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Abstract: The response analysis of the composite structural-acoustic systems with 

multiple types of epistemic uncertainties is investigated in this paper. Based on the 

available information for the uncertain parameters, the multiple types of epistemic 

uncertainties refer to probability-box (p-box) variables, evidence variables and interval 

variables. The proposed development focused on an efficient computation of the output 

bounds of the cumulative distribution function of the sound pressure response when 



 

 

dealing with the combination of p-box variables, evidence variables and interval 

variables. To reduce the involved computational cost but ensuring the accuracy, all 

evidence variables and interval variables are transformed into p-box-form variables. 

Then, a modified interval Monte Carlo method (MIMCM) is developed to estimate the 

bounds of the cumulative distribution function of the system response. In MIMCM, a 

sparse Gegenbauer polynomial surrogate model is established with focus on the 

efficiency and accuracy and then applied for the interval analysis in each iteration. A 

numerical example and two engineering examples with respect to multiple types of 

epistemic uncertainties are carried out to illustrate the accuracy and efficiency of the 

MIMCM by conducting comparisons with traditional algorithms. The ability of the 

proposed method for risk and conservative reliability analysis is also investigated. 

1 Introduction  

The noise produced by structural vibration will affect the riding comfort of 

vehicles, resulting in discomfort of passengers and damage to human health. The 

analysis of the structural-acoustic coupling system is an important research topic in the 

field of vibration and noise control. Traditional response analysis of structural-acoustic 

system is usually carried out in the context of deterministic parameters [1]. However, 

uncertainties exist in in practical engineering problems inevitably due to manufacturing 

errors, unpredictable environment, and other factors, which means that unreliable 

analysis results will be obtained if those uncertain factors are treated as deterministic 

information. Recently, composite materials have been widely applied in the field of 

vibration and noise control. As for composite structural-acoustic systems, uncertain 



 

 

parameters come from two sources. First, at the macro scale, the composite structure-

acoustic system is affected by uncertain factors such as geometric size, climatic 

environment, and external load. Second, at the micro scale, the macroscopic mechanical 

properties of composite materials fluctuate due to the uncertainty of component 

materials and microstructure parameters. Thus, the influence of multi-scale 

uncertainties should be considered in the analysis process of composite structural-

acoustic systems in order to obtain an analysis result with valued engineering 

application. 

Uncertainties can be classified into aleatoric uncertainty and epistemic uncertainty 

according to different natures [2]. Aleatory uncertainty is caused by objective physical 

conditions and will not be eliminated with the increase of cognitive level, which is 

usually described by random variables or random processes based on probability theory. 

Up to now, a number of numerical methods have been developed for dealing with the 

random system response analysis, such as the Monte Carlo method [3, 4], the 

perturbation method [5-7], the orthogonal polynomial approximation method [8-10], 

and so on. However, in practical engineering, the precise probability distribution 

function (PDF) of uncertain parameters usually cannot be constructed due to the lack 

of enough probability information. Ben-haim and Elishakoff have reported that even 

small deviation from the real PDF can lead to large errors of the statistic response [11]. 

Thus, the analysis of epistemic uncertainty may be more challenging and has greater 

significance in practical engineering [12]. 

Epistemic uncertainty is caused by the limitation of cognitive level and insufficient 



 

 

understanding of objective things. In contrast with aleatory uncertainty, epistemic 

uncertainty can generally be reduced by additional empirical effort. The probability 

theory is inappropriate for handling epistemic uncertainties since that the PDF of 

uncertain parameters are imprecise. Instead, many non-probabilistic theories have been 

emerged to quantify the epistemic uncertainty, such as interval analysis [13], evidence 

theory [14], probability box (p-box) [15-20], et al. Epistemic uncertainty model have 

been applied in many engineering fields, including structure analysis and optimization 

[21, 22], heat conduction analysis [23], acoustic response analysis [24], brake disc 

analysis [25] and so on. Some progress on epistemic uncertainty analysis of structural-

acoustic system has been made. Xu et al. used statistical energy analysis approach to 

predict the response of structural-acoustic system with interval parameters [26]. Based 

on evidence theory, Yin et al proposed a Jacobi-expansion-based approach to predict 

the response of acoustic system with evidence variables [27]. Based on p-box theory, 

Chen et al. studied an imprecise probability approach for the uncertain analysis of 

structural-acoustic system involving p-box variables based on perturbation method [28]. 

In practical engineering, different types of uncertain parameters may exist 

simultaneously. Thus, there has been a great interest in developing numerical methods 

for dealing with engineering problems with hybrid uncertainties [29, 30]. As for 

structural-acoustic systems, Wang and Huang proposed a polynomial chaos response 

surface method for uncertainty propagation in structural-acoustic system containing 

hybrid interval and random parameters [31]. A hybrid evidence theory-based model has 

been proposed for handling the mixed uncertainties in structural-acoustic systems [32, 



 

 

33]. 

From the researches mentioned above, it can be known that many inspiring works 

have been done in the response analysis of structural-acoustic systems. However, up to 

now, the uncertain response analysis of composite structural-acoustic system involving 

p-box variables, evidence variables and interval variables exist simultaneously has not 

been investigated. This is because this kind of uncertain model is challenging due to the 

heavy computational burden of the propagation of multiple types of uncertainties. 

Moreover, the computational cost increased exponentially with the multi-scale 

uncertain variables involved in the composite structural-acoustic system. In this paper, 

a modified interval Monte Carlo method (MIMCM) is derived to efficiently deal with 

this kind of uncertain model. Firstly, the p-box variables, evidence variables and 

interval variables are transformed into a unified p-box form thereby the interval Monte 

Carlo method can be applied to calculate the response of the uncertain composite 

structural-acoustic system. Then, the sparse Gegenbauer polynomial surrogate model 

is constructed to further reduce the computational cost of repetitive interval analyses in 

MIMCM. The effectiveness and efficiency of the proposed method is verified by 

numerical examples.   

The remainder of this paper is organized as follows: basic theories for quantifying 

multiple types of epistemic uncertainties are introduced in Section 2. Then, an 

evidence-based method for the propagation of multiple types of epistemic uncertainties 

in composite structural-acoustic system is introduced in Section 3. The modified 

interval Monte Carlo method is derived for response analysis of composite structural-



 

 

acoustic system involving multiple types of epistemic uncertainties in Section 4. One 

numerical example and two engineering examples are investigated to verify the 

accuracy and efficiency of the proposed method in Section 5. Finally, conclusion is 

drawn in Section 6.  

