
Modelling VM Latent Characteristics and Predicting Application Performance using
Semi-supervised Non-negative Matrix Factorization

Yuhui Lin
University of St Andrews

St Andrews, UK
Email: yl205@st-andrews.ac.uk

Adam Barker
University of St Andrews

St Andrews, UK
Email: adam.barker@st-andrews.ac.uk

John Thomson
University of St Andrews

St Andrews, UK
Email: j.thomson@st-andrews.ac.uk

Abstract—Selecting a suitable VM instance type for an
application can be a difficult task because of the number
of options and the variety of application requirements. Re-
cent research takes a data-driven approach to model VM
performance, but this requires carefully choosing a small
set of relevant benchmarks as input. We propose a semi-
supervised matrix-factorization-based latent variable approach
to predict the performance of an unknown new application.
This method allows to take a large set of benchmarks as input
for VM performance modelling, and it uses the model and the
performance measure of the new application on some of the
target VMs to predict the performance on the rest of all VMs.
We ran experiments with 373 micro-benchmarks from stress-
ng and 37 AWS EC2 VMs to predict the scores of Geekbench
accurately. Our initial results showed that the RMSE and
STD of the predicted scores are 6.7 and 4.5 when sampling
Geekbench on 5 VMs, and 10.0 and 2.8 when sampling 10.

Keywords-Cloud Computing, Matrix Factorization, Latent
Variable Model, Micro-Benchmarks

I. INTRODUCTION

Cloud providers offer various predefined VM configura-
tions as VM instance types for Infrastructure as a service
(IaaS). For example, c4.large is a computation optimised
VM with 2 vCPUs and 3.75 GB memory. However, selecting
a suitable VM is a difficult task. Different applications
perform differently depending on the characteristics of the
underlying VM, and there is often little accurate information
about how each VM is likely to perform. Typically, cloud
providers give performance information from the traditional
view of physical machines, e.g. vCPU, memory and network
performance. However, this high-level description is not suf-
ficient to estimate the performance of general applications.

Recent research [1, 2, 3] take a data-driven approach
to train VM performance models from benchmark data
using Machine Learning (ML) techniques. The word ‘per-
formance’ here is a general term to reflect the measurements
of users’ service-level-objectives. The benchmarks used in
their setup were carefully selected for the target applications,
and the number of benchmarks used at the decision-making
stage is small. This becomes a constraint because picking
relevant benchmarks for a new application is a difficult
task, especially when the application is a black-box or grey-

box and the prior knowledge of the requirement of the
application is limited.

In this paper, we propose an alternative latent variable
approach to model VM performance so that users to can data
from a large number of benchmarks to model VM perfor-
mance. By structuring benchmark data as a VM-Benchmark
matrix, we formulate the challenges of VM performance
modelling as a matrix decomposition problems. By applying
a low-rank approximation technique, called Non-negative
Matrix Factorization (NMF) [4], VM latent variables and
weights can be extracted for unobservable latent character-
istics. The problem of performance prediction for a new
application can then be formulated as a matrix completion
problem, assuming that sample performance measures can
be obtained beforehand, e.g. by running the application.

To improve the quality of VM latent characteristics, as
inspired by task-driven dictionary learning [5, 6], we take
a semi-supervised approach during the process of learning
latent variables to utilise prior knowledge of VMs as labels,
e.g. number of vCPU. The key contributions of this paper
are:
• a novel approach to formulate VM performance mod-

elling and prediction as matrix decomposition and
completion problems;

• the application of the combination of unsupervised di-
mension reduction technique, i.e. NMF, and supervised
ML in VM performance modelling;

• an extension of NMF to predict the performance of new
applications using the latent model;

• experiments using 373 micro-benchmarks to predict
Geekbench scores for 37 AWS EC2 VMs. RMSE and
STD of the prediction are (6.7, 4.5) when 5 random
samples are provided; and (10.0, 2.8) for 10 samples.

§II gives the background of NMF. §III formulates the
modelling and prediction problem, §IV discusses the exper-
iment results. Related work and future work are discussed
in §V, followed by conclusion in §VI.

II. NON-NEGATIVE MATRIX FACTORIZATION

We adopt the following convention for notations. The
mathematics presented in this paper are necessary to re-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/333646603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


produce our work. Bold capital letters for matrices, e.g. X;
bold lower-case letters for vector, e.g. ~v, vector symbol with
transpose for column vector, e.g. ~vTj , non-bold letters for
scalar, e.g. m, and subscripts for element position, e.g. xij ,
is the scalar in row i column j of the matrix X.

Matrix Factorization (MF) is a low-rank approximation
technique which decomposes a data matrix to two matrices
with lower dimensions, i.e.,

V ≈WH s.t. V ∈ Rm×n,W ∈ Rm×r,H ∈ Rr×n

One typical use of MF is to learn features in an unsuper-
vised manner from a set of vectorised data, e.g, ~vi ∈ Rm. The
resultant matrices are considered as a collection of features
(each column is a feature encoding), e.g. W consists of r
features ~wT

j where ~wT
j ∈ Rm, and the weights of features

for each data, e.g. H is latent variable weights for n VM,
e.g. ~hTj where ~hTj ∈ Rr.

