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ABSTRACT

An integral of a group G is a group H whose derived group (commutator

subgroup) is isomorphic to G. This paper discusses integrals of groups,

and in particular questions about which groups have integrals and how

big or small those integrals can be. Our main results are:

• If a finite group has an integral, then it has a finite integral.

• A precise characterization of the set of natural numbers n for which

every group of order n is integrable: these are the cubefree numbers

n which do not have prime divisors p and q with q | p− 1.

• An abelian group of order n has an integral of order at most n1+o(1),

but may fail to have an integral of order bounded by cn for constant

c.

• A finite group can be integrated n times (in the class of finite groups)

for every n if and only if it is a central product of an abelian group

and a perfect group.

There are many other results on such topics as centreless groups, groups

with composition length 2, and infinite groups. We also include a number

of open problems.
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1. Introduction

Let G be a group. An integral (in the sense of antiderivative) of G is any

group H such that H ′ = G. Several authors refer to groups with an integral as

C-groups or commutator-realizable groups.

Questions about integrals of groups were first raised by Bernhard Neumann

in [11]. It is surprising how little progress has been achieved on this topic since

Neumann’s paper. Perhaps the explanation is that the proofs rely as much on

intricate constructions as on long arguments (though the proofs of our Theorems

4.4 and 7.1 are fairly substantial).

Some groups have no integral, as observed in Group Properties [4]:

It is not true that every group can be realized as the derived

subgroup of another group – for instance, the “characteristically

metacyclic and commutator-realizable implies abelian” state-

ment tells us that a group whose first two abelianizations are

cyclic, but whose second derived subgroup is not trivial, cannot

arise as a derived subgroup.

Indeed, there is no simple test for integrability.

Every abelian group is integrable; so the set of orders of non-integrable groups

is a subset of the set of orders of non-abelian groups. A major result, which oc-

cupies Section 7, is an exact description of this set, more conveniently expressed

in terms of its complement: we show that every group of order n is integrable

if and only if n is cube-free and does not have prime divisors p and q such that

q | p− 1. This implies, in particular, that for every even integer greater than 4

there is a non-integrable group of order n.

We will see in Section 2 that if a finite group has an integral, then it has a

finite integral; so it makes sense to ask for a good upper bound for the smallest

integral of a finite integrable group. In order to have a good computational

test for integrability, it would be useful to have such a bound. We conjecture

that an integrable group of order n has an integral of order at most n3; this is

best possible, as shown by the cyclic group of order 2, whose smallest integrals

are the dihedral and quaternion groups of order 8. We have been unable to

find a closed formula for the smallest integral of an abelian group, but we give a

number of constructions in Section 4 for small integrals of abelian groups. From

these constructions it follows that an abelian group of order n has an integral of

order n1+o(1). In the other direction, we show that integrals of abelian groups
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of order n do not have order bounded by cn for any constant c. We also give a

weaker bound nc logn for the order of the smallest integral of a centreless group

of order n.

Also, there are infinite abelian groups A which do not have an integral G

with |G : A| finite.

Any perfect group, and in particular any non-abelian simple group, is its own

integral. Motivated by this, we analyse non-perfect groups with composition

length 2, and decide whether or not such groups are integrable (up to a specific

question about outer automorphism groups of simple groups). This question

leads to a more general topic: When does a group G have an integral inside

some “universal” group U containing G?

By analogy with C∞ functions in analysis, we are led to the question: does

there exist a group which can be integrated infinitely often? Clearly any perfect

group has this property, since it is its own integral. Bernhard Neumann [11]

showed that there is no such sequence where all the groups are finite and the

sequence increases strictly; but we give in Subsection 8.3 two sequences satis-

fying slightly weaker conditions. We also examine finite groups which can be

integrated n times for every positive integer n. These turn out to be central

products of an abelian group and a perfect group.

We hope that the results about integrals will inspire the research on similar

inverse problems in group theory, some of which will be discussed in a following

paper.

We are grateful to Alireza Abdollahi, Lars Jaffke, Michael Kinyon, and Avi-

noam Mann for valuable comments. In particular, Alireza Abdollahi informed

us of his paper [1]; although we have not seen the paper, the author kindly

communicated to us the main results. He also drew our attention to a comment

he had made on MathOverflow [8], and to the paper by Filom and Miraftab [2].

This paper was published in 2017, but the work of these authors was completely

independent of ours. Finally, Abdollahi is (as far as we know) the first author

to use the term “integral” in the sense used here.

2. Preliminaries

In this section we gather some straightforward observations and prove that

integrable finite groups have finite integrals. First we note that, if a group has

an integral, then it has infinitely many:
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Lemma 2.1: Let G be a group, let H be an integral for G and let A be an

abelian group. Then H ×A is an integral for G.

This is self-evident and already known (but we do not know where it was first

observed). It is the analogue of adding a “constant of integration”.

Theorem 2.2: Let G be a finite group. If G has an integral, then it has an

integral which is a finite group.

Proof. Let H be an integral of G. First, we reduce to the case where H is

finitely generated.

Since G = H ′, there are finitely many commutators [h1, k1], . . . , [hr, kr]

which generate G, with hi, ki ∈ H. Now it is clear that the subgroup of H

generated by h1, . . . , hr, k1, . . . , kr is an integral of G, and is finitely generated.

So, without loss, H is finitely generated.

Any conjugacy class in H is contained in a coset of H ′ = G. (For h, x ∈ H,

we have Gx−1hxh−1 = G, so Gx−1hx = Gh.) Thus H is a BFC-group (the

conjugacy classes are finite of bounded order). While not every BFC-group has

centre of finite index, this is true for finitely generated BFC-groups. For let

H = 〈x1, . . . , xk〉. By assumption, CH(xi) has finite index in H (at most |G|);
so Z(H) =

⋂k
i=1 CH(xi) has finite index in H.

In consequence, Z(H) is finitely generated abelian. So it has the form A×B,

where A is finite and B is finitely generated torsion-free. Since B ≤ Z(H), it is

a normal subgroup of H; since it is torsion-free, B ∩G = 1. Thus G embeds in

the finite group H = H/B, and (H)′ = G.

Remark 2.3: In the paper [2], this theorem is proved under stronger hypothe-

ses. In addition, there are results in the paper which can be improved using

our theorem. For example, Theorem 20 asserts that, if a non-abelian 2-group

G has cyclic centre and automorphism group a 2-group, then any integral of G

is infinite; we can now conclude that such a group is not integrable.

It is possible for a group to have infinitely many integrals with no abelian

direct factors (see [12]). For example, every extraspecial p-group is an integral of

the cyclic group of prime order p. (A p-group P is special if P ′ = Φ(P ) = Z(P ),

and is extraspecial if this subgroup is cyclic of prime order.)
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Proposition 2.4: There exists a function f defined on the natural numbers

such that, if G is an integrable group of order n, then G has an integral of order

at most f(n).