2 Representation of multiple types of epistemic uncertainties 

2.1 P-box representation  

A p-box defines the cumulative distribution function (CDF) XF  of a real-valued 

random variable X by its lower bound XF   and upper bounds XF  . Let 

( ) ( ( , ]),XF x P X x x= ∈ −∞ ∀ ∈ℜ  , for each x, the CDF ( )XF x   is unknown but in a 

closed interval [ ( ), ( )]X XF x F x  , namely these boundaries form the envelope of the 

probability family as 

 { }, ( ) ( ) ( )X X XP x F x F x F xΞ = ∀ ∈ℜ ≤ ≤   (1) 

Parametric p-boxes and non-parametric p-boxes are two types of p-boxes. 

Parametric p-boxes are denoted by a family of distribution functions whose parameters 

lie within an interval, while non-parametric p-boxes are generated by the envelope of 

true but unknown CDFs [34]. Several methods exist for determining the bounds of a p-

box according to different sources of information [34-37].  

The convolution algorithm formalized by Ferson et al. [35] can be applied to p-

box model. First, a p-box is discretized into a finite list of pairs (A1, m1), … (An, Mn), 

where Ai represents an interval, mi represents the probability mass related to Ai and 

satisfies 
1

1n
ii

m
=

=∑ . The discretization process of a p-box is shown in Figure 1 [38]. 



 

 

Obviously, the approximate accuracy depends on the detail level of the p-box 

discretization. Then the uniform discretization is adopted, namely the basic probability 

assignment mi is equal to 1/n, and Ai can be calculated by  

 
11 1 , , 1,2, ...,i X X

i iA F F i n
n n

−− −    = =        
  (2) 

Where 1
XF −  and 

1
XF
−

 are the inverse function of XF  and XF respectively. 

Let f: X→Y be a mapping and X=(X1,X2) be the basic variables modeled by discrete p-

boxes which are expressed as  

 
{ }
{ }

1 1 1

2 1 1

( , ( )), ..., ( , ( ))

( , ( )), ..., ( , ( ))
n n

l l

X A m A A m A

X B m B B m B

=

=
  (3) 

In which n and l represent the number of discrete intervals related to X1 and X2 

respectively.  

If X1 and X2 are mutually independent, the Cartesian product of X1×X2 can be 

represented by ( )( ) ( )( ){ }1 1 ,...,  ,  , k kR m R R m R , Rk and m(Rk) can be expressed as  

 , 1, ..., , 1, ...,k i jR A B i n j l= × = =   (4) 

 ( ) ( ) ( )k i jm R m A m B=   (5) 

Let { }: 1, ...,kR k nlℜ = = , the response quantity Y of mapping f is a discrete p-box 

can be expressed as 

 { }( )k kf R R℘= ∈ℜ   (6) 

The associated probability assignment m of the focal element S=f(Rk) can be 



 

 

expressed as  

 
: ( )

( ) ( )
k k

k
R S f R

m S m R
=

= ∑   (7) 

Let ( )YF y   denote the CDF of response quantity Y, for arbitrary value y, the 

bounds of ( )YF y  can be calculated by  

 
: sup( )

: inf( )

( ) ( )

( ) ( )

Y
S y S

Y
S y S

F y m S

F y m S
≥

≥

=

=

∑

∑
  (8) 

In the above equations, sup(•) and inf(•) represent the supremum and infimum of 

the function respectively. If the mapping f involves multiple p-box variables, one can 

employ Eqs. (4)-(7) repeatedly to propagate the p-boxes. 

 

Fig. 1 Discretization of a continuous p-box (n=5)  

2.2 Linking p-box with evidence theory and interval 

Ref. [35] indicated that the discretized p-box representation can correspond to 

evidence theory directly. The bounds of p-box according to Eq. (8) are equivalent to 



 

 

the belief and plausibility measure of evidence theory as shown in Eqs. (9) and (10)  

 Bel( ) ( )
A B

B m A
⊆

= ∑   (9) 

 Pl( ) ( )
A B

B m A
∩ ≠∅

= ∑   (10) 

In which, A is a given evidential event. Bel(B) and Pl(B) the lower and upper bounds 

of probability measure for arbitrary proposition B. m(A) denotes the BPA related to 

event A. The subset A with m(A) is called the focal element and satisfies  

 
( ) 0
( ) 0

( ) 1

m A
m

m A

≥
∅ =

=∑

，

，  (11) 

Thus, with this specific interpretation, we restrict evidence theory herein to a 

frequentist basic probability assignment. It can capture all subjectivity, including 

varying expert inputs, by the topology (size) of the focal elements. 

For the case of univariate p-boxes, the focal sets represent intervals. These 

uncertainties can be processed with interval technologies [13]. An interval vector

{ }T

1 2, , ...,I I I I
LX X X=X  which consists of L independent variables is expressed as  

 
[ ]

,

( ) / 2, , , ( ) / 2

I M I

M I

 = = + ∆ 
= + ∆ = −∆ ∆ ∆ = −

X X X X X

X X X X X X X X X
  (12) 

In which X and X are the lower and upper bounds of XI respectively. XM represents the 

midpoint of XI. ΔXI and ΔX represent the deviation interval and the maximum deviation 

of XI respectively.  



 

 

3 Propagation of multiple types of epistemic uncertainties in composite 

structural-acoustic system  

3.1 Uncertain FEM model of the composite structural-acoustic system 

The dynamic equilibrium equation of the composite structural-acoustic system is 

expressed as [39] 

 

{ } { }

2

2 2

,

,

,

s s s
T

f f f

TT
s b q

iω ω

ρ ω ω

 + − −
 

−  

= =

ZU = F

K C M H
Z =

H K M

U u p F F F

  (13) 

Where Ks and Ms are stiffness matrix and mass matrix of the composite structure, and 

Cs is the damping matrix. ω denotes the angular frequency of the external excitation. H 

denotes the spatial coupling matrix. ρf is the density of the acoustic field. us represents 

the displacement vector of the composite structure. p is the sound pressure vector of 

the acoustic field. Fs and Ff represents the generalized force vectors associated with the 

composite structure and the internal acoustic field, respectively.  

Ks and Ms and Cs can be represented as 

 T H

1

cell

j

N

s
j

d
Ω

=

= Ω∑∫K B D B   (14) 

 H T
s s

1

cell

j

N

s
j

dη
Ω

=

= Ω∑∫M N N   (15) 

 s s sα β= +C M K   (16) 

In which B represents the strain matrix at the macroscale. DH is the equivalent 



 

 

macro constitutive matrix of composite microstructure and the detailed can be found in 

Ref [39]. Ns is the Lagrange shape function of the isoperimetric quadrilateral element. 

