectroscopy [59, 

81, 82], microwave spectroscopy [70, 83] and submillimetre-wave spectroscopy [84]. 

Recently, mass spectrometric methods have also been developed to measure Criegee 

intermediates directly during ozonolysis experiments [21, 85].  

The tuneable synchrotron photoionization mass spectrometry method used by Taatjes and co-

workers allows the time resolved photoionization spectrum to be recorded for a specific mass 

channel. The initial observation of CH2OO was confirmed by its photoionization spectrum with 

an onset of ~10 eV for a mass/charge (m/z = 46) species; ionization energies of other isomers 

at m/z = 46, such as dioxirane, methylene bis(oxy) and formic acid (see Figure 5 of Reference 

[22]) are substantially higher. The structure of the next in the series of Criegee intermediates, 

acetaldehyde oxide, CH3CHOO, gives rise to syn- and anti-conformers with different 

ionization energies, and the syn- and anti-conformers of CH3CHOO display different 

photoionization spectra (see Figure 1 of Reference [19]). The syn-CH3CHOO appears to be the 

dominant conformer observed, perhaps because of its lower energy. The difference in 

ionization energy of the two conformers can be used to separate their reactivity towards other 
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compounds (e.g. SO2, H2O, water dimer). The production of acetone oxide, (CH3)2COO, from 

the photolysis of (CH3)2CI2 in the presence of O2 has been confirmed by the photoionization 

spectrum collected for m/z = 74 species as shown in Figure 1. Figure 1 shows a best fit of the 

m/z =74 ion yields in the ionization threshold region (<9.5 eV) to a combination of Franck-

Condon factor weighted photoionizations from the ground neutral state to the two lowest states 

of the (CH3)2COO+ ion. The ionization energies of different Criegee intermediates measured 

at room temperatures are provided in Table 2. Photoionization mass spectrometry has also been 

used to characterize the kinetics and products of Criegee intermediates reactions, as described 

in detail in the next section.  

 

Figure 1. The photoionization spectrum for the m/z 74 product (possibly (CH3)2COO) from the photolysis of the 

gem-diiodide (CH3)2CI2 in the presence of O2. Calculated Franck Condon envelopes for ionization of (CH3)2COO 

to two cationic states and of 2-hydroperoxypropene are shown by the dotted traces. The blue trace shows the best 

fit of the combined (CH3)2COO envelopes to the experimental trace. Figure reprinted from Reference [5] with 

permission from the American Chemical Society. 

Table 2. Ionization energies for different Criegee intermediates at ambient conditions. 

Criegee Intermediate Ionization energy  References 

CH2OO ~10 eV Welz et al. [2] 

syn-CH3CHOO ~9.4 eV Taatjes et al. [19] 

anti-CH3CHOO ~9.3 eV Taatjes et al. [19] 

(CH3)2COO ~8.8 eV Chhantyal-Pun et al. [5] 

 

The CH2OO B1A  X1A absorption spectrum in the UV region was first obtained by 

measuring the UV-induced depletion of the vacuum UV (118 nm) photoionization signal at 

m/z=46 by Lester and co-workers under molecular beam conditions. Beames et al. [69] 

observed a broad and diffuse absorption peak in the region of 300-370 nm with a maximum 

near 335 nm. A subsequent direct absorption spectroscopy measurement by Sheps using a 
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broad-band UV light source [63] obtained a broader CH2OO B-X spectrum with vibrational 

progression on the red side, analogous to the structured Huggins band in the isoelectronic O3 

spectrum, and a peak absorption around 355 nm. A further such measurement by Ting et al. 

[64] recorded a similar CH2OO B-X spectrum to that of Sheps [63], exhibiting vibronic 

structures on the long-wavelength side but with some discrepancies in absorbance on the short-

wavelength side of the band. However, the absorption cross-sections reported by Ting et al. 

[64] are three times lower than those measured by Sheps [63] (see Table 3). Ting et al. 

measured absolute absorption cross sections at 308.4 and 351.8 nm using a depletion method 

in molecular beam experiments and used those values to calibrate the ambient broadband 

spectrum as shown in Figure 2. The UV spectrum in the high energy region was expected to 

be similar under ambient and molecular beam conditions. The peak absorption cross sections 

and wavelengths measured for CH2OO and other Criegee intermediates are given in Table 3. 

Foreman et al. [86] measured higher resolution spectra (~0.1 nm) in the longer wavelength 

region (362-470 nm) which were consistent with the broadband measurements. No significant 

temperature dependence was observed for the progression bands within the 276-357 K range. 

Thus, the vibronic structures likely arises from quasi bound vibrations in the excited state, as 

suggested by the computational study of Dawes et al. [87].  

Table 3. Peak ultraviolent absorption cross sections for various Criegee intermediates. aAmbient conditions 
bMolecular beam condition.  

Criegee intermediate Wavelength (nm) Cross section (cm2) References 

CH2OO 355a  

340a  

335b  

(3.6±0.9)  10-17 

(1.23±0.18)  10-17 

~5.0  10-17 

Sheps [80] 

Ting et al. [65] 

Beames et al. [62] 

syn-CH3CHOO 323a  

328a  
1.2  10-17 

(1.27±0.11)  10-17 

Sheps et al. [67] 

Smith et al. [66] 

anti-CH3CHOO 360a  1.2  10-17 Sheps et al. [67] 

(CH3)2COO 320b  

330a 
4.0  10-17 

(1.75±0.14)  10-17 

Liu et al. [73] 

Chang et al. [71] 

CH3CH2CHOO 320b  4.0  10-17 Liu et al. [73] 

 

The CH3CHOO (B-X) UV absorption spectrum was found by Smith et al. [71] to be narrower 

than that for CH2OO and the peak is shifted by 14-15 nm to a shorter wavelength. Similar to 

CH2OO, the UV depletion spectrum of CH3CHOO reported by Beames et al. [73] under 

molecular beam conditions was narrower than the UV absorption spectrum measured by Smith 

et al. [71] under ambient condition. Sheps et al. [72] distinguished the spectra of the syn- and 

anti-conformers peaking around 320 and 370 nm, respectively, in the CH3CHOO UV 
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absorption spectrum using the difference in reactivities of the two conformers with water. 

Chang et al. [88] measured the peak absorption wavelength for (CH3)2COO to be at 330 nm 

which is blue shifted from the CH2OO peak, and the maximum absorption cross section of 

(CH3)2COO is larger than those of CH2OO and CH3CHOO (see Figure 2). Recently, Vansco 

et al. [78, 89] measured the UV spectra of methyl vinyl ketone oxide (MVKOO) and 

methacrolein oxide (MACROO) Criegee intermediates using the UV depletion method 

described earlier. The UV spectrum was found to be significantly red shifted, with depletion 

peaks at 388 (MVKOO) and 380 nm (MACROO), and cross sections in the region of ~10-17 

cm2. Various measurements of the Criegee intermediate absorption spectra discussed above are 

combined in Figure 2.  

 

Figure 2. A comparison of UV absorption spectra of CH2OO, syn-CH3CHOO, anti-CH3CHOO and (CH3)2COO 

from different studies. Figure reprinted from Reference [88] with permission from Elsevier.  