Proof. We can take f(n) to be the maximum, over all integrable groups G of

order n, of the minimum order of an integral of G. (We will see at the end of

this section that, for every n, there is an integrable group of order n, so this

function is well-defined.)

An algorithm for deciding whether a group G of order n is integrable could

run as follows: examine all groups H of order at most f(n) (and divisible by n);

return true if such an H is found with H ′ = G, and false otherwise. However,

in the absence of a decent bound for f(n), this algorithm is worthless. It would

be useful to have a good bound, and we pose the question whether f(n) < n3

for all natural numbers n. (Note that the smallest integrals of the cyclic group

of order 2 are the dihedral and quaternion groups of order 8.)

In Section 5 we will prove a weaker bound for centreless groups.

Finally, we consider abelian groups. Guralnick [5] showed that, if A is an

abelian group of order n, then the group A o C2, of order 2n2, is an integral of

A. In Section 4 we will find much smaller integrals of abelian groups, and pose

the question of finding the smallest.

3. Some examples of integrability

In this section we give some examples of integrable and non-integrable groups.

These are of some interest in their own right, and will also be used in the dis-

cussion of orders of non-integrable groups. We also give some results concerning

direct products. We begin by recalling known results in the literature:

(a) Abelian groups are integrable [5].

(b) Dihedral groups are non-integrable. (This is stated by Neumann [11]

with a reference to Zassenhaus [18], which we have not been able to

check; an explicit proof, also showing that quasi-dihedral and generalized

quaternion groups are non-integrable, is in [2, Corollary 18].)
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(c) Symmetric groups Sn (for n ≥ 3) are non-integrable. (This is folklore.

The first reference we found in print is in [11], where it is stated with-

out proof; the earliest proof we found in print is [2, Corollary 15 and

Theorem 16].)

(d) Some matrix groups are integrable [10]. Miller deals with all normal sub-

groups of the general linear groups GLn(K), the unitary groups Un(K),

and the orthogonal groups On(K) for K a field of characteristic different

from 2.

We will recover some of the results above as consequences of our own construc-

tions.

The next result is essentially the same as [2, Theorem 17].

Proposition 3.1: Let G be a group with a characteristic cyclic subgroup C

which is not contained in Z(G). Then G has no integral.

Proof. Suppose for a contradiction that H ′ = G. Since C is characteristic

in G, it is normal in H, and H (acting by conjugation) induces a group of

automorphisms of C. The automorphism group of a cyclic group is abelian,

and so G = H ′ acts trivially on C, and C ≤ Z(G), a contradiction.

Corollary 3.2: If n is even and n > 4, the dihedral group of order n is

non-integrable.

Proof. The cyclic subgroup of order n/2 is characteristic (since all elements

outside it have order 2) and non-central (since n > 4).

If n = pq, where p and q are primes, then a non-abelian group of order n

exists if and only if q | p− 1.

Corollary 3.3: Let p and q be primes and q | p − 1. Then the non-abelian

group of order pq is centreless and non-integrable.

There are two non-abelian groups of order p3. For p = 2, these are the

quaternion group (which has an integral, namely SL(2, 3)), and the dihedral

group (which does not have an integral).

The pattern is similar for odd p. We prove the following:
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Theorem 3.4: Of the two non-abelian groups of order p3, where p is an odd

prime, the group of exponent p has an integral, while the group of exponent p2

does not.

Proof. The group of exponent p is isomorphic to the group G of upper unitrian-

gular 3× 3 matrices over the field of order p. A short calculation with matrices

shows that G = H ′, where H is the group of upper triangular matrices with

non-zero elements on the diagonal.

The group of exponent p2 has the presentation

G = 〈a, b : ap
2

= bp = 1, b−1ab = ap+1.〉

We first develop some properties of this group. Note that its centre has order p

and is generated by ap. Let B = 〈ap, b〉. Then B is elementary abelian of order

p2.

We show first that every element outside B has order p2. To see this, note

that bjab−j = a−jp+1, so

bjaib−j = (bjab−j)i = ai(−jp+1).

Then we get

(aibj)p = ai · bjaib−j · b2jaib−2j · · · b(p−1)jaib−(p−1)j

= ai · ai(−jp+1) · ai(−2jp+1) · · · ai(−(p−1)jp+1)

= api,

since j(1 + 2 + · · ·+ (p−1)) is divisible by p (since p is odd) and ap
2

= 1. Thus,

aibj has order p if and only if p divides i, which means that aibj ∈ B.

Let α be an automorphism of G, and suppose that aα = aibj (where p does

not divide i) and bα = apkbl (for if bα 6∈ B, then bα would have order p2, which

is impossible). We must have

b−αaαbα = (aα)p+1.

Since akp is central, for the left-hand side we have

b−l(aibj)bl = b−laiblbj

= ai(lp+1)bj .

On the right we have

(aibj)p+1 = (aibj)paibj = ai(p+1)bj .
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So we must have l = 1. There are p(p− 1) choices for i, p for j, and p for k; so

|Aut(G)| = p3(p−1). The inner automorphism group has order |G/Z(G)| = p2,

and so the outer automorphism group has order p(p− 1).

In more detail: Conjugation by b corresponds to (i, j, k) = (p+ 1, 0, 0), while

conjugation by a corresponds to (i, j, k) = (1, 0,−1). So we can represent the

outer automorphism group by pairs (i (mod p), j). Calculation shows that this

group is isomorphic to the 1-dimensional affine group.

Now suppose that H is an integral of G. Then H acts on G by conjugation,

so there is a homomorphism θ : H → Aut(G), whose restriction to G maps G

to Inn(G). Write H and G for the images of H and G under θ. Then (H)′ = G,

hence H/G is abelian, so either its order is p or it divides p− 1.

If H/G has order p, then |H| = p3, and so it is not possible that |(H)′| =

|G| = p2.

Suppose that m = |H/G| divides p − 1. Up to conjugation, we may assume

that an element h of H of order m is represented as an outer automorphism

of G by a map with j = 0. This means that the automorphism fixes b. Its

action on the quotient G/Z(G), regarded as a 2-dimensional vector space, is a

diagonal matrix with eigenvalues λ and 1. An eigenspace with eigenvalue λ has

the property that all its cosets are fixed. This means that all the automorphisms

in H fix every coset of a subgroup K of G of order p2; so the commutator of

any two of them belongs to K. So the derived group of H is contained in K,

and cannot be G.

