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I. INTRODUCTION

Due to intense market competition, there is a need to produce

better and cheaper products. This can be accomplished by applying

Statistical Quality Improvement techniques, simple and sophisticated,

in an effort to learn more about the product and the process. Simple

tools, widely applied, are essential for refining and improving

products that are being manufactured. These tools can only partially

compensate for the flaws caused by faulty design that might have

occured at the early stages of the product or process development. In

order to make improvements in quality
, one needs to experiment with

alternatives in the early development stages of the product or process

in order to achieve a sound basic design, so that fundamental flaws or

imperfections do not occur later. This kind of experimentation can be

expensive, but the expense can be justified if it results in a product

of better quality.

In designing quality products, a high degree of efficiency can be

attained through the application of Statistical Design of

Experiments(SDE)
. In the context of the high utility value of SDE in

product and process quality improvement, the ideas of Taguchi are

noteworthy of mention.

The concept of quality and its improvement should be a top priority

of every person in a company. This requires good teamwork and the use

of certain scientific methods. Producing quality goods and increasing

the productivity at minimal expense, can be accomplished by having as

complete a knowledge as possible about the process and by being able



to use such knowledge to advantage. In other words, Quality Control is

not just a passive inspection of products. One has to relate the

results of the inspections to whatever knowledge one might have about

the process and gain further insight into the possible causes of the

defect, and devise means of circumventing the problem.

In order to discover something of importance, one needs to be well

informed about the subject and at the same time be a keen or attentive

observer. According to Box [ 1987 ] , we need a critical event, one that

contains significant information; but obviously one cannot observe the

event if one is not a keen observer. In general, most things that

occur are not critical and not much is learned from them. Every now

and then, however, some exceptional events do occur. Perceptive

observers are rare, too. The requirements for being a perceptive

observer are that one should have an innate natural fascination or

curiosity and at the same time, be well versed in his area of work.

In order to make a revolutionary technological change, one has to

increase the probability of the occurence of a critical event and a

perceptive observer coming together. One way to accomplish this is to

make sure that there is a free flow of naturally occuring information

to the observer. Another way is to have directed experimentation,

which could increase the chances of the occurence of an informative

event so that it is more likely to be observed.

Some of the tools or ways of focussing ones interest on the quality

of the product are check sheets, Pareto charts, histograms, scatter

plots and graphs. All of these tools are rather simple and eye

catching, and can be understood by everyone.



As an example, suppose we find that in a week of production of

springs, about 75 are defective. This observation by itself might not

be helpful in improving the process. On the other hand, if one

inspects the defective springs, categorizes them by the nature of the

defects: eg. scratches, cracks, pinholes, dimensional inaccuracies

etc., and marks them on a check sheet, the results can be shown on a

Pareto chart. For instance, a chart might show that the majority of

the springs were discarded due to cracks in which case, a solution can

be sought to remedy the problem. The Pareto chart serves to separate

the few important defects from the numerous trivial ones

.

The next step is to look for possible causes of the cracks. This

can be accomplished through the use of a cause -effect diagram. This

diagram facilitates a focused and educated discussion and an

interchange of ideas among observers about what might be the possible

causes for the cracks. Often this can lead to the identification of a

number of causes that need to be analysed. We might categorize the

cracks by their size and construct a histogram to show the

distribution of cracks of different sizes. This, in itself, can be the

summary of the crack problem that we are faced with. However, if there

are two types of springs, A and B, the original histogram can be split

up into two parts, each part showing the frequency distribution for

the crack size. From the figure, one can see that most of the cracks

occur in(say) type A and also, the size of the cracks are larger in

type A. Hence, by this type of data stratification, one can approach

the root of the problem and its causes. Scatter diagrams are also



helpful in that they might show the relationship between the crack

size and say, the temperature of hardening.

Evidently, being an informed observer is not sufficient in the

quest to improve quality. Directed experiments are needed in order to

ensure well designed processes and thus well designed products,

resulting in greater improvements in quality.

The emphasis of directed experimentation is on obtaining a product

and a process that are well designed, so that minimal rejection takes

place, thus reducing the need for inspections and paving the way for

economic gains

.

STATISTICAL DESIGN OF EXPERIMENTS:

Experiment design was introduced in the early part of the 20th

century. R.A.Fisher [1966] argued that , for any prototype to be

successful in the real world, it ought to be designed and tested in

the most adverse of real conditions and not in orchestrated perfect

conditions simulated in a laboratory. This idea was adopted in a

multitude of fields such as Medicine, Biology, Education and to a

lesser extent, Engineering. Unfortunately, the potential of reaping

the benefits of the experiment design has not been properly exploited

by the industry in the West; mostly due to the lack of understanding

and the support on the part of the management. The basic difference

between the policies of the managements in this country and those in

Japan, lies in the fact that the Japanese management mandates the



requirement that statistical design methods be used in order to

develop a quality product.

The Japanese have been successful in building quality into their

products and processes. In particular, Taguchi [1978] has emphasised

the importance of using Statistical designs in :

i) Minimizing variation with mean on the target,

ii) Making products robust to environmental factors,

iii) Making products insensitive to component variation,

iv) Life testing.

The first three categories are examples of what Taguchi terms

Parameter Design. He also advocates the use of signal-to-noise ratios

(S/N), accumulation analysis, and minute analysis. Though some of

these methods are extremely difficult in certain cases, they may prove

to be equally inefficient and complicated in some other cases. So, in

order to decide whether or not to make use of his methods, one needs

to be judicious and somewhat selective.

i) MINIMIZING DEVIATION FROM THE TARGET:

In his analysis, Taguchi recommends that the S/N ratio be used as a

measure of the product performance. This is given as

SNT - 20 log(y/s); where, y is the mean of the individual observations

and s is the standard deviation.

According to Box[1987]
, this S/N approach seems very complicated

and restrictive. Its use is equivalent to using the logarithmic



transformation which renders the standard deviation independent of the

mean. It must be noted, however, that the use of the log-transform is

not always justified. Sometimes, the analysis can be made by using no

such transformation or by using some other type of transformation like

a reciprocal or a square root. Hence, unless the log- transform is the

right transform, the S/N ratio will be inappropriate.

ii) ROBUSTNESS TO ENVIRONMENTAL CONDITIONS:

Taguchi stresses experiment design to make products robust to

environmental factors. Designing experiments to make the products

robust to environmental variations involves a combination of designs

called inner and outer arrays. For each experimental run in the design

(or inner) array where the primary design factors are varied over a

wide range, another(outer) array of runs is conducted by varying other

environmental conditions or factors to create noise. Such designs

require a large number of experimental runs but the results can be

very informative

.

iii) PRODUCTS INSENSITIVE TO COMPONENT VARIATION:

Most products are assembled from a number of components. The

performance of the final product will vary if the individual

components vary. One needs to modify the design of the finished

product in a way that minimizes the effects of component variation.

Taguchi illustrated his approach of parameter design with a Wheatstone



Bridge circuit. ( see chapter 6) The goal was to choose the nominal

values of the various resistances, the battery voltage, etc. such that

the unknown resistance y, could be determined as precisely as

possible. In this example, the mathematical relationship between the

characteristics of the components and of the response is known from

physical theory, so, computer calculations can take the place of

experiments. However, Taguchi uses inner and outer array techniques

together with S/N ratios to solve the problem. Box [1987] pointed out

that this method does not necessarily yield the optimal solution and

that S/N ratios are not needed. Instead, he suggested the use of some

standard optimizing procedures
.
(see chapter 6 for example.)

iv) LIFE TESTING:

Life testing deals with the product reliability, which is very

important to the customer over the lifetime of the product. It deals

also with the determination of the probability of failure, which is an

integral part of Quality Engineering. Designed experiments to improve

product reliability are an important part of Taguchi' s philosophy.