The large UV absorption cross sections offer sensitive optical probes of various Criegee 

intermediates and have now been used extensively to study time resolved reaction kinetics by 

various groups around the world. Lin and co-workers used multi-pass UV broadband 

absorption spectroscopy to measure broadband spectra and reaction kinetics of various Criegee 

intermediates at temperatures (~270 to 350 K) relevant in the troposphere [24]. Seakins and 

co-workers have used a similar setup to study the reaction kinetics of CH2OO at ambient 

temperature [90]. Green and co-workers have used a multi-pass Herriott cell coupled with the 
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frequency doubled output of a picosecond Ti:Sapphire laser, tuned to produce 375 nm 

radiation, to probe reaction kinetics of CH2OO at temperatures relevant in combustion systems 

(298 to 494 K) [91]. Murray and co-workers have used single pass UV broadband spectroscopy 

based on a LED light source to measure reaction kinetics of CH2OO at ambient temperature 

[68]. Sheps and co-workers have used cavity enhanced absorption spectroscopy to measure 

broadband spectra and reaction kinetics of CH2OO and CH3CHOO at ambient temperature and 

temperatures relevant for combustion systems [72, 92]. Orr-Ewing and co-workers have used 

cavity ring-down absorption spectroscopy, coupled with the frequency doubled output of a 

Nd:YAG laser to produce 355 nm radiation, to measure reaction kinetics of CH2OO and 

(CH3)2COO at temperatures (~240 to 340 K) relevant in the troposphere [93, 94].  

 

Figure 3. IR absorption spectra of CH3CHI2 in the presence of O2 before photolysis (a) and after photolysis (b 

and c) along with the products assigned as syn- and anti- CH3CHOO. Figure reprinted from Reference [95] with 

permission from Springer Nature. 

The CH2OO and CD2OO infrared absorption spectra were measured by Lee and co-workers 

using a broadband time resolved step-scan FTIR spectrometer coupled with a multipass White 

cell [81, 96]. The transient infrared bands were assigned to CH2OO based on agreement with 

calculated vibrational frequencies and rotational band contours. Infrared absorption spectra of 

CH3CHOO, shown in Figure 3,  and (CH3)2COO have since been measured using the same set 

up [95, 97]. The vibrational band positions and assignments are summarised in Table 4. Ahrens 

et al. [59] measured infrared bands between 930 and 830 cm-1 of Criegee intermediates formed 

during ozonolysis of β-pinene under dry conditions. The broadband step-scan FTIR 
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spectroscopy method has also been applied to characterize products from the reactions of 

Criegee intermediates, as is described in detail in the next section. A rotationally resolved 

infrared spectrum (0.0015 cm-1 resolution) of the O-O stretch band centred around 908 cm-1 , 

shown in Figure 4Table 4, was measured for CH2OO using a continuous wave quantum cascade 

laser (CW-QCL) by the same group [98]. Lin and co-workers also used CW-QCL spectroscopy 

to obtain a  rotationally resolved (0.002 cm-1 resolution) infrared spectrum of the CH2OO CO 

stretch/CH2 scissor vibrational band centred around 1285 cm-1 and used it to determine a rate 

coefficient for reaction of CH2OO with O3 [99]. High-resolution infrared spectroscopy 

provides an alternative to UV absorption spectroscopy for interference-free measurement of 

Criegee intermediate reaction kinetics [99, 100]. Lester and co-workers have used action 

spectroscopy to measure infrared spectra and unimolecular reaction kinetics of various Criegee 

intermediates with α-hydrogen atoms [112-114] examples of which are described in the next 

section.  

 

Figure 4. (a) Observed spectra of CH2OO at various spectral resolutions (1 - 0.0015 cm-1) in the region of 880-

932 cm-1and (b) partial spectra of syn-CH3CHOO at a resolution of 0.0015 cm-1. Figure reprinted from Reference 

[98] with permission from the American Chemical Society.  

Table 4. Vibrational Spectroscopy data for various Criegee intermediates. The numbers in parenthesis give the 

relative intensities of the bands as a percentage of the most intense band.   

Criegee Intermediates Band Position (cm-1) Description  References 

CH2OO v3 1434.1  

v4 1285.9  

v5 1213.3  

v6 909.26  

v8 847.44  

CH2 scissor/CO stretch 

CO stretch/CH2 scissor 

OCH bend 

OO stretch/OCHtrans bend 

CH2 wag  

Huang et al. [96] 

CD2OO v3 1318 

v4 1054 

CO stretch/CD2 scissor 

OCDtrans bend/OO stretch 

Huang et al. [96] 
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v5 1017 

v6 852 

OCDcis bend 

OO stretch/OCDtrans bend 

syn-CH3CHOO v4 1476.8 (30) 

v7 1280.8 (40) 

v8 1090.6 (10) 

v9 956.0 

v10 871.2 (100) 

CO stretch/HCO bend 

HCO bend/CO stretch 

CH2 wag/CCH bend 

CCH bend/CH2 wag 

OO stretch 

Lin et al. [95] 

anti-CH3CHOO v4 1479.0 (14) 

v7 1279.4 (17) 

v9 883.7 (100) 

v10 851.8 (73) 

CO stretch/HCO bend 

HCO bend/CO stretch 

OO stretch 

CCH bend/CH2 wag 

Lin et al. [95] 

(CH3)2COO v7 1424 (45) 

v9 1368 (25) 

v11 1040 (20) 

v13 887.4 (100) 

scissor of trans-CH3 

umbrella of cis-CH3 

CO stretch / CH3 wag 

OO stretch 

Wang et al. [97] 

 

Microwave spectroscopic methods have also been used to detect various Criegee intermediates 

under molecular beam conditions. Nakajima and Endo [70] and McCarthy et al. [83] observed 

pure rotational transitions of CH2OO and its isotopologues, cis-CHDOO, trans-CHDOO, 

CD2OO, CH2
18OO, CH2O

18O, CH2
18O18O, CD2

18O18O, 13CH2OO using Fourier-transform 

microwave spectroscopy (FTMW). The assignments of the rotational transitions were 

confirmed by FTMW-mm wave double resonance spectroscopic methods. The CO bond length 

was found to be typical of a double bond and thus the ground state structure of the CH2OO was 

verified to have dominant zwitterionic rather than biradical character. Twenty-four pure 

rotational transitions were observed for anti-CH3CHOO by Nakajima et al. [101], and 

Nakajima and Endo [102] observed twenty-five transitions for syn-CH3CHOO. The barrier for 

internal rotation of the methyl group was found to be substantially higher for the syn- conformer 

(837 cm-1) compared with anti- conformer (399 cm-1) suggesting strong interaction between 

one of the methyl hydrogen and terminal oxygen in the syn- conformer. A total of twenty-nine 

pure rotational transitions were observed for (CH3)2COO [103]. The barrier heights for the 

internal rotation of the two methyl groups (733 and 543 cm-1) were found to be similar to the 

syn- and anti- CH3CHOO. The rotational constants for CH2OO, CH3CHOO (syn- and anti- 

conformers) (CH3)2COO, and CH3CH2CHOO (syn1-, syn2- and anti- conformers) were 

determined by fitting the transition frequencies using Watson’s A-reduced Hamiltonian, and 

are listed in Table 5. Microwave spectroscopy has also been applied to characterize complexes 

and products from reactions of Criegee intermediates, as described in detail in the next section. 

Womack et al. [20] and Porterfield et al. [104] investigated the ozonolysis reaction of ethylene 

at atmospheric pressure and temperature in a fast-flow reactor, and detected the simplest 

Criegee CH2OO along with other products ranging from pre-reactive complexes to secondary 

reaction products using microwave spectroscopy.  
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Table 5. Rotational constants for various Criegee intermediates. The uncertainties in the constants are given in 

parentheses. 