Ωj and Ncell denotes the jth element and the total number of elements in the domain. α 

and β represents the damping coefficients of the damping material. 

Kf and Mf can be obtained by  

 ( ) ( )T

1
d

cell

e

n

f f f
e

Ω
=

= ∇ ∇ Ω∑∫K N N   (17) 

 T
2

1

1 d
cell

e

n

f f f
e c Ω
=

= Ω∑ ∫M N N   (18) 

Where Nf is the Lagrange shape function of the isoperimetric hexahedral element. 

Ωe and ncell denotes the eth element and the total number of elements in the acoustic 

domain. 

Let x represents the uncertain parameter vector in the composite structural-

acoustic system. All the variables are assumed to be independent in this paper. By 

introducing the uncertain parameter vector x, the dynamic equilibrium equation of the 

composite structural-acoustic system shown in Eq. (13) can be rewritten as 

 ( ) ( ) ( )=Z x U x F x   (19) 

In which Z(x), U(x)and F(x) and represent the uncertain composite structural-

acoustic dynamic stiffness matrix, uncertain frequency response vector and the 

uncertain excitation vector, respectively.  



 

 

3.2 Hybrid discrete method (HDM) for composite structural-acoustic 

model with multiple types of uncertainties 

In practical engineering, three types of epistemic uncertainties mentioned above 

may exist in composite structure-acoustic system simultaneously. As mentioned above, 

p-box model can be transformed to evidence model by using convolution algorithm, 

and the interval model can bet treated as evidence model with only one focal element. 

Then x can be transformed into a pure evidence variables vector  

 
1 2 3 1 1 1 2 1 2 1 2 31 2 1 1[ , , ] [ , ,..., , ,..., , ,..., ]L L L L L L L L L L L Lx x x x x x x+ + + + + += =x x x x   (20) 

Where L1 and L3 denote the number of transformed p-box variables and interval 

variables, respectively. L2 denote the number of evidence variables.  

Thus, the uncertain composite structural-acoustic system model established by 

(19) turn into a pure evidence theory uncertain model. Here, an evidence-theory-based 

method named as hybrid discrete method (HDM) is applied to calculate the uncertain 

model and briefly introduced below. 

The joint FD for evidence variables vector x is denoted as S and can be defined by 

using the Cartesian product as following 

 [ ]{ }1 2 1 2... , ,..., , , 1,2,..., , 1,2,...,L k L j j sx x x u u u u x j L k n= × × × = = ∈ = =S s   (21) 

Where sk represented the focal element of the joint FD. uj is the focal element of xj. 

Assuming that the number of focal elements for the jth evidence variable is lj (j=1,2, …, 

L), the total number of sk is ns=l1ⅹl2ⅹ…ⅹlL. In this paper, xj is considered as a 



 

 

continuous interval, and the joint BPA for sk can be calculated by  

 1
( ),

( )
0, .

L

j j k
js k

m u u
m

else
=


∈= 



∏ s
s   (22) 

Then the response U(x) for each joint focal element sk can be represented by an 

interval with its corresponding BPA and expressed as 

 

I

I

, min ,max .

( )
( )

0, .

k k k
k k

k

k
Y

Y Y Y

m
m Y

else

∈ ∈

  = =     


= 


s s s x s x s

s

U U

s
  (23) 

Where I( )
kYm Ys   denotes the BPA for I

k
Ys  . I

k
Ys   can be obtained by several interval 

algorithms, i.e. the Monte Carlo method, the interval perturbation method and so on, 

then the Bel and Pl of U(x) can be calculated through Eqs. (9) and (10). 

4 Modified interval Monte Carlo method (MIMCM) for analysis of 

composite structural-acoustic system involving multiple types of 

epistemic uncertainties  

The main disadvantage of the HDM is the full factorial design. The number of 

total focal elements from the Cartesian products increases exponentially with the 

number of uncertain variables. As for high-dimensional imprecise problems， the 

computation cost of HDM is prohibitive due to the combinatorial explosion [35]. 

Interval Monte Carlo method (IMCM) is an effective method to overcome the 

shortcoming of the Cartesian product [40]. By extending the IMCM, a modified interval 

Monte Carlo method (MIMCM) is derived for response analysis of composite 



 

 

structural-acoustic system involving multiple types of epistemic uncertainties in this 

section.   

4.1 Unification of multiple types of epistemic uncertainties 

The evidence variables and interval variables need to be transformed into p-box 

form due to IMCM is applied to the case with only p-box variables. For an evidence 

variable E which can be specified by its focal elements and their associated probability 

masses [ ]( ) [ ]( ){ }1 1 1, , ,..., , , , 1, 1, ...,n n n i
a b m a b m m i n= =∑  , an associated p-box can 

always be obtained from E and the bounds of it can be obtained by [35] 

 
( )

( )
i

i

E i
a e

E i
b e

F e m

F e m
≤

<

=

=

∑

∑
  (24) 

In which ( )EF e   and ( )EF e   are the cumulative plausibility function and the 

cumulative belief function for E respectively. Such a pair of functions define a p-box 

because they are nondecreasing from reals into the interval [0, 1] and ( )EF e  is always 

less than or equal to ( )EF e  for every value of e.  

As for an interval variable, lower and upper bounds of it are already given. Thus, 

the interval variable can be simply treated as an evidence variable who has just one 

focal element and its associated probability mass been equal to 1. Then the bounds of 

the associate p-box of the interval variable can be directly obtained through Eq. (24) 

4.2 Uncertainty propagation of p-boxes using IMCM  

In the first step, the interval transform method is applied to generate the intervals 

in accordance with the prescribed p-boxes. The generation process is graphically 



 

 

demonstrated in Figure 2 for one-dimensional case and follows the steps outlined below: 

Firstly, a standard uniform random number uk (k=1, 2, …, n) is generated. Then the 

intersection of a line of uk and the CDF of p-box variable will generate an interval set

{ }1 1, ,..., ,n nx x x x   =    x  . For arbitrary uk, the corresponding interval ,k kx x 
 

(k=1,2,…,n) contains all possible simulated numbers from the ensemble of distributions 

for uk. Thus, the set of intervals { }1 1, ,..., ,n nx x x x   
    is the sample consistent with the 

original p-box, where n denotes the total number of uk. For uncertain system involving 

L p-box variables, the standard uniform random vector ,1 ,2 ,[ , , ..., ]k k k k Lu u u=u

(k=1,2,…,n) should to be firstly generated, then the intervals , ,,k q k qx x 
 

 (q=1,2,…,n) 

can be generated through the intersections of lines of uk,q with the bounds defining the 

p-boxes for each p-box variable. 