For higher powers of a prime, a similar result holds:

Proposition 3.5: Let p be an odd prime and n > 3. Let

G = 〈a, b | ap
n−2

= 1, bp
2

= 1, b−1ab = ap
n−3+1〉.

Then G is not integrable.

Proof. We first deal with the case n = 4, following the arguments in the proof

of Theorem 3.4. In this case, the group G = G4 has order p4; its centre and

Frattini subgroup coincide, and Z(G) = 〈ap, bp〉, elementary abelian of order

p2, while its derived subgroup is generated by ap and is cyclic of order p. The

calculations in the proof of Theorem 3.4 show that (aibj)p = apibpj . So elements

outside Z(G) have order greater than p.
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Any automorphism must map a to an element whose pth power lies in the

derived group, necessarily of the form aibpj , and b to an element not of this

form, say akbl where p - l. Now the proof continues almost exactly as in the

proof of Theorem 3.4.

For n > 4, we can complete the proof by induction. We note that the Frattini

subgroup of G is generated by ap and bp, and is abelian, with structure Cp ×
Cpn−3 ; its Frattini subgroup M is the group generated by ap

2

(isomorphic to

Cpn−4). Thus M is a nontrivial characteristic subgroup of G. If H is an integral

of G, then M is normal in H, and (H/M)′ = H ′/M = G/M ∼= G4. But we

showed above that G4 is not integrable, so this is a contradiction.

Now we consider product constructions, and show the following.

Proposition 3.6: Let G = G1 ×G2.

(a) If G1 and G2 are integrable, then so is G.

(b) If G is integrable and gcd(|G1|, |G2|) = 1, then G1 and G2 are integrable.

(c) If G1 is centreless and G2 is abelian, then G is integrable if and only if

G1 is integrable.

Proof. (a) Suppose that H ′i = Gi for i = 1, 2, and let H = H1 ×H2. Then

H ′ = H ′1 ×H ′2 = G1 ×G2 = G.

(b) Suppose that H is an integral of G1 × G2. Then G1 is a characteristic

subgroup of G1 ×G2, and hence is normal in H, and is contained in H ′. Thus

(H/G1)′ = H ′/G1
∼= G2,

so G2 is integrable; and similarly G1 is integrable.

(c) Suppose that G1 ×G2 is integrable, say H ′ = G1 ×G2. By assumption,

G2 = Z(G1 ×G2), so G2 is a characteristic subgroup of G, and thus is normal

in H. Then

(H/G2)′ = H ′/G2 = (G1 ×G2)/G2
∼= G1,

so G1 is integrable. The converse is clear.

The “centreless” condition in part (c) is essential. For example, D8 is not

integrable, but C2 ×D8 has an integral of order 128.
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4. Abelian groups

As we noted earlier, Guralnick observed that finite abelian groups are integrable.

Indeed, AoC2 is an integral of the abelian group A, and has order 2n2 if |A| = n.

It is possible to construct much smaller integrals of abelian groups in most

cases. If A is an abelian group of odd order, then the group

〈A, t | t2 = 1, t−1at = a−1 for all a ∈ A〉

is an integral of A of order 2|A|. Since any finite abelian group is the direct

product of a group of odd order and a 2-group, the results of the last section

show that it is enough to consider the latter.

Observe the following:

• If A ∼= (C2m)2 = 〈a1, a2〉, then

〈A, s : s3 = 1, s−1a1s = a2, s
−1a2s = a−11 a−12 〉

is an integral of A of the form Ao C3.

• If A ∼= (C2m)3, there is similarly an integral of A of the form A o C7.

(This is a little more complicated than the previous: there we used the

integer matrix

(
0 1

−1 −1

)
of order 3. There is no 3×3 integer matrix of

order 7; but there is such a matrix over the 2-adic integers. Equivalently,

(C2)3 has an automorphism of order 7 (and is the derived subgroup of

the semidirect product), and this automorphism can be lifted to (C2m)3

for all m.)

• If A ∼= C2m , then the dihedral group of order 2m+2 is an integral of A.

Thus, a finite abelian group A has an integral of order at most 42 · 2m · |A|,
where m is the number of powers 2a for which the expression for A as a direct

product of cyclic groups of prime power order has a unique factor of order 2a.

For this we extend each such cyclic factor to one twice as large; then extend by a

cyclic group of order 42, where the element of order 2 inverts these cyclic groups

and the odd-order part of A, while elements of orders 3 and 7 act as previously

described on products of two or three cyclic 2-groups of the same order. (Any

number greater than 1 can be written as a sum of 2s and 3s.) Noting that

|A| ≥ 21+2+···+m = 2m(m+1)/2, we see that the order of this integral is at most

|A|1+o(1).
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Can this bound be reduced to c|A| for some constant c? We see that, to

answer this question, we need to consider direct products of cyclic 2-groups of

distinct orders.

Lemma 4.1: Let H be a 2-group acting by automorphisms on the finite ele-

mentary abelian 2-group A, then

|A/[A,H]| ≥ |A|1/|H|.

Proof. By induction on |H|. Let H = 〈x〉 have order 2. Then for every a ∈ A,

[a, x]x = [a, x]−1 = [a, x],

hence [A, x] ≤ CA(x). On the other hand, the map a 7→ [a, x] is a homomor-

phism of the abelian group A, and so∣∣∣∣ A

[A, x]

∣∣∣∣ ≥ ∣∣∣∣ A

CA(x)

∣∣∣∣ = |[A, x]|

which is what we want.

Let now |H| ≥ 4, let Z be a central subgroup of order 2 of A fixed by H, and

A = A/[A,Z]. Then H/Z acts on A and, by inductive assumption,

|A/[A,H]| ≥ |A|1/|H/Z| = |A|2/|H|.

Now clearly [A,H] = [A,H]/[A,Z], whence∣∣∣∣ A

[A,H]

∣∣∣∣ =

∣∣∣∣ A

[A,H]

∣∣∣∣ ≥ |A|2/|H| ≥ (|A|1/2)2/|H| = |A|1/|H|.

Lemma 4.2: Let A be a finite elementary abelian 2-group, and G a 2-group

such that G′ = A; writing H = G/A, we have

|H| log2 |H| ≥ 2 log |A|.

Proof. Let T = [A,G]. Then, by Lemma 4.1,

|A|1/|H| ≤ |A/T |.

On the other hand, A/T = (G/T )′ is an elementary abelian subgroup of

Z(G/T ); by standard arguments it follows that G/T modulo its centre is ele-

mentary abelian of order, say, 2t; moreover

|A/T | ≤ 2(t
2) ≤ |H|(t−1)/2 ≤ |H|log |H|/2.