Box points out that though Taguchi 's philosophy and concepts have

been invaluable in encouraging the use of experiment design in

improving quality in Engineering, the methods of Taguchi are often

cumbersome and/or inefficient and one has to be careful in deploying

them. Often, there are simpler and more efficient methods that could

be employed.



Modem quality improvement requires an effective collection and use

of observational data and an effective use of design of experiments.

Numerous experiments have to be made to develop a product design that

seldom goes wrong. This requires trying many factor-combinations at

the design stage, and can be expensive. However, this can be justified

in the long run through improved product quality, reliability and

longevity.

In conclusion, quality in industry can be improved by teaching

Engineers how to apply the statistical methods and designs, to product

and process design.



II. OFF-LINE QUALITY CONTROL: PARAMETER DESIGN AND

THE TAGDCHI METHOD.

In order for any manufactured product to be a success in the

competitive markets, there must be an element of innovation and

originality required in the product design. It is well known that it

is very expensive to attempt to control the noise or the

uncontrollable factors in a manufacturing process. On the other hand,

it is less expensive in the long run to optimize the functional

characteristic of the product such that it has minimal sensitivity to

noise

.

A Product's performance varies during its lifespan. Off-line

Quality Control (OQC) strives to reduce these fluctuations in order to

achieve steady performance and to increase the longevity of the

product. Factors that critically affect the product's performance or

monetary value have to be identified and separated from those that

are less likely to contribute to the improvement of the product

performance. These factors or parameters, when used in certain

combinations
, are found to minimize the loss

.

The American Society for Quality Control defines Quality as

" the totality of features and characteristics of a product or service

that bear on its ability to satisfy a users given needs". Performance

characteristics are the final characteristics of a product that

determine the product's performance in satisfying a user's needs. Loss

occurs when a product's characteristics deviate from a desired or

idealized target value. Along with specifying the targeted value, one



must also specify the tolerance level allowable for that

characteristic. The whole idea is to minimize losses, i.e. to have

minimal changes in the performance characteristics about the target

during its life span under different operating conditions.

The main causes of a product's performance variation are:

1. Environmental factors, 2. the deterioration, decay or depreciation

of a product and 3. the manufacturing defects. Changes in temperature,

humidity, etc., are examples of environmental factors. Examples of

product deterioration are wear and tear of moving parts or loss of

stiffness in a spring. Manufacturing defects are present due to the

obvious differences in machines that manufacture the same item or it

may be due to machine operators differing skill levels. The design of

the manufacturing process and the product are important factors that

determine the degree of performance variation and also the

manufacturing cost.

The three different but yet overlapping stages in design are:

a) Product design, b) Process design and c) Manufacturing design.

Traditional Quality Control Methods concentrate largely on the

manufacturing process by trying to reduce manufacturing imperfections

in the product. This is called On-line Quality Control. Off-line

Quality Control is used at the process and product design stages in

order to improve manufacturability and reliability and to reduce

costs. Specifying the tolerance alone( as in on-line Q.C ) could be

misleading. It is necessary that a specific target be specified, in

addition to the tolerance levels. It is imperative that all the

product's characteristics are at their ideal(target) values for a good

10



performance. A product performs best when all the characteristics of

the product are at their ideal values. Knowledge of the ideal values

of the product and the deviation from these values gives us an insight

into the losses and serves as an incentive to improve the quality.

According to Taguchi (1978), Quality Engineering Design basically

consists of three steps :

a) System Design

b) Parameter Design

c) Tolerance Design.

Parameter design is most crucial for achieving an optimal balance

between high quality and cost. The goal of Parameter Design is to

determine a combination of controllable factors that result in

accomplishing the task best, with minimal influence due to changes in

uncontrollable (noise) factors.

The quality of a product is very dependent on the external factors

contributed by the environment or even on psychological factors like

consumer dissatisfaction, the firm's reputation and so on. The quality

of a product can then be ascertained only after a full assessment of

all developments that can occur, from the time the product is shipped

out, has been obtained.

Loss Function:

Loss occurs when a product deviates from its target value. This

loss, being a function of its deviation from the target, is assumed to

be quadratic [Taguchi, 1978], namely

l(y)-k (y-r)
2

; (1)
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where l(y) is the loss function, k is the cost coefficient, and y is

the quality characteristic which is a random variable with a certain

probability distribution.

The expected loss is defined as

W(l(y)HE[(y.,) !
]. (2)

where the expectation is taken with respect to the distribution of y,

during its lifespan.

For cases when l(y) is not symmetric about r,

l(y)-kl (y-r)
2

if y<r

;

(3)

-k2 (y-r)
2

if y>T . (4)

L - E[l(y)]- k
1
P
1
E[(y-r)

2
/y<f] + k^Ef (y-r)

2
/y>r

] (5)

where, Pj- P [y< r] and ?
2
~ P [y> r]- 1-P,.

Parameter design consists of discovering the combinations of

product design characteristics that minimize loss. This may be done

experimentally or by simulation. The first step is to identify the

design parameters and the noise sources. The former are product design

characteristics, whose combination is specified by the product

designer (with tolerances). A vector of combinations of the design

parameters defines a product design specification and vice versa. The

design parameters in a manufactured product may have some tolerances

and may deviate from the nominal settings . Noise factors are nuisance

factors that are difficult or impractical to attempt to control; they

are primarily environmental factors or are due to manufacturing

imperfections or product deterioration.

12



Uncontrollable or noise factors can be categorized as outer noise,

inner noise or between-product noises.

An outer noise can arise due to consumer, usage conditions,

fluctuations in temperature and / or vibrations, humidity, or natural

differences in skills of operators.

An inner noise may be due to depreciation and deterioration, aging

and wear of tools and materials

.

A between-product noise arises from piece to piece variation when

the product is not homogeneous

.

Parameter design is possible because the effects of both the

external noise and the internal noise can change with the combinations

of design parameters. Thus.it is possible to identify a combination of

design parameters, that reduce performance variation. A Parametric

design experiment consists of two parts: a) a Design matrix and b) a

Noise matrix. [Kackar, 1985]

The columns of a design matrix represent the design parameters and

the individual entries in the columns represent test setting values

of the design parameters with each row representing a product

design. The columns of a noise matrix represent noise factors and the

rows represent the different combinations of the levels of these noise

factors. See fig. 1 for an example of a parameter design experiment.

A parameter design experiment consists of a combination of design

and noise matrices and if they have m and n rows respectively, the

total number of rows in the combined experiment is m x n.

For each row in the design matrix, the n rows of the noise matrix

provide n repeated observations of the performance characteristic. The

13



levels of noise factors and the noise matrix are chosen such that the

repeated observations are representative of the effects of all

possible noise factor levels. The repeat observations in the

performance characteristic from each test run in the design matrix,

are then used to find a performance statistic which estimates the

noise effects. The m values of the performance statistics associated

with the m test runs in the design matrix are used to predict the

combinations of the design parameters that minimize loss.