NMF [4] poses an additional non-negative constraint on
the decomposition matrices, e.g. wij , hjk ≥ 0. Such constraint
leads to a part-based linear representation of data, i.e.

vij ≈ ~wi · ~hTj
Obtaining W and H is an optimisation problem, i.e.,

minW,HDβ(V‖WH) s.t. W,H ≥ 0 (1)

where Dβ is the β-divergence [7]. Examples of β-divergence
are the Euclidean distance (β = 2) [4], Kullback-Leibler (β
= 1) divergence [4] and Itakura-Saito divergence (β = 0)
[8]. In the case of Euclidean distance, (1) becomes:

minW,H ‖V −WH‖2F s.t. W,H ≥ 0 (2)

where the Frobenius norm (‖ · ‖F ) is sum of the absolute
squares of its element, i.e. ‖X‖2F ≡

∑m
i=1

∑n
j=1 |xij |

2 . In [9],
multiplicative update rules were developed to find a local
minimum while maintaining the non-negative property:

W←W � (VHT )
(WHHT )

H← H� (WTV)
(WTWH)

where � is Hadamard product (a.k.a. element-wise product)
which takes two matrices of the same dimensions and
generates a matrix with the same dimension where each
element i, j is the product of elements i, j of the original
two matrices; and (•)

(•) is the element-wise division.
The multiplicative update rules can provide guarantees to

find a local minimum but not a global one due to non-
convex. Moreover, the solutions W and H can be non-
unique which is known as ill-posedness.

III. LATENT VARIABLE MODELLING AND PREDICTION

Predicting performance measures of an application from
a given set of benchmark scores is essentially, to extract
meaningful representation from the scores, and then to make
predictions based on the correlation between the bench-
mark scores and sample performance measurements. In this
section, we present our latent approach for modelling and
prediction.

A. Problem formulation

Consider that there are m benchmarks and n VMs, a m×n
benchmark data matrix can be structured, i.e. V ∈ Rm×n.
Each column vector ~vTj becomes vectorised performance
data for each VM. Vm×n can be represented by a latent
variable matrix Wm×r and a weight matrix Hr×n. From
the VM point of view, ~vTj is vectorised VM performance
data encoded by benchmark scores; each ~wT

j is a common
VM latent characteristic extracted from V; and ~hTj are the
weight for each VM. From the benchmark point of view,
each element in V is the result of linear combinations of its
weighted relation with the latent characteristics.

The prediction then becomes problems of tuning the
relations between the new application and each latent char-
acteristics to fit the results with the performance measure
samples. This is depicted in Figure 1.

n VMs 

m
 b

en
ch

m
ar

ks

….

Get sample 
performance 

measures

Input

Reconstruct the matrix  
to predict remaining 
values in row (m+1)

⇥<latexit sha1_base64="DjKRKZWLVr9qSNC2WkBmneAxGPE=">AAAB7nicbVA9SwNBEJ2LX0n8ilraLAbBKtzFQsugjWUE84HJEfY2e8mSvb1ld08MR36EjaAitnb+Fzt/je4lKTTxwcDjvRnezASSM21c98vJrayurW/kC8XNre2d3dLeflPHiSK0QWIeq3aANeVM0IZhhtO2VBRHAaetYHSZ+a07qjSLxY0ZS+pHeCBYyAg2Vmp1DYuoLvZKZbfiToGWiTcn5VpBPt1+3H/Xe6XPbj8mSUSFIRxr3fFcafwUK8MIp5NiN9FUYjLCA9qxVGCb4qfTdSfo2Cp9FMbKljBoqv6eSHGk9TgKbGeEzVAvepn4n9dJTHjup0zIxFBBZkFhwpGJUXY76jNFieFjSzBRzO6KyBArTIz9UPYEb/HkZdKsVrzTSvXaK9cuYIY8HMIRnIAHZ1CDK6hDAwiM4AGe4cWRzqPz6rzNWnPOfOYA/sB5/wENn5Mb</latexit>

…
⇡<latexit sha1_base64="eHu2fGpEFa2q7PethhJGdR0pKH4=">AAAB7nicbZC7SgNBFIbPxltcb1FLm8UgWIXdWGgjBm0sI5gLJEuYncwmQ2ZnhplZMSx5CBsLRSxsfBN7G/FtnFwKTfxh4OP/z2HOOZFkVBvf/3ZyS8srq2v5dXdjc2t7p7C7V9ciVZjUsGBCNSOkCaOc1Aw1jDSlIiiJGGlEg6tx3rgjSlPBb81QkjBBPU5jipGxVqONpFTivlMo+iV/Im8RghkULz7cc/n25VY7hc92V+A0IdxghrRuBb40YYaUoZiRkdtONZEID1CPtCxylBAdZpNxR96RdbpeLJR93HgT93dHhhKth0lkKxNk+no+G5v/Za3UxGdhRrlMDeF4+lGcMs8Ib7y716WKYMOGFhBW1M7q4T5SCBt7IdceIZhfeRHq5VJwUirfBMXKJUyVhwM4hGMI4BQqcA1VqAGGATzAEzw70nl0XpzXaWnOmfXswx857z/0h5L4</latexit> =