Criegee Intermediates Rotational constants (MHz) References 

A B C 

CH2OO 77748.8661(122) 

77748.9491(186) 

77752.655(16) 

12465.2577(127) 

12465.17311(175) 

12465.247(13) 

10721.2765(131) 

10721.36435(161) 

10721.313(16) 

McCarthy et al. [83] 

Daly et al. [84] 

Nakajima and Endo [70] 

syn-CH3CHOO 17586.5295(15) 7133.4799(41) 5299.1704(40) Nakajima and Endo [102] 

anti-CH3CHOO 48442.153(53) 4486.685(53) 4166.67037(50) Nakajima et al. [101] 

(CH3)2COO 8803.13851(94) 4328.49377(59) 3006.23840(57) Nakajima and Endo [103] 

syn1-CH3CH2CHOO 15827.30797(92) 2831.2119(12) 2474.3361(12) Cabezas et al. [105] 

syn2-CH3CH2CHOO 9165.3125(17) 3931.5104(62) 3178.4222(61) Cabezas et al. [105] 

anti-CH3CH2CHOO 14783.5573(16) 2870.62137(69) 2477.44947(53) Cabezas et al. [105] 

 

Berndt et al. [21] used chemical ionization mass spectrometry (CIMS) coupled with a free-jet 

flow system to detect Criegee intermediate adducts with protonated tetrahydrofuran and amines 

during ozonolysis of ethene and cyclohexene, with a detection limit of about 104 molecule cm-

3. The atmospheric pressure free-jet flow system allowed production and reaction of Criegee 

intermediates under wall free conditions before sampling by CIMS. The steady state 

concentrations of sampled Criegee intermediates at various concentration of co-reactants were 

used to estimate bimolecular reaction rate coefficients which were consistent with 

measurements from other direct methods using alkyl diiodide precursors. Giorio et al. [85, 106] 

used proton transfer reaction mass spectrometry to probe adducts formed from reactions of 

Criegee intermediates with the DMPO spin trap with a detection limit of around 109 molecule 

cm-3. The Criegee intermediates were generated from ozonolysis of various biogenic and 

anthropogenic alkenes such as α-pinene, β-pinene, cis-2-hexene, methacrolein, styrene and 

limonene.   

 

4. Reactivity of Criegee intermediates 

The original sources of gaseous sCIs for laboratory studies were the ozonolysis of alkenes, with 

experiments conducted in reaction chambers used to deduce reaction rate coefficients. The 

development of more efficient and selective routes to sCI production, and hence direct 

spectroscopic detection (see the preceding section) has enabled direct measurement of sCI 

reaction kinetics, complementing the body of indirect measurements of sCI chemistry. Recent 

kinetic studies combined with computational calculations suggest that the Criegee 

intermediates can react rapidly, in many cases approaching or exceeding the classical gas-
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kinetic limit, with closed shell species. Moreover, sCIs exhibit a range of different loss 

pathways including unimolecular decomposition, bimolecular reactions, and UV photolysis. 

4.1 Unimolecular reactions 

Criegee intermediates can thermally decompose via two main mechanisms: 1,3 ring closure 

forming a dioxirane type intermediate, or via transfer of hydrogen to the terminal oxygen 

forming a hydroperoxide [107]. The dioxirane mechanism is the main pathway for Criegee 

intermediates without α hydrogen atoms, such as CH2OO. The dioxirane then decomposes to 

various products including OH via the ‘hot acid channel’ as shown for CH2OO [44, 108]. In 

this process the sCI isomerizes through the dioxirane structure to form an energized carboxylic 

acid, followed by its decomposition to release OH and other products. The theoretical and 

experimental studies suggest a wide range of decomposition rate constants for different Criegee 

intermediates, which were briefly reported in our previous review (see Table 1 in Khan et al. 

[26]). From direct kinetic measurements using diiodomethane photolysis as a source, an upper 

limit (because of contributions of wall loss and side reactions) to the CH2OO decomposition 

rate coefficient of 80-115 s-1 was deduced [63, 109]. A smaller upper limit to the decomposition 

rate coefficient of 11.7 s-1 estimated by Chhantyal-Pun et al. [66], is in better accord with the 

results of theoretical calculations giving a value of 0.3 s-1 [16, 110]. Berndt et al. [111] titrated 

CH2OO from ethene ozonolysis with SO2 to make H2SO4 and derived a rate coefficient of 

unimolecular reaction of CH2OO of 0.19±0.07 s-1. Most recently, Stone et al. [112] measured 

the first order removal of CH2OO at elevated temperature, where the decomposition dominates. 

Their master equation model of the pressure and temperature dependence gave an extrapolated 

value of 1.1  10−3s-1 at 298 K and 760 Torr He. Decomposition yields of 63.7% for H2 + CO2, 

36.0% for H2O + CO and 0.3% for OH + HCO were estimated from the master equation model.  

 

Scheme 2. Decomposition pathways of Criegee intermediates CH2OO and syn-CH3CHOO. 
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The decomposition of Criegee intermediates with α-hydrogen atoms, such as CH3CHOO and 

(CH3)2COO, occurs via a 1,4 -hydrogen transfer to the terminal oxygen atom forming a vinyl 

hydroperoxide (VHP) which in turn decomposes to yield OH and vinoxy radicals. Lester and 

co-workers have observed time resolved OH radical signals from unimolecular decomposition 

of CH3CHOO, (CH3)2COO and syn-MVKOO [82]. Only the syn-conformer of CH3CHOO was 

observed to produce OH radical, whereas the anti-conformer decomposition is expected to 

follow a dioxirane pathway similar to CH2OO. The interconversion barrier between the syn- 

and anti- conformers is predicted to be ~167 kJ mol-1 for CH3CHOO and thus the two 

conformers act as separate species at atmospheric conditions. Taatjes et al. [113] observed 

production of hydroxyacetone from (CH3)2COO decomposition and reaction pathway 

calculation suggested this was likely from migration of the OH group in the VHP intermediate. 

Unimolecular decomposition rate coefficients of 166, 369 and 33 s-1 at 298 K were estimated 

by Lester and co-workers for syn-CH3CHOO, (CH3)2COO and syn-MVKOO based on 

microcanonical rate coefficients measured under collision free conditions combined with 

master equation calculations [77, 114]. The details of these measurements and predictions are 

provided in a recent review [27]. Ambient measurements of the (CH3)2COO unimolecular 

reaction rate coefficient by Smith et al. [115] and Chhantyal-Pun et al. [5] of 361±49 (298 K) 

and 305±70 s-1 (293 K) using UV absorption spectroscopy are in good agreement with the 

values calculated by Lester and co-workers. Indirect ozonolysis methods have also been used 

to measure unimolecular reaction rate coefficients, relative to reaction with scavengers such as 

SO2 [43, 47, 49]. The unimolecular reaction rate coefficients derived from these ratios using 

known rate coefficients for reaction with SO2 were shown to be in reasonable agreement with 

the directly measured values, albeit the derived values seem to consistently overestimate the 

unimolecular reaction rate [115]. Larger Criegee intermediates produced from ozonolysis of 

biogenic alkenes with double bonds are also predicted to undergo various ring closure and H 

transfer reactions, and unimolecular reactions are expected to be one of the dominant sinks in 

the troposphere [107]. Future studies of unimolecular reactions of larger Criegee intermediates 

using direct methods would therefore be enlightening on the importance of Criegee 

intermediates in the troposphere.  

4.2 Insertion Reactions 

Reagents such as alcohols, carboxylic acids and water have been used to trap and verify 

production of Criegee intermediates in condensed phase ozonolysis reactions [116] and the 

corresponding reactions have been extensively explored in the gas phase, as reviewed here. 
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Various computational studies have shown that Criegee intermediates react with organic and 

inorganic molecules containing polar covalent bonds with hydrogen as shown in Scheme 3 [68, 

93, 110, 117-122]. These reactions are predicted to proceed by insertion of the Criegee 

intermediate into the polar bond. There are two main classes of insertion reactions: 1,4 insertion 

such as reactions with RCOOH and HNO3, and 1,2 insertion such as reactions with HCl, H2S, 

NH3, ROH, ROOH and H2O. The expected products of these reactions are multifunctional 

organic hydroperoxides, which can play an important role in secondary organic aerosol (SOA) 

formation in the troposphere.     