 

Fig. 2 Generation process of random intervals 

In the second step, based on the randomly generated intervals, the interval 

responses of composite structural-acoustic system in each iteration can be calculated 

through the interval algorithm and expressed as I
kU  (k=1,2, …, n), where 



 

 

I , kkkU U U =   . I
kU  can be regarded as a discrete p-box and its associated probability 

assignment is 1/n. 

Finally, the left and right cumulative distribution function boundary of the 

response of composite structural-composite system U can be calculated through the 

following steps: (1)Get a response set Uj (j=0,1,…,2n) by sorting the kU  and kU  

from smallest to largest; (2) Get the left and right cumulative distribution function 

boundary of the response U by following equations 

 
1 /

1 /
k j

k j

U U

U U

F n

F n

≤

≤

=

=

∑

∑

U

U

  (25) 

4.3 Sparse Gegenbauer polynomial surrogate model (SGPSM) for 

interval analysis in IMCM 

As mentioned above, the second step of IMCM consists of at least thousands of 

interval analysis, which means the computational efficiency of the interval analysis is 

important. Of great interest here is to use surrogate model to reduce the computational 

burden caused by the recalculation of interval responses. As the uncertain parameter is 

always bounded in practical uncertain systems, the orthogonal polynomial is a suitable 

choice to construct the surrogate model with comprehensive consideration of accuracy 

and efficiency. It should be noted that many orthogonal polynomials can be adopted to 

calculate the interval responses of uncertain systems, such as the Chebyshev 

polynomial [41], the Gegenbauer polynomial [42] and the Jacobi polynomial [27]. All 

these orthogonal polynomials can achieve good accuracy for interval analysis. In this 



 

 

paper, the Gegenbauer polynomial is chose due to its convenience in choice of 

polynomial parameter and linear conversion of arbitrary interval variable. The 

foundation of Gegenbauer polynomial is briefly introduced in Appendix. 

As shown in Eq. (59) in appendix, the number of interpolation points will keep 

growing exponentially as the number of uncertain variables and the retained order 

increase, which means the computation burden for the construction of the Gegenbauer 

polynomial surrogate model will be heavy when dealing with multiple variables. Thus, 

the sparse sampling technique is introduced to improve the efficiency of constructing 

the Gegenbauer polynomial surrogate model. The sparse Gegenbauer polynomial 

surrogate model (SGPSM) of composite structural-acoustic system for interval analysis 

in IMCM is derived below. 

4.3.1 The expression of SGPSM 

The interpolation points ˆ ( 1,2,..., )j j mλξ =   of each variable in Gegenbauer 

polynomial are the roots of ( )mGλ ξ , where m is the total number of interpolation points. 

The interpolation points are symmetrical with respect to zero. These interpolation 

points form the candidate samples ξ set. The premise condition of sequential sampling 

is that the sampling points are uniformly chosen from the uniform candidate set, but the 

interpolation points are not uniformly distributed and are denser around the bounds of 

the interval space. Therefore, a weight number set β space is introduced to treat the non-

equidistant interpolation points as sampling points with the same weight. 

The candidates of the ξ set and the β space can be obtained through tensor product 



 

 

operation and represented as  

 1 1,L L= ⊗ ⊗ = ⊗ ⊗ξ ξ ξ β β β    (26) 

in which ξi and βi denote the candidates of ith variable in the ξ set and β space. 

m is determined by the highest allowable order nmax of the Gegenbauer surrogate 

model and set as m= nmax +1 in order to balance the accuracy and efficiency. nmax is 

determined by the largest allowable sampling size Nmax which should be larger than the 

number of coefficients NC and expressed as  

 max
C max max

max

( )!( , )
! !

L nN n L N
L n
+

= <   (27) 

Thus, the number of candidate samples for L-dimensional surrogate model is 

(nmax+1) L. After determining m, the number of candidate samples remains unchanged, 

then this fixed sample candidate set is adopted for any order n, which means the 

sampling efficiency can be greatly improving. Then the samples in candidate set can be 

uniformly sorted by using the scalar-valued criterion function [43] and represented as  

 ( )
0 0

1/

( ) ( )

1 1
( ) ,

qqs s
i j

q
i j i

dφ
−

= = +

 
=   
 
∑ ∑β β β   (28) 

In which q represents a relative larger integer, which is taken as 100 in this paper. β(i) 

denotes a sampling candidate space in the β space, s0 is the number of samples. d(β(i), 

β(j)) denotes a Euclidean distance and is defined as  

 ( )
1/22

( ) ( ) ( ) ( )

1
,

L
i j i j

k k
k

d β β
=

 
= −  
 
∑β β   (29) 



 

 

Where ( )i
kβ  is the kth variable of the L-dimensional β(i). 

A smaller qφ  means a more evenly extraction of sampling points. To implement 

the sampling scheme, the initial sampling points must be obtained. The number of initial 

sampling points is N0=mL. The initial sampling points can be written by a matrix whose 

column and row denote a sequence of variables and sampling points, respectively. To 

yield the highest uniformity of the sampling points, the first m elements of the first row 

and all elements of the first column are set as uniform. Set the first m elements of the 

first row as 1,2, …, m. Set the ith dimension of the first column as i. If i is bigger than 

m, the ith dimension is set as the remainder of i/m. The new sample points are 

sequentially selected by minimizing qφ . The selected sampling set and the rest of the 

candidate set is denoted as β and δ, respectively. 

New sampling points from the rest candidate set δ are added to the selected 

sampling set β. The new sample set ( )( )
1, jβ β  consists of the old ( )

0
i ∈β β  and the new 

sampling points ( )
1

j ∈β δ . The subscript 0 and superscript (i) represent the old sampled 

set and the ith sample of β, respectively. The subscript 1 and superscript (j) represent 

the new sampled set and the jth sample of the δ. The qφ  of new sample set can be 

obtained by 

 

( ) ( ) ( )

( ) ( )

0 0 0
1 2 1

1 2 1

0
1

1

1/

( ) ( ) ( )( ) ( )
1 0 0 0 1

1 1 1

1/

( ) ( )
0 1

1

, , ,

,

qq qs s s
i i ij j

q
i i i i

qqs
i j

q
i

d d

d

φ

φ

− −

= = + =

−

=

 
= +  
 

 
= +  
 

∑ ∑ ∑

∑

β β β β β β

β β β

  (30) 

Sequentially substituting the points of δ into Eq. (30) to calculate the qφ , where 



 

 

the sampling point with the minimum value of qφ  will be selected into the set β as a 

new sample point. 