V(m+1)⇥n
<latexit sha1_base64="c5P07xZ0mber/CRQMw+CLhMzMbQ=">AAACBHicbVDLSsNAFJ3UV62vqMtuBovQIpakLnRZ1IXLCvYBTQiT6aQdOpmEmYlQQhZu/BURXCji1j9w407wN9w7bV1o64ELh3Pu5d57/JhRqSzrw8gtLC4tr+RXC2vrG5tb5vZOS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr+8Gzst6+JkDTiV2oUEzdEfU4DipHSkmcWnRCpgR+krcxLy+GBXYGOoiGRkGeeWbKq1gRwntg/pFSvfL0dnn/eNzzz3elFOAkJV5ghKbu2FSs3RUJRzEhWcBJJYoSHqE+6mnKk97jp5IkM7mulB4NI6OIKTtTfEykKpRyFvu4cnyxnvbH4n9dNVHDippTHiSIcTxcFCYMqguNEYI8KghUbaYKwoPpWiAdIIKx0bgUdgj378jxp1ar2UbV2qdM4BVPkQRHsgTKwwTGogwvQAE2AwQ24A4/gybg1Hoxn42XamjN+ZnbBHxiv3zeSm5M=</latexit>

V0
(m+1)⇥n

<latexit sha1_base64="JWm/7RWLgs10Gg6V8yPXWeKcpuk=">AAACBXicbVC7SgNBFJ2NrxhfUUstBoOYIIbdWGgZ1MIygnlAdllmJ7PJkNnZZWZWCMs2Nv6KFhaK2PoFNnaCv2Hv5FFo4oELh3Pu5d57vIhRqUzz08jMzS8sLmWXcyura+sb+c2thgxjgUkdhywULQ9JwigndUUVI61IEBR4jDS9/vnQb94QIWnIr9UgIk6Aupz6FCOlJTe/awdI9Tw/aRykblIMDq0StBUNiIQ8dfMFs2yOAGeJNSGFaun7/eji66Hm5j/sTojjgHCFGZKybZmRchIkFMWMpDk7liRCuI+6pK0pR3qPk4y+SOG+VjrQD4UuruBI/T2RoEDKQeDpzuHNctobiv957Vj5p05CeRQrwvF4kR8zqEI4jAR2qCBYsYEmCAuqb4W4hwTCSgeX0yFY0y/PkkalbB2XK1c6jTMwRhbsgD1QBBY4AVVwCWqgDjC4BffgCTwbd8aj8WK8jlszxmRmG/yB8fYDnkKbxA==</latexit>

W(m+1)⇥r
<latexit sha1_base64="cVK8oIDwwPCdDv8N8LpEGvVWPjw=">AAACBHicbVDLSsNAFJ3UV62vqMtuBovQIpakLnRZ1IXLCvYBTQiT6aQdOpOEmYlQQhZu/BURXCji1j9w407wN9w7bV1o64ELh3Pu5d57/JhRqSzrw8gtLC4tr+RXC2vrG5tb5vZOS0aJwKSJIxaJjo8kYTQkTUUVI51YEMR9Rtr+8Gzst6+JkDQKr9QoJi5H/ZAGFCOlJc8sOhypgR+k7cxLy/zArkBHUU4kFJlnlqyqNQGcJ/YPKdUrX2+H55/3Dc98d3oRTjgJFWZIyq5txcpNkVAUM5IVnESSGOEh6pOupiHSe9x08kQG97XSg0EkdIUKTtTfEyniUo64rzvHJ8tZbyz+53UTFZy4KQ3jRJEQTxcFCYMqguNEYI8KghUbaYKwoPpWiAdIIKx0bgUdgj378jxp1ar2UbV2qdM4BVPkQRHsgTKwwTGogwvQAE2AwQ24A4/gybg1Hoxn42XamjN+ZnbBHxiv3z88m5g=</latexit>

Hr⇥n
<latexit sha1_base64="6Bk1mFhpBC1zqM2uuQMBa7Z2MAw=">AAACAHicbVC7TsNAEDzzDOFloKCgOYiQQhPZoYAygiZlkMhDiqPofDknp5zP1t0aKbLc8AN8BA0FCNFS8gl0fAg9l0cBCSOtNJrZ1e6OHwuuwXG+rKXlldW19dxGfnNre2fX3ttv6ChRlNVpJCLV8olmgktWBw6CtWLFSOgL1vSH12O/eceU5pG8hVHMOiHpSx5wSsBIXfvQCwkM/CCtZt1UYQ94yDSWWdcuOCVnArxI3BkpVI6L3x8P3lmta396vYgmIZNABdG67ToxdFKigFPBsryXaBYTOiR91jZUErOnk04eyPCpUXo4iJQpCXii/p5ISaj1KPRN5/hcPe+Nxf+8dgLBZSflMk6ASTpdFCQCQ4THaeAeV4yCGBlCqOLmVkwHRBEKJrO8CcGdf3mRNMol97xUvjFpXKEpcugInaAictEFqqAqqqE6oihDj+gZvVj31pP1ar1NW5es2cwB+gPr/QdeXpno</latexit>