 

Scheme 3. 1,2 (blue) and 1,4 (red) insertion reactions of Criegee intermediates with various trace atmospheric 

molecules.  

The kinetics of insertion reactions of Criegee intermediates have been measured by various 

research groups using direct methods such as multiplexed photoionization mass spectrometry 

(MPIMS) and UV absorption spectroscopy, and the resulting rate coefficient values are 

summarized in a previous review (see Table 2 and Table 6 in Khan et al. [26]). At ambient 

temperature, the rate coefficient ordering is H2O < NH3 ~ ROH < H2S < HCl < RCOOH < 

HNO3, ranging from about 2  10-16 cm3 s-1 to 5  10-10 cm3 s-1. These reactions show weak 

dependence on pressure and negative dependence on temperature. Electronic structure 

calculations predict that these reactions proceed through formation of a pre-reactive complex, 

which then overcomes a cyclic transition state to produce functionalised organic 
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hydroperoxides as shown in Scheme 4 [68, 110, 118-122]. The 1,2 and 1,4 insertion reactions 

pass through 5-member and 7-member cyclic transition states, respectively. The 7-member 

cyclic transition state is submerged and nearly isoenergetic with the pre-reactive complex [68, 

93, 117, 123]. The rate coefficients for the 1,4-insertion reactions are experimentally measured 

to be near to, or in some cases above the hard-sphere collision limit, and thus may be 

determined by long-range capture processes, in accord with theoretical predictions for 

barrierless reactions. The 5-member cyclic transition states are computed to range from near 

isoenergetic with the pre-reactive complex to above the reactant energy, consistent with 

experimentally measured 1,2 insertion reaction rate coefficients in the 10-11 to 10-16 cm3 s-1 

range.        

 

 

Scheme 4. Representation of the energy profiles along two alternative insertion reaction pathways of Criegee 

intermediates. The black and red lines show the reaction pathways for 1,2- and 1,4- insertion pathways, 

respectively. Structures of the reactants are provided in Scheme 3.  

The rate coefficients for 1,4-insertion reactions of CH2OO, syn-CH3CHOO, anti-CH3CHOO 

and (CH3)2COO Criegee intermediates with various RCOOH were found by Chhantyal-Pun et 

al. [124] to correlate with the product of the dipole moments of the two reactants, as shown in 

Figure 5, supporting the idea that these rate coefficients are capture limited. A semi-empirical 

model based on dipole capture theory successfully describes the experimental rate coefficients 

reflecting the large dipole moments of the zwitterionic Criegee intermediates and the polarity 
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of the carboxylic acids. This model was applied to predict rate coefficients for reactions of 

atmospherically relevant, but difficult to measure, Criegee intermediates with RCOOH: 

k =  μ−0.5 {(1.9 ± 0.2) × 10−21(μD1μD2)
2
3 − (6.3 ± 0.7) × 10−21} 

 

E1 

Here, 𝜇𝐷1and 𝜇𝐷2 are the dipole moments of the reactants in C•m and 𝜇 is the reduced mass of 

the reactants in kg. A fit to all the available experimental data returned an adjusted R2 value of 

around 0.9 and thus equation (E1) provides a good structure activity relationship (SAR-

Capture) for reactions of Criegee intermediates with carboxylic acids. The reactions of larger 

Criegee intermediates with RCOOH have also been predicted computationally to be barrierless, 

which supports the general applicability of the SAR-Capture model [93]. The gradient from 

the fit is in reasonable agreement with the value predicted for an isotropic capture suggested 

by dipole capture theory [125]. The negative intercept value in equation (E1) was postulated to 

reflect the failure of dipole-dipole capture theory in the limit of weak dipole-dipole attraction. 

  

Figure 5.  Structure−activity relationship based on a dipole−dipole capture model for the 1,4 insertion reaction 

rate coefficients of Criegee intermediates. The top panel shows experimental rate coefficients for CH2OO (green 

squares), CH3CHOO (blue circles), and (CH3)2COO (red triangles) reactions with various carboxylic acids and 

HNO3. The solid line is a linear regression based on the capture model including all the rate coefficients except 

the pyruvic acid data set. The bottom panel shows the residuals of the linear fit. Figure adapted (with addition of 

rate coefficients for reactions with perfluorooctanoic acid (PFOA) and HNO3) from Reference [124] with 

permission from the American Chemical Society.  

The recently measured rate coefficient value for reaction of CH2OO with perfluoroacetic acid 

(PFOA) follows the trend predicted by the SAR-capture model, as shown in Figure 5 [126]. 
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However, the rate coefficients for reaction of CH2OO and (CH3)2COO Criegee intermediates 

with pyruvic acid were significantly lower than those values expected from the SAR-Capture 

model. Pyruvic acid has a carbonyl group that can form an intramolecular hydrogen bond with 

the acidic hydrogen, which may hinder the 1,4-insertion reaction with a Criegee intermediate, 

resulting in a reduction in the rate coefficient. The rate coefficient for the reaction of CH2OO 

Criegee intermediate with HNO3 was also found to follow the SAR-Capture model, as shown 

in Figure 5, which supports a similar 1,4-insertion mechanism. Thus, the SAR-Capture model 

may be sufficiently robust to be used to predict rate coefficients for 1,4-insertion reactions of 

other Criegee intermediates with various RCOOH compounds and HNO3. Predicted rate 

coefficient values from the SAR-Capture model are provided later. Further details of SAR 

prediction for rate coefficients of Criegee intermediates and carboxylic acids are reported in 

Chhantyal-Pun et al. [124] (see Table S3 of supplementary information). The rate coefficients 

of reactions with pinonic, terpinilic and nitric acids are relatively larger because of their larger 

dipole moments. Global modelling studies making use of the SAR-capture predictions have 

suggested that the fast 1,4-insertion reactions of Criegee intermediates are the dominant sink 

of carboxylic acids in the forested regions of the world [93, 124].  

The reactions of Criegee intermediates CH2OO and (CH3)2COO with CF3COOH show a 

negative temperature dependence [93]. The magnitude of the negative temperature dependence 

could not be described quantitatively by the dipole capture model. A reaction model based on 

branching between two pathways involving direct capture and stabilization of a pre-reactive 

complex, due to the presence of a low-lying transition state, was found to reproduce the 

observed temperature dependence. Thus, although the SAR-Capture model can describe the 

reactivity trends of the insertion reaction between Criegee intermediates and acids, a full 

quantitative description needs to consider the initial capture as well as entropic effects along the 

reaction pathway.    

Murray and co-workers [68] correlated the rate coefficients of 1,2- and 1,4-insertion reactions 

for CH2OO with the gas phase acidity of the co-reactants. They also showed that the rate 

coefficient values, plotted as a function of the labile hydrogen bond dissociation energy of the 

co-reactant, can be separated into two groups for the two insertion reactions.  As an empirical 

observation, they reported that the rate coefficients for 1,2 insertion reactions were best 

correlated with the geometric mean of the bond dissociation energy and gas phase acidity. 