DESIGN MATRIX NOISE MATRIX PERFORMANCE PERFORMANCE

CHARACTERISTIC STATISTIC

MS V2V4
1 1 1

12 2

i 1111

12 2 2

13 3 3

2 12
2 2 12

3

4 2 12 3 .

5 2 2 3 1 .

6 2 3 12 .

7

8

3 13 2

3 2 13 111
9 3 3 2 1 12 2

2 12
2 2 1

yi

y2

y3

y4

[Z(I)]1

y33

y34

y35

y36

[Z(9)]9

Figure 1. An example of a Parameter Design Experiment.
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Let I - [B -^,^2 ®\r) ' be the design parameters and let

w - [Wj, w„ w-] be the noise factors in the parameter design

experiment. Assuming that the performance characteristic, y, is a

function of and w, then y- f [»,»]. For a given B, the noise factors

generate the distribution of y. Let,

N(»)- E(y) and a
2
(I)- E[ (y-N(»))

2
]- var(y)

.

(6)

Thus the expected loss is a function of I. A performance measure is

that function of which when maximized, results in a minimal expected

loss. An efficient performance measure takes into account all positive

Engineering information about the product.

A performance measure is an unknown function of I and has to be

estimated prior to optimization. Taguchi[1978] uses signal to noise

ratios as statistical estimates of performance measures

.

Let

2MSE(J) - E [(y-r) ]
- mean square error or loss

B(J) - N(J) - r - bias from target, r

2 2((I) - [N(»)] /a (»)- square of the inverse of the coefficient

of variation of the distribution of y.

The loss function takes on one of three forms, depending on whether

a smaller target is better, a larger target is better, or if a

specific target value is best.

15



1. The smaller the target, the better the product: In this case, r-0

and MSE(»)- E(y
2

)

.

The Taguchl performance measure Is taken to be

*(»)- -10 log(MSE(«));

o
the performance statistic is Z(»)- SNS - -10 log[S y?/n]

.

2. The larger the target, the better the product: In this case,

r-» infinity and MSE(»)-E(l/y2 )

The Taguchi performance measure is *(»)- -10 log(MSE(0)) and the

performance statistic is Z(»)- SNL - -10 log[E(l/y?) ]

.

Maximizing SNL is equivalent to minimizing the loss.

3. Specific target value is best: Here, r- r„ and the performance

measure is MSE(«)- E[(y-r )

2
]- o

2
(t) + [N(«)-r

]

2
.

In many applications, the mean and the variance of y (N(0) and

2
a respectively) are independent of each other. The bias,

B - N(0)- r, can then be minimized independent of the variance by

adjusting special design parameters that have an effect on N(0) but

2
not on a (S)

.

When the mean and the variance are independent, an efficient

performance measure could be «(0)- -log[cr (9)]; the negative sign

9
indicates that maximizing SNT- -10 log(s ), would minimize s. In some

other cases, the mean N(0) may increase linearly with a(e) . Taguchi

[1978] has found that, in this case, the bias can be reduced

16



independent of £(0)-(a(0)/N(0) ) , the coefficient of variation, by

adjusting some of the design parameters that have a marked effect on

N(0), but not on the ratio (i.e. the coefficient of variation) .For

this case Taguchi used a performance measure, *(») - -10 log[£(0)].

For this measure, the smaller the coefficient of variation, the larger

will be the performance measure. Taguchi recommended two performance

statistics

(S/N ratios)

:

Zl(S)- SNTj- 10 log(y2
/s

2
)

and

Z2«)- SNT
2
- 10 log[(y

2
/s

2
)-l/n]

These two statistics are equivalent in that , maximizing either one

would minimize s. Bias from target can then be minimized, by adjusting

the appropriate design parameters or control factors.

The following are a few guidelines in order to select the

adjustment parameters to maximize the performance statistics.

[Kackar, 1985]

.

1. All design parameters and their combinations must be identified

and the noises and their ranges must be known.

2. The design and the noise matrices must be set up as a plan for the

parameter design experiment.

3. Evaluate the performance statistic for each combination of design

parameters

.

4. The values of the performance statistics must then be used to

predict new and better combinations of design parameters.

17



The above steps are discussed in more detail.

1. Initial settings of design parameters are obtained from the system

design(»- 91,02,03 0k). The design has to identify other possible

values in order to form the parameter space /}. The noise factors,

that cause a significant amount of performance variation, have to be

identified and the ranges of the noise factors, within which product

performance is desired to be insensitive, have to be evaluated. A set

of such noise factor combinations constitute the noise space. For a

given 8 in the parameter space g, different levels of noises are used

in the experiment to obtain the values of the performance

characteristic. These values show the effect of noise on the

performance characteristic and are useful to compute the performance

statistics. Typically, a value of I that maximizes the performance

statistic (S/N ratio) with no resulting cost differential, is chosen.

2. A full search of the parameter space is not practical. For this,

one needs to be judicious as to the choices made of the values of 0,

in order to build the design matrix. The columns represent the

different parameters chosen and the rows represent the various

parameter combinations. For each row, a performance statistic has to

be calculated. The design matrix should be selected such that the

calculated values for the performance statistics provide good

information about a particular I in the parameter space in a minimum

number of tests.

Generalized Graeco-Latin squares (orthogonal arrays) can be used to

construct the design matrices. Three or more settings must be chosen

18



for each design parameter in order to reveal non-linearities in the

design parameter main effects. Orthogonal arrays can also be used for

the noise matrix, constructed by a judicious and a representative

sampling of the noise space.

3. A simulation of the parameter design experiment can be evaluated,

when y- f(*,y) is known. Product performance can be evaluated in the

presence of both internal and external noises. The function, y-f(0,w)

is evaluated for each I in the design matrix and each w in the noise

matrix. The values of y are then used to find the performance

statistic for each in the design matrix.

4. The computed values of the performance statistics are used to

predict I in the parameter space that yields a maximum performance

statistic. Though the noise matrix is a selective set, the repeated

observations on y, for the given I, obtained from a noise matrix

approximate a random sample from the distribution of y given B.

19



III. S/N RATIOS, PERFORMANCE CRITERIA AND TRANSFORMATIONS.

Taguchi's analysis of designed experiments utilizes the S/N ratios

for performance criteria. The aim of this analysis is to satisfy the

following criteria:

i> The quality characteristic of the product must be as close to the

target value as possible.

ii> The products sensitivity to variations in components must be

minimal

.

iii> The products sensitivity to variation caused by environmental

quirks must be minimal

.

These aims are very important in the improvement of quality,

[Box(1987)J. But the Statistical analysis and design as performed by

Taguchi are often too inefficient and/or too complicated requiring

them to be replaced by some simpler and more efficient methods.

Here we consider the three performance criteria:

1. The response is as close to the target value as possible.

SNT - 10 log(y
2
/s

2
) (1)

2. The objective is to make the response as large as possible.

SNL - -10 log[S(l/y
2
)] (2)

3. The objective is to minimize the response.

SNS - -10 log[l/n{2 y
2

)] (3)

20



In terms of the population parameters,

2 2 2SNT - 10 log{/j /a } - -10 log(7 ) ; where 7 is the coefficient

of variation - a/p. (4)

Phadke[1983] states that the motivation to use the S/N ratios

instead of simply using the standard deviation as a performance

criterion, is that the mean and the standard deviation frequently vary

in direct proportion. Thus, if the standard deviation alone were used,

optimization would be difficult - this is so since it involves

minimizing the standard deviation first and then bringing the mean

close to the target which causes a problem, when the mean and the

variance are correlated. The Taguchi-two-stage optimization involving

the S/N ratios yields the level of parameter combinations which have a

small standard deviation and a mean in close proximity to the targeted

value. This is based on the observation by Taguchi(1978) , that when

mean and variance are related, the mean and the S/N ratios are not!