Approximate row (m+1) in W 
by optimising differences 
between V and WH

Figure 1: Predicting application performance.

n column vectors of VM 
data comprising m 
benchmark data

 r column vectors 
of VM latent 
characteristics

n latent characteristics 
coefficients for each VM

Non-Negative Matrix Factorization for Latent Characteristics Extracting

Input

Prior VM knowledge 
as labels

VM1

VMn

vcpu 2

vcpu 4
… …

Supervised classification for VMs

Input

Constraint

Decompose

V 2 Rm⇥n
<latexit sha1_base64="N76XvSiL+GhQJB0venT68BdfErk=">AAACD3icbVC7TsMwFHV4lvIKMLJYVCCmKikDbFSwMBZEH1ITKsd1Wqu2E9kOUhXlD1j4FRYGEGJlZeNT2HCTDtByJEvH59yre+8JYkaVdpwva2FxaXlltbRWXt/Y3Nq2d3ZbKkokJk0csUh2AqQIo4I0NdWMdGJJEA8YaQejy4nfvidS0Ujc6nFMfI4GgoYUI22knn3kcaSHQZi2MuhRAYtvkN5kdymHnqacKCiynl1xqk4OOE/cKamcf4c5Gj370+tHOOFEaMyQUl3XibWfIqkpZiQre4kiMcIjNCBdQwUyc/w0vyeDh0bpwzCS5gkNc/V3R4q4UmMemMrJumrWm4j/ed1Eh2d+SkWcaCJwMShMGNQRnIQD+1QSrNnYEIQlNbtCPEQSYW0iLJsQ3NmT50mrVnVPqrVrt1K/AAVKYB8cgGPgglNQB1egAZoAgwfwBF7Aq/VoPVtv1ntRumBNe/bAH1gfPwaYoFY=</latexit>

W 2 Rm⇥r
<latexit sha1_base64="XZMZAgv4O6z5wb9AmzFHEe2UBZk=">AAACD3icbVC7TsMwFHV4lvIKMLJYVCCmKikDbFSwMBZEH1ITKsd1Wqu2E9kOUhXlD1j4FRYGEGJlZeNT2HCTDtByJEvH59yre+8JYkaVdpwva2FxaXlltbRWXt/Y3Nq2d3ZbKkokJk0csUh2AqQIo4I0NdWMdGJJEA8YaQejy4nfvidS0Ujc6nFMfI4GgoYUI22knn3kcaSHQZi2M+hRAYtvkN5kdymHnqacKCiznl1xqk4OOE/cKamcf4c5Gj370+tHOOFEaMyQUl3XibWfIqkpZiQre4kiMcIjNCBdQwUyc/w0vyeDh0bpwzCS5gkNc/V3R4q4UmMemMrJumrWm4j/ed1Eh2d+SkWcaCJwMShMGNQRnIQD+1QSrNnYEIQlNbtCPEQSYW0iLJsQ3NmT50mrVnVPqrVrt1K/AAVKYB8cgGPgglNQB1egAZoAgwfwBF7Aq/VoPVtv1ntRumBNe/bAH1gfPw5NoFs=</latexit>

H 2 Rr⇥n
<latexit sha1_base64="ontuga3n/QuPt7BGskeD0cF3mv0=">AAACD3icbVC7TsMwFHXKq5RXgJHFogIxVUkZYKOCpWNB9CE1oXJcp7XqOJHtIFVR/oCFX2FhACFWVjY+hQ0n6QAtR7J0fM69uvceL2JUKsv6MkpLyyura+X1ysbm1vaOubvXkWEsMGnjkIWi5yFJGOWkrahipBcJggKPka43ucr87j0Rkob8Vk0j4gZoxKlPMVJaGpjHToDU2POTZgodymHx9ZKb9C4R0FE0IBLydGBWrZqVAy4Se0aqF99+jtbA/HSGIY4DwhVmSMq+bUXKTZBQFDOSVpxYkgjhCRqRvqYc6Tlukt+TwiOtDKEfCv24grn6uyNBgZTTwNOV2bpy3svE/7x+rPxzN6E8ihXhuBjkxwyqEGbhwCEVBCs21QRhQfWuEI+RQFjpCCs6BHv+5EXSqdfs01r92q42LkGBMjgAh+AE2OAMNEATtEAbYPAAnsALeDUejWfjzXgvSkvGrGcf/IHx8QP3gaBN</latexit>