Tobias and Ziemann [127] also found that the relative rate coefficients of a C13 Criegee 

intermediate with heptanoic acid, formic acid, formaldehyde, 2-propanol and methanol are 
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correlated well with the gas phase acidity of the co-reactants. More recently, Chhantyal-Pun et 

al. [128] showed that the rate coefficients for 1,2 insertion reactions of CH2OO with NH3, H2S, 

H2O and CH3OH are correlated significantly with the labile hydrogen bond dissociation energy 

(BDE) of the co-reactants. Figure 6 summarizes an updated set of directly measured rate 

coefficient values for the 1,2 insertion reactions. In this plot, the rate coefficient values for 

CH2OO reactions with H2O, NH3, CH3NH2, CH3OH, CH3CH2OH and (CH3)2CHOH were 

found to be correlated well with BDE and a linear fit returns an R-square value of greater than 

0.98.  

k = (−0.126 ± 0.008)BDE + (26.9 ± 3.8) 

 

E2 

The linear fit expression, E2, predicts a rate coefficient value of 1.1 × 10-10 cm3 molecule-1 s-1 

for the reaction of CH2OO with (CH3)2NH. This trend of increasing reactivity of CH2OO with 

increasing methyl substitution in amines is consistent with a recent computational study by 

Kumar and Francisco [129]. The rate coefficient for the CH2OO + HCl reaction is larger than 

would be expected from the linear fit. The dipole moments for the 1,2 insertion reaction 

transition states are predicted to be significantly lower than the 1,4 reactions [130]. Therefore, 

the 1,2-insertion reactions likely proceed by homolytic not heterolytic cleavage of the labile 

bond to hydrogen. However, the dipole moment of the CH2OO + HCl reaction transition state 

is of similar magnitude to that of the 1,4- insertion reaction transition states, suggesting a degree 

of heterolytic cleavage character which may explain the relatively large rate coefficient. The 

rate coefficient values for CH2OO reactions with CH3SH and H2S were found to be smaller 

than expected from the linear fit of equation E2, as shown in Figure 6. This is likely because 

the attractive forces between the Criegee intermediate carbonyl carbon and sulphur (a third-

row element) are not as strong as with oxygen and nitrogen (second-row elements). However, 

the rate of increase in rate coefficient is similar for both group of reactants. The reaction of 

CH2OO with (CH3)2S was found to be slow, likely because of the absence of labile hydrogen 

atoms, and only an upper limit value of < 1 × 10-14 cm3 molecule-1 s-1 could be estimated [131].    
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Figure 6. Comparison of the rate coefficients for various 1,2-insertion reactions of CH2OO Criegee intermediates 

with the bond dissociation energy of the labile hydrogen atom. The bond dissociation energies were obtained from 

the CRC Handbook [132]. The solid line is a linear fit to the rate coefficient values for reaction with CH3NH2 

[128], CH3OH [94, 130], CH3CH2OH [94, 130], (CH3)2CHOH [130], NH3 [128, 133] and H2O [92, 111]. The rate 

coefficient values for reaction with HCl [68], H2S [131, 134] and CH3SH [131, 135] are also shown. In case of 

rate coefficient with multiple measurements, an averaged value was taken as the best estimate.  

The reactions of (CH3)2COO with NH3 [128] and H2O [75] are significantly slower compared 

with that of CH2OO. Consistent with these observations, the barrier heights for the transition 

states of these reactions are predicted to be above the reactant energy for (CH3)2COO and 

submerged for CH2OO [110, 119]. Sheps et al. [72] observed that the 1,2-insertion reaction of 

anti-CH3CHOO with H2O is significantly faster than the reaction of syn-CH3CHOO, consistent 

with barrier height calculations of Long et al. [110]. Similarly, laboratory and computational 

studies of Chao et al.[136] found reaction of CH3OH with anti-CH3CHOO to be significantly 

faster than with syn-CH3CHOO. The reaction of syn-CH3CHOO with H2O [110] and 

(CH3)2COO with CH3OH [137] have been predicted to be significantly enhanced by hydrogen 

atom tunnelling. However, because of limited experimental datasets, it is hard to empirically 

identify general trends in 1,2-insertion reactions resulting from changes in the structure of the 

Criegee intermediate.  
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Figure 7. Schematic geometries of transition states for CH2OO + H2O (A), anti-CH3CHOO + H2O (B), syn-

CH3CHOO + (H2O)2 (C) and syn-CH3CHOO + NH3 + H2O (D) reactions. Figure reprinted from Reference [136] 

with permission from the  American Chemical Society.  

The rate coefficients for some of the 1,2-insertion reactions of Criegee intermediates have been 

shown to be catalysed by the presence of a water molecule. For example, reaction of CH2OO 

with H2O is enhanced by a factor of 3000 by a second H2O molecule [92]. Similarly, reaction 

with methanol is nearly 3 times faster with an extra water molecule [138]. Quantum chemistry 

calculations predict the formation of a submerged seven-member cyclic transition state 

incorporating the additional water molecule for reactions of CH2OO, syn-CH3CHOO, anti-

CH3CHOO and (CH3)2COO with H2O, as shown in Figure 7 [136, 138-140]. The seven-

member cyclic transition state, as is found for the 1,4-insertion reactions of Criegee 

intermediates, is significantly more stable than the five-membered cyclic transition state arising 

in the absence of a water molecule, which accounts for the enhancement of the reaction rate 

coefficient. Similar enhancements are expected for other 1,2-insertion reactions of Criegee 

intermediates. The reactions with water monomer/dimer along with unimolecular reactions are 

the dominant sinks for most Criegee intermediates in the troposphere [26, 94, 107]. However, 

the 1,4-insertion reactions are fast and could compete with these dominant sinks under certain 

conditions, whereas the 1,2-insertion reactions, even with enhancement in the presence of a 

water molecule, are in general too slow to compete in the troposphere with reaction with water 

vapour or unimolecular decomposition.  



 

23 
 

UOB Open 

 

Figure 8. Observation of a MFOHP from the insertion reaction of CH2OO with CF3COOH using multiplexed 

photoionization mass spectrometry. The solid lines are photoionization spectra of different mass cations observed 

after initiation of the reaction. The vertical bars show predicted appearance energies of CH2OO+ (mass 46), 

CH2OOH+ (mass 47), and CF3COOCH2OOH+ (mass 160). The inset displays kinetic traces of the m/z 46, 47, and 

160 species. Figure reprinted from Reference [124] with permission from the American Chemical Society. 

The insertion reactions of Criegee intermediates have been predicted to produce 

multifunctional organic hydroperoxides (MFOHPs), as shown in Scheme 3. Direct observation 

of MFOHPs has proven possible using MPIMS [124, 128]. The MPIMS method probes both 

the time and photon energy-dependent ionization profiles of various species involved in a 

chemical reaction, which allows detailed structural and kinetic characterizations of these 

species [141]. The MFOHPs produced from the 1,4-insertion reaction of CH2OO with 

CF3COOH (shown in Figure 8) and (H2O)2 have been shown to ionize to a stable cationic state 

[92, 124]. Other MFOHP products of reactions of CH2OO and RCOOH undergo dissociative 

ionization in the cationic state to produce CH2OOH+ (mass 47 in Figure 8) and co-fragments, 

confirmed using quantum chemistry calculations along the intrinsic reaction coordinate [124]. 

The appearance energy for the dissociative ionization process was calculated by subtracting 

the ground state energy of the neutral molecule from the energy of the transition state of the 

dissociation channel in the cationic state. Similarly, the MFOHP formed from the 1,2-insertion 

reaction of CH2OO with CH3NH2 undergoes dissociative ionization to CH3N(H)CH2
+ + HO2 

and CH3N(H)CHO+ + H2O [128]. The dissociative ionization pathways in the MFOHP cationic 

states were also confirmed using intrinsic reaction coordinate and appearance energy 
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calculations. Using MPIMS, Sheps et al. [92] observed hydroxymethyl hydroperoxide, one of 

the simplest MFOHP, to be one of the major products from the reaction of CH2OO with (H2O)2.  

 

Figure 9. Geometry of the pre-reactive complex involved in the CH2OO + H2O reaction, obtained using Fourier 

Transform Microwave Spectroscopy. The ab initio calculations were performed at the CCSD(T)/aug-cc-pVTZ 

level of theory. Figure reprinted from Reference [142] with permission from AIP Publishing.  