The first term on the right-hand side in Eq. (30)  is a constant, which means the 

order of qφ  calculated after removing the first term is the same as before. Thus, the Eq. 

(30) can be simplified as following 

 ( ) ( )
0

1

1

1/

( )( ) ( )
1 0 1

1
, ,

qqs
ij j

q
i

dφ
−

=

 
=   
 
∑β β β β   (31) 

When the first m columns are determined, the other columns also can be 

determined by repeating this update process, after all dimensions are uniformed, the 

sampling process in done. More detailed information can be found in literature [44]. 

By using the sequential sampling scheme, a L-dimensional function f(ξ) defined 

on ξ∈[-1,1] can be approximated by Gegenbauer polynomials as  

 1

1 1

1 max

,...,
,..., ,..., 1 max

0
( ) ( ) ( ), ,..., 0,1,..., .L

L L

L

i i i i L
i i n

f f f G i i nλ λ
∧

≤ + + ≤

= = =∑ξ ξ ξ


  (32) 

The number of the Gegenbauer polynomials can be reduced from Ntotal = (N1+1) 

× (N2+1) × … × (NL+1) to a small sum [44]  

 max
C max
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! !

L nN n L
L n
+

=   (33) 

Where nmax is the highest allowable order of the Gegenbauer polynomial. 

Obviously, the computational burden of coefficients calculation is reduced, thus 

the efficiency of the high-order Gegenbauer polynomial will significantly improving in 



 

 

dealing with multi-dimensional problems.  

Then the least squares method can be used to obtain the coefficients of the 

Gegenbauer polynomials [44]. Then the Eq. (32) can be transformed as  
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In which η and α denote the coefficient vector and the polynomial basis vector 

respectively, which can be expressed as 
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Where s represents the number of coefficients in η and the number of Gegenbauer 

polynomials in α. According to Eq. (33), s=NC.  

η can be obtained through the least squares method and expressed as follow 

 T 1 T( )−=η A A A Y   (37) 
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In the above equations, 1̂
ˆ,..., sξ ξ  are the sparse sampling points. The vector Y 

denotes the value of the original function at the sampling points, the matrix A consists 

of the polynomial basis vectors at the sampling points.  



 

 

4.3.2 SGPSM of composite structural-acoustic system for interval analysis 

Consider the composite structural-acoustic system involving L independent 

multiple variables, the uncertain variable vector can be expressed as 

 
1 1 2 1 2 31,..., ,..., ,...,L L L L L Lp p p p+ + + =  p   (40) 

In which L1, L2 and L3 represent the number of p-boxes variables, evidence variables 

and interval variables respectively, and L1+ L2 +L3= L. In practical engineering, these 

uncertain parameters are always bounded, then Eq. (40) can be rewritten as  
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The Gegenbauer polynomial can be directly applied for interval analysis by using 

a transformation process [42]. The arbitrary interval vector pI can be transformed as a 

function of interval vector ξI defined on [-1,1], which can be expressed as 
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In which  
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The accuracy of Gegenbauer polynomials for interval model increases as the value 

of polynomial parameter λ decrease [42]. Therefore, the parameter λi of Gegenbauer 

polynomials related to interval variables is given as λi = 0.001 and marked as λ0 in this 

paper. 



 

 

Thus, the response of composite structural-acoustic system U can be approximated 

through SGPSM by 
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The η and 0λα can be obtained through Eqs. (37)-(39) and Eq. (36). 

Then by going through the first step in IMCM shown in section 4.2, the hybrid 

interval set I
kp  in the kth iteration can be expressed as  
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In which n is the total number of iterations of IMCM, namely the sample size. 

It should be pointed out that I I
k ⊆p p , namely the SGPSM constructed through 

Eq. (44) can be directly employed in interval analysis of each iteration. Similarly, the 

interval vector I
kp related to the kth iteration should be transformed as functions of 

I I [ 1 ,1]k ⊆ ∈ −θ ξ  and expressed as 
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Where 
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Then the lower and upper bounds of response I
kU   in the kth iteration can be 

evaluated by the following equations  
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Note that the lower and upper bounds of I
kU are simple functions which can be 

efficiently calculated. In this paper, the Monte Carlo Simulation is adopted to calculate 

the extreme value of the functions in Eq. (48). It should be pointed out the SGPSM is 

the same in each iteration once the bounds of the unified form uncertain variables are 

obtained, which means the SGPSM is only need to be constructed once and thereby the 

efficiency is good.  

The steps of constructing the SGPSM of composite structural-acoustic system for 

interval analysis can be concluded as following:  

Step1. Input p-box variables
11, , La a = … a  , evidence variables 

21, , Lb b = … b  , 

interval variables 
31, , Lc c = … c  

Step2. Transform hybrid variables into unified p-box form uncertain vector by Eq.(24), 

whose bound vector is
1 1 2 1 2 3

I I I I I
1 ,..., ,..., ,...,

L L L L L L
p p p p

+ + +
 =  p , L1+L2+L3=L. 

Step3. Calculate the transformation coefficients mq and dq of pI by Eq. (47), q=1,2,…,L. 

Step4. Produce sparse sampling points sξ (s=1,2,…,NC), calculate the response Y and 

the polynomial basis A at the sampling points through Eqs. (38) and (39). 

Step5. Calculate the coefficients 
1,..., Li if  of Gegenbauer polynomials by Eq. (37), 

construct the Gegenbauer expansion  I( )U ξ  for the approximation of original interval 

response I( )U p ,namely SGPSM.  



 

 

4.4 Procedure of MIMCM  

To sum up, the proposed MIMCM has made the following developments: Firstly, 

evidence variables and interval variables are transformed into p-box-form variables 

thereby IMCM can be applied to handle multiple types of epistemic uncertainties. 

Secondly, the sparse Gegenbauer polynomial surrogate model is developed to obtain 

the interval response of composite structural-acoustic system in each iteration, which 

can greatly improve the calculation efficiency of IMCM.  

The detailed procedure of proposed MIMCM for response analysis of composite 

structural-acoustic system with multiple types of epistemic uncertainties can be 

expressed by a flow chart shown as Figure 3. 