s.t. WH ⇡ V
<latexit sha1_base64="aBFpoly6LEDaYxAkEAA/dK0YHXg=">AAACFHicbZDLSgMxFIYz9VbHW9Wlm2ARBGGYqQvdiEU3XVawF2hLyaQZG5qZCckZaRn6EG58AR/CjQtFxJ0LN+LbmF4Qrf4Q+PjPOeSc35eCa3DdTyszN7+wuJRdtldW19Y3cptbVR0nirIKjUWs6j7RTPCIVYCDYHWpGAl9wWp+73xUr10zpXkcXcJAslZIriIecErAWO3cQRNYH1LtgIOHuBkS6PpBWisZJlKquP/tVYftXN513LHwX/CmkD99tU/k3Yddbufem52YJiGLgAqidcNzJbRSooBTwYZ2M9FMEtojV6xhMCIh0610fNQQ7xmng4NYmRcBHrs/J1ISaj0IfdM52lDP1kbmf7VGAsFxK+WRTIBFdPJRkAgMMR4lhDtcMQpiYIBQxc2umHaJIhRMjrYJwZs9+S9UC4536BQuvHzxDE2URTtoF+0jDx2hIiqhMqogim7QPXpET9at9WA9Wy+T1ow1ndlGv2S9fQEx6qHu</latexit>

Figure 2: Extracting VM latent characteristics using NMF
with constraints from supervised classification.

Obtaining W and H is, in general, a non-convex op-
timisation problem with multiple possible decomposition
solutions. To tackle this problem, we combine NMF with su-
pervised ML tasks, e.g. logistic regression, in the modelling
process. As shown in Figure 2, we utilise prior knowledge
of VM as labels for each VM when running the supervised
ML tasks, e.g. multiclass classification for the label of vCPU
numbers or machine type. During the process, the latent
characteristics from NMF are used as input data for the
supervised ML task. In return, the results of the tasks are
fed back to NMF to drive characteristics modelling in a
‘discriminative’ way. In the rest of the section, we will
present the details of the design choices.



B. Loss functions and constraints with supervised ML

The key to combine supervised tasks with NMF is to
integrate their loss functions. Suppose there is a vector
of labels for each VM, i,e, ~y ∈ Rn, where type of
Y depends on the supervised ML task, e.g Y := R for
linear regression; Y := {−1, 1} for binary classification; and
Y := {p1, ..., pk} for multiclass classification. In the rest
of section, we will illustrate our approach using multiclass
classification.

We first apply Hadamard production to the loss function
(2) so that null value can be allowed in the data matrix
as proposed in [10], i.e. minW,H ‖Q� (V −WH)‖2F , Those
entries with null values will be ignored when calculating the
distance for the loss function. The motivation is to give users
the choice to not provide partial benchmark data, because
some benchmarks can fail to run due to technical problems
or users just want to save costs for benchmarking. This
also enables us to construct the data matrix with missing
values during prediction. We will cover the prediction part
in §III-D. The loss function `n for NMF is then defined as
`n(V) = minW,H ‖Q� (V −WH)‖2F + λ1‖H‖1 + λ2

2 ‖H‖2F + λ3‖W‖1

where the last three items are L1 and L2 norm regularization
to prevent the elements from getting too large., and L1 norm
can also lead to sparsity.

For the supervised ML task, we will use the weights of
latent variables, i.e. H, as input data to learn the correlation,
i.e. F(~hi) = yi. Take multiclass classification with k
options for example, one can use “one-versus-all” approach
to generate k sets of labels for each options. That is, for
~y ∈ Y and Y := {p1, ..., pk} where k ≥ 2, a set of vectors
for labels are { ~y′1, ..., ~y′k} where

~y′i = [FY(y1, pi), ...,FY(yn, pi)] and FY(y, p) =
{

1 if y = p
−1 if y 6= p

`s can then be defined as k logistic regression loss functions:
`s(~y,H) = `s1(

~y′1,H) + ...+ `sk(
~y′k,H)

where each `si is a binary classification loss function:

`s(~y,H) = min
~a∈Rr,b∈R

~1T log(exp(−~y � (HT~a+ b~1)) + ~1)

+
ν1
2
‖~a‖22 +

ν2
2
b2

Now we can integrate the NMF with supervised ML by
combining their loss functions, i.e.

`n(V) + α`s(~y,H) (3)

where α is used to balance the cost functions for NMF and
supervised tasks.

C. Optimisation

H is the key to linking NMF with supervised ML tasks
as it appears in both `n and `s. Algorithm 1 shows the
process of optimising (3) It takes the following input:
data matrix V for NMF, ~a for supervised ML, λ, ν, α
for regularization, η for learning rate, t for maximum

iteration and d for the periodical adjustment. W and
H are initialised using NNDSVD (Non-negative Double
Singular Value Decomposition) [11], which is a SVD-
based non-random initialisation for sparse decomposition.