12 ARAÚJO, CAMERON, CASOLO AND MATUCCI Isr. J. Math.

Hence

|A|1/|H| ≤ |H|log |H|/2,

i.e. |H| log2 |H| ≥ 2 log |A|.

Proposition 4.3: Let A be an abelian 2-group which is a direct product of m

cyclic groups of distinct orders. Suppose that A = G′ for some group G. Then

|G : A| → ∞ as m→∞.

Proof. Let A = C2a1 × · · · ×C2am , with a1, . . . , am in strictly decreasing order.

The Frattini subgroup Φ(A) has the property that A/Φ(A) is elementary abelian

of order 2m, and automorphisms of A of odd order act faithfully on A/Φ(A).

There can be no such non-identity automorphisms. For the subgroups of A

consisting of elements of orders dividing 2ai are characteristic, and their pro-

jections onto A/Φ(A) form a composition series for this group, whose terms are

necessarily fixed by automorphisms of odd order. So elements of odd order in G

centralise A, and we can assume without loss of generality that G is a 2-group.

Now the result follows from Lemma 4.2.

We conclude:

Theorem 4.4: (a) A finite abelian group A has an integral of order at most

|A|1+o(1).
(b) There is no constant c such that every finite abelian group A has an

integral of order at most c|A|.

The arguments above can be refined to give explicit upper and lower bounds

for the order of the smallest integral of an abelian group.

We have computed the smallest integrals of abelian 2-groups of orders up to

64. The results are in Table 1. The computations involved simply testing the

groups H in the SmallGroups library in GAP to decide whether H ′ is isomorphic

to the given group G.

5. Centreless groups

A group G is complete if its centre is trivial and Aut(G) = Inn(G). Equivalently,

a group G is complete if and only if, for any group H such that G E H, then

H ∼= G× T , for some group T . This follows from [15, Theorems 7.15 and 7.17]

or [14, Theorem 13.5.7]. This has the following consequence:
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Order Invariant Smallest

factors integral

2 (2) 8

4 (4) 16

(2, 2) 12

8 (8) 32

(4, 2) 64

(2, 2, 2) 56

16 (16) 64

(8, 2) 128

(4, 4) 48

(4, 2, 2) 128

(2, 2, 2, 2) 48

32 (32) 128

(16, 2) 256

(8, 4) 256

(8, 2, 2) 256

(4, 4, 2) 256

(4, 2, 2, 2) 256

(2, 2, 2, 2, 2) 256

Order Invariant Smallest

factors integral

64 (64) 256

(32, 2) 512

(16, 4) 512

(16, 2, 2) 512

(8, 8) 192

(8, 4, 2) 512

(8, 2, 2, 2) 512

(4, 4, 4) 448

(4, 4, 2, 2) 192

(4, 2, 2, 2, 2) 512

(2, 2, 2, 2, 2, 2) 192

Table 1. Smallest integrals of abelian groups

Proposition 5.1: Let G be a complete group. Then G is integrable if and

only if it is perfect.

Proof. Suppose that H ′ = G. Then GEH, so H ∼= G×T for some T EH with

G ∩ T = 1; and T ∼= GT/G ∼= H/H ′ is abelian, and so G′ = H ′ = G.

The converse is trivial since every perfect group is integrable.

We now turn to the more general class of centreless groups (those with trivial

centre).

If Z(G) = 1, then G is isomorphic to a subgroup of Aut(G), namely the group

of inner automorphisms of G. Furthermore, Aut(G) also has trivial centre. So

the process can be continued:

G ≤ Aut(G) ≤ Aut(Aut(G)) ≤ · · · .
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Wielandt’s automorphism tower theorem (for example, see [17, Theorem 13.5.4])

says that the procedure terminates after finitely many steps. The final group

in the sequence is complete.

In this section, we show that the same is true for reduced integrals of G. Let

G be a group with Z(G) = 1. We say that an integral H of G is reduced if

CH(G) = 1. Asking for a reduced integral removes the “constant of integration”

(abelian direct factor), but does more than this.

For example, let G = A5, and let H be a semidirect product of G with a

cyclic group of order 4 whose generator induces on G the automorphism of

conjugation by a transposition. Then CH(G) is cyclic of order 2, and H/CH(G)

is an integral of G isomorphic to S5.

Lemma 5.2: If Z(G) = 1 and H is an integral of G, then

(a) CH(G) = Z(H);

(b) H/CH(G) is a reduced integral of G.

Proof. (a) Clearly CH(G) ≥ Z(H). Take h ∈ CH(G), so that gh = g for all

g ∈ G. Let t be any other element of H. Then gt ∈ G = H ′ EH. Then

g[h,t] = gh
−1t−1ht = g

for all g ∈ G, so [h, t] ∈ CH(G). But [h, t] ∈ H ′ = G, and G∩CH(G) = Z(G) =

1. So [h, t] = 1 for all t ∈ H, whence h ∈ Z(H).

(b) We have

(H/CH(G))′ = H ′CH(G)/CH(G) = GCH(G)/CH(G) ∼= G/(G ∩ CH(G)) = G,

so H/CH(G) is an integral of G. But H/CH(G) is isomorphic to the group of

automorphisms of G induced by H; so H/CH(G) acts faithfully on G, whence

the centraliser of G is trivial.

Note that, if Z(G) = 1 and H is a reduced integral of G, then Z(H) = 1, so

the process can be continued.

Proposition 5.3: Let G be a finite group with Z(G) = 1. Suppose that

G = G0 < G1 < G2 < · · · ,

where Gn+1 is a reduced integral of Gn for all n. Then the sequence terminates

after finitely many steps.
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Proof. Note that G0 is normal in Gn for all n, since it is the nth term of the

derived series of Gn.

We prove that CGn(G0) = 1 for all n. The proof is by induction on n;

it holds by definition for n = 1. So let us assume the result for n and take

g ∈ CGn+1
(G0).

For any h ∈ Gn+1, we see that [g, h] centralises G0, and [g, h] ∈ Gn; so

[g, h] ∈ CGn
(G0), whence [g, h] = 1. As this is true for all h ∈ Gn+1, we have

g ∈ Z(Gn+1). But by Lemma 5.2 and the construction, this forces g = 1.

Now this means that Gn is embedded in Aut(G0) for all n, so |Gn| is bounded

by a function of G0, and the sequence terminates.

Corollary 5.4: Let G be a group of order n with Z(G) = 1. Then, if G is

integrable, it has an integral of order at most nlog2 n.

Proof. G can be generated by at most log2 n elements (using Lagrange’s theo-

rem, since by induction on m the group generated by m independent elements

has order at least 2m). Now an automorphism is determined by its effect on

the generators, and each generator has at most n possible images under any

automorphism.