MFOHPs from reaction of CH2OO with HCOOH, CH3COOH and CH3OH have been observed 

in static chamber studies using Fourier transform infrared spectroscopy by Neeb et al. [35]. 

Recently, Chung et al. [69] observed formation of hydroperoxymethyl formate (HPMF) from 

the CH2OO + HCOOH reaction using time resolved step scan infrared spectroscopy. They were 

also able to observe decomposition of one of the HPMF conformers to formic acid anhydride, 

consistent with previous static chamber studies. Endo and co-workers have observed MFOHP 

products from CH2OO + HCl [143], CH2OO + HCOOH [144] and CH2OO + H2O/(H2O)2 [101] 

reactions using Fourier transform microwave spectroscopy. They were also able to observe 

pre-reactive complex formation in the CH2OO + H2O/(H2O)2  reaction system [142], as shown 

in Figure 9, but not in the CH2OO + HCl [143] and CH2OO + HCOOH reaction systems [144]. 

This indicates that the pre-reactive complex in the latter two reactions promptly reacts, in 

agreement with low reaction barrier predicted by theoretical calculations [68, 117, 143]. No 

systematic experiments have been performed for yield measurement of MFOHPs at ambient 

conditions from the insertion reactions. Liu et al. [145] have also observed evidence for 

catalytic isomerization of Criegee intermediates with α-hydrogens to vinyl hydroperoxides, in 

the presence of formic and acetic acids. Ab initio and master equation studies by Vereecken et 

al. [117] and Raghunath et al. [146] predict that most of the hydroperoxide adducts produced 

from CH2OO reactions with HCOOH and HNO3, respectively, are stabilized at ambient 

conditions.  
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Figure 10. Mass spectra of sample products from a jet stirred reactor during ozonolysis of ethene. The masses of 

the cations are consistent with sequential addition reactions of Criegee intermediate CH2OO with CH3OH. Figure 

reprinted from Reference [147] with permission from the PCCP Owner Societies.  

No direct observations have been reported for the reaction of Criegee intermediates with 

hydroperoxides. However, Hansen and co-workers recently observed oligomers from 

sequential addition of CH2OO with H2O, HCOOH, CH3OH, C2H5OH, H2O2, CH3OOH, 

C2H5OOH, CH3CHO, HOCH2CHO, HOOCH2CHO and C2H4 during ozonolysis of ethene in 

a jet stirred reactor as shown in Figure 10 for the reaction with CH3OH [147]. The addition 

products were measured using energy resolved photo-ionization mass spectrometry with the 

aid of quantum chemistry calculation. The observed appearance energies of various cations 

were in good agreement with the calculated appearance energies for hydroperoxides with 

CH2OO units. The reactions were postulated to proceed by 1,2 insertion of CH2OO with 

various reactants produced from the ozonolysis to form a hydroperoxide. These hydroperoxides 

can then react further with CH2OO through the 1,2-insertion mechanism as shown in Scheme 

4 to form adduct hydroperoxides. Sakamoto et al. [148] also observed oligomeric organic 

hydroperoxides with CH2OO chain units, likely from sequential insertion of CH2OO to a 

hydroperoxide, using negative ion chemical ionization mass spectrometry of gas and particle 

phase product samples from ethylene ozonolysis experiments carried out in a Teflon bag 

reactor. Vereecken et al. [122] predicted a reaction pathway leading to formation of a pre-

reactive complex and then to a hydroperoxide adduct, similar to the pathways shown in Scheme 

4. However, the minimum energy pathway is predicted to form ether oxides in the case of 

CH2OO + CH3OOH and (CH3)2COO + CH3OOH reactions.       
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Figure 11. Volatilities of the adduct products from the Criegee intermediate + carboxylic acid reactions. 

Volatilities are shown in grey shading and the labels IVOC, SVOC, LVOC, and ELVOC stand for intermediate, 

semi, low, and extremely low volatile organic compound, respectively. The saturation concentration ranges for 

these classifications are provided in Donahue et al. [149]. The diameter of each red circle indicates the magnitude 

of the predicted rate coefficient (*units of cm3 s−1) estimated from the SAR of Equation (E1). Figure reprinted 

from Reference [124] with permission from the American Chemical Society.  

Figure 11 shows the predicted vapour pressures of various MFOHPs, obtained from Criegee 

intermediate + carboxylic acids reactions, using an empirical model based on the group 

contribution technique [150, 151]. The inputs to the model are described by Chhantyal-Pun et 

al. [124] and the volatility classification are those used by Donahue et al. [149]. MFOHPs 

produced from reaction of Criegee intermediates derived from pinene ozonolysis with large 

biogenic carboxylic acids, such as pinonic acid, pinic acid and terpenylic acid, are predicted to 

have low to extremely low volatility, and are therefore likely to condense to form SOA as 

shown in Scheme 5. 
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Scheme 5. Schematic pathway of a Criegee intermediate (CI) insertion reaction (with carboxylic acid, CA) leading 

to formation of secondary organic aerosol.  

The fast rate coefficients for production of low volatility MFOHPs suggest that the 1,4-

insertion reactions will be an important source of SOA in forested regions around the globe. 

Figure 12 shows the result of a global atmospheric model simulation performed by Chhantyal-

Pun et al. [124] which predicts an increase in SOA concentrations of up to 0.89 μg m-3 resulting 

from reaction of Criegee intermediates with pinonic acid, compared with global average SOA 

concentration of 2.8 μg m-3 [152]. The SOA contribution from Criegee intermediate chemistry 

is dependent on the estimate of steady state concentrations of Criegee intermediates in the 

troposphere which are being actively refined using new experimental as well as computational 

efforts. Studies by Enami and Colussi have further shown that Criegee intermediates can react 

efficiently with alcohols and carboxylic acids at the air water interface and thus may facilitate 

particle growth [153, 154].  

 

Figure 12. Reduction of Pinonic acid after inclusion of reaction with Criegee intermediates predicted using the 

STOCHEM-CRI model. The numbers in the boxes represent average SOA concentrations (in μg m-3) during 
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summer (June, July, August, top) and winter (December, January, February, bottom) at various places indicated 

by the diamond symbols. Figure reprinted from Reference [124] with permission from the American Chemical 

Society. 

4.3 Cycloaddition Reactions  

Criegee intermediates are expected to undergo cycloaddition reactions as is typical for 1,3 

dipoles [116]. Computational studies have predicted addition of Criegee intermediates across 

double bonds of various molecules such as carbonyls [155], alkenes [91, 156] and SO2 [157, 

158], as shown in Scheme 6. Criegee intermediates are also predicted to self-react to form six-

membered cyclic biperoxides as shown in Scheme 6 [156]. These additional chemicals are 

present in ozonolysis experiments either as a source or scavenger of Criegee intermediates or 

as a side product. Thus, characterisations of these reactions are important in understanding the 

ozonolysis studies. The cyclic ozonide produced from reaction with SO2 can decompose to 

form SO3 which is a primary precursor to H2SO4, itself an important precursor for nucleation 

and aerosol formation in the atmosphere.   

 

Scheme 6. Cycloaddition reactions of Criegee intermediates with various molecules.   