Algorithm 1 Optimisation
Input: V, ~y, α, η, λ, ν, t, d
Output: W,H

1: procedure
2: ~a, b, j = 0
3: W, H ← NNDSVD.
4: for i = 1 to t do
5: Update W,H using (4)
6: if j == d then
7: Update ã, b for `s
8: H← P+[H− ηH∇H`s]
9: else

10: j ← j + 1
11: end if
12: if Convergence then
13: return W, H
14: end if
15: end for
16: end procedure

Algorithm 2 Prediction
Input: ~vm+1,H, λ, t
Output: ~wm+1

1: procedure
2: w(m+1)j ← Avr+(~wT

j )
3: for i = 1 to t do
4: Update ~wm+1 with (6)
5: if Convergence then
6: return ~wm+1

7: end if
8: end for
9: return ~wm+1

10: end procedure

The optimisation process iteratively applies the multi-
plicative updating approach to update non-negative variables
W and H to maintain the non-negative property, i.e.

W←W � ((Q�V)HT )
((Q�(WH))HT+λ3)

H← H� (WT (Q�V))
(WT (Q�WH)+λ1+λ2H)

(4)

For every d iterations, gradient descent is applied to obtain
the optimal values of ~a and b with current H in the super-
vised ML loss function. Then, gradient descent is applied
to H to bias the latent characteristics using the feedback
from the supervised ML task. Take logistic regression for
example, it is:

∇H`s = −~a (φ�~yT )

(~1T+φ)
where φ = exp

(
−~yT �

(
~aT ·H+ (b · ~1)T

))
Note that because the gradient descent update cannot guar-
antee H to be non-negative, the algorithm will set wij to 0
if it becomes negative. This is denoted by P+[•].

D. Prediction

The intuition is to consider the new performance measure-
ment as part of the benchmark data matrix, and then to run
matrix factorization to approximate the unknown elements
using the latent variables models and the weights, i.e. W
and H. Note that the current value in W and H remain
the same during the process of prediction. When samples
of performance measurements are obtained, a sparse vector
can be structured and then appended to V, i.e. ~v(m + 1).
This new vector will be approximated by a new row in the
W and the weights H, i.e.

~vm+1 ≈ ~wm+1H

Prediction now becomes the following optimisation problem:

`p = min~wm+1
‖~q� ~vm+1 − ~wm+1H‖22 + λwp

2 ‖~wm+1‖22 (5)



A masking vector ~q and the Hadamard production is also
introduced to allow missing elements.

Now we utilise the W to initialise ~wm+1 with more mean-
ingful values rather than using an arbitrary numbers. Recall
that each element wij can also be considered as the relation
between the applications and the latent characteristic. We
assign the initial value of w(m+1)j using the average of
non-negative values in the same column. The application
starts the optimisation at the position where it has an average
relation with each latent characteristics. We now apply to the
following update rule to optimise ~wm+1:

~wm+1 ← ~wm+1 � ((~q�~vm+1)H
T )

((~q�(~wm+1H))HT+λwp ~wm+1)
(6)

The details of the optimisation is provided in Algorithm 2.

IV. EXPERIMENTS

We implement a prototype in python using Matrix Cal-
culus [12] and ML algorithms from the sklearn library.
As an initial experiments to demonstrate the latent variable
approach, we set up a naive scenario that a user would like to
get a comprehensive performance profile of VMs from AWS
EC2 measured by a general-purpose high-level benchmark
called Geekbench [13]. The set of VMs of interests comprise
of 37 AWS EC2 VMs from 4 categories, e.g. General
Purpose and Computation Optimized and 16 instance type
families, e.g. M5 and C4, as shown in Table I. For the

Table I: List of AWS EC2 VMs used for evaluation

General Purpose Memory Optimized
t2.micro, t3.micro, r5.{large, xlarge, 2xlarge},
m5.{large, xlarge, 2xlarge}, r5a.{large, xlarge, 2xlarge},
m5a.{large, xlarge, 2xlarge}, r5n.{large, xlarge, 2xlarge},
m5n.{large, xlarge, 2xlarge}, r4.{large, xlarge, 2xlarge}
m4.{large, xlarge, 2xlarge}
Compute Optimized Accelerated Computing
c5n.large, c5.{large, xlarge}, g4dn.xlarge, g3s.xlarge
c5d.{large, xlarge, 2xlarge},
c4.{large, xlarge, 2xlarge},
Summary: 37 VMs with 4 categories, 16 families, vCPU range of [1,8]

micro-benchmark data, we choose 353 micro-benchmarks
(also called stressor) from stress-ng [14], covering different
performance aspects, e.g. cpu, cpu-cache, I/O and memory

For the latent variable approach, we utilise the knowledge
of vCPU numbers as the input for the Semi-supervised
NMF (SNMF), i.e. classifying of the vCPU numbers as
the supervised ML task. To compare the prediction results,
we also apply Random Forest (RF), Collaborative Filtering
Matrix Factorization (CF-MF) and Collaborative Filtering
Normal Matrix Factorization (CF-NMF) to the same setting.
We are interested in CF-MF and CF-NMF, because they
are also in the family of low-rank matrix decomposition
techniques that are applied in collaborative filtering (CF)
for recommender systems The main difference, compared
to ours, is that, the CF approach puts the prediction target
directly in the data matrix and then reconstruct the whole
matrix for prediction.