The Taguchi approach is based on the premise that there exist:

a. Control factors, that effect the process variability, i.e. the

S/N ratios.

b. Signal factors that have little or no effect on the variability

but have a substantial effect on the mean.

c. Other factors that do not affect S/N or the process mean.

Leon Low[1987] states that if the factors can be classified as

above, then the S/N would be a performance measure independent of

adjustment, which he termed PERMIA. Here, the signal factors are the

adjustment factors, and the control and signal factors together are

classified as design factors.

21



Based on the above considerations, one may let a and /j be related

in such a way that a function of /i(x) can be found for which

2 2
((" (x))/[f (^(x)) ] ) is a measure of dispersion P(xl) - a function of

xl, which in turn is a subset of the design variables, x -[xl,x2].

[Box, 1987] Then, P(xl) is independent of /j because for a given xl
, /j

is a function of x2 alone. But, P is not a function of x2, so

P(xl/given ^)-P(xl) (5)

Here, P(xl) is a performance measure independent of adjustment

(PERMIA) and x2 are the adjustment factors that can be altered without

affecting the dispersion.

Let M(x) be the response function that has to be minimized. From

the above considerations, M(x) may be expressed as

M(x) - [f(Mx))]
2
P(xl) + [m(?)-T]

2
(6)

For fixed /i, M(x) has to be minimized with respect to xl, when P(xl)

is minimized.

If P(xl) has a unique minimum at some xl- xlO, the absolute minimum

of M(x)
,
may then be found by changing x2 alone. The important

assumption here is that there is a point on the plane- xl- xlO, which

minimizes M(x) with respect to p within the region

of interest. Thus, M(x)- E[y(x)- T] may be minimized in two stages,

22



first by adjusting xl to minimize P(xl) or some monotonic function of

P(xl) and then by adjusting x2 such that

/B- M> -T-f(Mo) f'(jio).P (7)

The second quantity in equation 7 is the deviation of po from the

target T and is usually small.

The coefficient of variation 7 - o/n is approximately proportional

to the standard deviation of In y. In particular, if Y- In y has a

9mean ^ and a constant variance a!\;

then n - expt^+0.5 <jy] (8)

a - n exp[(ffv-l)
- 5

] (g)

2where /1 and a are the mean and the standard deviation of y. From the

second equation it can be seen that the coefficient of variation (,o/»)

is independent of n and the analysis of (o/p) is equivalent to the

analysis of
<Y""ln y

- The same arguments can be applied equally well

for logarithms to base 10 instead of In. If sv , the sample estimate is

used in place of <rv ,
then s

Y
~s

ln
has a standard deviation which is

proportional to its mean. Thus on the hypothesis that a log transform

will stabilize the variance
, this leads to the analysis of In s

In y'

which is almost equivalent to SNT, since

SNT - -10 log(s7 y )- constant - constant. In s.
In y

In the foregoing case, Y- In y, from which SNT is independent of p.

Let Y- h(y) be a transformation that stabilizes the variance, such
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that a - h'(/i).a is independent of y, and also suppose that cr
2

is a

function of only xl, a subset of design factors (xl,x2). This leads to

the problem of minimizing

M(x) -[h'(^(x)]
2
a|(xl) + (M (x)- T)

2
(10)

This can be done in two steps by first adjusting xl to minimize the

2
variance it and then adjusting x2 so that n takes the minimum

value, (po) - T + (h' (po) )

" 3h" (Mo) o*
o (11)

In practice, it is more convenient to conduct the analysis in terms

of the transformation, Y - h(y) . To allow approximately for the fact

that h (^.) is a biased estimate of fi, the second order Taylor

expansion is employed.

h'\ )" /^° + 0.5 (h'(/io))"
3
h"(^o)(7

Y
2

(12)

In the last 2 equations, the second order terms may be adequately

approximated by taking derivatives at target(T) rather than at no.

After combining equations (10) and (11), one finds that the manimum

mean square error in the original observations, y, will be obtained by

adjusting xl to minimize a and then using x2 to adjust l to l
,

where ^- h(T+1.5(h'(T)"? h"(T).a2
) (13)

If Y- y\(A f 0); then Mv -(T[1-1. SCl-A)*-
2
*
2^ 2

*]
}

A
(U)

and if Y- In y, then /j^- In T -1.5 ct
2

q (15)
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While considering the usefulness of SNT, SNL and SNS - it is

important to distinguish between two issues 1. the choice of a good

performance criterion and 2. the best way to estimate it. A

performance measure that is related to the objective must be found and

then it has to be optimized to achieve the desired results. Once the

performance measure is arrived at, it is necessary that it is

estimable with great efficiency.

GO

100

6U

10

100

to

i 1 t-

100

JO

ID

100

10

Figure 1. Five samples of 4 observations each, giving

the same value of SNL.
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2The SNL - -10 loglSCl/j^)] criterion is used for experiments where

a larger response is better. Figure 1 shows 5 samples of 4

observations giving the same value of SNL.

A similar set of 5 samples can be obtained having the same SNS

value but with different locations and dispersions. Both the 'larger

the better' and 'the smaller the better' cases are concentrated on the

idea of location. The efficiency of SNL as a measure of locational

shift may be obtained by considering how much larger the sample should

be to yield the same power as y (using power curves for t-tests).

Box(1987) showed in an example based on the normal distribution, that

efficiency (r;) of SNL was about 42% for a-W and about 30% for a- 13.3.

This was equivalent to discarding 58% and 70% respectively, of the

data. The 'smaller the better' criterion (SNS) is motivated by an

assumption of a quadratic loss. The efficiency of SNS at a -10 and a -

13.3 is about 68% implying that 32% of the data is discarded. The

possibility of occasional faulty observations or of an error

distribution with heavier tails than normal would justify the

replacement of y by a more robust alternative.

As a justification of Taguchi's ANOVA tests and other tests that he

performed, it can be argued that for selecting an optimum combination

of factors, it is not of importance as to whether or not a significant

or insignificant factor is included in the combination. However, this

raises the issue concerning the efficiency of Taguchi's tests since

the optimum combination of levels of factors might contain some

superfluous factors whose levels might not have any effect on the
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performance. This can be eliminated only by very judicious choices by

the designer using all the information available and can be quite

arbitrary and inconsistent, varying from designer to designer.

Taguchi's key points in the Improvement of Quality are thus:

1> to achieve minimal variation of a desired quality.

2> the need to design products insensitive to environmental

disturbances

.

3> the need to design products insensitive to transmitted variation.

In arriving at these goals, one may use more efficient statistical

techniques than those proposed by Taguchi.
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IV. FACTORIAL DESIGNS, FRACTIONAL FACTORIAL DESIGNS,

FIRST ORDER AND SECOND ORDER DESIGNS,

AND ORTHOGONAL ARRAYS

In the context of product design, Taguchi has placed considerable

emphasis on the use of 'orthogonal array' experimental designs

(Taguchi and Uu, 1980; Phadke and Kackar, 1983). A great variety of

these designs exist, the most commonly used being the 2 factorials

and 2
p fractional factorials, the 3 factorials, and designs

constructed from the Latin square, Graeco-Latln square, and hyper-

Graeco-Latin square designs. Combinations of these are often

constructed to permit factors with differing number of levels to

appear in the same experimental program. The balanced incomplete block

designs may also be considered orthogonal arrays.