6. Groups with composition length 2

In this section, we analyse groups with composition length at most 2, and give

a procedure to determine whether or not such groups are integrable, up to a

specific question about outer automorphism groups of simple groups.

First we consider groups with composition length 1, and observe:

Proposition 6.1: If G is a finite simple group, then G has an integral.

Proof. This is easily seen by considering three cases:

• If G = C2, then the dihedral and quaternion groups D8 and Q8 are

integrals of G.

• If G = Cp, then the dihedral group of order 2p is an integral of G.

• If G is a non-abelian simple group, then it is perfect, so it is its own

integral.
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For groups with composition series of length 2, we begin with a simple obser-

vation.

Lemma 6.2: Let G be a group with the property that, in every composition

series G > N > · · · for G, the factor group G/N is a non-abelian simple group.

Then G is perfect, and hence is its own integral.

Proof. For if G is not perfect, then it has an abelian quotient, and hence a

normal subgroup with quotient Cp. Taking this as the start of a composition

series gives the result.

Now let G be a group with composition series G > N > {1}. By Lemma 6.2,

we may suppose that G/N ∼= Cp for some prime p.

Case 1: N ∼= Cq for some prime q. There are two possibilities:

• G = Cp × Cq. Then G is abelian, and so has an integral.

• p | q − 1 and G is non-abelian. Then G does not have an integral. For

suppose that H is an integral of G. Since N = G′, we see that N is

normal in H. The automorphism group of the cyclic group N is abelian,

and so H ′ acts trivially on N . This contradicts the fact that H ′ = G

and G induces a group of order p of automorphisms of N .

Case 2: N is a non-abelian simple group. Again there are two subcases:

• If Cp induces the trivial outer automorphism of N , then we can change

the generator by an element of N so that it acts trivially on N ; then

G = N × Cp, and both factors have integrals, and hence so does G.

• In the other case, Cp is a subgroup of Out(N). If H is an integral of G,

then H/N is an integral of G/N ∼= Cp inside Out(N).

But such a subgroup may or may not exist. (For example, if Out(N) ∼=
D6 and p = 2, then C2 has an integral, but not within Out(N), so G

has no integral.) Resolving this case will require some detailed analysis

of the outer automorphism groups of simple groups.

The previous discussion allows us to recover the following folklore result (see

[10]).

Proposition 6.3: For every n ≥ 5, symmetric group Sn is non-integrable.

Proof. For every n ≥ 5, the symmetric group Sn has composition length 2 with

series Sn > An > {1}. We recall that Out(A6) ∼= C2 × C2 and Out(An) ∼= C2
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for all n 6= 6. Since T := An/Sn ∼= C2 and its smallest integral S is D8, then

S is not contained in Out(An) for any n ≥ 5, the discussion above implies that

Sn is non-integrable.

7. Orders of non-integrable groups

This section is devoted to the proof of the following theorem:

Theorem 7.1: Let n be a positive integer. Then every group of order n is

integrable if and only if n is cube-free and there do not exist prime divisors p,

q of n with q | p− 1.

Remark 7.2: It is a formal consequence of the statement of this theorem that

non-integrable groups of all even orders greater than 4 exist: if n is even and

n > 4 then either n = 2d for d ≥ 3, or n is divisible by an odd prime p (with

2 | p− 1). However, we already know this because of Corollary 3.2, and we use

this result in the proof; so we assume that n is odd.

Remark 7.3: It is interesting to compare this theorem with the description of

numbers n for which all groups of order n are abelian. Since abelian groups are

integrable, this set is a subset of the set in the Theorem. It is known that all

groups of order n are abelian if and only if n is cube-free and there do not exist

primes p and q such that either

• p and q divide n, and q | p− 1; or

• p2 and q divide n, and q | p+ 1.

(This result is folklore. For a proof by Robin Chapman, see [7].) So the two

sets contain no non-cube-free integers, and coincide on squarefree integers; but

there are integers (such as 75) for which non-abelian groups exist but all groups

are integrable.

Proof. We show that the conditions on n in the Theorem are necessary. If

n is not cube-free, then n = pam where p is prime, a ≥ 3, and p - m. By

Theorem 3.4 and Proposition 3.5, there is a non-integrable group P of order

pa; since gcd(pa,m) = 1, then the direct product of P with any group of order

m is not integrable, by Proposition 3.6(b). If primes p and q divide n, with

q | p−1, then the non-abelian group of order pq is centreless and non-integrable

by Corollary 3.3, so its direct product with any group of order n/pq is non-

integrable, by Proposition 3.6(c).
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So suppose that n satisfies these conditions. If n is even, then n = 2 or n = 4;

then all groups or order n are abelian, and so integrable (Section 4). So we may

assume from now on that n is odd. Assume (for a contradiction) that there

exists a non-integrable group of order n; inductively, we may suppose that n is

minimal subject to this.

Our strategy is to show that G has a normal subgroup N which is a direct

product of elementary abelian groups of order p2 for various primes p, and

an abelian complement H which normalises each of these factors of N , whose

action on N gives each factor (of order p2, say) the structure of the additive

group of GF(p2) such that the action of H on N corresponds to multiplication

by a subgroup of the multiplicative group of the finite field of order dividing

p+ 1.

When this is achieved, we let K = 〈G, t〉, where t2 = 1, t normalises N and

acts on each factor of order p2 as the field automorphism of order 2 of GF(p2)

(that is, as the map x 7→ xp), and on H by inversion (the map x 7→ x−1). A

short calculation shows that this gives an action of t by automorphism on G.

(If the order of an element x of the multiplicative group of GF(p2) divides p+1,

then xp = x−1.) Now commutators [t, g] for g ∈ G generate G. (If h ∈ H,

then [h, g] = h−2; since |H| is odd, these elements generate H. If P is a Sylow

p-subgroup of N , then the commutators [g, t], for g ∈ P , generate a non-trivial

subgroup of P ; since H acts irreducibly on P , the H-conjugates of this generate

P .) So K ′ = G, contradicting the assumption that G is not integrable.

So it remains to prove that G has the structure described above. In particular,

we have to show that G is metabelian. The Odd-Order Theorem shows that G

is soluble; but this can be proved much more easily using Burnside’s transfer

theorem, as follows.

Since n is cube-free, the Sylow p-subgroups of G have order p or p2, and so

are abelian. Let p1 < p2 < . . . < pr be the primes dividing n. Let P1 be a

Sylow p1-subgroup of G. Now the automorphism group of P1 has order p1 − 1,

p1(p1 − 1) or p1(p1 − 1)2(p1 + 1), the fact that p1 is the smallest prime divisor

of n and is odd shows that NG(P1) acts trivially on P1, and so is equal to

CG(P1). By Burnside’s Transfer Theorem, G has a normal p1-complement G1.