We ran each micro-benchmark for 3s on every VMs to
get the scores. We then set the running instances to match
vCPU numbers to get the full potential of multi-cores.

After getting the Geekbench scores for all VMs, we set
up two groups of experiments where one takes 5 random
scores from the normalised Geekbench scores as samples,
while the other takes 10. For each group, we run 30 iterations
to evaluate prediction accuracy for each prediction method,
with randomly picked samples in each iteration.

Figure 3: Prediction RMSE distribution for the experiments
of predicting the Geekbench scores for all VMs using n
randomly selected VMs as sample scores. The red line
indicates the mean of the distribution; and lower value of
RMSE (y-axis) suggests more accurate prediction; and a
narrow range suggests more stable prediction.

Figure 3 (left) and 3 (right) show violin plots, for each
group of experiments respectively, to summarise prediction
result assessed by RMSE. SNMF makes a good prediction in
term of accuracy and stability for both groups, with (RMSE
mean 10.0, std 4.5) for the 5 samples group, and
(RMSE mean 6.7, std 2.8) for the 10 samples one.
Generally speaking, providing more samples could improve
the prediction for all methods. This is because, when the
number of the sample is low, it is more likely that a bad set
of samples are drawn, e.g. VM with similar performance.
Figure 4 shows a relatively bad prediction result for a SNMF
when no sample is drawn for high performance VM. In the
case when representative samples are drawn, all methods
except for CF-NMF, can provide good prediction in this
experiment. By comparing the worst case for all perdition
methods, even with bad sample sets, SNMF can still manage
to make a reasonable guess because of the more sensible
latent characteristics biased by the supervised ML tasks.

It is interesting to compare the accuracy of CF-MF and
CF-NMF to SNMF because all use matrix factorization. In
SNMF, the modelling and predicting are two separated pro-
cess, while in CF-NMF and CF-MF, they are combined into
one same matrix decomposition. That is, fitting the sample
results would have an impact on the latent characteristics to
be extracted. This is a sensible setting in the recommender
system because the missing data points for prediction are
meant to be drawn from the same ‘universal data distribu-
tion’, which may not be true for VM performance prediction.



Figure 4: An example of a relatively bad prediction result
due to an unrepresentative sample set. The blue dots are
prediction, the grey ones are samples and the dotted red
line is a reference line meaning perfect accuracy.

The result suggests that drawing sensible sample is crucial
for prediction. In future, we consider to combine Bayesian
optimization with SNMF to improve prediction stability.

V. RELATED WORK & FUTURE WORK

Semi-supervised NMF was originally proposed in [10, 5].
More recently, they have been applied to the medical do-
main, e.g. analyse tumour images [15] and ICU mortality
data analysis [16]. From the learning prospect, the key idea
of all these applications are similar, but the exact formulation
of modelling and prediction are different due to the nature
of different application domains. In our case, we concern
about both resultant matrices And both matrices are used as
direct input or heuristics in prediction.

In [17], micro-benchmarks were used as machine perfor-
mance indicators for software regression testing. But they
did not further extract latent variables from the benchmarks.
Comparing to other driven-driven approaches, e.g. Ernest
[3], Cloudbench [1] and Paris [2], our approach makes the
choices of benchmark easier because users can provide a
large number of benchmarks and not every single benchmark
has to be relevant. There are a number of tools to facilitate
benchmarking VMs for decision making, e.g. GooglePerfkit
[18], DocLite [19] and Cloudbench [1]. But they do not
provide guidance on how to use benchmark scores.

Our experiments are an early attempt to demonstrate the
feasibility of the latent approach. The setup is limited, e.g.
Geekbench is not a representative cloud application and
running each micro-benchmark for 3 seconds is not possible
to cover some performance aspects. For the next steps, we
plan to run experiments with application-level benchmarks to
evaluate our approach in more realistic scenarios. We would
like to discover more general latent VM characteristics by
utilising the existing benchmark scores from the platform
such as OpenBenchmarking [20]. It is also interesting to ap-
ply our method to industry prediction problems as suggested
in [21]. Apart from the possible improvement with Bayesian
optimization as discussed in §IV, we also interested in
employing statistical approaches of likelihood theory and
the bootstrap, as in [22], to handle the case when application
performance required weeks to be stabilised due to periodic
performance fluctuation.