The key to understand the usefulness of one experimental design

over another rests in the linkages between the designs and the models

chosen to describe the response under study. Even when the objective

of the experimenter is not a fitted model, the role of bias in the

essential statistics must still be considered. For example, a

difference betwen two averages may not fully represent the main effect

of some factor if that factor has been studied simultaneously in

combination with other factors. Interactions can confound main

effects. In practice, any orthogonal array is likely to be superior to

some arbitrary collection of experiments
.
[Stuart Hunter, 1985]
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When each of the k factors comprising x is continuous (where each

x^ is represented by two or more levels of temperature, rpm,

concentration, etc.), and when the model ,ij - f(x) is unknown, the

most commonly employed empirical model is either the first or second

order Taylor approximation:

First order: 17 -
fl
*^fi

i
*
i (1)

Second order: , - /»„ 4-J^Xj J^X* +
ig^ ij

x. Xj (2)

with k+1 and (k+l)(k+2)/2 coefficients, respectively. The coefficient

PQ
is a constant term, the p are the first order coefficients

, the

^ii
are the k 1uadratic coefficients, and the fi. . are the k(k+l)/2

cross product(interaction) coefficients. Each model requires, in turn,

a first or second order experimental design.

Accompanying each model and experimental design is an analysis of

variance (ANOVA) table. The essential purpose of the ANOVA table is to

separate the overall variability of the observations (represented by

the corrected sum of squares and its n-1 degrees of freedom) into

components assignable to changes in the responses caused by changes

in the controlled factors x, and into variability assignable to

variance (i.e. due to random influences). Given that an experimental

design has been run, the ANOVA table can often be used to construct an

approximating model of the response by selecting parameters found to

be statistically significant. What can be estimated, and not

estimated, depends on the experimental design. Model parameters that
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cannot be estimated can seriously influence (bias) both the model's

estimated parameters and the estimate of variance.

FIRST ORDER DESIGNS:

Let r) be an unknown function of k factors x. If an experimenter is

highly confident that
, over his experimental region, this function

can be represented by a first order model, he need only estimate the

k+1 coefficients in the model given by equation 1.

Let xu be the u-th experimental point in a k- factor experimental

design D. Then any collection of N points, with the property that for

every pair of factors x and x. the sum of the crossproducts I x x1 J u-1 lu j

is zero provides a first order orthogonal design. Further, if the

settings of each factor can be arranged so that £. x? - N, the

estimates of all the coefficients in the first order model will have

minimum variance. Additionally, the variance of the forecast y will

everywhere be a constant at a fixed distance from the center of the

design. The design is then rotatable as well as orthogonal (Box and

Hunter(1957)). Table 1 gives three equivalent first order orthogonal

rotatable designs for k - 2 and N - 4.

u

30



TABLE 1. First Order Rotatable, Orthogonal Designs

*****************************************************************

2 -Level

S x
i

*

* -1

* 1

* -1

3 -Level

********************

x
l

x
2

-1.414

1.414

0.0

0.0

-1.414

1.414

4 - Leve 1 *

*******************

x
l

x
2 J

*

0.85 *

1.13 *

-0.85 *

1.13

-0.85

-1.13

0.85 -1.13 *

A********************************************^**^^^^^^^^^^^^^^^^

Orthogonal Arrays

Orthogonality, although an important criterion when fitting first

order models, loses its importance when an experimenter must

contemplate models with second order (curvature and interaction)

components. If the objective of the experimenter is to forecast a

response at either the present or future settings of x, then an

unbiased minimum variance estimate of y is required. It was

demonstrated that rotatability (Box and Hunter- 1957) and the

minimization of bias from higher order terms (Box and Draper- 1959)

were essential criteria for good forecasting. This led to experimental

designs that were not orthogonal.
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Box's designs were built from the multidimensional regular and

semi-regular figures. The designs can be sequentially constructed,

often beginning with the 2 and 2 p designs. These designs are

economical in the number of runs, often form unique mixed level

fractional factorials, can be orthogonally blocked; and perhaps most

appealing to the experimenter, the designs provide configurations of

points comprehensible to anyone with a geometric perspective.

For any experimental design and model it is always possible to

rewrite the model so that the estimates of the coefficients, or

contrasts, in the modified model will be orthogonal. The original

model must be reassembled and used as a forecast function. The

variance of the forecast over the experimental region is important.

Beyond orthogonality, rotatability and robustness to the biases due to

unestimated higher order terms are the essential keys to good design.

k V n
The 2 and 2

"p Factorial Design:

A reasonable experimenter will wish to collect data at more than

the N - k+1 experimental points required to fit the first order model

so as to provide measures of possible second order terms (i.e. to

provide measures of the lack of fit of the first order model). Popular

designs for this purpose are the 2 factorials, and for k more than 4,

the fractional factorial designs. The 2-level fractional factorial

designs are particularly useful as 'factor screening' designs. One

objective of the experimenter is to identify those few factors from a
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large group that have the greatest influences upon the response over

the ranges studied.

k-p
The 2

IX ^
resolution III designs are strictly first order designs

since 2-factor interactions, should they exist, directly bias the

first order estimates. Resolution IV designs, the 2^" p
, provide first

order estimates clear of second order biases. Resolution V designs,

k-p
the 2^

r
,
provide seperate orthogonal estimates of all first order

effects along with all k(k+l)/2 two-factor interaction effects.

k-p
The 2 fractional factorial designs cannot provide estimates of

the quadratic coefficients 0,,. Fortunately, the inability to estimate

these coefficients does not bias (alias) either the estimated first

order or interaction effects. The terms, if they exist, bias only

the constant term. To provide some indication of possible quadratic

influences, a center point is often added to the 2 p design. If the

average response at the center is significantly different from the

average of the remaining observations, then the quadratic influences

must be considered. If on the contrary, any of the x.'s are

qualitative, then no quadratic influence is possible.

k-p
The 2 * fractional designs are easy to generate. Their different

biases ( alias structures with corrected sign) are easily obtained

from the design generators. The method is simple, straight forward and

general in approach [Box, Hunter and Hunter , 1978] . The folding over(

i.e. combining the design with a repetition of the design having the
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plus and minus levels of the factors reversed ) resolution III designs

produces designs of resolution IV. Each added fraction can be chosen

with an eye to elucidating the effects of the important estimates and

for reducing biases. Individual biases can be separated with very

few runs. By proceeding sequentially, a huge array of possible

fractional factorials is obtainable. It is wise not to plan too large

an experimental design to begin with, but to proceed as the data

enlightens.

The 2
p fractional factorial designs are also easy to analyze.

Yates algorithm can be employed to estimate the many factorial effects

and to construct the associated ANOVA table. The algorithm may also be

used in inverse fashion to provide estimates of the response once

leading factors have been identified. Normal plots and half-normal

plots can be used to help identify leading effects and to study

residuals.

Second Order Models and Designs:

When the experimenter thinks in a one-factor-at-a-time fashion,

curvature becomes the departure from the simple first order, straight

line
,
model. Here, the only second order coefficient is the quadratic

coefficient U , in the model r, - pQ
+ 0^+ fl^.^.. But when the

experimenter contemplates the response as a possible second order

function in k factors his model contains, in addition to the k

quadratic(curvature) coefficients $.., an additional k(k+l)/2

34



crossproduct(two factor interaction) coefficients ft... For example,

when k-5, there are 10 cross product but only 5 quadratic

coefficients.