 

 

 

 

 

 

 

Fig. 3 Flowchart of the proposed MIMCM  

  



 

 

5 Numerical examples and discussions  

In this section, one numerical example and two engineering examples are 

considered to verify the performance of the MIMCM. All the simulations are carried 

out by using MATLAB R2015b on a 3.30GHz Intel(R) Xeon(R) CPU E3-1230 V2. 

5.1 A nonlinear function  

In this subsection, a simple nonlinear function is applied to verify the accuracy 

and efficiency of the proposed MIMCM. For brevity, the function is defined as  
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In which xi (i=1,…,6) are defined as dimensionless variables. Among these variables, 

x1, x2 ,x3 are assumed as p-box variables and their range variation are [2.7, 3.3], [3.6, 

4.4] and [0.9, 1.1], respectively. x4 is assumed as evidence varible and its range variation 

is [1.8, 2.2]. x5 and x6 are assumed as interval variables and their range variation are 

[4.5, 5.5] and [5.4, 6.6], respectively. The detail probabilistic information of each 

variable is listed in Table 1.  

Table 1 The distribution type and probabilistic information of variables 

Variable Distribution Probabilistic information 

x1 Uniform Parameter a∈[2.7, 3] Parameter b∈[3, 3.3] 

x2 Gaussian Mean μ∈[3.69, 4.31] Standard deviation σ =0.03 

x3 Non-

parametric F
—

X = 266.66x3-837.13x2+876.6x-305.2582 FX = 333.34x3-964.28x2+930.2x-299.118 

x4 Evidence 
Interval [1.8, 1.9] [1.9, 2.0] [2.0, 2.1] [2.1, 2.2] 

BPA 0.1 0.2 0.3 0.4 



 

 

x5 Interval None 

x6 Interval None 

Here, the results obtained by the hybrid discrete method (HDM) is used as 

reference solutions. In HDM, the MCS is employed for the interval analysis with 

respect to each joint focal element. In order to guarantee the accuracy, the sampling 

number in MCS is set to be 10000 and the p-box variables are discretized into a finite 

list of 100 pairs. With combination of the evidence variable, the number of the focal 

elements of joint FD is 4×106 in HDM. In MIMCM, the retained order related to each 

variable in SGPSM is 3 when the precision is satisfied. This means that the nonlinear 

function should be called for NC=84 times to construct the SGPSM. In MIMCM, the 

sample size of the standard uniform random number is set as 5000 after investigating 

the convergence of MIMCM. The upper bound (UB) and lower bound (LB) of the CDF 

of the function response y calculated by HDM and MIMCM are shown in Figure 4. 

Besides, the relative error (RE) of the bounds of y calculated by MIMCM and HDM 

corresponding to different CDF values are listed in Table 2.  

 



 

 

Fig. 4 The UB and LB of the CDF of y obtained by HDM and MIMCM 

It can be seen from Figure 4 and Table 2 that the upper bound and lower bound of 

the CDF of y calculated by the MIMCM are very close to the referenced results 

calculated by HDM, which indicates that the proposed MIMCM is feasible and of good 

accuracy. In this case, the computation process of HDM contains 4×106 interval 

analyses based on original function, even using a less accurate perturbation-based 

method, it will need to call the original function 4×106 times, not to mention the Monte 

Carlo method. As a contrast, the computational cost of MIMCM includes 84 original 

function calls for the construction of SGPSM and 5000 interval analyses based on 

SGPSM. In addition, the computation complexity of the surrogate model is usually 

much less than that of the original model. Thus, it can be concluded that the MIMCM 

is more efficient than the HDM but without losing accuracy, especially for the uncertain 

problems involving multiple p-box variables.  

Table 2 The relative errors between the results obtained by HDM and MIMCM 

CDF 

value 

Lower bound of y  Upper bound of y 

HDM MMICM RE  HDM MMICM RE 

0.1 41.6707 41.7433 0.17%  64.7255 64.3860 0.52% 

0.2 42.5339 42.6407 0.25%  67.4361 67.1596 0.41% 

0.3 43.2900 43.3929 0.24%  69.0466 68.8656 0.26% 

0.4 44.0080 44.1471 0.32%  70.1896 69.9548 0.33% 

0.5 45.1451 44.9076 0.53%  71.1558 70.9618 0.27% 

0.6 45.4316 45.6516 0.48%  72.1749 71.9393 0.33% 

0.7 46.1597 46.3057 0.32%  73.2694 73.0323 0.32% 

0.8 46.9995 47.1812 0.39%  74.5043 74.2874 0.29% 



 

 

0.9 48.4697 48.7104 0.50%  76.0094 75.7069 0.40% 

5.2 Hexahedral box 

Figure 5 depicts a cavity enclosed by a hexahedral box of dimensions 0.25m× 

0.25m×0.25m. The acoustic field is surrounded by a clamped plate and five rigid walls, 

and the center of the top surface is excited by a concentrated harmonic load F=10N. 

The clamped plate is discretized by 64 four-node Kirchhoff plate elements and the 

acoustic domain consists of 512 eight-node hexahedral elements. 

 

Fig. 5 A hexahedral box 

The macro clamped is composed of a periodic uniform material and its equivalent 

macro material properties can be calculated through the homogenization method [45]. 

Figure 6 depicts a unit Representative Volume Element (RVE) of the unidirectional 

fiber reinforced composite. The microstructure unit cell is composed of two prescribed 

materials, namely, the strong material (Red color) and the soft material (Blue color). 

The Young’s modulus and mass density of the strong material are E1=210 GPa and 

ρ1=7800 kg/m3, while those of the soft material are E2=21 GPa and ρ=780kg/m3, 



 

 

respectively. The Poisson’s ratio for both types of materials is 0.3. Assuming that the 

unit cells at the micro scale are square of dimensionless length 1×1, and the radius of 

the fiber at the center of the matrix is 0.2. The finite element model of the RVE consists 

of 340 elements and 361 nodes. 

 

Fig. 6 RVE of a unidirectional fiber reinforced composite 

In practical engineering, the uncertainties inevitably exist in the composite 

structure-acoustic system. Considering the unpredictability of the composite material 

properties, the type of PDF of composite material property parameter usually is known 

but the distributed parameter maybe an interval due to the lack of information. Hence 

the Young’s modulus and the mass density of the fiber and the matrix are assumed as 

p-box variables, whose variation ranges are assumed as E1=[168, 252] GPa, ρ1=[6240, 

9360] kg/m3, E2=[16.8, 25.2] GPa and ρ2=[624, 936] kg/m3, respectively. The detail 

probabilistic information of these variables is listed in Table 3. Considering the impact 

of external environment change, the sound speed of the air c which is susceptible to 

temperature is assumed as an interval variable. The variation range of c is assumed as 



 

 

c= [269.52, 404.28] m/s. Considering manufacturing and assembly errors, the 

uncertainty of the plate thickness t can be reduced by expert opinions based on evidence 

theory, therefore t is assumed as evidence variable. The focal elements and BPAs of t 

are listed in Table 4. 