VI. CONCLUSION

We have presented a novel latent variable approach to for-
mulate VM performance modelling and prediction as matrix
decomposition and completion problems. This approach can
be applicable to the scenario of predicting the performance
of an black-box or grey-box application with limited the
prior knowledge. Choosing benchmarks is in general a non-
trivial problem in such scenario. This approach allows users
to provide a large set of potentially relevant benchmarks as
input to model VM performance for performance prediction.
As an initial evaluation, We ran a prototype with 373
micro-benchmarks to predict the scores of a general-purpose
benchmark, i.e. Geekbench, for 37 AWS EC2 VMs. The
results show that our method is effective in the setting, with
RMSE and STD being (6.7, 4.5) when sampling Geekbench
on 5 VMs, and (10.0, 2.8) when sampling 10.

ACKNOWLEDGMENT
This work is a part of the ABC (Adaptive Brokerage for the Cloud

project) funded by EPSRC EP/R010528/1.

REFERENCES
[1] J. Scheuner and P. Leitner, “Estimating cloud application performance based on

micro-benchmark profiling,” in 11th IEEE CLOUD. IEEE, 2018, pp. 90–97.
[2] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H. Katz,

“Selecting the best vm across multiple public clouds: A data-driven performance
modeling approach,” in SoCC. ACM, 2017, pp. 452–465.

[3] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest: efficient
performance prediction for large-scale advanced analytics,” in NSDI, 2016.

[4] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[5] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE TPAMI,
vol. 34, no. 4, pp. 791–804, 2011.

[6] V. Bisot, R. Serizel, S. Essid, and G. Richard, “Feature learning with matrix fac-
torization applied to acoustic scene classification,” IEEE/ACM TASLP, vol. 25,
no. 6, pp. 1216–1229, 2017.

[7] C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization with
the β-divergence,” Neural computation, vol. 23, no. 9, pp. 2421–2456, 2011.

[8] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factorization
with the itakura-saito divergence: With application to music analysis,” Neural
computation, vol. 21, no. 3, pp. 793–830, 2009.

[9] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,”
in Advances in neural information processing systems, 2001, pp. 556–562.

[10] H. Lee, J. Yoo, and S. Choi, “Semi-supervised nonnegative matrix factorization,”
IEEE Signal Processing Letters, vol. 17, no. 1, pp. 4–7, 2009.

[11] C. Boutsidis and E. Gallopoulos, “SVD based initialization: A head start for
nonnegative matrix factorization,” Pattern recognition, vol. 41, no. 4, 2008.

[12] S. Laue, M. Mitterreiter, and J. Giesen, “Computing higher order derivatives of
matrix and tensor expressions,” in NIPS, 2018.

[13] Geekbench Webpage, “Geekbench: cross-platform benchmark.” [Online].
Available: https://www.geekbench.com/

[14] Ubuntu Manpage, “stress-ng reference webpage.” [Online]. Available: https:
//kernel.ubuntu.com/∼cking/stress-ng/

[15] G. Chao, C. Mao, F. Wang, Y. Zhao, and Y. Luo, “Supervised nonnegative matrix
factorization to predict ICU mortality risk,” in IEEE BIBM, 2018.

[16] J. Leuschner, M. Schmidt, P. Fernsel, D. Lachmund, T. Boskamp, and P. Maass,
“Supervised non-negative matrix factorization methods for maldi imaging ap-
plications,” Bioinformatics, vol. 35, no. 11, pp. 1940–1947, 2019.

[17] I. Jimenez, N. Watkins, M. Sevilla, J. Lofstead, and C. Maltzahn, “Quiho:
Automated performance regression testing using inferred resource utilization
profiles,” in 2018 ACM/SPEC ICPE. ACM, 2018, pp. 273–284.

[18] P. B. Webpage, “PerfKit benchmarker.” [Online]. Available: http:
//googlecloudplatform.github.io/PerfKitBenchmarker/

[19] B. Varghese, L. T. Subba, L. Thai, and A. Barker, “Container-based cloud virtual
machine benchmarking,” in IC2E. IEEE, 2016, pp. 192–201.

[20] O. Webpage, “OpenBenchmarking.” [Online]. Available: https://
openbenchmarking.org/

[21] A. Barker, B. Varghese, J. S. Ward, and I. Sommerville, “Academic cloud
computing research: Five pitfalls and five opportunities,” in HotCloud 14, 2014.

[22] S. He, G. Manns, J. Saunders, W. Wang, L. Pollock, and M. L. Soffa, “A
statistics-based performance testing methodology for cloud applications,” in
Proceedings of the 2019 27th ACM Joint MeESEC/FSE 2019, 2019.

https://www.geekbench.com/
https://kernel.ubuntu.com/~cking/stress-ng/
https://kernel.ubuntu.com/~cking/stress-ng/
http://googlecloudplatform.github.io/PerfKitBenchmarker/
http://googlecloudplatform.github.io/PerfKitBenchmarker/
https://openbenchmarking.org/
https://openbenchmarking.org/

	Introduction
	Non-negative Matrix Factorization
	Latent variable modelling and prediction
	Problem formulation
	Loss functions and constraints with supervised ML
	Optimisation
	Prediction

	Experiments
	Related work & Future work
	Conclusion