Choosing a good second order design:

Before discussing experimental designs capable of estimating all

(k+l)(k+2)/2 coefficients in a second order model, let us consider the

problem of empirically modeling a k factor response function. The best

way is to begin with a 2 factorial or 2 p fractional factorial and

attempt initially to identify those factors with important first order

effects( or coefficients ft.).

A good screening design provides sufficient additional experimental

runs so that the adequacy of the first order model can be appraised.

Should estimates of either quadratic or the 2-factor interactions

appear important, the experimenter should then try to reduce these

influences by making transformations in the data. Very often,

transformation of the observations using reciprocals or logarithms

will eliminate the need for the interaction or the quadratic terms in

the model. The objective should be to make the approximating model as

simple as possible. If first order simplicity is not possible, the two

level factorial already completed can be used as a building block for

a second order design, possibly an orthogonally blocked central

composite rotatable design.
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This approach is sequential and may not be practical in some

k oinstances. In that case usually a 2 'resolution IV design with a

repeated center point, is used. Pareto's principle (the selection of

the few largest influences) is then used to simplify ones

understanding of which factors most affect the response in both a

first and second order sense

.
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V. FRACTIONAL FACTORIALS ANALYSES

One of the problems that frequently Is a stumbling block In the effort

to improve quality in industry is the problem of trying to identify

and isolate the key variables that cause appreciable changes in the

quality characteristic of the product or of the process. [Meyer, 1986]

One way of trying to find a feasible solution to this problem, is

to resort to the use of fractional factorial statistical design

methods. At the preliminary stages of an investigation, a 2-level

fractional factorial is used as a screening design. Let us consider a

2-level design. [Box and Hunter, 1961] It is assumed that the design

matrix, X is an n x n orthogonal matrix of negative or positive ones

such that X'.X - X.X'- n.I. The first column of the orthogonal matrix

is Xo, which is a column of ones and the rest of the columns are

arrays of -1 or +1 representing levels of the experimental variables;

-1 represents the lower nominal level and +1 denotes the higher or

alternate level of a factor.

At the preliminary stages of the investigation, a first order model

in main effects alone is often adequate. If V is the number of

variables, the model can be written as y-.2n x ..£. + e; with the

elements of e assumed to be independent and normally distributed with

mean and a constant variance. The main effect of variable j is

defined to be twice the regression coefficient p.. If this model is

true, the parameters including the error variance can be estimated

efficiently ( if (n-l)-V is large enough to provide the desired
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degrees of freedom for estimating variance) . This form of model would

fit the situation when the response surface is roughly planar over the

experimental region examined. If however, the response surface is

closer to a second order function, then

r ? 2o
+

j2i ?j£j
+ s

<?i?j> "ij
+

s •

is a better model to postulate. For this model, the estimate of the

mean f}. would be confounded with the pure quadratic coefficients, /). . .

Also, the linear estimates of jfl.'s would be confounded with the

interaction terms f}^ The estimate of the error- variance, supplied

by [(n-l)-V] unassigned columns might be biased by the real

interaction effects.

To circumvent this problem, a 2nd. order design can be employed,

one that allows estimation of all the parameters of the model. This

will however greatly reduce the number of factors that can be analysed

in a given number of runs. Another approach is to use the 'sparsity

effect'
.
If it is possible to identify the key factors that cause

appreciable changes in the product characteristics, then even if the

true response were more closely approximated by the 2nd. order

model, the effects of many of the parameters would then be negligible

compared to those of the parameters that were associated with the

isolated variables and the noise effects. This approach, while

combining the good points of relative inexpense and greater

information, also goes further in that it does not produce un-

ambiguous results.
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In the analysis of fractional factorial experiments, one has to

identify and estimate the active effects and the error variance.

One of the techniques employed to identify the active contrasts is

to use the ANOVA in order to judge the reality of the contrasts. Here,

this method relies on comparing the contrasts with an independent

measure of the error variance. If an estimate of the error variance is

available from past information, the construction of the ANOVA table

is relatively simple. If the error variance is not estimable

initially, then it is usual to isolate apriori certain contrasts that

have only higher order interactions whose magnitudes could be wholly

attributed to random error. These contrasts are then used to estimate

the error variance. This method or technique restricts the degree of

fractionation usable in the design, since many of the columns must be

reserved to estimate effects that are known to be inert. If however,

little is known about the effects, [i.e. whether they are inert or

not], the contrasts might be difficult to identify.

A normal plot is used to judge the significance of the orthogonal

contrasts from the factorial experiment. Here, the (n-1) signed

ordered contrasts are plotted against <j> [ (i- . 5)/(n-l)
] , where <j> is

the standard normal distribution function. [Daniel, 1976]

Under the hypothesis(Ho) of no active contrasts, the points should

fall in an approximate straight line passing through the origin. Too

large contrasts that cannot be explained by noise would appear as

extreme points falling off the line. The advantage of the normal plot

is that it does not require replicated runs or apriori identification

of inert contrasts. Additionally, it allows for the selection of
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significant effects. The normal plot can be used to test inadequacies

in the model.

The next task is to associate factorial effects with active

contrasts in the presence of confounding.

- Main effects are more likely to occur than 2-factor interactions,

which in turn are more likely to occur than 3-factor interactions,

i.e. if a large contrast is associated with more than one effect, the

effect of the lowest order is usually considered the most likely

cause. In general, we ignore 3-factor and higher order interactions.

- Variables which have large main effects have a greater chance of

having significant interactions, eg. when a large contrast is

associated with several 2-factor interactions, the interaction

involving variables with large main effects are more likely to be the

cause

.

Identification of active contrasts

To model the assumption that a majority of the column contrasts

are expected to be inert, we assume that there is a prior probability

a that each column is active, where a is less than 0.5. Let a(c) be

the event that a particular combination of the c contrasts out of the

(n-1) are active, the others being inert. The prior probability of the

event a(c) is

P[a(c)] -ae
[l-a]

(n- 1 -c)

After observing the data(y) , the posterior probability of the event

a(c) is

P[a(c)/y] - [P(y /a(c)).P(a(c))]/[2 P(y/a(i) ) .P(a(i) ) ]

.
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The denominator is the sum over all possible combinations of active

and inert columns and P(y/a(c)) is the predictive density of

observations (y) given a(c) . The marginal posterior probability that

column(i) is active -

p.- P[column i active/ y] -, , .S . P(a(c)/y)

.

J- * (c):i active ' ' *'

The inference about which columns might be active , can then be made

from the knowledge of [p.]. [Meyer, 1986]

Identification of active factors that are responsible for large

contrasts

It is assumed that the factors will be active with probability a.

(a(f)) is the event that a particular combination of the factors

(including interactions) is active, the posterior probability of each

factor being active is then given by

pi-(f):f acfivefVY>-

The results of unreplicated fractional factorial experiments are

found to be sensitive to incorrect observations. Daniel [1976]

estimated that the relative frequency of bad values in factorial

experiments was between 0.01 and 0.1, depending on the complexity of

the experimental situation and on the experience of the experimenter.