  



 

 

Table 3 The distribution type and probabilistic information of variables. 

Variable Distribution Probabilistic information 

E1 (GPa) Uniform Parameter a∈[168, 222.6] Parameter b∈[197.4, 252] 

E2 (GPa) Uniform Parameter a∈[16.8, 21.84] Parameter b∈[20.16, 25.2] 

ρ1 (kg/m3) Gaussian Mean μ∈[6600, 9000] Standard deviation σ =120 

ρ2 (kg/m3) Gaussian Mean μ∈[660, 900] Standard deviation σ =12 

Table 4 The BPAs of evidence variable t. 

Focal elements (mm) BPA 

[0.9, 0.925] 0.05 

[0.925, 0.95] 0.15 

[0.95, 0.975] 0.15 

[0.975, 1] 0.3 

[1, 1.025] 0.1 

[1.025, 1.05] 0.1 

[1.05, 1.075] 0.05 

[1.075, 1.1] 0.1 

It should be pointed out that HDM will not be used as reference in this case due to 

the excessive computation burden for billions inteval finite element calculations. 

Instead, in order to compare the efficiency with the proposed MIMCM, the traditional 

Gegenbauer polynomial surrogate model (TGPSM) is applied for the interval analysis 

in IMCM and this method is called IMCM-TGPSM. The bounds of CDF of the sound 

pressure amplitude at the point x=0 mm when frequency=50Hz is calculated. In order 

to guarantee the accuracy, the retained order related to each varible in TGPSM is 3, 

which means the sampling points is Ntot=(3+1)6=4096. Here, this surrogate model is 

defined as a higher-order TGPSM (HTGPSM) and the result obtained by IMCM-



 

 

HTGPSM is shown as solid line in Figure 10. When the precision requirement is 

satisfied, the retained order related to each varible in SGPSM is 3, namely the sampling 

points is NC=84. The result calculated by MIMCM is shown as broken line in Figure 

10. As a contrast, let the retained order related to each variable in TGPSM is set as 

[1,1,1,1,1,1,2], then the interpolation points is Ntot= 96, which is a little bigger than that 

of SGPSM. Here, this model is defined as lower-order TGPSM (LTGPSM) and the 

result obtained by IMCM-LTGPSM is shown as dotted line in Figure 7. 

 

Fig. 7 Bounds of CDF of sound pressure amplitude obatined by different 

methods at the point x=0 mm when frequency=50Hz. 

It can be found from Figure 7 that the bounds of CDF of sound pressure amplitude 

calculated by MIMCM and IMCM-HTGPSM match well, but the sampling points of 

SGPSM in MIMCM is far less than HTGPSM. Besides, the bounds of CDF of sound 

pressure amplitude calculted by IMCM-LTGPSM is out of kilter compared with the 

IMCM-HTGPSM and MIMCM. This means that the accuracy of MIMCM is better than 

the IMCM-TGPSM when the sampling points in TGPSM and SGPSM are close. It can 



 

 

be concluded that the MIMCM is more efficient than the IMCM-TGPSM but with 

maintaining good accuracy.  

Considering the excitation frequency is 50Hz, here the proposed MIMCM is 

applied to predict the variation range of sound pressure amplitude. Figure 8 shows the 

variation range of sound pressure amplitude (risk and conservative estimation) of each 

node at the central line at the 90% confidence level. Here, the variation range of sound 

pressure amplitude at 90% confidence level refers to the variation range of sound 

pressure amplitude corresponding to 5% and 95% CDF value. It can be seen from 

Figure that the UB and LB of risk estimation are both smaller than the UB and LB of 

conservative estimation. This phenomenon is justified because that conservative 

estimation usually requires more consideration of possible scenarios than risk 

estimation in reliability analysis. Therefore, the bounds obtained by conservative 

estimation is larger than the bounds obtained by risk estimation, which makes the 

bounds of conservative estimation include the case that the bounds of risk estimation 

are not considered.   



 

 

 

Fig. 8 Range of sound pressure amplitude variation of each node at the central line at 

the 90% confidence level 

5.3 Automobile passenger compartment 

An automobile passenger compartment with flexible roof panel is shown in Figure 

9. The roof panel is excited by a unit normal harmonic point force at the center, whose 

four sides are fixed. Assuming that the roof panel is composed of periodic composite 

materials, and the unit RVE of the periodic composite material is the same as that in 

Section 5.2. The position of node A is close to that of the driver's left ear.  

 

Fig. 9 An automobile passenger compartment 

Considering the uncertainty in microscopic material properties of the composite 

material, the Young’s modulus and the mass density of the fiber and the matrix are 



 

 

assumed as p-box variables, whose variation ranges are assumed as E1=[189, 221] GPa, 

ρ1=[7020, 8580] kg/m3, E2=[18.9, 22.1] GPa and ρ2=[702, 858] kg/m3, respectively. 

Considering the unpredictability of environment temperature, the sound speed of the 

air is assumed as interval variable, whose variation range is assumed as c= [303.21, 

370.59] m/s. Consider manufacturing and assembly errors, the thickness of the plate t 

is assumed as evidence variable, whose focal elements and BPAs are listed in Table 4. 

The detail distribution type and probabilistic information of other variables are listed in 

Table 5.  