Rates of reaction of the CH2OO Criegee intermediate with CH3CHO, CH3COCH3 and 

CF3COCF3 have been measured using photoionization spectrometry and UV absorption 

spectroscopy [4, 159, 160] and the rate coefficients were found to increase in the order 

CH3COCH3 < CH3CHO < CF3COCF3 (see Table 6 in Khan et al. [26]). The reactions of 

Criegee intermediates with carbonyl compounds and alkenes are predicted to form pre-reactive 
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complexes and then proceed over a transition state to form a heteroozonide (secondary 

ozonide), similar to the pathway shown in scheme 4 for insertion reactions [155, 159]. The 

experimental observations are consistent with quantum chemistry calculations that predict that 

the transition state is stabilized more effectively in the presence of electron withdrawing 

substituent groups in the carbonyl compound. The reactions of CH2OO with CH3COCH3 and 

CH3CHO were recently found by Elsamra et al. [159] to have weak pressure and negative 

temperature dependences in the 298 to 500 K range, consistent with small re-dissociation of 

reaction intermediates back to reactants and a submerged barrier. Chhantyal-Pun et al. [161] 

further studied the CH2OO reaction with CH3COCH3 at atmospherically relevant conditions 

and found that the rate coefficient increases by a factor of 5 going from a temperature of 310 

to 250 K, as shown in Figure 13. Products were observed at the adduct masses for the CH2OO 

reactions with CH3COCH3 and CF3COCF3, at 4 Torr (He) and 293 K, and the appearance 

energies were consistent with photoionization of a secondary ozonide product, as shown in 

Scheme 6 [4, 159]. The yield of secondary ozonide is expected to increase further at higher 

pressure because of increased collisional stabilization. Chamber experiments by Neeb et al. 

also showed formation of secondary ozonides during ozonolysis of ethene in the presence of 

acetaldehyde and acetone at 730 Torr (synthetic air) and 296 K [36]. These authors observed 

production of HCOOH and HCHO, which are predicted to be dissociation products of the 

secondary ozonide, thus resulting in catalytic isomerization of CH2OO. Rate coefficients of 

reactions of CH2OO with various alkenes like ethene, propene, isobutene, 1-butene and 2-

butene were measured to be around 1  10-15 cm3 s-1, significantly smaller than reactions with 

carbonyls [91]. The reactions with alkenes exhibit a weak positive temperature dependence in 

the 298 to 494 K range [91], consistent with predicted higher energy transition states 

(isoenergic to the energy of separated reactants) for the cyclo-addition reactions with alkenes 

compared with carbonyls [155, 156].  
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Figure 13. Temperature dependence of the reaction of CH2OO with CH3COCH3. The blue circle and orange 

triangle datapoints are obtained from studies of Chhantyal-Pun et al. [161] The scarlet triangle and violet square 

datapoints are taken from studies of Taatjes et al. [4] and Elsamra et al. [159] respectively. The solid green line 

shows a semi-empirical analytical fit the dataset. Figure adapted from Reference [161] with permission from the 

American Chemical Society.  

The rate of self-reaction of the CH2OO Criegee intermediate has been measured by Buras et 

al. [67], Chhantyal-Pun et al. [66] and Ting et al. [162] using UV absorption spectroscopy.  The 

derived rate coefficient (see Table 6 in Khan et al. [26]) is near the hard-sphere collision limit 

(~ 7  10-11 cm3 s-1). Furthermore, Chhantyal-Pun et al. [5] measured a self-reaction rate 

coefficient for (CH3)2COO of 6  10-10 cm3 s-1, which is greater than the hard-sphere collision 

limit but within the dipole capture limit. The (CH3)2COO Criegee intermediate is predicted to 

have a dipole moment of 5.48 D, compared with 4.31 D for CH2OO, implying greater dipole-

dipole attraction and a higher self-reaction rate coefficient. However, the observed difference 

in the self-reaction rate coefficient is larger than that predicted by the dipole capture theory. A 

computational study by Vereecken et al. predicted a barrierless CH2OO self-reaction with an 

excess energy of around 400 kJ mol-1 for the formation of the cyclic biperoxide as shown in 

Scheme 7 [157]. The cyclic biperoxide is predicted to undergo sequential homolytic cleavage 

of the peroxide bond to form oxygen and two carbonyl molecules. Similar reaction pathways 

can be expected for the (CH3)2COO self-reaction. The self-reaction rate coefficient of 

(CH3)2COO was also found to be independent of temperature in the range 250 to 310 K, 

consistent with a negligible barrier to reaction, and with a rate coefficient limited by dipole-
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dipole attraction [93]. Several studies have observed production of carbonyl compounds during 

reactions of CH2OO and CH3CHOO, using MPIMS or laser induced fluorescence detection, 

possibly because of self-reaction [2, 75, 160].    

 

Scheme 7. Representation of the potential energy along the reaction coordinate for the cycloaddition reaction of 

a Criegee intermediate with itself (red) and with SO2 (black). Structures of the reactants are provided in Scheme 

6. 

The reactions of CH2OO, syn-CH3CHOO, anti-CH3CHOO and (CH3)2COO Criegee 

intermediates with SO2 have been probed directly using multiplexed photoionization 

spectrometry [2, 5, 19] and UV absorption spectroscopy methods [66, 72, 75, 90]. The rate 

coefficients for CH2OO/syn-CH3CHOO and anti-CH3CHOO/(CH3)2COO were found to be 

similar (see Table 5 in Khan et al. [26]), suggesting comparable reaction pathways. Similar to 

the cyclo-addition reactions of Criegee intermediates with alkenes and carbonyls, the reactions 

of Criegee intermediates with SO2 have been predicted to proceed by formation of a pre-

reactive complex before crossing a submerged barrier to form an ozonide structure as shown 

in Scheme 7 [157, 158]. The submerged barrier is consistent with experimental observations 

of large rate coefficients. The Criegee intermediates with larger dipole moments (5.53 D for 

anti-CH3CHOO and 5.48 D for (CH3)2COO) have about an order of magnitude larger rate 

coefficients for SO2 reaction than Criegee intermediates with lower dipole moments (4.69 D 

for syn-CH3CHOO and 4.31 D for CH2OO) [19, 72], suggesting a role for long-range 

interactions in the  reaction rate coefficients [5]. The dipole moments of larger Criegee 

intermediates, derived from ozonolysis of biogenic hydrocarbons, are predicted to be greater 

than for CH2OO. Therefore, rate coefficients in the 10-11 to 10-10 cm3 s-1 range can be expected 
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for the reactions between Criegee intermediate and SO2, based on the laboratory observations 

so far.  

 

Figure 14. Pressure dependence of reaction of (CH3)2COO Criegee intermediate with SO2 at room temperature. 

The CRDS dataset for CH2OO was obtained from Chhantyal-Pun et al. [66]. The CRDS and MPIMS dataset for 

(CH3)2COO were obtained from Chhantyal-Pun et al. [5]. The UV datasets for CH2OO and (CH3)2COO were 

obtained from Huang et al. [75].    

The rate coefficient for the reaction between CH2OO and SO2 is independent of pressure [66, 

75], as shown in Figure 14, indicating little re-dissociation of the ozonide to reactants, and at 

low pressure (4 Torr He) this reaction was shown using MPIMS to produce SO3 [19]. Using 

time resolved step-scan infrared spectroscopy, Wang et al. [163] observed formation of SO3 

and HCHO from reaction of CH2OO with SO2 at pressure of 110 Torr. These observations are 

consistent with predicted decomposition of the initial secondary ozonide to SO3 and HCHO as 

shown in Scheme 7 [157, 158]. The rate coefficient for the (CH3)2COO + SO2 reaction has a 

positive pressure dependence, suggesting some stabilization of an association reaction 

intermediate and non-negligible dissociation back to reactants. Using CRDS and MPIMS, 

Chhantyal-Pun et al. [5] measured a relatively small pressure dependence, with rate coefficients 

increasing by 20 percent, compared to an increase of 100 percent measured by Huang et al. 