He also felt that the presence of higher order interactions was more

often due to erroneous observations than to the curvature of the

response surfaces. Due to the saturated nature of unreplicated

factorial experiments, bad observations can be concealed by mis-

identifying them with some combination of active effects.
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Full normal plotting of observational contrasts can be used for

detecting bad values in unreplicated experiments, additionally it can

be used to identify active contrasts. If a particular observation is

biased positively, those contrasts in which the observation enters

positively are shifted rightwards, and those contrasts in which the

observation enters negatively are shifted leftwards creating a gap

among inert contrasts indicating that a bad observation is present.

Presently, the amount of computing time needed to analyse for bad

values in full generality, is not practical. Based on reasonable

assumptions about the maximum possible number of bad values and active

contrasts, various computational shortcuts may be used. It is hoped

that future advances in computing technology will reduce these

limitations.

Unreplicated factorial designs have been invaluable in industrial

experimentation, despite the fact that they do not allow for the

estimation of error variance obtained from replications. If

assumptions are made about the sparsity of real effects and these are

incorporated into the linear model used for the experiments, the

inference about the active and the inert contrasts is straight forward

and the dependence of the inference on the prior assumption is easily

assessed. Bayes
' factorization allows the posterior probability to be

obtained by numerical integration at a considerable reduction in

computing requirements. The model can be made to allow for bad

observations which cause an inflated variance with a prior

probability of a
2

. Given this model, the posterior probability that a
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contrast/factor is active can be found by taking into account the

possibility of having bad observations as well as the probability that

a particular observation has an inflated variance

.
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VI. ORTHOGONAL ARRAYS SOLUTION AND A NON-LINEAR METHOD SOLUTION

TO THE WHEATSTONE BRIDGE PARAMETER DESIGN PROBLEM

Parameter Design is a technique aimed at reducing variation by

reducing the sensitivity of an engineering design or product to

sources of variation rather than by controlling these sources.

The reproducibility of a quality characteristic of a manufactured

product inevitably depends on the amount of variation in the

components that are in the product. The process of choosing some values

for the components' characteristics, that minimize the effects that

are transmitted to the product's quality, is called PARAMETER DESIGN.

Illustrated below, is an example of a parameter design problem.

(Taguchi and Wu,1980)

Consider a Wheatstone Bridge( circuit diagram shown in fig.l), used

in determining an unknown resistance, R. . This circuit is used in
o-

some

product to be manufactured and the design specifications of its

components are such that optimal precision must be achieved in

measuring R
Q

. Variable resistance B, can be adjusted so that the

galvanometer is balanced, indicating that there is no current flowing

through the resistance, A. The resistance y, that estimates Ro is

calculated as y- B.D/C , when no current in the central element

exists. However, in general

y- f[A,B,C,D,E,F,X] (la)

-B.D/C -(X/(C
2
E)}[A(C+D)+D(B+C)][B(C+D)+F(B+C)]. (lb)
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Figure 1. The Wheatstone Bridge Circuit.

For a particular set of components, each of the component can deviate

slightly from its target or nominal value, thereby causing an error in

the calculated value of y. It must be noted that the values of

A,B,C,D,E,F are at a choice; thus the error caused due to various

choices would vary accordingly.

The parameter design problem is to find the nominal values of the

design variables such that the error shown in the measured value of y

is small. In this example, the design factors are those from which we
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can choose the nominal values (A,B,C,D,E,F) , and the noise factors

refer to those factors that cause an error in y. Typically the range

of possible nominal values of each design factor is known apriori and

is usually quite wide; it is denoted by 'R' .The coefficient of

variation is also supposed to be known for each factor. This measures

the variation to be expected about a nominal value , from one

observation to the next. Compared to the allowable ranges , the

coefficient of variations are mostly small.

The objective function that has to be maximized is

SNT- 10 log[y?s*- 1/36] (2)

For this problem, maximizing SNT is equivalent to minimizing

-2 2
SN= y /s

. A solution proposed by Taguchi was based on a double

application of an orthogonal array design. An inner array was chosen

for the design factors(A,C,D,E,F) and combinations of 3 levels for

each of the 5 design factors were used in the orthogonal array,

L36.(See table 2) The design was made to span the space, R, of the

whole design region of interest. At each of these inner array points,

an outer array of L36 was used where seven noise factors were allowed

to vary over small ranges. Thus, the full layout consists of 36 x 36

points- 1296 points. (See figure 2).
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C(Jl) {

(J- &dr-_,#L_.,
i /

A(il)

L36 inner array in

design factors

A,C,D,E,F.

\L36 outer array in

noise factors

A,B,C,D,E,F,X.

Figure 2. Conceptual illustration of how outer arrays are

arranged at each inner array point.

The SNT values from equation 2, were calculated for each of the 36

inner array points and the results were subjected to An analysis of

variance. The Marginal averages were calculated for the 3 levels of

each design factor and plotted. From inspection of these marginal

47



averages, Taguchi was able to determine the levels of the

factors (A1C3D2E3F1) that maximized the objective function,

y -f(A,B,C,D,E,F,X) . However, direct calculations show that this was

not the factor combination that corresponded to the maximum SNT. The

factor combination A1C2D2E3F1 gave a higher value of SNT. The reason

for this discrepancy was that, the plots for C and D were curvilinear.

For the linear plots of A,E,F the optimal values would be A1,E3,F1.

However, optimal values for C and D are not immediately obvious. Due

to the dominant effect of the quantity, D/C, in the equation for y,

the maximum is found to be considerably different from that found by

the orthogonal array method.

A more general form to this problem: [Box and Fung, 1986]

Let H- - log(SN). The problem is essentially to minimize H, which,

in essence, is a known function of the levels of the design factors.

In other words, one has to minimize a known function(H) within a known

region. Let x
i
denote the i?- factor and consider the following:

1. A d-dimensional design vector x,, whose elements are chosen

arbitrarily from a region R.

2. A k-dimensional vector x , some or all of whose members may be

the same as in x
d

and whose covariance matrix is 2 . Let the elements

of x
e
vary independently such that 2 is diagonal with the

2(l,i) element- a.

.

48



-2 lo

If
10 '

-
I

2.0 too 500

2 30

5 2.0

o~
10

10 50

^ 30

o

10

30

a 10

Z

* 10

L_
1-2

5

Figure 3. Plot of the Marginal Averages.
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3. Define a function, H, which, given 2 ,can be computed and which

measures the relative variation in y, such that the relation, y- f(x )

is known.

The point is to minimize a known function, H within a known

region(R) . What are the different methods of doing this and what are

their relative merits?
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The efficacy of the Taguchi technique in comparison to a non- linear

programming for the Wheatstone Bridge example:

The reciprocal of the signal to noise ratio(SN) is the square of

the coefficient of variation of y and for some relatively small errors

encountered in this example, the coefficient of variation is to a very

good approximation equal to the standard deviation of In y. Therefore,

this is essentially a problem of minimizing V , the variance of

ln(y ) . Where
,

yx
- f(?) - f(x

1
,x

2
, ...,jc_), the x, 's denote the noise factors

as A, B.C.. etc. and let (4)

Y
x

- F(x) - In f(x) (5)

Given the small error variations in the x.'s, in this example, the

variance of Y
x

is closely approximated by the first order error

transmission formula,

V d
l
2(

?' - a
l
+ d

2
2( ?>

-

ff

2
2+

- •

-

+ d
7
2(?>

•

ff

7

2
< 6 >

Where, d^x) - (SF/SXj) I i- 1,2.., 7.