Table 5 The distribution and probabilistic information of variables 

Variable Distribution Probabilistic information 

E1 (GPa) Uniform Mean μ∈[202.5, 207.5] Standard deviation σ = 4.5 

E2 (GPa) Uniform Mean μ∈[20.4, 20.6] Standard deviation σ = 0.5 

ρ1 (kg/m3) Gaussian Parameter a∈[7020, 7917] Parameter b∈[7683, 8580] 

ρ2 (kg/m3) Gaussian Parameter a∈[702, 799.5] Parameter b∈[760.5, 858] 

In this case, the bounds of CDF of the sound pressure amplitude at the Node A 

when frequency=50Hz is calculated. In order to guarantee the accuracy, the ratained 

order related to each variable in TGPSM is set as 3, namely Ntot=(3+1)6=4096 times 

finite element calculations are needed to constuct TGPSM. As a contrast, the ratained 

order related to each variable in SGPSM is 3. Namely the number of finite element 

calculations for constructing SGPSM is NC=84, which is much less than that for the 

TGPSM. Besides, here the first-order matrix decompositon perturbation method 

(FMDPM) is also introduced for interval analysis in the IMCM and this method is 

defined as IMCM-FMDPM. Figure 10 shows that the UB and LB of CDF of the sound 



 

 

pressure amplitude obtained through IMCM-TGPSM and MIMCM are nearly the same, 

which furthur indicates the efficiency advantage of the MIMCM. Note that the bounds 

of CDF of the response calculated by IMCM-FMDPM is wider than those obtained by 

MIMCM and IMCM-TGPSM. The reason of this phenomenon is the truncation of the 

higher order terms of the Taylor series expansion in the first-order perturbation method. 

When the FMDPM is employed to interval analysis in IMCM, the times of finite 

element matrix assembly are greatly reduced, but the total times of matrix calculation 

is still remaining the same, which means its computational burden is still large. 

Moreover, the proposed MIMCM can achive a better accuracy, this means it has a good 

prospect of engineering application.  

 

Fig. 10 Bounds of sound pressure amplitude obtained by different methods at the 

Node A when frequency=50Hz. 

In engineering practice, it is necessary to optimize the design of the structure in 

order to obtain a high level of NVH performance. Generally, the limit amplitude of a 

target frequency will be set in this process. Then the response amplitude after 



 

 

optimization design needs to be lower than this limit amplitude. Take the sound pressure 

amplitude response of Node A as an example. Assuming that its limit sound pressure 

amplitude is p0 at the frequency 50Hz. If p0 < pmin, it means that the acoustic design of 

the composite structural-acoustic system model is invalid. If p > pmax, it means that the 

acoustic design meets the design requirements. Note that when pmin <p0 < pmax as shown 

in Figure 10, the left boundary value A0 of the probability cumulative distribution 

function corresponding to the x-coordinate p0 is larger than the right boundary value B0 

of the probability cumulative distribution function. This is because that A0 is a risk 

estimate, which is the sum of all or part of the probability distributions that contain 

events of p≤p0; whereas B0 is a conservative estimate, which is the sum of all the 

probability distributions that contain events of p≤p0. Thus, risk and conservative 

reliability analysis based on acoustic performance can be conducted by comparing the 

design requirements with the response of the composite structural-acoustic system. 

Figure 11 depicts the variation range of sound pressure amplitude at Node A under 

90% confidence level considering the frequency from 50Hz to 350Hz. Figure 11 shows 

that the interval of 90% interpercentile range for both conservative estimation and risk 

estimation expand as the frequency increases, which means the composite structural-

acoustic system is more affected by input uncertainties as the frequency increases. Since 

the MIMCM can quantify the propagation of hybrid and epistemic uncertainties 

efficiently and accurately, it can play an important role in acoustic design and 

optimization of practical engineering. 



 

 

 

Fig. 11 Variation range of sound pressure amplitude at the Node A under 90% 

confidence level considering the frequency from 50Hz to 350Hz. 

6 Conclusions 

In this paper, a probability-box-based method, termed as modified interval Monte 

Carlo method, is developed for propagation of multiple types of epistemic uncertainties 

in the response analysis of the composite structural-acoustic system. The multiple types 

of epistemic uncertainties refer to p-box variables, evidence variables and interval 

variables, which can all be represented by an equivalent p-box form through a 

transformation process. To reduce the computational cost of repetitive interval 

calculations, the sparse Gegenbauer polynomial surrogate model of the composite 

structural-acoustic system is constructed to increase the efficiency. A numerical 

example of a nonlinear function is analyzed to verify the accuracy and efficiency of the 

proposed method. Then two engineering examples of composite structural-acoustic 

systems involving multiple types of epistemic uncertainties are discussed to further 

illustrate the efficiency of the proposed method. Numerical results indicate that the 



 

 

proposed method can achieve both accuracy and efficiency. Moreover, by using the 

proposed method, risk and conservative reliability analysis based on acoustic 

performance are conducted by comparing the design requirements with the response of 

the composite structural-acoustic system. 

Therefore, in practical acoustic design and optimization, the proposed method is a 

considerable method for quantifying the effects of multiple types of epistemic 

uncertainties on the response analysis of composite structural-acoustic systems. Besides, 

the proposed method also has good application potential in analysis of other 

engineering systems involving multiple types of epistemic uncertainties.   
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MIMCM modified interval Monte Carlo method 
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LTGPSM       lower-order traditional Gegenbauer polynomial surrogate model 
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Appendix. Gegenbauer series expansion method 

Gegenbauer polynomials Gn (ξ) of n degree can be defined as  
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In which λ is a polynomial parameter and λ > 0. 

The orthogonality relationship of Gegenbauer polynomials defined on ξ ∈ [-1, 1] 

can be represented as 
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Where ρλ (ξ) is the weight function. Γ (•) denotes the Gamma function. 

Based on the orthogonal relationships of Gegenbauer polynomials, a continuous 

function f (ξ) defined on ξ ∈ [-1, 1] can be approximated as follows 
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In which N represents the retained order, fi is the ith (i = 0, 1,…, N) constant coefficient. 

By the use of weighted least squares method and Gauss-Gegenbauer integration 

formula [46], the coefficient can be obtained by the following equation 
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In which m is the total number of the interpolation points, the interpolation points 

 ( 1,2,..., )j j m
λ

ξ =  are the roots of ( )mGλ ξ . jAλ  denotes the weight function and can 

be represented as  
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In which 1
1( ) 2m j mG x Gλ λλ′ +
−= . 

As for the L-dimensional problems, the function f (ξ) can be approximated by the 

Gegenbauer polynomials and expressed as 
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where Nl (l=1,2,…,L) is the retained order related to ξl, which can be estimated by using 

the relative improvement criterion [42]. 1 1

1 1

,...,
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1,..., Li if  is the 

L-dimensional expansion coefficient and can be calculated by 
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Where  
1
,...,

Lj jξ ξ   represents the interpolation points, 
1,..., Lj jA   denotes the weight 

function which can be obtained by 
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Generally, the number of the interpolation points in relation to ξi is set as mi = Ni + 



 

 

1 in order to strike a good balance between efficiency and accuracy. For the L-

dimensional problems, the total number of the interpolation is  
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