By induction we construct normal subgroups G2, . . . , Gr = 1 so that Gi+1 is a

normal pi-complement in Gi, and the quotient is abelian. Thus G is soluble, as

claimed.
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Let F be the Fitting subgroup of G, the largest nilpotent normal subgroup of

G. Since F is the direct product of its Sylow subgroups, and these are abelian,

F is abelian. Moreover, F contains its centraliser [3, Theorem 6.1.3], and so

CG(F ) = F . Thus, G/F is isomorphic to the group of automorphisms of F

induced by conjugation in G. This group is a subdirect product of the groups

induced on the Sylow subgroups of F .

Now the automorphism group of Cp is Cp−1; the automorphism group of

Cp2 is Cp(p−1); and the automorphism group of Cp × Cp is GL(2, p), of order

p(p− 1)2(p+ 1). Now if p divides n, then p− 1 is coprime to n by assumption;

and if F contains a Sylow p-subgroup then p does not divide |G/F |. Thus the

group induced on a Sylow p-subgroup P of F is trivial if P is cyclic, and has

order dividing p+ 1 if P is elementary abelian of order p2. Moreover, from the

structure of GL(2, p), we see that a subgroup of order dividing p + 1 is cyclic,

and corresponds to multiplication by an element in the multiplicative group of

GF(p2) acting on the additive group of this field.

So G/F is a subdirect product of cyclic groups, and hence is abelian. More-

over, cyclic Sylow subgroups of F are central in G.

Now we define N to be the product of the Sylow subgroups of F which

are elementary abelian of prime squared order. We see that G/N has a sub-

group F/N (generated modulo N by the cyclic Sylow subgroups of F ) with

(G/N)/(F/N) ∼= G/F abelian. Thus G/N is an extension of a central sub-

group by an abelian group, and so it is nilpotent of class at most 2. But then

it is a direct product of its Sylow subgroups, and so is abelian.

We also note that, if G/N acts trivially on a Sylow p-subgroup P of N , then

by Burnside’s transfer theorem, G ∼= P ×G1 for a subgroup G1 of order n/p2;

by the minimality of n, we have that G1 is integrable, and has order coprime to

p, so that G is integrable, a contradiction. So the action of G/N on each Sylow

subgroup is non-trivial, and each such subgroup has the structure of a finite

field GF(p2), with the induced automorphism group isomorphic to a subgroup

of the multiplicative group, acting irreducibly.

Finally, N is a normal Hall subgroup of G; if we take H to be a Hall subgroup

for the complementary set of primes, then H is a complement for N in G, and

H ∼= G/N , so H is abelian, and we have reached our goal.

8. Miscellanea
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8.1. Products, subgroups, quotients. We saw in Proposition 3.6(a) that,

if G1 and G2 have integrals, then so does G1×G2. But what about the converse?

In other words, is it possible that G1 × G2 has an integral but G1 and G2 do

not? We saw earlier in Proposition 3.6(b) that this is not possible if the orders

of G1 and G2 are coprime.

A particular case of the above question is: can G×G be integrable when G is

not integrable? We do not have an example. The smallest non-integrable group

is S3; and S3 × S3 is also non-integrable. (For this group has trivial centre, so

if it were integrable it would have a reduced integral, which would be contained

in the automorphism group of S3×S3; but this automorphism group has order

72, and its derived group has order 18.)

The next case is D8 ×D8. We have shown that it has no integral of order at

most 512.

A related question would replace direct product by central product. However,

this question has a negative answer. It is well-known that D8 ◦D8 is isomorphic

to Q8 ◦Q8, which has the integral SL(2, 3) ◦ SL(2, 3).

Regarding semidirect products, there are groups H and G, with H acting on

G into two different ways, say φ and ψ, such that the semidirect product induced

by φ is integrable but the semidirect product induced by ψ is not. For one such

example take G = C4 and H = C2, and the two possible actions of H on G

(the trivial action, and the action by inversion). There are also groups G and

H such that every semidirect product they can form fails to be integrable: take

the dihedral group of order 10 and the Klein four group. Finally, all semidirect

products of two copies of C2 are integrable. So all possibilities involving integrals

of semidirect products can occur.

Regarding subgroups and homomorphic images, note that the group G = A5

(which is perfect, so integrable) contains H, the dihedral group of order 10,

which is not integrable (by Proposition 5.1), but has a normal subgroup K, the

cyclic group of order 5, such that H is the normalizer of K and both K and

H/K are integrable. So neither integrability nor non-integrability is subgroup-

closed, and a group can have the property that all its non-trivial proper normal

subgroups are integrable with integrable quotient without itself being integrable.

Moreover, any finite group has both integrable and non-integrable overgroups

(since the alternating group is integrable but the symmetric group is usually

not).
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In the reverse direction, we have the following:

Proposition 8.1: Let G be an integrable finite group. Then either G is simple,

or G has a non-trivial proper quotient which is integrable.

Proof. Let H be an integral of G. There are two cases:

Case 1: G has a non-trivial proper characteristic subgroup N (one

invariant under all automorphisms of G). Then N is normal in H, and

we have (H/N)′ = H ′/N = G/N .

Case 2: G is characteristically simple. In this case, G is a direct product

of isomorphic simple groups. So either G is simple, or it has a simple

(and hence integrable) proper quotient.

8.2. Relative integrals. Let U be a “universal” group. Can we decide, for

members G of some class of subgroups of U , whether or not G has an integral

within U?

This question includes several special cases which have arisen elsewhere in

this paper:

• U = Aut(T ) for some non-abelian simple group T , and G is a subgroup

containing T .

• U is the affine group AGL(d, p), and G is a subgroup containing the

translation group.

• U is the symmetric group Sn, and G is a (transitive, or maybe 2-

homogeneous) permutation group of degree n.

The third problem for 2-transitive groups involves solving some special cases

of the other two, since a 2-transitive group is either affine or almost simple.

More generally, we could ask for a classification of the primitive groups H ≤
Sn that have a given 2-homogeneous group G ≤ Sn in their integrals tower.

(Equivalently, find the primitive subgroups of Sn that appear as the derived

group of the derived group of the . . . of a given 2-homogeneous group G ≤
Sn.) This question should not be difficult; examining the known list of 2-

homogeneous groups should give a solution, since in all cases the derived length

of the soluble residual is very small.
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8.3. Infinitely integrable groups. There are groups which can be inte-

grated n times (that is, which are isomorphic to the nth derived group of an-

other group), for all n. For example, additive groups of rings with identity

have this property: if G is the group of upper unitriangular (2n + 1)× (2n + 1)

matrices over the ring R with identity, then the nth derived group of G consists

of unitriangular matrices with zeros in all above-diagonal positions except the

top right, and is isomorphic to the additive group R+ of R. (We note that,

since an upper unitriangular matrix has determinant 1, Cramer’s rule shows

that its inverse can be found by ring operations alone, and so any product of

commutators in this group over any ring with identity can be computed with

ring operations.)