In other words, the problem is to minimize a known function of V or
x

equivalently, H'
x
~ 10. log V

x
within the known design region R'

defined by: -1 < Xl < +1 i-1,3,4,5,6. The d's could be determined by

direct differentiation, but in practice they are calculated using

nonlinear least square techniques.

d^x) is approximately- [FOtj.Xj, . . .Xj+f, . . ,x_) - F(x)]/S. (7)
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where, the level of the i factor is incremented by S, and all other

factors are held fixed. 5. is such that it is proportional to a. , the

constant of proportionality being some a. If y- F(x) has different

values Y ,Y
1
,..,Y

k
at the different design points then equation 6

takes the form:

V
x
ls approximately- (1/a

2
) ( (Y

1
-Y

()
)

2
+(Y

2
-Y )

2
+. . .+(Y

k
-Y

Q )

2
) (8)

Thus, the equivalent objective function is H' - 10. log V (9)

When the two methods were compared, holding a fixed at 1/1000 to

compute H'
x
for all the 36 points in the L36 inner array, it was found

that both methods closely tallied or agreed with each other.

See table 2 for the comparison.

In general, the degree of difficulty associated with minimizing

H(x)
,
within a region R depends a. on the complexity and the dimension

of R and b. on the complexity of H(x) itself.

Design region R is defined by a series of simple ranges for each

design factor. When a direction of advance affects a constraint

defining R, the possibility of changing the system so that R may be

extended, is considered.

As far as the nature of H(x) is concerned, much depends on the

extent to which the smoothness properties of the function can be

relied upon. For parameter design, the function

V d
l^

x) •"
1

2
+d

2

2
x) .a

2

2
+. . .+d

?

2
(x)
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where d
1
(x)-(3F/3x.)]

; i-l,2,..7

has some useful properties. It is positive except at x. where

^(Xg)- d
2
(x

Q
)-. . .-o^CXqJ-O. i.e. if there is a point, x

Q
, internal to

the region it must be a minimum for V (not nessecarily unique.) and is

a stationary point of the response function F(x) . If for a region 0,

F(x) represents a 2nd degree polynomial in x, then V is also a 2nd

degree polynomial over the region and in addition is convex. For the

Wheatstone Bridge case, the three factors behaved roughly linearly and

the other two were quadratic. In general .however, it may be more

difficult to find the values of x to minimize V . Should a survey of

V
x

over the whole design region be made or should it be confined to

the local properties of the function? If the former were to be done,

it might prove to be expensive to achieve a grid of points of

sufficient density. For complex functions, if the latter were to be

done, then the local properties could mislead.

Taguchi's solution uses 'Global Exploration' on a 3-level

orthogonal grid. No provision is made for the interaction between the

variables and the marginal graphs are used in finding a maximum H(x)

.

This works especially well if H
x

is like a sum of independent

quadratic components or a general 2nd degree expression without any

interaction terms. However, the need for second order terms of one

kind (quadratic) in an approximating function implies the likely need

for 2nd order terms of the other kind( 2 factor interactions). Thus,

when dealing with continuous variables and when we are interested in
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the maxima, it is not sufficient to consider 2nd order terms of one

kind and not those of the other kind. If 2nd degree approximations are

considered, a design that allows for an estimation of 2 factor

interactions as well as quadratic terms, needs to be employed.

Random Search:

In most cases, the precise dimensions of the design region and

hence the precise values of o.'s are not known exactly. Thus, there is

hardly any meaning in trying to obtain a precise optimum. In this

case, a choice of design variables that is reasonably good might be

the best that can be done. Hence, the determination of H at n sample

points in R and the selection of a vector(X) that yields the best H
x

may be adequate. Sampling may be done randomly within R or may be

systematic on a predecided grid such as an orthogonal array.

Obviously, this method does not yield the best results.

Many optimizing strategies are based on the local properties of the

function. One such method initially employs the method of steepest

ascent, switching to the fitting of a 2nd order approximating function

when the 2nd order terms become important (or when the curvilinear

efects predominate.). Simplex technique can also be used for

optimization.

These methods along with others seem less arduous and more computer

friendly and can be adapted to a wider range of problems in

comparison to orthogonal arrays

.
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Taguchi
, in defense of his orthogonal array method, has criticized

the efficacy of the more commonly used non-linear programming methods.

The points in favor of the Orthogonal Array method are:

i. No derivatives need to be computed,

ii. The Hessian need not be found,

iii. The algorithm is insensitive to the starting conditions,

iv. Large number of variables can be handled,

v. Combinations of discrete and continuous variables can

be handled easily.

54



Table 2 . Orthogonal Array 136
The last column shows the values of
lO.log(SNT) obtained by Taguchi at the
36 Inner array points. (Box and Fung, 1986)

Run Column no

.

Taguchi'

s

-H*
no

.

1 2 3 4 5 6 7 8 9 10 11 12 13 criterion X

1 32.2 32.27
2 - 26.7 26.68
3 + + + + + + + + + + + + - 15.9 15.90
4 - - - - 36.4 36.43
5 + + + + 28.6 28.59
6 + + + + - - - - - 7.2 7.23
7 - - + - + + - + . 16.5 16.48
8 + - + - - + + - - 13.0 13.02
9 + + ' + " + - - - 28.0 28.05

10 - - + - + + - + - 15.0 15.07
11 - + - + - + - + - 16.4 16.47
12 + + - + - - + - - 25.5 25.55
13 - + - + - + + - 43.8 43.75
14 + - - + - - + + -8.3 -8.28
15 + - + - + - + . 14.6 14.60
16 - + - - + + + - 29.0 28.98
17 + - + - + - - + 6.9 6.93
18 + " + + " - + 14.7 14.70

19 - - + + + - - + 21.5 21.48
20 + - - - + + + - 17.4 17.39
21 + - + + - - + . 14.0 13.98
22 - + + - - - + + 46.5 46.39
23 + + - - + - - + 5.5 5.53
24 + - - + - + + - -8.2 -8.15
25 - + - + + - + - + 27.3 27.35
26 - + + - - - + + + 43.4 43.50
27 + + * + + - - + -20.9 -20.85

28 - + - - + + - + + 44.1 44.09
29 - + + + - + - - + 39.3 39.33
30 + - - - + + - + + -17.0 -17.00
31 - + + + + - - - + 23.0 23.07
32 - - - + - + + + + 44.2 44.09
33 + - - - + - + + + -0.9 -0.84
34 - + - + + - + . + 43.4 43.50
35 - + - + - + + - + -7.7 -7.64
36 + + " " + - - + + 8.0 7.97

(Note: icomparison o:E -H'-
X

-10 lcigVB X
obtained by divided first

differences of Y- In y, against Taguchi's criterion 10 log(SNT)
obtained from outer arrays.)
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ABSTRACT

Off-line quality control methods activities conducted at the product and

process design stages to improve product manufacturability and reliability,

and to reduce product development and lifetime costs. Parameter design is an

off-line quality control method. At the product design stage, the goal of

parameter design is to identify settings of product design characteristics

that make the product's performance less sensitive to the effects of

environmental variables, deterioration, and manufacturing variations.

Because parameter design reduces performance variation by reducing the

influence of the sources of variation rather than by controlling them, it is

a very cost-effective technique for improving product quality.

This paper introduces the concepts of off-line quality control and parameter

design and discusses the Taguchi Method for conducting parameter design

experiments. Also, included are some criticisms of the Taguchi Method.