[75] in the 10 to 100 Torr range as shown in Figure 14. A weak negative temperature 

dependence was reported by Smith et al. [115] for the (CH3)2COO + SO2 reaction in the 283 

to 323 K range. Computational studies by Kuwata et al. [158] estimate a 96.2% yield for prompt 

carbonyl and SO3 formation, whereas Vereecken and co-workers [157] estimate > 97% 

collisional stabilization of the cyclic secondary ozonide. Kuwata and co-workers suggest that 
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the reaction proceeds mainly through a closed-shell pathway resulting in simultaneous cleavage 

of the O-O and CO bonds to form SO3 and (CH3)2CO. Instead, Vereecken and co-workers 

suggest that the reaction proceeds through an open-shell pathway resulting in sequential 

cleavage of O-O and CO bonds to form a diradical intermediate before forming SO3 and 

(CH3)2CO. Chhantyal-Pun et al. [5] also showed evidence for catalytic isomerization of 

(CH3)2COO in the presence of SO2 and the isomerization product signal was consistent with a 

combination of 2-hydroperoxypropene and methyldioxirane. Kuwata et al. [158] estimated a 

2.5% yield for isomerization of (CH3)2COO to the CH3C(O)OCH3 ester, in the presence of 

SO2, which may also contribute to the observed isomerization signal.   

 

Figure 15. Modelled annual percent contribution of Criegee intermediates reaction with SO2 to production of 

tropospheric H2SO4. The only other H2SO4 source considered is reaction of OH + SO2. Figure adapted from 

Reference [107] with permission from the PCCP Owner Societies.  

Atmospheric reaction of SO3 with water forms sulfuric acid which is an important precursor to 

aerosol formation [164]. Figure 15 shows that Criegee intermediate reaction with SO2 is 

estimated to contribute up to ~70% of H2SO4 production in the Amazon region. The reactions 

of larger atmospherically relevant Criegee intermediates with SO2 may involve greater 

collisional stabilization of secondary ozonide intermediates because of the greater number of 

degrees of freedom. However, an ozonolysis flow tube study by Sipilä et al. [53] coupled with 

detection of sulfuric acid suggested that even for larger Criegee intermediates produced from 

the ozonolysis of isoprene, α-pinene and limonene, the yield of SO3 from reaction with SO2 

might be close to unity. Direct yield studies of SO3, as well as the chemistry and structures of 
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the reaction intermediates, need to be pursued to quantify better the importance of these 

reactions in the troposphere.  

 

4.4 Addition Reactions  

Criegee intermediates can react with various trace molecules in the troposphere which possess 

unpaired electrons, including NO, NO2 and RO2 radicals. Direct MPIMS studies have shown 

that the reaction of CH2OO with NO is slow, with a rate coefficient < 6  10-14 cm3 s-1 [2], 

consistent with predictions of a high energy barrier [157]. In contrast, reactions of sCIs (C1-

C3) with NO2 have bimolecular rate coefficients in the range of ~10-12 cm3 s-1 [2, 5, 19]. The 

rate coefficient for reaction of CH2OO with NO2 has been refined by Stone et al. [160] to be 

(1.5±0.5)×10-12 cm3 molecule-1 s-1 using laser induced fluorescence of HCHO, as a proxy for 

CH2OO, and Luo et al. [100] to (1.0±0.2)×10-12 cm3 molecule-1 s-1 using quantum cascade laser 

infrared spectroscopy of CH2OO. A computational study by Vereecken and co-workers showed 

that the minimum energy pathway for the NO2 reaction involves a pre-reactive complex and 

nitroalkyl peroxy radical product, connected by a submerged barrier [165]. The competing 

reaction pathway leading to formation of NO3 was predicted to have a high barrier and is thus 

not accessible under ambient conditions. Both predictions are consistent with observation of 

only adduct product formation by direct studies [166]. These outcomes suggest that the 

previous observation of NO3 in indirect studies may have resulted from side reactions of 

species generated during the reaction initiation step [167]. Chhantyal-Pun et al. [5] also showed 

evidence for isomerization of (CH3)2COO to 2-hydroxypropene and methyldioxirane in the 

presence of NO2.  

 

Scheme 8. Addition reactions of Criegee intermediates with NO2 and RO2 radicals.  
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Similar to reactions with NO2, Criegee intermediate have been predicted to undergo addition 

reactions with RO2 with submerged barriers [157, 168]. Recently, Chhantyal-Pun et al. [169] 

measured rate coefficients for reaction of CH2OO with CH3O2 and CH3C(O)O2 of ~3× 10-11 

and ~5.0 × 10-11 cm3 molecule-1 s-1 at 293 K. Both rate coefficients were found to have a 

negative temperature dependence with values of (2-10) × 10-11 cm3 molecule-1 s-1 in the 310-

240 K temperature range, consistent with the prediction of a submerged barrier. The adduct 

product from the reaction of the Criegee intermediate and peroxy radical is also predicted to be 

a peroxy radical (Scheme 8), which can further react with Criegee intermediates to form 

oligomerization products with Criegee intermediate units. Zhao et al. [170] observed such 

oligomers, as shown in Figure 16, with Criegee intermediate units to be the dominant 

components of SOA formed following the ozonolysis of trans-3-butene. The oligomers were 

postulated to be formed from sequential addition reaction of RO2 with Criegee intermediates 

reactions, as in previous studies [171]. The larger oligomers (n≥4) were dominant in smaller 

particles, while smaller oligomers (n<4) were abundant in larger particles, suggesting that the 

oligomers act as nucleating species, and shorter-chain oligomers condense onto existing 

particles to drive particle growth.  

 

Figure 16. Electrospray ionization mass spectra of SOA produced from ozonolysis of trans-3-hexene showing 

oligomers with various number of Criegee intermediate units. Different peroxy radicals are produced in the 

presence of cyclohexane and chlorocyclohexane producing different oligomer mass series. Figure reprinted from 

Reference [170] with permission from the PCCP Owner Societies.   

The adduct peroxy radicals once formed are expected to follow a similar tropospheric fate as 

other peroxy radicals, i.e. reactions with other peroxy radicals, HO2 or NO depending on the 

environment. Reaction with other peroxy radicals and NO will lead to formation of alkoxy 
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radical which will likely decompose to form smaller products, whereas reaction with HO2 can 

form stable MFOHPs. The MFOHPs produced from larger peroxy adducts can condense into 

secondary organic aerosol as shown in Scheme 5. The combined global chemistry transport 

modelling and box modelling studies of Chhantyal-Pun et al. [169] showed maximum 

contributions of ≤3% to the SOA concentration in the Amazon region from reactions of Criegee 

intermediates with peroxy radicals. The fast reaction of Criegee intermediates with peroxy 

radicals could also be important in atmospheric simulation chamber experiments. Chamber 

ozonolysis experiments use OH radical scavengers such as cyclohexane and propane which 

produce peroxy radicals and unintentionally could also scavenge Criegee intermediates. Thus, 

the reaction of Criegee intermediate with peroxy radicals should be considered in any reaction 

model used for estimating product yields from reactions of stabilized Criegee intermediates.   

5. Conclusions  

Recent advances in the production and detection of Criegee intermediates have allowed direct 

study of reaction kinetics with a range of tropospherically relevant molecules. These laboratory 

measurements, interpreted with the aid of computational studies, have revealed some unusual 

kinetics and reaction mechanisms. Product studies have shown formation of adduct molecules 

from insertion and addition reactions which can condense into secondary organic aerosols. 

Similarly, cycloaddition reactions with SO2 produce SO3 which is a precursor for sulfate 

aerosols in the troposphere. Systematic studies of product yields are still lacking and need to 

be pursued to quantify the importance of these reactions in the troposphere. Similarly, direct 

studies of larger Criegee intermediates, produced from the ozonolysis of biogenic alkenes, are 

still rare, but the development of structure activity relationships will help to predict their 

reactivities for tropospheric modelling studies.   
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