We have the following result about groups with this property.

Theorem 8.2: (a) Let G be a finite abelian group; then G can be inte-

grated n times for every natural number n (even within the class of

finite nilpotent groups).

(b) A finite group can be integrated n times for every natural number n if

and only if it is central product of a perfect group and an abelian group.

Proof. (a) Since any finite abelian group is a direct product of finite cyclic

groups, it is enough to show the result for these. Now the cyclic group Cn is

the additive group of the ring Rn = Z/nZ, and so is the nth derived group of

the group of upper unitriangular matrices of order 2n + 1 over Rn. Since the

group of upper unitriangular matrices is nilpotent, the result is proved.

Observe that, in this way, one may realize any finite abelian group A as the

nth derived group of a nilpotent group, in which A is central.

(b) Let G = NA, with N,A normal subgroups, N perfect, A abelian, and

A ∩ N ≤ Z(N), and let n be a natural number. By point (a) there exists a

group R such that A = R(n) and A ≤ Z(R). Now, if H is the central product

H = N ◦R, amalgamating A ∩N as in G, then H(n) = G.

Conversely, let G be a finite group. Then there is k such that X(k) is perfect

for every X ≤ Aut(G). Let N be the soluble residual of G (the smallest normal

subgroup such that G/N is soluble); then N is characteristic in G. Suppose

there exists a group H such that G = H(n), for some n ≥ k, and let C = CH(G).

Then NC/C is the soluble residual of H/C and NC ≥ H(k) ≥ G. Hence,



Vol. 00, XXXX INTEGRALS OF GROUPS 23

A = G ∩ C ≤ Z(G) and G = NC ∩ G = N(C ∩ G) = NA, thus proving the

claim.

Combining this result with Theorem 7.1, we obtain the following result:

Corollary 8.3: For a natural number n, the following are equivalent:

(a) every group of order n is abelian;

(b) every group of order n can be integrated twice;

(c) every group of order n can be integrated k times, for every natural

number k;

(d) n is cubefree and has no prime divisors p and q such that either q | p−1,

or q | p+ 1 and p2 | n.

Proof. We saw in Section 7 the (classical) equivalence of (a) and (d). We have

observed that (a) implies (c), and trivially (c) implies (b). So suppose that n is

such that every group of order n can be integrated twice. Then by Theorem 7.1,

n is cubefree and has no prime divisors p and q with q | p− 1. So suppose that

p and q are primes, with q | p + 1 and p2 | n. Let H be the group of order

p2q which is a semidirect product of the additive group N of the field of order

p2 with a subgroup of index q in the multiplicative group. Then as argued

there, the only reduced integral of G is obtained by adjoining the Frobenius

automorphism t of the field. If 〈G, t〉 is integrable, then so is 〈G, t〉/N . But this

group is dihedral of order 2q, with q odd, and so is not integrable.

One can ask if there are infinitely integrable groups. More precisely, even if

a group G is not solvable, one can ask whether there exists an infinite chain of

finite groups of the form

G = G′1 ≤ G1 = G′2 ≤ G2 = G′3 ≤ . . .

The answer to this question is positive if we allow perfect groups, by taking

Gi = G for all i. However, Neumann [11, Corollary 7.5] showed that there is no

strictly ascending infinite sequence if G2 is finitely generated; so in particular,

there is no such sequence of finite groups. (Note that Neumann [11] gives an

example of an infinite ascending sequence where G0 and G1 are finite and the

other terms infinite.)

If we relax the conditions slightly, the following construction gives examples

of groups G with subgroups Gn for all natural numbers n, such that G0 is finite
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(but Gn infinite for n > 0), and other examples where all Gn are finite but the

second condition is weakened to the pair of conditions

• G′n ≥ Gn−1 for n > 0,

• G(n)
n = G0.

Construction: Let R be a ring with identity. (We are particularly interested

in the case where R is finite; but the construction works in general.) Let I be

the set of dyadic rational numbers in [0, 1], and In the subset of I in which the

denominators are at most 2n. (So I0 = {0, 1}.)
Our groups will be contained in the group of upper triangular matrices over

R, where the index set of rows and columns is I. Let eij be a symbol for each

i, j ∈ I with i < j. Our group will be generated by elements xeij for all such

i, j and all x ∈ R; the relations are

• xeij · yeij = (x+ y)eij ;

• for i < j < k, [xeij , yejk] = xyeik;

• if j 6= k and i 6= l, then [xeij , yekl] = 1.

Think of xeij as the matrix I + xEij , where Eij has entry 1 in the (i, j)

position and 0 elsewhere.

Let Gn be the subgroup generated by xeij for i, j ∈ In, and Hd be generated

by xij with j − i ≥ d. The groups Gn are isomorphic to the group of (2n +

1) × (2n + 1) strictly upper triangular matrices over R, and so are finite if R

is finite. The groups Hd are infinite if d < 1; G0 = H1 is isomorphic to the

additive group of R.

Moreover, we see that

G′n = Gn ∩H1/2n−1 ≥ Gn−1;

H ′d = H2d,

with the convention that Hd = {1} if d > 1.

Hence the chains (H1/2n) and (Gn) of groups have the properties claimed.

9. Infinite groups

We have rather less to say about infinite groups.

The definition of integral applies equally to finite and infinite groups. Several

of our results (Lemma 2.1, Proposition 3.1, Proposition 3.6(a) and (c), and

Proposition 5.1) also apply to infinite groups.



Vol. 00, XXXX INTEGRALS OF GROUPS 25

Following the first part of the proof of Theorem 2.2, we show:

Proposition 9.1: Let G be finitely generated. If G has an integral, then it

has a finitely generated integral.

Proof. Suppose that H is an integral of G. Take a finite generating set for G,

and write each generator as a product of commutators of elements of H. Then

the finite set of elements involved in these commutators generate a subgroup of

H whose derived group is G.

We mention a couple of classes of infinite groups which are integrable.

Theorem 9.2: (a) Any abelian group is integrable.

(b) Any free group is integrable.

Proof. (a) We follow Guralnick’s proof [5]: if A is abelian, then the derived

group of A o C2 is the subgroup {(a, a−1) : a ∈ A} of the base group A2 of the

wreath product, which is clearly isomorphic to A.

(b) If α is an infinite cardinal, then |Fα| = α, so |F ′α| ≤ α. The inequality

cannot be strict, since if {fi : i ∈ α} is a free generating set for Fα, then the

elements [f0, fi], for i ∈ α, i > 0, of the derived group are all distinct. So

F ′α
∼= Fα.

For finite rank, we use the result of Nielsen [13], a special case of which asserts

that the derived group of the free product Cm1
∗ Cm2

is a free group of rank

(m1 − 1)(m2 − 1). So the derived group of C2 ∗ Cn+1 is Fn.

Remark 9.3: The free product of integrable groups may or may not be inte-

grable. For example,

• C2 ∗ C2 is the infinite dihedral group, which is not integrable (by the

same argument as for finite dihedral groups).

• C3 ∗ C3 is the derived group of PGL(2,Z) [6, 16].

In view of part (a) above and our results on abelian groups, we could ask

whether any abelian group A has an integral G with |G : A| finite. For example,

if A = A2 (that is, every element of G is a square), then the generalized dihedral

group

G = 〈A, t〉 | t2 = 1, t−1at = a−1 for all a ∈ A〉

is an integral of A with |G : A| = 2. But in general the answer is negative:
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Theorem 9.4: There exist infinite abelian groups A having no integral G with

|G : A| finite.

Proof. Following the arguments given in Section 4, we take A to be the direct

product of cyclic groups of orders 2k for k ∈ N.

Let G be a 2-group such that G′ = A, and suppose for a contradiction that

|G/A| is finite. Then we can find subgroups N ≤ A with N EG and A/N finite

and arbitrarily large. But A/N = (G/N)′, contradicting Proposition 4.3.

In fact much more can be said about integrals of infinite abelian groups; this

will be discussed in a later paper.

10. Open problems

We conclude with a list of problems arising from this study, some of which have

already been mentioned.

Problem 10.1: Let N be the set of positive integers n for which every group

of order n is integrable (Theorem 7.1). Does N have a density? What is its

density? (We note that of the integers up to 108, the number which lie in N is

32261534.)

Problem 10.2: Find a good upper bound for the order of the smallest integral

of an integrable group of order n.

Problem 10.3: True or false? For a fixed prime p, the proportion of groups of

order pn which are integrable tends to 0 as n→∞.

Problem 10.4: (a) Let us call a group G almost integrable if G × A is

integrable for some abelian group A. We saw in Proposition 3.6(c)

that, for centreless groups, “integrable” and “almost integrable” are

equivalent. Which groups with non-trivial centre are almost integrable?

(At the end of Section 3, we noted that C2 ×D8 is integrable, so D8 is

almost integrable, but not integrable.)

(b) Does there exist a finite non-integrable group G, such that G × G is

integrable? In particular, is D8×D8 integrable? (As noted in Subsection

8.1 it has no integral of order less than 512.)
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Problem 10.5: For the three cases mentioned in Subsection 8.2 decide, for

members G of some class of subgroups of U , whether or not G has an integral

within U . In the context of the discussion following Lemma 6.2, especially Case

2, we are particularly interested in the case where U = Out(T ) for some simple

group T and G is cyclic.

Problem 10.6: For which finite non-abelian groups G is it true that, for all

finite groups H with G′ = H ′, it holds that H is integrable if and only if G is?

(All finite abelian groups have this property, but it fails for D8 and Q8.)

Problem 10.7: One difficult problem is relating integrability of G to that of

G/Z(G), or indeed G/Z for any central subgroup Z of G. Is there a cohomo-

logical tool that would help? One direction is trivial: if G has an integral then

so does G/Z(G).

Let us suppose that Z(G) ∼= Cp; put H = G/Z(G). Then G is “described”

by a cohomology class γ in the second cohomology group (or extension group)

H2(H,Cp). Suppose that H has an integral K. Does cohomology provide a

tool to decide whether γ is the restriction to H of a class δ ∈ H2(K,Cp)? If so,

then the corresponding extension is an integral of G.

Problem 10.8: Which integrable infinite groups G have an integral H such

that the index of G in H is finite?

Problem 10.9: let G be a locally finite group which is locally integrable (that

is, every finite subset is contained in an integrable subgroup). Must G be

integrable? If so, must there be a locally finite integral?

Problem 10.10: Let X be a n-set and Sn the symmetric group on X. Does

there exist an equivalence relation ρ on X such that the group G ≤ Sn of all

permutations that preserve ρ is integrable in Sn? We know this is false for the

identity or universal relations; is it false for all equivalence relations?

Such a group G is a direct product of wreath products Sa o Sb of symmet-

ric groups. As a preliminary step, we could ask whether a direct product of

symmetric groups can be integrable.

Problem 10.11: Determine whether the following problem is undecidable:

given a presentation 〈X | R〉 for a group G, is G integrable? Are there de-

cidable instances of this problem? For example, is the problem decidable for

one-relator groups?
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Problem 10.12: It is known that the infinite finitely presented Thompson

groups T and V are simple. On the other hand, Thompson’s group F has simple

commutator subgroup, but is not itself simple. Is the group F integrable?

Problem 10.13: (a) The class of all integrals of a given variety V of groups

is a variety of groups W . Given a base of identities for V , is it possible

to find a base of identities for W?

(b) Let G be a finite integrable group, and W the variety of integrals of

groups in V = Var(G). Is there an integral H of G such that W =

Var(H)?

Related to the previous problem we have the following.

Problem 10.14: Is it possible to classify the finite sets A ⊆ F2, the 2-generated

free group, such that the group

〈a, b | w(a, b) = 1 = w(b, a) (w ∈ A)〉

satisfies w(x, y) = 1, for all w ∈ A?

Problem 10.15: Every group in a variety of abelian groups has integral. Are

there other varieties with this property?

Problem 10.16: For any integrable group there is a smallest integral; how

many different integrals of smallest order can there be?

Problem 10.17: Is it true that no Coxeter group with connected diagram,

apart from C2, is integrable?

Problem 10.18: Produce some algorithms and effective GAP code to find

integrals of a given group.

Problem 10.19: As there is a classification of the groups in which all subgroups

are normal, classify the groups in which all subgroups are integrable.

Problem 10.20: It makes sense to adapt the integrability concept to Lie al-

gebras via the derived subalgebra. Is it true that a Lie algebra is integrable if

and only if the corresponding Lie group is?

Problem 10.21: Is there a ring theoretic analogue of the results in this paper,

now taking [a, b] = ab− ba?
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Observe that in general, the commutators of all pairs of elements in a ring

form a subring, but they do not necessarily form an ideal [9]. Therefore the ring

theory literature considers the commutator as the ideal generated by all pairs

[a, b]. Nevertheless, they form a right ideal if and only if they form a left ideal:

(ab− ba)c = a(bc− cb) + (ac)b− b(ac).
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